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Cognition and brain structure undergo significant maturation from adolescence into adulthood. Model-based (MB) control is known
to increase across development, which is mediated by cognitive abilities. Here, we asked two questions unaddressed in previous devel-
opmental studies. First, what are the brain structural correlates of age-related increases in MB control? Second, how are age-related
increases in MB control from adolescence to adulthood influenced by motivational context? A human developmental sample (n =
103; age, 12–50, male/female, 55:48) completed structural MRI and an established task to capture MB control. The task was modified
with respect to outcome valence by including (1) reward and punishment blocks to manipulate the motivational context and (2) an
additional choice test to assess learning from positive versus negative feedback. After replicating that an age-dependent increase in
MB control is mediated by cognitive abilities, we demonstrate first-time evidence that gray matter density (GMD) in the parietal cor-
tex mediates the increase of MB control with age. Although motivational context did not relate to age-related changes in MB control,
learning from positive feedback improved with age. Meanwhile, negative feedback learning showed no age effects. We present a first
report that an age-related increase in positive feedback learning was mediated by reduced GMD in the parietal, medial, and dorsolat-
eral prefrontal cortex. Our findings indicate that brain maturation, putatively reflected in lower GMD, in distinct and partially overlap-
ping brain regions could lead to a more efficient brain organization and might thus be a key developmental step toward age-related
increases in planning and value-based choice.
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Significance Statement

Changes in model-based decision-making are paralleled by extensive maturation in cognition and brain structure across develop-
ment. Still, to date the neuroanatomical underpinnings of these changes remain unclear. Here, we demonstrate for the first time
that parietal GMD mediates age-dependent increases in model-based control. Age-related increases in positive feedback learning
were mediated by reduced GMD in the parietal, medial, and dorsolateral prefrontal cortex. A manipulation of motivational context
did not have an impact on age-related changes in model-based control. These findings highlight that brain maturation in distinct
and overlapping cortical regions constitutes a key developmental step toward improved value-based choices.
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Introduction
Value-based learning and decision-making are guided by model-
based (MB) and model-free reinforcement learning (RL) systems
(Daw et al., 2005, 2011; Daw and Dayan, 2014). The MB system
relies on a model of the environment by mapping states, actions,
and outcomes in a probabilistic manner (Daw et al., 2005, 2011;
Dayan and Niv, 2008; Daw and Dayan, 2014). This enables flexi-
ble behavior but is cognitively demanding. MB contributions to
control were shown to increase from childhood into adulthood
(Decker et al., 2016; Bolenz et al., 2017, 2019; Nussenbaum et al.,
2020; Vaghi et al., 2020), which was mediated by cognitive abil-
ities (Potter et al., 2017; Nussenbaum et al., 2020). Our present
study replicates these findings and examines hitherto unad-
dressed research questions. First, what are the neuroanatomi-
cal correlates of age-related increases in MB control? Second,
are these increases distinctively influenced by motivational
context? Finally, does learning from positive and negative
feedback change with age?

After a marked increase of gray matter (GM) from infancy to
childhood (Knickmeyer et al., 2008; Gilmore et al., 2012), the ad-
olescent brain shows a profound GM reduction in frontal, parie-
tal, and temporal cortices (Blakemore, 2012; Tamnes et al., 2013;
Ziegler et al., 2019), potentially from synaptic pruning (Giedd et
al., 1999; Gogtay et al., 2004). This may lead to more efficient
brain organization, including myelination (Fuhrmann et al.,
2015), hypothetically underlying the coinciding improvement in
cognition, such as working memory (Bunge and Wright, 2007;
Jolles et al., 2011; Tamnes et al., 2013). Previously, MB control
was positively related to cognitive abilities including working
memory (Eppinger et al., 2013; Otto et al., 2013) and process-
ing speed (Schad et al., 2014; Reiter et al., 2016), and increas-
ing MB control with age was mediated by cognitive abilities
(Potter et al., 2017; Nussenbaum et al., 2020). GM in dorsolat-
eral and ventromedial prefrontal cortex correlated with MB
control in adults (Deserno et al., 2015; Voon et al., 2015a),
and prefrontal and parietal cortices were shown to encode
state predictions, a neural signature of MB RL (Gläscher et al.,
2010). However, it remains unclear whether structural brain
maturation mediates increases in MB control from adoles-
cence to adulthood.

Previous work (Cauffman et al., 2010; Van Leijenhorst et al.,
2010; Cohen, 2011; Van Den Bos et al., 2012; Silverman et al.,
2015) also suggested that effects of outcome valence on RL
(Sutton and Barto, 1998; Daw and Dayan, 2014) may change
across development, showing elevated reactivity in adolescents
toward rewards overall or relative to punishment (but see
Nussenbaum and Hartley, 2019; Rosenbaum et al., 2022). It is
feasible that adolescents still differ in their ability to apply and
exert the same extent of MB control across different domains
given ongoing and protracted brain maturation (Cohen et al.,
2016). Also, adolescents may be more strongly affected by the out-
look of reward and might use more MB control to gain rewards
relative to punishment avoidance. However, the only study exam-
ining such effects on MB control found no age dependency of
contextual valence on MB control (Bolenz and Eppinger, 2021).
Meanwhile, a large body of work links differences in positive ver-
sus negative feedback learning to positive and negative reward pre-
diction errors (RPEs; Frank et al., 2004, 2007). Phasic dopamine
responses to RPE are asymmetric so that bursts for positive RPEs
are larger than dips for negative RPEs (Montague et al., 1996;
Schultz et al., 1997). In adolescence, RPE signaling in the ventral
striatum is enhanced compared with adults (Cohen et al., 2010).
An established test capturing this asymmetry in feedback learning

is derived from a probabilistic selection task (Frank et al., 2004),
which has only been used once to study instruction biases across
development (Decker et al., 2015).

