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a b s t r a c t 

When sensory input conveys rhythmic regularity, we can form predictions about the timing of upcoming events. Although rhythm processing capacities differ 
considerably between individuals, these differences are often obscured by participant- and trial-level data averaging procedures in M/EEG research. Here, we 
systematically assessed neurophysiological variability displayed by individuals listening to isochronous (1.54 Hz) equitone sequences interspersed with unexpected 
(amplitude-attenuated) deviant tones. Our approach aimed at revealing time-varying adaptive neural mechanisms for sampling the acoustic environment at multiple 
timescales. Rhythm tracking analyses confirmed that individuals encode temporal regularities and form temporal expectations, as indicated in delta-band (1.54 Hz) 
power and its anticipatory phase alignment to expected tone onsets. Zooming into tone- and participant-level data, we further characterized intra- and inter- 
individual variabilities in phase-alignment across auditory sequences. Further, individual modeling of beta-band tone-locked responses showed that a subset of 
auditory sequences was sampled rhythmically by superimposing binary (strong-weak; S-w), ternary (S-w-w) and mixed accentuation patterns. In these sequences, 
neural responses to standard and deviant tones were modulated by a binary accentuation pattern, thus pointing towards a mechanism of dynamic attending. 
Altogether, the current results point toward complementary roles of delta- and beta-band activity in rhythm processing and further highlight diverse and adaptive 
mechanisms to track and sample the acoustic environment at multiple timescales, even in the absence of task-specific instructions. 
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. Introduction 

Due to the inherently rhythmic nature of many environmental stim-
li, neurocognitive functions such as attention ( Lakatos et al., 2008 )
ensorimotor behavior ( Merker et al., 2009 ), speech ( Giraud and Poep-
el, 2012 ; Kotz and Schwartze, 2010 ), reading ( Goswami, 2011 ), and
usic processing ( Doelling and Poeppel, 2015 ) rely on basic tim-

ng capacities. To generate a temporally coherent representation of
 rhythmic environment, we track stimulus periodicities, use smart
rouping, and continuously segment and combine multiple inputs in
ime ( Buzsáki, 2009 ; Schroeder and Lakatos, 2009 ; Thut et al., 2012 a;
oefel and VanRullen, 2016 ). According to the dynamic attending the-
ry ( Large and Jones, 1999 ) these processes can reflect how internal
ttending rhythms synchronize with external rhythms. This and similar
heoretical views (Fraisse, 1963; p. 18) suggest that oscillatory brain ac-
ivity instantiates a realistic model for “adaptation by anticipation ”. Ac-
ordingly, temporally regular sensory input should make future events
redictable and improve the overall effectiveness of behavior. Thus, al-
ocating attention to salient events can facilitate sensory processing, per-
eption, and action ( Friston, 2005 ; Arnal, 2012 ; Schröger et al., 2015 ;
oelsch et al., 2019 ). 

However, continuous change is a fundamental characteristic of life

 Schwartze et al., 2011 ) , and next to temporal regularities, we frequently
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ncounter irregular rhythms or sudden environmental changes. To ac-
ount for these dynamics, any realistic adaptation mechanism likely
olerates a certain degree of temporal irregularity or unpredictability
hile trying to achieve synchronization ( Barnes and Jones, 2000 ). En-
ogenous oscillatory activity must hence not only be precise and stable
ver time, but also flexible enough to achieve adequate adaptive timing
e.g., speeding-up or slowing-down). Oscillatory brain activity can ac-
ively track and process (quasi-)periodic and never strictly isochronous
ignals such as speech that includes rhythmic variations at phoneme
25–35 Hz), syllable (4–8 Hz), or word (1–3 Hz) rates, as well as slower
uctuations ( > 1 Hz) reflecting linguistic boundaries ( Ding et al., 2015 ;
iraud and Poeppel, 2012 ). Moreover, it can rapidly adapt to changes

n the sensory environment, likely through phase resetting ( Barnes and
ones, 2000 ; Haegens and Zion Golumbic, 2018 ; Mormann et al., 2005 ;
bleser et al., 2012 ; Zoefel et al., 2018 ). 

Particularly, delta- ( 𝛿; 1–4 Hz) and beta- ( 𝛽; 12–25 Hz) frequency os-
illations have been associated with rhythm processing, temporal pre-
iction, and attention in humans ( Arnal, 2012 ; Biau and Kotz, 2018 ;
olling et al., 2017 ; Fujioka et al., 2012 , 2015 ; Morillon et al., 2016 ;
ozaradan et al., 2015 , 2017a ) and in non-human primates ( Bartolo and
erchant, 2015 ; Merchant et al., 2015 ; Merchant and Bartolo, 2018 ;

atel and Iversen, 2014 ). However, prior behavioral studies on tempo-
al processing also reported high within-subject variability ( Baath, 2015 ;
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oudrier, 2020 ). Thus, a critical question arises: can the systematic as-
essment of individual neurophysiological variability improve our un-
erstanding of how we process environmental rhythms? ( Grahn and
cAuley, 2009 ; Kononowicz and van Rijn, 2015 ; Nave et al., 2022 ;
aschke et al., 2021 ). 
To address this question, we let participants listen to isochronous

1.54 Hz) equitone sequences, comprising frequent standard and either
ne or two amplitude-attenuated deviant tones while EEG was recorded.
he small amplitude attenuation represented a minimally distracting
npredictable deviation from the established regularity of the auditory
equence. A deviant-counting task focused participant’s attention on
n acoustic feature (loudness) of the stimuli, diverting attention away
rom the temporal properties of the auditory sequence. We first assessed
he neural signatures of spontaneous temporal processing by means of
hythm tracking analyses, expecting to observe a peak of neural oscilla-
ory power at the stimulation rate (1.54 Hz, i.e., delta-band), and a con-
istent phase-alignment towards expected tone onsets, indicating tem-
oral prediction. 

Second, we focused on the known human disposition to superim-
ose accentuation patterns onto isochronous equitone sequences as
xemplified by the “tick-tock ” clock effect ( Brochard et al., 2003 ).
his typically results in perceived binary (strong-weak (S-w)) accen-
uations, while ternary (S-w-w) and other accentuations are possible
 Abecasis et al., 2005 ; Baath, 2015 ; Brochard et al., 2003 ; Fujioka et al.,
015 ; Polak et al., 2018 ; Poudrier, 2020 ; Savage et al., 2015 ). 