Thus, we aimed to experimentally separate and study two
developmentally relevant aspects of outcome valence, (1) learn-
ing in a reward or punishment context and (2) learning from
positive versus negative feedback. For this, we recruited a devel-
opmental sample that completed structural neuroimaging and a
modified 2-step task (Voon et al., 2015b; Doll et al., 2016) to
study the structural correlates of the development of MB control
for reward and punishment and learning from positive versus
negative feedback.

Materials and Methods
Sample
A developmental sample of n = 103 participants (age range, 12–50 years,
48 females, 55 males) was recruited as part of a larger study. This sub-
sample was specifically screened to exclude current mental health diag-
nosis (also see the pre-registered study protocol for more details on
the study proceedings and employed material at https://osf.io/fyn6q)
(Herzog et al., 2023). Participation consisted of two appointments. On
day one, each participant completed a modified sequential decision-
making task, the 2-step task (Daw et al., 2011) behaviorally, which was
followed by a choice test capturing learning from positive versus nega-
tive feedback (Frank et al., 2004; Doll et al., 2009, 2011, 2016) after a
30min break, during which participants either completed another task
or questionnaires. This was all part of a larger task battery. They also
underwent a battery of cognitive measures [Digit Symbol Substitution
Test (DSST) for processing speed (Wechsler, 1997), Digit Span for work-
ing memory, (Wechsler, 1997), the Trail Making Test (TMT) for execu-
tive functioning including visual attention (Reitan, 1955) and a German
vocabulary test assessing verbal intelligence (Schmidt and Metzler,
1992)], also described in more detail in the study protocol at https://osf.
io/fyn6q (Herzog et al., 2023). On the second day, participants under-
went structural MRI. Participants were reimbursed 9 euros per hour for
participation and a bonus payment based on task performance. The
study was in accordance with the Declaration of Helsinki and approved
by the ethics board of the medical faculty at the University of Leipzig
(385/17-ek). All participants were informed about study proceedings
and gave informed consent before participation.

Sample overview
The following outlines the samples assessed for each analysis. For all
samples, the age range was 12–42 years, and additional characteristics
are reported accordingly. In the behavioral analysis of MB control in the
2-step task (n = 101; male, female, 54:47; mean age = 23.03 years, SD =
7.98), we excluded one participant from the initial sample of 103 partici-
pants, who had experienced 140 instead of 200 trials on the task, render-
ing this participant’s learning experience incomparable with the rest of
the sample and a second participant who was a considerable age outlier
(8 year age gap, age 50).

For the behavioral analysis of choice task (n = 90; male, female,
52:38; mean age = 23.33, SD = 8.04) fewer participants had completed
the task because of technical issues of task presentation (n = 10). In line
with previous studies (Gillan et al., 2016; Smid et al., 2022), we excluded
one more participant with a missing response rate of .95% on the
choice task.

For structural brain analysis, n = 98 datasets (male, female, 53:45,
mean age = 23.14, SD = 8.05) were available, as 3 participants did not
undergo scanning. Thus, for the MB measures derived from the 2-step
task, brain–behavior correlations could be tested in n = 98. Because of the
larger dropout for the choice task, brain–behavior correlations could be
tested only in n = 88; male, female, 51:37; mean age = 23.59, SD = 8.06).

Experimental Tasks
The study included a sequential decision-making task, which encom-
passed two major modifications to address the research questions out-
lined in the introduction. These changes included (1) separate reward
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and punishment blocks during the task (Voon et al., 2015b) to test effects
of motivational context on MB control and (2) a choice test akin to the
probabilistic selection task (Frank et al., 2004), following the 2-step task
(Doll et al., 2016), testing learning from positive versus negative
feedback.

Sequential decision-making task
Similar to Daw et al. (2011), participants were presented with two differ-
ent cue pairs in the first stage and had to select one cue to continue to

the second stage (Fig. 1). Each cue was associated with a probabilistic
transition to one of the two second stage states, a common transition of
70% and a rare transition of 30%. Transition probabilities were fixed
across the task. At the second stage, participants again had to choose
between two cues and received an outcome (reward, neutral outcome,
punishment, depending on the within-subject manipulation of motiva-
tional context; see below). Outcome probabilities changed slowly but
constantly over time according to a Gaussian random walk. Thus,
to maximize outcome in this task, participants needed to track these

Figure 1. Task set-up sequential decision-making task. A, Modified 2-step task: In the sequential decision-making task, a first stage choice led to one of two possible second stages, during
which a second choice had to be made. After this second stage choice, participants received a reward or neutral outcome (rewards were replaced by punishments in the punishment context).
The probability of receiving a reward or punishment was determined by continuously changing probabilities, i.e. Gaussian random walks. Transition probabilities from stage 1 to stage 2 were
fixed and are either considered common (70%) or rare (30%). B, Fixed outcome probabilities. Depiction of the fixed outcome probabilities that were assigned to the two familiar cue pairings
for the last 30 trials of each motivational context (reward and punishment) in the sequential decision-making task. C, Trial sequence sequential decision-making task, presented once for the
reward context which employs positive and neutral outcomes, and once for the punishment context. D, Overview of choice phase depicting cue selection across five trials without feedback to
make sure that no further feedback-based learning occurs. Participants were required to select what they thought was the better cue from either familiar or recombined, new pairs.
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continuously changing outcome probabilities. Importantly, participants
were explicitly told that the transition structure of the task (com-
mon/rare) would be constant over the task and that one transition
was going to be more probable than the other. They also under-
went practice trials to ensure that they understood the task. By
making use of knowledge about the transition structure, individu-
als could exert MB control over choices. We used a task variant,
which included an additional within-subject manipulation of motiva-
tional context for positive and negative outcomes (Voon et al., 2015b;
Worbe et al., 2016). Each participant completed two task blocks (each 100
trials). The reward block had monetary rewards displayed on the screen
(120 cents) or neutral feedback, whereas the punishment block used
punishments (�20 cents) alongside neutral feedback. Block order was
randomized across participants to avoid order effects. Participants
were instructed to maximize outcome and could do so by learning to
select the currently most rewarded cue in the reward block or by
avoiding negative outcomes in the punishment block. They were told
that they would be paid a bonus dependent on the rewards gained
during the experiment.

Choice test
To examine age-dependent differences in learning from positive and
negative outcomes and the impact of motivational context on learning,
we used a variant of a previously established probabilistic choice task
(Frank et al., 2004; Doll et al., 2009, 2011, 2016; Fig. 1D). To enable a
choice test subsequent to the 2-step task, reward probabilities remained
stable for the last 30 trials in each block (reward/punishment) of the 2-
step task. Hence, the previously slowly changing reward probabilities of
one second stage pair were fixed to 80% and 20% chance of winning (or
losing for the punishment block), whereas the probabilities were fixed at
60% and 40% for the other second stage pair. Thus, in the last 30 trials of
each block, participants could learn the cue values in a stable manner
(e.g., infer the most frequently rewarded and least frequently punished
cues; Fig. 1B). In the ensuing choice task, participants were presented
with 28 different cue pairs, which were presented three times amounting
to a total of 84 trials. These consisted of four familiar pairs they had pre-
viously encountered during the second stage of the 2-step task and 24
unfamiliar pairs from newly combined cues from the second stage.
Unfamiliar pairs could be grouped into two categories, (1) two recom-
bined cues derived from the same motivational context (reward or pun-
ishment, 8 pairs) and (2) mixed pairs combining cues from the reward
and punishment block (16 pairs). Of note, mixed pairs represent a
unique feature of this task version and have not been used frequently in
previous work (Palminteri et al., 2016). They were introduced to increase
the general level of task difficulty and variance of performance thus
allowing better assessment of interindividual differences across partici-
pants. Participants were instructed to select the best cue from each pair
on presentation, and unlike before, they did not receive feedback after
having made their choice to disable further feedback-based learning.
Thus, the selection task examines the values participants have learned
for each cue throughout the previous task phase, that is, the value they
encoded for the respective stimulus. Of note, participants were aware of
a performance-based bonus payment related to both tasks.

Analysis of 2-step task
To examine which factors had an impact on first-stage choice behavior
on the subsequent trial, we computed linear mixed effects models using
the lme4 package implemented in R (http://cran.us.r-project.org) with
the optimizer bobyqa and the maximal number of iterations set to n =
1e1 8. The model included participants’ trial-by-trial first-stage choices
(stay or switch in a given trial n as compared with the previous trial n-1)
as dependent variable (DV). Second stage feedback (positive vs negative;
in the reward block this refers to positive vs neutral outcome, and in the
punishment block this refers to neutral vs negative outcome) and transi-
tion type (rare vs common) from the previous trial and motivational
context (reward vs punishment block) as within-subject fixed effects in
the model. The model was estimated with a full random effects structure,
that is, all fixed effects were included as random effects as follows:

DVstay; feedback p transition p valence1 ðfeedback � transition
� valence1 1jSubjectÞ:

To determine whether we could replicate age-dependent changes inMB
control as reported by Decker et al. (2016), we extracted the individual slope
of the fixed effects interaction term feedback * transition as a valence-de-
pendent individual estimate of MB control and correlated it with age. To
determine age-dependent changes in MB control as a function of moti-
vational context, we ran the model separately for the reward and punish-
ment blocks and correlated the extracted estimates of MB controlreward
and MB controlpunishment with age, respectively. Finally, we also assessed
the association between MB control and the quadratic age effect while
controlling for the linear effect of age. Given non-normal distributions
of some variables, we assessed correlations using Spearman’s correlation
coefficients.

Cognitive measures and MB control
We also examined the replicability of previous findings (Schad et al.,
2014) showing a link between cognition and MB control. For this, we ran
mediation analyses using the mediation package (Tingley et al., 2014)
implemented in R to test whether the association between age and MB
control was mediated by cognitive abilities. We used nonparametric boot-
strapping with n = 10,000 simulations to determine the average causal
mediation effect between age and MB control mediated by cognitive
measure.

Analysis of choice test
We studied participants’ tendency to learn from positive and negative feed-
back using mixed-effects modeling and assessed age effects using correla-
tional analysis. Here, we examined the difference between selecting the best
cue for reward or punishment pairs (choose 80% rewarded or 20% pun-
ished over all cues) relative to avoiding the worst cue in reward or punish-
ment pairs (avoid the cue that was 20% rewarded or 80% punished). This
difference captures the shift toward learning more from positive or nega-
tive feedback, whereas no difference indicates equal learning from both
modalities. We restricted analysis to reward pairs including the most fre-
quent winner (80% positive outcome) or the least frequent winner
(20%) and punishment pairs with the least frequent loser (20% nega-
tive outcome) or the most frequently punished cue (80%). Selecting
the best cue, previously termed cue A, represents an individual’s tend-
ency to learn from positive feedback, whereas avoiding the worst cue,
also known as B from previous work, is said to capture learning from
negative feedback (Frank et al., 2004; Waltz et al., 2007; Doll et al.,
2016). The following equation was used to assess the impact of learn-
ing from positive and negative feedback on optimal decision-making:

DVopt; valence pAB p1 ðvalence � ABþ 1jSubjectÞ:

Again, we were interested in the association between learning from
positive and negative feedback with age (linear and quadratic effect) and
examined the correlation coefficient between age and the frequency with
which participants selected the best cue or avoided the worst.