Informed by previous results that confirmed a role of beta oscilla-
ions in temporal predictions ( Fujioka et al., 2012 ) and beat process-
ng ( Fujioka et al., 2015 ), we expected that such accentuation pat-
erns would show in the envelope of beta-band activity. We employed
 fixed stimulation frequency where we expected more binary than
ernary accents ( Abecasis et al., 2005 ; Baath, 2015 ; Brochard et al.,
003 ; Fujioka et al., 2015 ; Poudrier, 2020 ). 

Third, we looked into individual differences to answer whether: (i)
ndividuals always accentuate, (ii) individuals accentuate consistently
ver time, and (iii) accentuation patterns modulate cognitive processes
s reflected in deviance processing ( Brochard et al., 2003 ). To this end,
e modelled single-participant and single-trial time-locked beta-band
uctuations to gain a better understanding of intra- and inter-individual
europhysiological variability indicating individual mechanisms em-
loyed to sample, evaluate, and adapt to environmental rhythms. 

. Materials & methods 

.1. Participants 

Twenty native German speakers participated in the study and signed
ritten informed consent in accordance with the guidelines of the ethics

ommittee of the University of Leipzig and the declaration of Helsinki.
articipants (9 females; 21–29 years of age, mean 26.2 years) were right-
anded (mean laterality coefficient 93.8 , Oldfield, 1971), had normal or
orrected-to-normal vision, and no known hearing deficits. Participants
eceived 8 €/h for taking part in the study. Participants were not asked
o indicate musical expertise and/or daily music listening. 

.2. Experimental design and procedure 

The stimuli comprised 192 sequences, consisting of 13-to-16 tones
F0 = 400 Hz, duration = 50 ms, amplitude = 70 dB SPL; standard STD),
resented in two recording sessions. One or two deviant tones (DEV),
ttenuated by 4 dB relative to the STD tones, were embedded in each se-
uence, replacing STD tones. The first DEV tone could either occur in an
dd or even-numbered position (8–11th), corresponding to a hypothet-
cal binary Strong-weak (S-w) accentuated position, while the second
EV always fell on the 12th position (w position, Fig. 1 ). The inter-
nset-interval between successive tones was 650 ms, resulting in a fixed
2 
timulation frequency of 1.54 Hz and a total sequence duration of 8.45–
0.4 s (13 to 16 tones ∗ 650 ms). This paradigm was thus comparable to
revious behavioral studies on subjective accentuation ( Brochard et al.,
003 ; Poudrier, 2020 ). 

Participants were seated in a dimly lit soundproof chamber facing a
omputer screen. Every trial started with a fixation cross (500 ms), fol-
owed by the presentation of the tone sequence. The cross was continu-
usly displayed on the screen, preventing excessive eye movements dur-
ng the presentation of the tone sequences. At the end of each sequence,
 response screen appeared and prompted participants to immediately
ress a response button to indicate whether they had heard one or two
ofter tones. The button assignment was counterbalanced across partic-
pants. After the response, there was an inter-trial interval of 2000 ms.
 session was divided into two blocks of approximately 10 min each,
ith a short pause in between (about 25 min total duration). 

.3. EEG recording 

The EEG was recorded from 59 Ag/AgCl scalp electrodes (Electro-
ap International), amplified using a PORTI-32/MREFA amplifier (DC
o 135 Hz), and digitized at 500 Hz. Electrode impedances were kept
elow 5 k Ω. The left mastoid served as online reference. Additional ver-
ical and horizontal electro-oculograms (EOGs) were recorded. 

.4. Data analysis 

.4.1. Behavioral analysis 

Behavioral data (i.e., response accuracy) were analyzed with a
epeated-measures ANOVA with the deviant position (odd vs. even) as
he independent variable and sequence order (position in the sequence,
.g., 8th or 9th) as a covariate. 

.4.2. EEG preprocessing 

Data were pre-processed using combined custom Mat-
ab scripts/functions and the Matlab-based FieldTrip toolbox
 Oostenveld et al., 2011 ). Data were first re-referenced to the av-
rage of the two mastoid electrodes and then band-pass filtered with
 4th order Butterworth filter in the frequency range of 0.1–50 Hz
 ft_preprocessing ). Eye-blinks and other artifacts were identified using
ndependent component analysis (‘ fastICA’ implemented in FieldTrip).
 semi-automated pipeline was used to identify EEG components with
 strong correlation ( > 0.4; labeled as “bad ” components) with the EOG
ime-courses to inspect the respective topographical distribution across
calp electrodes and to remove “bad ” components. Data segmentation
as then conducted separately for the rhythm-tracking, event-related
otential (ERP), and time-frequency representation (TFR) analyses.
ote that behavioral and rhythm tracking analyses are independent
f the modeling and the analyses on individual accentuation patterns
escribed later. 

.4.3. Rhythm tracking analyses 

Rhythm-tracking analyses involved neural responses to the full eq-
itone sequences. Following ICA, 192 (96 sequences ∗ 2 sessions per
articipant) segments were created, starting from the first tone onset
p to the 13th tone offset (8.45 s). Fast-Fourier transform and rhythm
racking analyses, however, were performed on shorter segments start-
ng from the 3rd up to the 13th tone offset (7.15s-long). The first two
ones of the sequence were excluded from further analyses as it is known
hat they elicit much stronger event-related responses than tones in later
ositions of the sequence. 