Next, we assessed whether each participant’s frequency in visiting the
second-stage options in the last 30 trials with stable contingencies during
the 2-step task affected behavior in the choice task. Therefore, we
counted the number of visits of each stimulus during the last 30 trials.
Then, for each pair of stimuli presented in the choice task, we included
the differences between the number of visits of the two stimuli as covari-
ates to the model. Please note, if each stimulus was visited the same
number of times, this difference would be zero. We computed the model
as follows:

DVopt; valence pAB pCue2ndStage1 ðvalence pAB1 1jSubjectÞ:

We concluded this analysis by assessing whether MB control was
linked to learning from positive or negative feedback in the selection
task using correlational analysis.
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Structural brain data
Data acquisition structural imaging.Whole-brain T1 weighted image

acquisition took place on a 3T Magnetom Skyra scanner (Siemens).
Structural data for subsequent voxel-based morphometry analysis was
acquired with an echo time (TE), 2.98ms; repetition time (TR), 2300ms;
voxel size, 1.0 � 1.0 � 1.0 mm; field of view (FOV), 256 mm; 176 slices
with a slice thickness of 1 mm. For n = 16 participants a different multie-
cho sequence with the following parameters was used: TE, 1.96, 5.83, 8.78,
11.73, 15.18 ms; TR, 7000ms; voxel size, 1.0 � 1.0 � 1.0 mm; FOV, 256
mm; 192 slices with slice thickness of 1 mm.

Preprocessing of structural brain data
To examine morphometrical changes in the gray matter density
(GMD) of the brain, structural imaging data were preprocessed
and analyzed using the statistical parametric mapping (SPM 12)
software (https://github.com/spm/spm12) and the Computational
Anatomy Toolbox (CAT12; http://dbm.neuro.uni-jena.de/cat) ver-
sion 12.7. Preprocessing followed the default pipeline outlined in
the CAT12 manual and encompassed normalization to a template
space, tissue segmentation into GM, white matter and CSF, estimation
of total intracranial volume (TIV), and smoothing. Smoothing was
accomplished using an 8 mm full-width at half-maximum kernel. A 0.1
absolute masking threshold was applied to the data. Before analysis,
data were screened, and the weighted average image quality ratings
implemented in CAT12 were deemed satisfactory. TIV was then estimated
for the entire sample. Evaluating design-orthogonality using SPM 12 pro-
vided evidence of nonorthogonality between the TIV regressor and our
main effects of interest, namely, MB control and learning from positive
feedback. Hence, TIV was not included as a regressor in our GLMs.
Instead, we used global scaling to scale the data based on individual TIV
values thereby avoiding the removal of variance of interest (https://neuro-
jena.github.io/cat12-help/#intro). Of note, all GLMs also included an addi-
tional regressor of no interest coding for the scanning sequence.

Statistical analysis of GM, MB control and age
We used two GLMs to assess effects of age and MB control on GMD.
The first model (GLMMBC) included a regressor with the individual
slopes for MB control extracted from the mixed model described above
to examine any changes in GMD that were associated with MB control
in general. Meanwhile, our second model included regressors for age, MB
control, and their interaction (GLMMBC_Full) to determine which changes in
GMD that were linked to MB control would remain when controlling for
age. The interaction term of this model additionally allowed us to assess
whether certain changes in GMD differed as a function of age and MB con-
trol. To assess quadratic age effects on GMD, we set up a model including
regressors for linear and quadratic age (GLMAge2) in the 2-step sample.

Statistical analysis of GM and feedback learning
To probe the association between GMD and selection task performance,
we assessed two more models. The first model consisted of the extent to
which participants had learned from positive feedback; that is, they had
selected the better cue in a newly combined stimulus pair as results had
shown age-dependent changes for positive feedback learning only
(GLMPosFB). This was again done to inspect which GMD changes were
generally linked to positive feedback learning. The secondmodel had three
regressors–Age, A/better cue selected, and the interaction (GLMPosFB_Full).
This model allowed us to isolate changes in GMD related to positive feed-
back learning independent of age effects, to assess age-dependent GMD
changes, and to determine whether GMD changes differed as a function
of age and feedback learning. We chose to examine positive feedback
learning only as positive feedback had shown a strong age effect unlike
negative feedback learning. Finally, we again set up one more model to
assess quadratic age effects on GMD, namely, GLMAge2 including two
regressors coding for linear and quadratic age.

Regions of interest
Results of all brain structural analyses were examined (1) using FWE
correction of peak levels for multiple comparisons on a whole-brain level
and (2) using small-volume correction relying on three a priori defined

masks that were derived from Automated Anatomic Labeling software
(Tzourio-Mazoyer et al., 2002). This included a ventromedial prefrontal
cortex (vmPFC) mask comprising the superior medial frontal and
medial orbital gyrus, a dorsolateral PFC (dlPFC) mask based on the mid-
dle frontal gyrus, and the parietal cortex (inferior parietal and angular
gyrus), which was motivated by previous accords of the involvement of
those regions in MB control in fMRI studies using a similar task
(Gläscher et al., 2010; Daw et al., 2011; Deserno et al., 2015; Voon et al.,
2015a). Results were considered significant with a p value, 0.02 (0.05/3
for three regions of interest) to correct for multiple comparisons.

Mediation analysis
Given the lack of previous work examining the structural correlates of
age-dependent changes of MB control and feedback learning, we relied
on mediation analysis to examine whether maturational changes in
GMDmediated the association between age and positive feedback learn-
ing. For this, we used age as independent variable (IV), MB control (or
positive feedback learning) as DV, and GMD as mediator.

To assess whether certain GMD changes mediated the association
between age and MB control or age and learning from positive feedback,
we used the previously computed GLM with a regressor for MB control
and a second GLM including age as regressor. For both GLMs, we cre-
ated an F-contrast assessing any associated changes in either direction
for the regressor age and MB control, respectively. Each statistical map
was thresholded at p = 0.001 and cluster size �20 voxels at the whole-
brain level and subsequently exported as a mask image. We then created
conjunction masks from the two F-contrast masks and the parietal cor-
tex mask, dlPFC and mPFC masks, respectively. We then extracted
GMD estimates from these mask regions using the get_totals script by Ged
Ridgway (http://www.cs.ucl.ac.uk/staff/G.Ridgway/vbm/get_totals.m). Of
note, as no clusters in the vmPFCwere significantly associated withMB con-
trol, a conjunction mask did not yield a common region from which to
extract GMD estimates. This meant we could not assess the overall media-
tion effect across all regions but only across two regions before examining
the individual mediation effects of the ROIs (here for parietal cortex and
dlPFC). For this we created an average score of the scaled GMD estimates of
both ROIs. For mediation analysis, we relied on the mediation package in R.

To follow up on age-dependent effects for feedback learning, we
used the same approach as outlined for the mediation analysis including
MB control to analyze mediation effects related to feedback learning.
The only difference was that we now based the conjunction mask on the
GLM for (positive) feedback learning. Of note, as we only found age-
dependent effects of learning from positive feedback, this analysis focused
on positive feedback learning. Again, we examined the mediating role of
GMD derived from the vmPFC, dlPFC, and parietal cortex conjunction
masks. For this, we first ran a mediation analysis assessing the overall
effects of GMD across all ROIs on the association between age and pos-
itive feedback by computing a GMD average score and subsequently
assessed the impact of those three regions separately.

Data availability
Anonymized data and analysis code for this study can be found at
https://osf.io/7zw62/.

Results
Replication: MB control increases with age (n = 101)
Using correlational analysis, as done by Decker et al. (2016), we
replicated age-dependent increases of MB control [rs(99) = 0.31,
p value = 0.002; Decker et al., 2016; Nussenbaum et al., 2020; Fig. 2].
Also, MB control in the punishment and reward block both signifi-
cantly and comparably correlated with age [MB controlPunishment,
rs(99) = 0.28, p = 0.004; MB controlReward, rs(99) = 0.27, p = 0.007]
indicating that age-dependent improvements in MB control did
not differ as a function of motivational context (reward gain vs
punishment avoidance blocks). This replicates the previously
reported absence of general effects of motivational context (Bolenz
and Eppinger, 2021). MB control did not correlate with quadratic
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age effects when controlling for the linear age effect [rs(99) = 0.2,
p value = 0.1].

Replication: cognition mediates age-related increases in MB
control
Mediation analysis provided evidence of a significant partial
mediation of processing speed measured using the DSST,
accounting for 42,1% (p = 0.006) of the total effect of age on MB
control [indirect effect = 0.002, CI (0.0005–0.003), p = 0.004;
direct effect = 0.003, CI (�0.0007–0.01), p = 0.1; total effect =
0.004, CI (0.002–0.01), p = 0.006]. For verbal intelligence (WST =
Wortschatztest), mediation analysis suggested a full mediation for
the effect of age on MB control [p = 0.005; indirect effect = 0.005,
CI (0.002–0.01), p = 0.002; direct effect = �0.0001, CI (�0.004-
0.002), p value = 0.98; total effect = 0.004, CI (0.002–0.01), p =
0.003; Fig. 2]. Both effects were significant after multiple compari-
sons correction (a = 0.05/6 = 0.008). No significant mediation
effects were observed for working memory, short-term memory
capacity, visual attention, and general executive functioning (all
p values. 0.05).

Structural brain correlates of MB control (n = 98)
For the GLMMBC, including individual estimates of MB control
and a covariate controlling for the structural sequence, no signifi-
cant association for MB control with GMD survived FWE cor-
rection on the whole-brain level. Using small volume correction
(SVC) in our a priori defined regions of interest, we found GMD
in the parietal cortex to be associated with MB control (MNI
peak coordinates, �48, �50, 57; k = 494, t = 4.42, pFWE Peak corr =
0.008), which did not reach significance for the effect of MB
control in dlPFC GMD (MNI peak coordinates, �32, 57, 2; k =
10, t = 3.29, pFWE Peak corr = 0.3; Fig. 4A). In the vmPFC, no
suprathreshold clusters were identified. In the GLMMBC_Full,

age negatively correlated with GMD across the entire cortex, most
prominently for a large cluster comprising the right frontal supe-
rior gyrus, the left temporal middle gyrus, and the right supramar-
ginal gyrus (MNI peak coordinates, 18, 56, 16; k = 37120, t = 6.02,
pFWE Peak corr = 0.001; Fig. 4B). We did not find significant associa-
tion with GMD for MB control while controlling for the effects of
age nor for the interaction for age and MB control in this whole-
brain analysis (pFWEcorr peak/cluster . 0.05). Likewise, we did not
find any significant clusters using SVC for our three predefined
regions for the MB control regressor or the interaction regressor.
Assessment of the whole-brain effects of GLMAge2 did not yield
any significant effects of the quadratic age term (all pFWE Peak corr

values .0.05), so that we consequently refrained from assessing
additional models including quadratic age effects.

Next, we examined whether overall GMD across parietal regions
and dlPFC mediated the association between age and MB control.
The overall mediation model showed a trend, indicating that overall
GMD across both regions accounted for 45% of the relationship
between age and MB control (p = 0.054). We followed this up with
individual mediation models to determine whether one of the
regions might have a stronger impact. In an individual mediation
model, the association between age and MB control was partially
mediated by GMD in the parietal cortex, with GMD accounting for
67.7% of the total effect of the relationship between age and MB
control (p = 0.007; Fig. 4D). Meanwhile, the mediation effect of
GMD in the dlPFC was nonsignificant (p = 0.7). Given the absence
of significant quadratic age effects on MBC or GMD, we abstained
from assessing the mediation effects of GMD on the relationship
between age2 andMB control.