Next, we selected a fronto-central channel cluster, encompassing the
ensor-level correspondents of prefrontal, pre-, para-, and post-central
egions that were highlighted in previous MEG studies which employed
ource-localization analyses ( Fujioka et al., 2012 , 2015 ). The cluster in-
luded 16 channels: ’AFz’, ’AF3 ′ , ’AF4 ′ , ’F3 ′ , ’F4 ′ , ’F5 ′ , ’F6 ′ , ’FCz’, ’FC3 ′ ,



A. Criscuolo, M. Schwartze, M.J. Henry et al. NeuroImage 273 (2023) 120090 

Fig. 1. Experimental conditions. 
Participants listened to 192 isochronous tone sequences, containing 13-to-16 tones and either one or two deviants (DEV). The first DEV could either fall on 

positions 8,9,10,11th, while the second DEV always fell on position 12th. A hypothetical binary accentuation pattern would designate adjacent tones as 
Strong-weak (S-w) duplets. In this case, the first DEV would occur with equal probability in S-w positions. 
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FC4 ′ , ’FC5 ′ , ’FC6 ′ , ’C1 ′ , ’C2 ′ , ’C3 ′ , ’C4 ′ . Data from this fronto-central clus-
er were not averaged at this stage and were used for Fast-Fourier trans-
orm (FFT) and phase-locking analyses. While the FFT analysis mirrors
he well-known ‘frequency-tagging’ approach ( Nozaradan et al., 2017 ),
he employed phase analyses provide a richer description of how neural
scillations track external auditory rhythms. Hence, the name ‘rhythm
racking analyses’. 

ast-Fourier transform. Single-trial data from the fronto-central clus-
er were submitted to a FFT ( “FFT data ”) with an output frequency
esolution of 0.14 Hz (1/7.15 s = 0.14 Hz). Spectral power was cal-
ulated as the squared absolute value of the complex Fourier output.
ach trial was then normalized by the standard deviation across tri-
ls, per frequency-bin and channel. Lastly, the frequency-domain data
ere averaged across channels and trials. For illustration purposes only,

he Fourier spectrum was restricted to 1–4 Hz ( Fig. 2 A). The complex
ourier spectrum was also used to calculate inter-trial phase coherence
ITPC; Fig. 2 A). This was calculated by dividing the Fourier coefficients
y their absolute values (thus, normalizing the values to be on the unit
ircle), calculating the mean of these values, and finally taking the ab-
olute value of the complex mean. Further documentation can be found
n the FieldTrip website ( https://www.fieldtriptoolbox.org/faq/itc/ ). 

hase-locking analyses. A time-resolved phase-locking analysis was per-
ormed to estimate the phase relationship between neural activity at the
timulation frequency and the sequential tone onsets. 

The 8.45s-long data segments from the fronto-central cluster were
andpass-filtered with a 4th order Butterworth filter around the stimu-
ation frequency (1.04–2.04 Hz, obtaining a 1.54 Hz center frequency;
t_preprocessing ) and Hilbert-transformed to extract the analytic signal.
he time-course of the real part of the analytic signal was then plotted
 Fig. 2B ) as a function of the STD tone onset preceding (blue) and fol-
owing (red) the DEV (green; note that this plot serves an illustrative
urpose only). Phase-locking analyses focused on tones 3 to 13, and
ere performed at the sequence and channel levels by means of circular

tatistics (circular toolbox in Matlab; ( Berens, 2009 ), based on the cir-
ular mean phase-angles estimated in the ∼60 ms (i.e., a time-window
roportional to the stimulation frequency = 1/1.54 Hz/10) preceding in-
ividual tone onsets. Next, the sequence- and channel-level mean vector
ength were calculated (MVL; ( Berens, 2009 ) for pre-DEV STD tones and
he resultant values then pooled across channels. The focus on pre-DEV
ones only is motivated by the fact that the onset of a DEV tone might
isrupt the predictability of the auditory sequence, and further induces
3 
 phase-reset of oscillatory activity. Next, MVLs for pre-DEV STD tones
ere statistically assessed against the MVL from a random distribution

random uniform distribution of phase-angles) by means of 1000 permu-
ation tests. A p-value lower than 0.05 was considered statistically signif-
cant. For illustrative purposes, we also calculated participant-, channel-
nd sequence-level ‘relative phase angles’: these were expressed as the
bsolute phase difference between phase-angles for each channel and
one position (e.g., 3rd to 8th) and the most common phase-angle in
he sequence. The most common phase-angle was identified by means
f the ‘histogram’ function in MATLAB, using ‘probability’ as parame-
er after rounding phase values to 1 decimal. This means, a probability
alue is attached to each of the phase-angles within a single-participant,
channel, and -sequence, and across a tone positions (3rd to 8th). Next,
he phase value with the highest probability (i.e., the most common)
as used as a reference to calculate the ‘relative phase-angles’. Thus,
e computed the absolute phase difference between each of the phase-
ngles and the most common phase value. 

Examples of participant- and sequence-level relative phase-angles
re plotted in Fig. 2 C, and the pooling over participants, sequences, and
hannels is provided in Fig. 2 D. 

.4.4. ERP and TFR data 

After ICA, data were segmented into 4s-long epochs symmetrically
ime-locked to every tone onset. Next, we employed an automatic
hannel-by-channel, trial- and participant-level artifact suppression pro-
edure (comparable to Kaneshiro et al., 2020 ). Artifact suppression fo-
used on time-windows ranging from − .4 to 0.4 s relative to each stimu-
us onset. Amplitude values were temporarily normalized by their stan-
ard deviation across trials and outliers (data points per epoch and
hannel) were defined by means of a threshold criterion (values >
ean + 4 ∗ SD). The identified noisy time-windows (with 50 ms sym-
etrical padding) were then filled with NaNs, and these missing values
ere replaced by means of cubic temporal interpolation ( ‘pchip’ option

or both the built-in Matlab and FieldTrip-based interpolation functions)
onsidering the time-course of neighboring time-windows (extending up
o 100 ms when possible, automatically reduced otherwise). The current
pproach is a novel data-driven procedure developed to minimize the
ata loss. It differed from ( Kaneshiro et al., 2020 ) insofar as the channel-
y-channel routine allowed the algorithm to flexibly adapt the outlier
hreshold estimates to the inherent noise varying over channels. De-
criptive analyses revealed that the artifact suppression procedure was
sed for 5% of trials on average, on time-windows 100 ms long, and
ost likely between 350–400 ms after stimulus. Critically, this strategy

https://www.fieldtriptoolbox.org/faq/itc/
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Fig. 2. Rhythm tracking analyses. 
A: Fourier spectrum of neural activity along the entire equitone sequence. The plots display, in order, the inter-trial phase coherence (ITC; left) and the 

grand-average normalized power (right) in the frequency range from 1 to 4 Hz. The vertical line highlights the peak of phase coherence at the stimulation 
frequency (1.54 Hz). B: time-course of neural activity at the stimulation frequency. Vertical bars indicate the onsets of STD tones prior- (blue) and post-DEV (red). 
The DEV onset is reported in green. Blue shades represent the standard errors. Light-blue rectangles indicate the focus on the pre-stimulus intervals (not scaled). C: 