Learning from positive and negative feedback (n = 90)
Examining the ability to learn from positive and negative feed-
back using mixed-effect models, we found a significant main

Figure 2. A, Depiction of task performance overall. The proportion of times participants stayed with their previous choice on the first stage is depicted as a function of outcome (positive versus
negative) and transition type (common versus rare) encountered on the previous trial. The error bars represent 61 standard error of the mean B, The scatterplot shows the association between
model-based control with age and includes the best-fitted regression line. The shaded area represents the 95% confidence interval. C, Mediation effects of the relationship between age and model-
based control through cognitive abilities, namely processing speed as measured by the DSST and verbal intelligence indexed through WST scores. P values below 0.05 are considered significant.
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effect of learning from positive and nega-
tive feedback (b = 0.361, SE = 0.1, x 2 =
12.13, p , 0.001), indicating that overall
participants were better in choosing the
best cue (learning from positive feedback)
relative to avoiding the worst cue (Select
best: Mean = 68.7% (SD = 23.2) vs Avoid
Worst: Mean= 57.8% (SD = 23.2); Fig.
3A). Using correlational analysis, we found
that learning from positive feedback im-
proved with age [rs(88) = 0.35, p , 0.001],
whereas the ability to learn from negative
feedback did not [rs(88) = 0.07, p = 0.5;
compare Fig. 3B,C]. Meanwhile, assessing
the partial correlation between the quadratic
age effect and the ability to learn from posi-
tive or negative feedback while controlling
for linear age effects showed no significant
effects [Select Best, rs(88) = �0.12, p = 0.3;
Avoid Worst, rs(88) = �0.20, p = 0.1]. We
did not find evidence that the differences
between the number of visits of the two
stimuli significantly affected the choice
behavior individuals showed on this task,
indicated by the absence of a significant
main effect (b = �0.010, SE = 0.1, x 2 =
0.2, p = 0.6) or any significant two-way
(Cue2ndStage � AB, b = 0.046, SE = 0.1,
x 2 = 0.7, p = 0.4; Cue2ndStage � valence,
b = �0.013, SE = 0.1, x 2 = 0.2, p = 0.7)
or three-way interactions (Cue2ndStage �
valence� AB, b = 0.103, SE = 0.1, x 2 = 1.6,
p = 0.2).

MB control and feedback learning (n =
90)
MB control was positively correlated with
positive feedback learning in the choice task [rs(88) = 0.28, p =
0.007]. Negative feedback learning did not correlate significantly
with MB control [rs(88) = 0.15, p = 0.2; compare Fig. 3D].

Brain structural correlates of positive feedback learning (n =
88)
We then examined the neuroanatomical correlates of age-de-
pendent increases in learning from positive feedback. In the
GLMPosFB, we found positive feedback learning to be negatively
related to GMD in two clusters on the whole-brain level.
Specifically, in the left and right frontal superior medial gyrus
(vmPFC, MNI peak coordinates, 9, 69, 22; k = 1037, t = 5.02,
pFWE corr peak = 0.02) and to GMD in a cluster in the right inferior
and middle temporal gyrus (MNI peak coordinates, 63,�60,�12;
k = 446, T = 5.08, pFWE corr peak = 0.02; Fig. 5A). Using SVC, we
also found a significant cluster in the parietal ROI (MNI peak
coordinates, �45, 63, 24; k = 71, t = 4.12, pFWE corr peak = 0.02) and
a significant cluster in the dlPFC ROI (MNI peak coordinates, 20,
63, 26; k = 104, T = 4.30, pFWE corr peak = 0.02). In the GLMPosFB_Full,
we saw widespread GMD changes that were negatively associated
with age. For positive feedback learning, only one cluster in the
supplemental motor area survived whole-brain correction on
the peak level (MNI peak coordinates, �3, 16, 70; k = 390, t =
4.97, pFWE corr peak = 0.03), whereas the previously significant fron-
tal cluster from the first GLM failed to reach significance when
controlling for age effects. We found significant clusters in the

parietal ROI (MNI peak coordinates, 60, �44, 45; k = 197, t =
4.21, pFWE corr peak = 0.02) and dlPFC (MNI peak coordinates,
�33, 62, 8; k = 546, t = 4.72, pFWE corr peak = 0.005) using SVC,
whereas clusters in the vmPFC did not survive multiple compari-
sons correction. GMD changes were not significantly associated
with the regressor for age and positive feedback learning.

When assessing the overall mediation effect of GMD across
all regions on the association between age and positive feedback
learning, overall GMD accounted for up to 60.5% of the total
effect of the relationship of age and positive feedback learning
(p = 0.003). In the individual mediation models, we found the
association for age and learning from positive outcomes to be
partially mediated by GMD in all three regions of interest. GMD
in the vmPFC accounted for up to 31.2% of the total effect of the
relationship of age and positive feedback learning (p = 0.046),
whereas dlPFC GMD also mediated this association, explaining
42.4% (p = 0.01), as did GMD in the parietal cortex, explaining
up to 57.9% (p = 0.01) of the effect (Fig. 5B–D). Again, we
refrained from assessing GMD mediation effects on the associa-
tion between quadratic age effects and feedback learning given
the lack of significant results.

Discussion
We found changes in the association between age and MB con-
trol and positive feedback learning to be mediated by reduced
parietal GMD. Moreover, the association between age and

Figure 3. A, Overview of participants’ performance when choosing the best cue and avoiding the worst cue across reward
and punishment block. Participants show better performance when choosing the best cue, i.e. they learn better from positive
feedback relative to learning from negative feedback or avoiding the worst cue across blocks. B, The scatterplot depicts the
age dependent increase of learning from positive feedback. C, Learning from negative feedback did not show age effects D,
MB control was positively associated with positive feedback learning as can be seen in the scatterplot. The shaded areas in
Panel B–D all depict the 95% confidence interval and all scatterplots include the best-fitted regression line.
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positive feedback learning was partially explained by differences
in GMD in the vmPFC and dlPFC. Thus, we provide a potential
neuroanatomical correlate for previous findings of age-depend-
ent increases of MB control, which were mediated by cognitive
abilities. However, we found no evidence for motivational con-
text relating to age-dependent changes in MB control. Finally,
individuals relying more on MB control were more adept at
learning from positive feedback, suggesting improved value-based
choices. Our findings thus provide significant new insight into
potential neuroanatomical correlates of age-related increases in
MB control and positive feedback learning while highlighting the
need for considering motivational context and outcome valence
within a developmental research framework.

To our knowledge, this is the first study examining the neuro-
anatomical correlates of developmental changes in MB control
in different motivational contexts. Our finding of parietal
GMD mediating a considerable portion (.60%) of the rela-
tionship between age and MB control corresponds to func-
tional imaging work showing this region to encode the
neural signature of MB control, a state prediction error,
computing the difference between current state and observed
state transition (Gläscher et al., 2010). It also agrees with the
suggested role of posterior parietal regions as an integration hub
of spatial, temporal, and reward information (Roitman et al.,
2007).

We also find GMD in the parietal cortex, vmPFC, and dlPFC
to partially mediate the association between age and positive
feedback learning. The parietal cortex has been implicated in
mapping ordinal relationships among cues, a highly relevant fea-
ture when learning the relative rank order of task cues (Munoz et
al., 2020). The relevance of vmPFC for feedback learning is also

supported by work tying mPFC and
mOFC to adaptive decision-making and
subjective value encoding (Rushworth
et al., 2011) for positive (Kringelbach,
2005) and negative outcomes (Tom et
al., 2007). For the dlPFC, previous liter-
ature extensively highlighted its role in
working memory processes (Rottschy et
al., 2012; Nee et al., 2013) further sup-
ported by lesion studies in humans
(Barbey et al., 2013) and nonhuman pri-
mates (Butters and Pandya, 1969; Butters et
al., 1971; Levy and Goldman-Rakic, 1999).
Interestingly, one study showed a mod-
ulatory effect on reward and punish-
ment sensitivity in a probabilistic RL
task during noninvasive dlPFC stimula-
tion, possibly mediated through increased
dopaminergic release in the ventral stria-
tum (Ott et al., 2011). Thus, it is conceiva-
ble that the reported mediation effects of
dlPFC GMD on the association between
age and positive feedback learning is con-
veyed through working memory processes
facilitated in the dlPFC, which get updated
in a feedback-dependent manner.

Assessment of the overall mediation
effect of GMD suggests that instead of
a unique contribution of distinct brain
regions, age-associated changes in feed-
back learning likely emerge from changes
in a frontoparietal network, which has
been repeatedly linked to complex, higher-

level cognitive functions such as cognitive control (Niendam et al.,
2012; Cocuzza et al., 2020). This notion is further supported by
longitudinal work indicating task performance during feedback
learning to be linked to functional activity in a frontoparietal net-
work, also showing age-dependent activity patterns (Peters et al.,
2016).

Previous developmental studies consistently reported age-de-
pendent increases in MB control (Decker et al., 2016; Bolenz et
al., 2017; Nussenbaum et al., 2020; Vaghi et al., 2020), but they
were not designed to disentangle motivational context effects.
Interestingly, we see a lack of motivational context effects on MB
control (and age-dependent effects therein), despite ample em-
pirical evidence describing contextual effects on RL (Louie and
De Martino, 2014; Palminteri et al., 2015; Bavard et al., 2018;
Pischedda et al., 2020; Palminteri and Lebreton, 2021). This rep-
licates a previous null finding of another study also examining
motivational context effects in a developmental sample (Bolenz
and Eppinger, 2021). This absence might be explained by the
way motivational context can distinctively have an impact on
value updating depending on the reference point (Palminteri et
al., 2015; Palminteri and Lebreton, 2021), potentially facilitated
by our block design. For illustration, in a punishment context,
successful punishment avoidance (neutral feedback) can be per-
ceived as rewarding, reinforcing the chosen option, whereas in a
reward context, neutral feedback can be punitive, given the
potential of gaining reward (Palminteri et al., 2015). It is thus
conceivable that participants adjusted their reference point
according to motivational context. Another explanation might
arise from the used task version as more MB control does not
translate into increased payouts or loss avoidance (Kool et al.,

Figure 4. A, GMD reductions in the parietal cortex (SVC: MNI Peak coordinate:�48�50 57, k = 494, t = 4.42, pFWE Peak corr =
.008) related to MB control in GLMMBC B, Age related GMD reductions found in the GLMMBC_Full on the whole-brain level, with the
strongest association found for a cluster entailing the right frontal superior gyrus, left temporal middle gyrus and right supramarginal
gyrus (MNI Peak coordinate: 18 56 16, k = 37120, t = 6.02, pFWE Peak corr = .001). For visualization purposes, the brain map was
thresholded at voxel. 1099 depicting clusters significant at the whole brain level. C, Depiction of the parietal cortex mask derived
from the AAL atlas incorporated in the WFU PickAtlas Tool v3 (https://www.nitrc.org/projects/wfu_pickatlas/) D, Mediation analysis
showing the mediation effect of GMD extracted from an a-priori defined brain mask in the parietal cortex on the association between
age and MB control.
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2016), potentially resulting in reduced sensitivity for motiva-
tional context. Still, this appears unlikely given previous work
using a task variant addressing this short-coming, which also
failed to report motivational context effects on MB control
(Bolenz and Eppinger, 2021). Thus, while replicating previous
findings of age-dependent increases of MB-control (Decker et
al., 2016; Nussenbaum et al., 2020), we find no support for our
hypothesis that adolescents exert relatively more effortful con-
trol by using more MB control in a reward versus punishment
context.