Polar histograms for single-participant and sequence-level phase angles extracted from 60 ms prior to the onsets of STD tones prior (blue) to the DEV from the 
fronto-central cluster of interest. Here, we report a few sequence-level phase-angles from Participant 1 (top) and Participant 19 (bottom). On the right, the polar 

histograms report the distribution of phase-angles across all trials (192 per participant) and the ‘relative phase’ across sequences. This is a measure of deviation from 

the most common phase-angle, at the sequence-level. D. Group-level phase-angles are randomly distributed around the polar histogram. On its right, the group-level 
‘relative phase’. These phase-angles indicate a variation from the most common phase-angle. At the bottom, the distribution of mean vector length (MVL) calculated 
at the single-participant and sequence-level and averaged across the fronto-central cluster of interest. Importantly, these MVLs are based on the raw phase-angles 
for pre-DEV (blue) and are statistically compared to the MVL for random distribution of phase-angles. Single-participant statistics are reported in Suppl. Table 1. 
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llowed keeping all trials instead of rejecting entire epochs only par-
ially contaminated by artifacts (i.e., as it usually happens in the typical
tandard artifact rejection procedure) ( Kaneshiro et al., 2020 ). 

Next, a standard whole-trial rejection procedure based on an ampli-
ude criterion (85uV) was applied. Data were then segmented for event-
elated-potential (ERP) analyses ( “ERP data ”), including 500 ms prior
nd following each tone onset (1 s in total). Data for the time-frequency
epresentation analyses ( “TFR data ”) were not further segmented at this
tage. ERP data were band-pass filtered between 1–30 Hz, while TFR
ata were low-pass filtered at 40 Hz. Data were downsampled to 250 Hz.

Single-trial TFR data underwent time-frequency transformation by
eans of a wavelet-transform ( Cohen, 2014 ) with a frequency resolu-

ion of 0.25 Hz. The number of fitted cycles ranged from 3 for the low
requencies ( < 5 Hz) to 10 for high frequencies ( > 5 Hz and up to 40 Hz).
he single-trial approach results in ‘induced’ (as compared to ‘evoked’)
 o

4 
esponses. TFR data were then re-segmented to reduce the total length
o 2 s, symmetric around tone onsets. 

ean correction of ERP and TFR data. Single-trial ERP amplitudes were
ean-corrected by a global average over all epochs and computed in
 time-window ranging from − 0.2 to 0.3 s relative to tone onset. Simi-
arly, single-trial TFR power was normalized by computing relative per-
ent change with reference to the global mean power across epochs
 − 0.2 to 0.3 s relative to tone onset). This previously applied approach
 Abbasi and Gross, 2020 ; Fujioka et al., 2012 ) was preferred over clas-
ical baseline correction because we aimed at analyzing power fluctua-
ions in pre-stimulus intervals. Finally, we calculated a fronto-central
hannel cluster average (using the same channels as for the rhythm
racking analyses). All subsequent analyses were performed exclusively
n this channel cluster. 
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Fig. 3. Binary accents on hypothetical S-w positions. 
A: On the left, ERP responses for STD tones in S (blue) w (red) positions. On the right, ERP responses for STD (blue) and DEV tones. Stars indicate significant 

time-windows, as assessed by means of paired-sample t-tests (FDR-adjusted p < 0.05). B: grand-average time-frequency spectrum time-locked to STD tones ( − .2 to 
0.35 s). The frequency range spans from 1-to-40 Hz with a frequency resolution of 0.25 Hz. The red rectangle highlights evoked responses in the low-beta 

(12–20 Hz) frequency range, on which we performed statistical comparisons in C. The topographic plot on top displays the FC cluster average in use. C: extracted 
time-course of low-beta activity in hypothetical S-w positions, time-locked to STD tones onsets, in blue for odd-numbered positions (Strong) and red for 

even-numbered positions (weak). Shaded colors report standard errors. On top, a gray rectangle delineates the time-window in which statistical testing without 
multiple-comparison correction showed a difference between S and w positions. The comparison, however, did not survive FDR correction. 
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RP analyses. Evoked responses over trials were averaged separately
or STD and DEV tones and for odd (hypothetical “Strong ” position in a
inary accentuation pattern; S, Fig. 3 A, left) and even ( “weak ”; w) posi-
ions from the 3rd to the 11th tone. The first STD tones were disregarded
o exclude the increased responses typically observed at the beginning
f an auditory sequence. Fig. 3 A shows the respective ERPs for the av-
raged fronto-central cluster, for STD tones in hypothetical strong and
eak positions (left) and for the comparison of STD and DEV tones aver-
ged over these positions (right). Statistical analysis was performed by
eans of paired-sample t-tests over a time-window ranging from 0 to
50 ms relative to tone onset. An FDR-adjusted p-value lower than 0.05
as considered statistically significant (Benjamini & Hochberg correc-

ion). 

FR analyses. Time–frequency representations were averaged over STD
rials, separately for odd and even positions (hypothetical strong and
5 
eak positions, respectively; Fig. 3 B). Mean amplitudes in the low-beta
and (low- 𝛽; 12–20 Hz; Biau and Kotz, 2018 ) were then statistically
ompared for S-w positions by means of paired-sample t-tests over a
ime-window ranging from 0 to 350 ms relative to tone onsets. An FDR-
djusted p-value lower than 0.05 was considered statistically significant
Benjamini & Hochberg correction). 

ndividual classification of accentuations. An individual modeling ap-
roach was adopted to identify binary and ternary accentuation pat-
erns. Similar to earlier studies on predictive timing, ( Fujioka et al.,
012 , 2015 ), we focused on single-participant’s low- 𝛽 mean power
eaks for STD tones in the first eight positions of the equitone se-
uence. Tone-level mean power peaks were calculated as follows: we
rst located the power peaks in time-windows centered at 100 ms
ost-stimulus (resulting peaks from analyses in Fig. 3 C) and extend-
ng 60 ms (proportional to the center frequency of interest; for low- 𝛽:
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Fig. 4. Individual classification of accents 
and analyses on binary accents. 
A: We modelled potential accentuation pat- 
terns by means of stepwise regression mod- 
eling and using low-beta post-stimulus re- 
sponses as a dependent variable. The pre- 
dictors were a binary (1, − 1), a triple 
(1, − .5, − .5) and a constant term (ones). 
B: preferences for accents, as reported 
from the modeling. In order, we plot 
the distribution of trials assigned to bi- 
nary, ternary, combined (binary-ternary) 
accents, and ‘not classified’ (neither bi- 
nary nor ternary) across participants. At 
the bottom, we zoom into binary trials 
and distinguish S-w accents from w-S ac- 
cents based on trial-level Beta coefficients 
from the modeling. Similarly, on its right 
side, the distribution of ternary trials show- 
ing S-w-w, w-S-w, and w-w-S accentuation 
patterns. To extract these three accentua- 
tion patterns, we performed separate step- 
wise regression modeling as explained in 
the method section. C: Exemplar S-w and 
w-S accent fluctuations expected along 8 
positions of the auditory sequence in the 
‘binary’ trials. Blue for S-w; cyan for w-S 
sequences. This plot has illustration pur- 
poses only. D: grand-average pair-wise dif- 
ference for low-beta peaks across the first 
8 positions of the auditory sequence in 
binary trials. E: on the left, the distribu- 
tion of amplitude differences across odd- 
numbered positions (in blue) and even- 
numbered positions (cyan). The average of 
these two distributions forms the ‘Binary 
similarity’. On the right, the ‘binary simi- 
larity’ (blue) and the mean amplitude dif- 
ference of odd- versus even-numbered po- 
sition (‘binary dissimilarity’; in cyan). Sta- 
tistical testing was performed by means of 
thousand permutation testing, and an FDR- 
adjusted p < .05 was considered as statisti- 
cally significant. F: ERPs to DEV tones on 
S-w positions in the binary trials. Statis- 
tical testing reported a significant differ- 
ence in the time-window between ∼120–
170 ms post-stimulus, as highlighted by the 
gray shades. ERPs to DEV tones in non- 
binary trials did not differ on S-w positions; 
see Suppl. Fig. 1. 
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/16 Hz = 60 ms), prior and after each peak. Next, the resulting peak
atencies were used to create a second time-window of interest centered
round the individual peaks and extending 60 ms before and after it.
hus, tone-level mean power peaks were calculated within these 120ms-

ong time-windows following the stimulus onset (from now on, 𝛽-post).
Single-tone 𝛽-post were first concatenated to mimic an 8-tone se-

uence (i.e., a trial). Single-participant and trial-level 𝛽-post (eight
ones) were then entered into a stepwise regression model ( Fig. 4 A)
‘ stepwiselm ’ in Matlab) with three predictors: a binary (values: 1, − 1),
 ternary (1, − .5, − .5), and a constant term (ones). The stepwise regres-
6 
ion function searches for the predictor or a combination of predictors
hat maximizes the fit of the model to the real data. The model thus
llows the combination of multiple predictors, but no interactions be-
ween terms. Once all combinations are tested, the winning model is
hosen based on the estimated adjusted eta squared. Trials for which
he winning model involved the binary predictor were labeled “binary ”,
rials for which the winning model involved the ternary predictor were
abeled “ternary ”. Accordingly, we interpreted (and labeled) the com-
ination of binary and ternary terms as “combined ”. The remaining tri-
ls in which neither binary nor ternary predictors were included in the
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inning model, were labeled as “not classified ”. Participant-level model
esults are provided in Suppl. Table 2 as “Preferences for accents ” and
xpressed as the percentage of trials relative to the total number of au-
itory sequences (192 per participant). The subject-level goodness of fit
f the model is provided in the same table. The “Preferences for accentu-
tions ” across participants are provided in Fig. 4 B and expressed as the
ercentage of trials relative to the total number of auditory sequences
192 per participant). 

inary accents analyses. Further confirmatory analyses were performed
o verify if the successfully identified “binary ” trials indeed showed
inary-like accentuation patterns. If so, neural responses to tones falling
n odd-numbered positions should differ from those on even-numbered
ositions. However, there should be no differences for neural responses
n the same positions: namely, tones falling on odd-numbered positions
hould elicit similar (i.e., non-significantly different) neural activity. 

To verify if this was the case, we first vertically concatenated trials
lassified as “binary ”, and then computed a trial-based single-tone pair-
ise low-beta mean peak amplitude difference (corresponding lower-

riangle 2-D means are provided in Fig. 4 D), i.e., amplitude differences
etween responses to each tone in the sequence (1–8 positions). For ex-
mple, the response amplitude for the 1st position was compared to the
nd position, then to the 3rd, and so forth. In turn, the amplitude for the
nd position was compared to the 3rd, the 4th etc. The resulting pair-
ise amplitude difference matrix had a size of N trials x N positions-1 x
 positions-1. From this matrix, we statistically compared the pair-wise
mplitude difference for tones in odd-positions ( Fig. 4 E; “odd-pos dif-
erence ”) and even-positions ( “even-pos difference ”) by means of 1000
ermutations of odd-even labels. An FDR-adjusted p-value lower than
.05 was considered statistically significant (Benjamini & Hochberg cor-
ection). The two variables were then combined into a distribution of
binary similarity ”. The binary similarity combines the amplitude dif-
erence for tones in odd-numbered positions (1–3–5–7th) and the am-
litude difference for tones on even-numbered positions (2–4–6–8th).
inary similarity was statistically compared to “binary dissimilarity ”,
hich was calculated as the mean difference of tones in odd versus even
ositions ( Fig. 4 E). Statistical testing was performed using 1000 permu-
ations of odd-even labels, and an FDR-adjusted p-value lower than 0.05
as considered statistically significant (Benjamini & Hochberg correc-

ion). 

EV analyses as a function of binary accents. For each participant, we
solated binary trials identified with the described “individual classifi-
ation of accents ” procedure and explored the relation between accen-
uations and DEV processing to explore whether ERP responses differed
ccording to their accents (S-w). 

Statistical analyses compared ERPs to DEV tones in even- (8,10th)
ersus odd-numbered (9,11th) positions ( Fig. 4 F). Notably, we consid-
red possible “pure binary ” and “phase-shifted binary ” accents (or in-
erse binary), where the former corresponds to the typical S-w pattern
n odd and even positions, and the second to the reverse w-S pattern.
ndeed, individuals may start accentuating at different times along the
uditory sequences, and hypothetical S-w positions may likely fall on ei-
her odd or even positions. The selection was informed by the beta coef-
cients associated with the identified binary trials: a positive coefficient
ould indicate “pure binary ” (S-w), while a negative coefficient would

orrespond to the “inverse binary ” (w-S). The distribution of “pure ” and
inverse ” binary is provided at the bottom left of Fig. 4 B, expressed as
ercent of trials relative to the total number of auditory sequences (192
er participant). 