Choice test performance indicated an age-dependent increase
for positive feedback learning, whereas negative feedback learn-
ing seemed stable across development. Previous studies have al-
ready pointed to adults exhibiting better reward relative to
punishment learning compared with adolescents (Van Der
Schaaf et al., 2011; Palminteri et al., 2016), and increasing reward
learning rates from childhood into adulthood suggest faster ad-
aptation following rewards (Van Den Bos et al., 2012). Also,
Decker et al. (2015) showed developmental changes using a
modified version of this choice task, with children and adoles-
cents displaying a less optimal choice pattern relative to adults.
In contrast, other studies reported age-dependent increases in
negative learning rates, whereas positive learning rates remained
stable (Pauli et al., 2022; Rosenbaum et al., 2022). Adolescents
focused more on worse-than-expected outcomes during learn-
ing, and this tendency was associated with a memory recall bias
(Rosenbaum et al., 2022). Interestingly, it has been proposed that

the often-reported elevated reward responsivity in adolescents
might not originate from enhanced reward learning but instead
reflect a tendency of more pronounced action initiation (Pauli et
al., 2022). Heterogenous findings might result from significant
differences in task design but need further investigation to better
understand the dynamics of age-dependent valence asymmetries
in RL (Nussenbaum and Hartley, 2019). Overall, our results
show that although recruitment of MB control appears unaf-
fected by reward or punishment feedback, the way we learn and
encode outcome-representations seems biased towards positive
feedback learning.

Interestingly, task performance across tasks was connected,
with more MB control linked to better positive feedback learn-
ing. This suggests that independent of motivational context,
more MB control facilitates improved encoding of outcome–
value representations for the respective cues in the first task
phase allowing for better performance when selecting the better
cue during the choice task. This did not apply to negative feed-
back learning. Given that parietal regions were implicated in
mediating both the association between MB control and positive
feedback learning with age, maturation of this brain region might
underly further development of key processes such as value or
cue representation relevant for both constructs. In mice, silenc-
ing the activity of the posterior parietal cortex (PPC) leads to
considerable impairment of categorizing newly encountered
stimuli and cue recategorization, thus suggesting a pivotal role of
the parietal cortex in cue representation and fundamental

Figure 5. A, GMD reductions in the left and right frontal superior medial gyrus (MNI peak coordinates, 9, 69, 22, k = 1037, T = 5.02, pFWE corr peak = 0.02) and in the right inferior and mid-
dle temporal gyrus (MNI peak coordinates, 63, �60,�12, k = 446, T = 5.08, pFWE corr peak = 0.02) were significantly associated with increased learning from positive feedback on the whole-
brain level as reported for the first GLM including MB control only as regressor. B–D, Structural mediation analysis. Depiction of significant mediation effect of GMD in a cluster in the mPFC,
dlPFC, and parietal cortex on the relationship between age and learning from positive feedback; p values below 0.05 are considered significant.
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mechanisms underlying basic learning processes (Zhong et al.,
2019). Further support for the notion that the parietal cortex
supports key processes of choice behavior and action selection
comes from another animal study showing reduced effects of
previous choice history on subsequent action selection after tem-
porary optogenetic deactivation of the PPC (Hwang et al., 2017).

Importantly, although the choice task was designed to distin-
guish model-free (MF) and model-based components, it has been
posited that the asymmetric, valenced choice signature of feedback
learning could be model free (Frank, 2005; Collins and Frank, 2014;
Doll et al., 2016). Thus, it might be surprising that the latter signa-
ture was linked positively to MB control, at least when adhering to a
strict dual-system separation. Still, previous work indicated that
such a distinction might not be appropriate by showing that the MF
system can access MB information (Daw et al., 2011; Moran et al.,
2019; Deserno et al., 2021). Second, the association might arise
from inherent experimental features, given that our MB index and
the choice signature of feedback learning were derived from
two highly interdependent tasks. Finally, the positive correla-
tion between both variables might reflect the ability to sharply
represent values of distinct choice options, a feature support-
ive for both MF and MB processes. Future studies are thus
warranted to precisely characterize these task signatures.

Our data provide new insights into how brain structural
changes have an impact on the age-dependent maturation of de-
cision processes. Unlike previous developmental studies, which
primarily compared children and adolescents with adults under
30 years (Van Den Bos et al., 2012; Decker et al., 2016; Potter et
al., 2017), our study fills an important gap in the literature by
assessing individuals across a broader age range including middle
adulthood. Our findings of increased MB control and feedback
learning provide exciting new insights into decision and learning
systems, both of which might have the capacity of further
improving into middle adulthood. Interestingly, older individu-
als learned better from negative feedback relative to younger
adults (Eppinger and Kray, 2011), suggesting that feedback learn-
ing in old age might not follow the trajectory seen in adolescence
and adults (Singh-Manoux et al., 2012; Ferreira et al., 2015).

Regarding limitations, first, our study has a cross-sectional
design, and our findings are correlational in nature. More longi-
tudinal studies (Vaghi et al., 2020) are needed to replicate our
findings while tracking interindividual developmental trajectories
of the reported associations, which can otherwise go unnoticed in
cross-sectional designs (Koolschijn et al., 2011). This seems espe-
cially important considering substantial variations in struc-
tural brain development across subcortical and cortical
regions (Wierenga et al., 2014; Mills et al., 2021). Second, the
use of different imaging sequences is not desirable but was
controlled for.

In sum, our study shows that age-related changes of MB con-
trol and positive feedback learning are mediated by GMD in the
parietal cortex, dlPFC, and vmPFC. Meanwhile, more MB con-
trol also translates into improved selection of cues linked to bet-
ter outcomes. Our results underline the importance of taking
into account valence effects by teasing apart the role of (1) moti-
vational context and (2) learning from positive and negative out-
comes when studying decision and learning processes in the
framework of developmental research. The potential implica-
tions of our findings for neurodevelopmental disorders such as
ADHD and compulsivity, including how developmental trajecto-
ries of MB control and feedback learning might diverge in non-
healthy development, should be the focus of future longitudinal
studies.
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