Next, we re-ordered accented S-w positions according to individ-
al binary processing (odd-numbered positions falling on S accents in
pure binary ” but on w in “inverse binary ”), and statistically compared
heir associated ERPs time-courses ( Fig. 4 F). Statistical testing was per-
ormed by means of paired-sample t-tests, and an FDR-adjusted p-value
7 
ower than 0.05 was considered as statistically significant (Benjamini &
ochberg correction). 

EV analyses in ternary and non-classified trials. We also tested whether
 similar S-w effect would be observed for DEV processing in ‘non-
lassified’ trials. ERP responses for DEV tones falling on accented
 (odd-numbered positions) and w (even-numbered) positions were
ooled and statistically compared by means of paired-sample t-tests.
n FDR-adjusted p-value lower than 0.05 was considered statistically
ignificant. 

Next, we focused on potential “ternary ” trials. In this case, the ac-
ent can either fall on the first (S-w-w), second (w-S-w), or third (w-w-S)
osition. To disentangle these three accentuation patterns from the dis-
ribution of “ternary ” trials, we ran a second stepwise regression model.
he model featured three predictors to include the possible accentua-
ion types: 1, − .5, − .5 (pattern 1), − .5,1, − .5 (pattern 2) and − .5, − .5,1
pattern 3). Again, the model did not allow interaction terms and the
inning model was chosen based on adjusted eta squared. The output
f the model is provided in Fig. 4 B (bottom right), as the percentage
istribution of three accentuation patterns across participants. Impor-
antly, other accentuation patterns are possible as a S-w-w pattern could
e represented by a stair-case amplitude change (e.g., 1, − .75, − .25)
r a shuffled version (e.g., 1, − .25, − .75). Considering that binary ac-
entuations are usually prevalent ( Abecasis et al., 2005 ; Baath, 2015 ;
oudrier, 2020 ), possibly due to a cognitive bias structuring tonal se-
uences into groups of two ( Polak et al., 2018 ; Savage et al., 2015 ),
nd that the employed stimulation rate may preferentially induce bi-
ary rather than ternary accentuations ( Baath, 2015 ; Poudrier, 2020 ),
ven when tapping to polyrhythms ( Møller et al., 2021 ), we did not build
ther models to test all possible ternary accentuations, or any other ac-
entuation patterns. Of note is also that the employed model only used
he first eight tones of the equitone sequence. This avoids the onset of
EV tones in later positions, which may disrupt ongoing accentuation,
ut inevitably leaves only up to two periods of a ternary accent (as com-
ared to four repetitions of a binary accent). Consequently, even two
mall amplitude fluctuations with superimposed noise (inherent in EEG
ecordings) may drive the ‘ternary’ classification, but these trials may
ot necessarily reflect a true ternary accentuation. Accordingly, we ac-
epted that a portion of ‘ternary’ trials might not be classified with the
, − .5, − .5, − .5,1, − .5 and − .5, − .5,1 pattern. 

. Data and code availability 

The analysis code and the data in use here will be stored in an open
epository and can be provided upon reasonable request by the corre-
ponding author. 

. Results 

.1. Behavioral data 

We tested whether the counting of deviant tones (DEV) differed for
eviants in odd or even positions in the equitone sequence. The respec-
ive ANOVA with deviant position (odd vs. even) and sequence order
s a covariate did not reveal a significant effect of deviant position
 F (1,71) = 1.115, p = .295, eta-square = 0.16) nor a significant effect
f sequence order ( F (1,69) = 0.02, p = .97, eta-square = 0). This in-
icates that DEV counting performance did not differ in the equitone
equence. 

.2. Rhythm tracking 

Participants listened to equitone sequences presented at a stimula-
ion rate of 1.54 Hz, and we tested whether and how their neural ac-
ivity would show idiosyncratic signatures of rhythm tracking. When
ndividuals listen to these sequences, their neural activity reflects the
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iming of external events ( Fig. 2 A-B). Indeed, ITPC analyses and the
ormalized power of the Fourier spectrum both showed a clear peak
t the stimulation frequency (1.54 Hz; Fig. 2 A), and the time-course of
elta-band neural activity showed a tendency to align to tone onsets
 Fig. 2 B; this plot is for illustration purposes only). To quantify the con-
istency of anticipatory phase alignment to the expected tone onsets, we
ested the phase consistency of delta-band (1.54 Hz) neural activity in a
ime-window preceding tones onset. Phase-locking analyses focused on
he ∼60 ms (proportional to the stimulation frequency: 1/1.54 Hz/10)
rior to tone onsets. Single-participant trial-level mean vector lengths
MVL) of STD tones preceding a DEV (pre-DEV) revealed a consistent
hase-relationship with STD onsets: the MVL significantly differed from
 random distribution ( Fig. 2 D, bottom; pre-DEV in blue; Suppl. Ta-
le 1 for statistical results). However, we observed intra- and inter-
ndividual differences: participants’ delta-band activity did not always
ynchronize to tone onsets with the same phase relationship ( Fig. 2 C).
ather, a broad range of possible phase-lags was observed across tri-
ls, both at the level of single-participants ( Fig. 2 C right) as well as
hen pooling values across participants ( Fig. 2 D top-left). The distribu-

ion of single-participant phase-angles across trials accordingly did not
iffer from a random distribution (Suppl. Table 1). Phase-angles were
onsistent within a trial (MVL statistics in Fig. 2 D bottom and Suppl.
able 1) but differed across trials. To further explore this variability,
e computed a measure of ‘relative phase’. This was calculated, at the

ingle-participant, channel- and sequence-level as the absolute differ-
nce from each phase-angle within one sequence and the most common
hase. The distribution of relative phase-angles across trials and par-
icipants shows variance which mostly ranges between 0–30° ( Fig. 2 D,
ight), supporting the MVL calculation. Thus, individuals show a predic-
ive and consistent phase-alignment of delta-band activity to expected
one onsets. However, the specific phase for this alignment is variable
cross trials. 

.3. Analyses on accentuations 

We tested whether participants’ neural activity would sample the
coustic environment by superimposing binary accentuation patterns
S-w accents in odd-numbered versus even-numbered positions) onto
he equitone sequences. We analyzed event-related responses (ERP) to
TD tones in S and w positions, and further inspected the time-frequency
epresentation of time-locked responses. 

ERPs to STD tones in S-w positions did not statistically differ
 Fig. 3 A). However, DEV tones elicited stronger N100 responses com-
ared to STD tones (FDR-adjusted p < .05; Fig. 3 A, right), confirming
he processing of an unpredicted deviant tone. 

The time-frequency representation plots of neural activity in re-
ponse to STD tones mainly showed two event-locked responses
 Fig. 3 B): one in the theta (4–8 Hz) and one in the low-beta (low- 𝛽;
2–20 Hz) frequency-band. Following our hypotheses and informed by
revious work ( Fujioka et al., 2012 , 2015 ), we focused on the time-
ourse of activity in the low- 𝛽 range and compared event-locked power
uctuations for STD tones on odd (S) to even (w) numbered positions
long the sequence ( Fig. 3 C), corresponding to hypothetical S-w binary
ccents (blue and red, respectively). We statistically compared the time-
ourses of low- 𝛽 activity ( Fig. 3 C) for STD tones in hypothetical S-w
ositions. The comparison did not survive FDR correction for multiple
omparisons. Both FDR-adjusted p -values and non-adjusted p are pro-
ided in Fig. 3 C (in black and red, respectively). 

In summary, neither ERP nor TFR analyses revealed a binary accent,
s STD tones elicited similar responses when they occurred in odd- and
ven-numbered positions in the auditory sequence. Similarly, ERPs to
EV in odd- and even-numbered positions did not statistically differ

Suppl. Fig. 1, bottom). These observations seemingly contradict orig-
nal findings ( Brochard et al., 2003 ), but might result from a different
xperimental setup and processing pipeline. For instance, the choice of
8 
egion and time-windows of interest for statistical analyses differ from
he original study. 

To better characterize the phenomenon of subjective accentuation , we
ecided to zoom into inter- and intra-individual differences in when

nd how accentuation patterns are superimposed onto the auditory se-
uences. Indeed, not only may individuals start to accentuate at different
oints along the sequence (i.e., not necessarily at the beginning), they
ay also do so differently over time (e.g., binary or ternary accents),

r even not accentuate at all ( Brochard et al., 2003 ). These alternatives
ere tested with a novel modeling approach. 

.4. Modeling of individual accentuations 

To address the questions of (i) whether everyone accentuates in a
onsistent way, (ii) whether everyone always accentuates in the first
lace, and (iii) whether accentuation patterns influence DEV process-
ng ( Brochard et al., 2003 ), we focused on trial-level data and mod-
lled various accentuation patterns. We used a trial-based stepwise re-
ression model to classify participant-level single-trial beta-band neu-
al responses as best reflecting clear binary and ternary accents, or
he absence of a corresponding accentuation. The choice to focus on
eta-band activity was informed by previous evidence ( Fujioka et al.,
012 , 2015 ). The model predicted tone-by-tone low- 𝛽-post peak power
rom three predictors: binary, ternary, and constant (no accents) terms
 Fig. 3 A). Resulting ‘preferences for accentuations’ and goodness of fit
re reported in Suppl. Table 2 and summarized in Fig. 4 B. Note that most
rials ( ∼60%) did not clearly reflect either binary or ternary accents. In
he absence of perceptual reports, it remains open whether participants
id not perceive accentuations, or whether the current analyses are not
ensitive enough to detect imagined accentuations at the level of neural
ctivity. 

Next, we zoomed into “binary trials ”, and distinguished S-w from
-S accentuation patterns based on the single-trial 𝛽-coefficients from

he accent modeling (see methods). The resulting distributions are re-
orted in Fig. 4 B, bottom left. Similarly, we disentangled three possible
ccentuation patterns in the “ternary trials ”. We performed a separate
tepwise regression model using S-w-w, w-S-w, and w-w-S accents as
redictors (see methods). Distributions of these accents are reported in
ig. 4 B, bottom right. Note that a large proportion of “ternary trials ” did
ot further adhere to one of the ternary accentuation patterns specified
s predictors. 

This approach allowed showing that, on a portion of trials, in-
ividuals spontaneously superimpose accentuation patterns on iden-
ical tones embedded in an isochronous equitone sequence. Impor-
antly, the results confirm that the same participants also switched be-
ween binary, ternary, and other accentuation patterns over trials. How-
ver, in the majority of trials no consistent accentuation pattern was
onfirmed. 

.5. Binary accents 

Once we isolated, at the single-participant level, trials showing bi-
ary accentuation patterns, we aimed at statistically testing whether
ow- 𝛽 responses would significantly differ in S versus w positions. Thus,
e tested whether the modeling approach delivers a meaningful classi-
cation of binary accentuation. 

We isolated the identified ‘binary’ accent trials and calculated the
one-by-tone pair-wise difference for low- 𝛽 across eight positions in the
coustic sequence and preceding the DEV tone. For visualization pur-
oses, the resulting matrix was averaged across trials and the upper
ymmetrical triangle was masked ( Fig. 4D ). The original matrix (all tri-
ls) was used to calculate metrics of “Binary similarity ” and “Binary
issimilarity ” ( Fig. 4E ; see ‘Binary accents analyses’ in the methods).
he Binary similarity features the distributions of amplitude differences
n odd- and even-numbered positions. For the “Binary dissimilarity ”
nalyses we calculated the amplitude difference for tones on odd- ver-
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us even-numbered positions (corresponding to accented versus non-
ccented; thus labeled “Binary difference ”) and statistically compared
t to the Binary similarity (right-side plot in Fig. 4E ). Statistical testing
ielded a significant difference (FDR-adjusted p < .05). Analyses con-
rmed that the trials classified as ‘binary’ in the modeling, do indeed
how a consistent binary accentuation pattern. Hence, the low- 𝛽 am-
litudes in STD tones in S positions significantly differ from those in
 positions. To further verify the validity of the accent modeling ap-
roach, we tested whether identified ‘preferences for accents’ modulate
EV processing. 

.6. DEV processing based on binary accents 

We investigated whether DEV processing is modulated by binary ac-
ents in ‘binary’ trials. Thus, we tested whether ERPs to DEV tones falling
n S-w positions in the successfully identified “binary ” trials would be
tatistically different. First, we isolated the identified binary trials and
iscerned ‘pure binary’ from ‘inverse binary’ trials based on the beta-
oefficient resulting from the regression modeling (see methods). Next,
e pooled trials belonging to the same accent (S or w) and statisti-

ally compared ERPs to DEV on S-w positions based on the identified
ccentuation patterns, and thus irrespectively of the sequence position
odd-numbered (9,11th positions) or even-numbered (8,10th)). Within-
articipant statistical comparison of the respective ERPs yielded signifi-
ant difference in the time-window between 120–170 ms ( p FDR adjusted

 0.05 ; Fig. 4 F). 
Similarly, we tested whether the same S-w effect would be observed

or those trials in which no accentuation pattern could be identified
’non-classified’ trials). In these non-classified trials, DEV processing
as not modulated by binary accentuation patterns ( p FDR adjusted

 0.05 ; Suppl. Fig. 1 ). Similarly, DEV processing was not modulated by
inary accentuations when pooling all trials (binary, ternary, and non-
lassified; Suppl. Fig. 1 ). 

Lastly, exploratory analyses focused on the ‘ternary’ trials and
odelled three possible accentuation patterns: S-w-w, w-S-w, w-w-S

 Fig. 4 b). However, only a small percentage of trials was assigned to
hese accentuation types ( ∼2% per pattern). This likely reflects that a
ange of other ternary accents are possible (e.g., 1, − .75, − .25; or 1,
 .25, − .75), along with their potential combinations, which were not

urther modelled here. 
In summary, we here show that DEV processing is modulated by bi-

ary accents, but exclusively in those trials identified as ‘binary’ during
he accent modeling. This observation supports the modeling procedure
s a viable method for identification of trial- and individual-level vari-
bility in temporal processing. 

. Discussion 

The current study aimed at exploring individual neurophysiological
ariability in rhythm processing. More specifically, we first examined
ow delta-band neural activity would track auditory rhythms. Hence,
e quantified the sequence-level consistency of phase-alignment to-
ards expected tone onsets. Next, we tested whether neural activity

n the low-beta band (12–20 Hz) would reflect the superimposition of
inary accentuation patterns, previously described by the “tick-tock ”
lock phenomenon ( Brochard et al., 2003 ). Accentuations may reflect
 neural mechanism which rhythmically and dynamically samples the
nvironment in subunits, resembling the superimposition of a basic beat
strong–weak alternation). 

When listening to equitone sequences, participants’ neural activity
racked the timing of external events ( Fig. 2A ), aligning delta-band
scillatory dynamics to expected tone onsets ( Fig. 2 ) ( Buzsáki, 2009 ;
chroeder and Lakatos, 2009 ; Thut et al., 2012 b; Zoefel and Van-
ullen, 2016 ). Hence, sequence-level mean vector lengths of delta-band
ctivity preceding tone onsets displayed anticipatory coupling of brain
ctivity to the timing of environmental stimuli. This finding further
9 
onfirms theoretical views according to which the brain might gen-
rate temporal predictions to achieve successful rhythm tracking to
ptimize sensory processing, perception, and allocation of attention
 Friston, 2005 ; Arnal, 2012 ; Schröger et al., 2015 ; Koelsch et al., 2019 ).

Notably, when pooling phase-angles across sequences either at the
ingle-participant or group-level, we observed random phase distribu-
ions. In other words, delta-band neural activity did not always align its
igh-excitability phase to the expected onset of auditory tones. Rather,
e observed a wide range of possible synchronization regimes, which

how consistency at the sequence-level, but high variability across
equences and participants. These findings may suggest that rhythm
racking does not necessarily rely on a specific phase-alignment (high-
xcitability phase) with environmental stimuli to optimize stimulus pro-
essing. Rather, our data showed that neural tracking may be supported
y an adaptive phase-alignment, that can vary over time and across indi-
iduals, while keeping consistency at the trial-level. However, task and
ttention manipulations may modulate the observed trial-level variabil-
ty. 

Next to rhythm tracking, we investigated the neural signatures as-
ociated with the human disposition to accentuate tones when listening
o equitone sequences ( Brochard et al., 2003 ). This spontaneous phe-
omenon typically induces binary (strong-weak (S-w); Brochard et al.,
003 ) accents, but other accentuation patterns such as ternary ones (S-
-w) are possible ( Abecasis et al., 2005 ; Baath, 2015 ; Brochard et al.,
003 ; Fujioka et al., 2012 , 2015 ; Poudrier, 2020 ). Importantly, while
ones are physically identical, these superimposed accents influence
bservable behavior and underlying neural activity ( Nozaradan et al.,
011 , 2016 , 2017 ; Exploring How Musical Rhythm Entrains Brain Ac-
ivity with Electroencephalogram Frequency-Tagging, 2014 ; Schmidt-
assow et al., 2011 ). However, sparse behavioral and neuroimaging
esearch has looked at individual differences ( Grahn and Brett, 2007 ;
rahn and McAuley, 2009 ) and mainly tested task-based beat processing

e.g., Fujioka et al., 2015 ). Thus, the question remains whether partic-
pants naturally accentuate in the absence of specific task instructions,
nd if they do so in a consistent manner over time. To address these ques-
ions, we focused on participant-level neurophysiological variability and
odelled single-trial beta-band activity ( Fig. 4A ) to probe whether we

ould observe binary or ternary accentuation patterns. Neural activity in
he beta range has been associated with rhythm ( Arnal, 2012 ; Biau and
otz, 2018 ; Fujioka et al., 2012 , 2015 ; Morillon et al., 2016 ) and beat
rocessing ( Fujioka et al., 2012 , 2010 ). The current findings confirm
ts prevalence in time-locked responses to STD tones ( Fig. 3B ). Further-
ore, beta-band activity showed an individuals’ spontaneous disposi-

ion to superimpose accentuation patterns, even when not instructed
o do so ( Fig. 4 ). Hence, we characterized inter- and within-participant
ifferences in adopting binary and ternary accents over time ( Fig. 4 B
nd Suppl. Table 2). These accentuations might reflect the automatic
redisposition to sample continuous auditory input streams into pre-
ictable, coherent, and finite units. This might reflect fluctuations of at-
entional resources over time ( Bolton, 1984 ; Jones, 1976 ; Schroeder and
akatos, 2009 ) (rather than being equally distributed over time), and
ariations within each attentional cycle so to attribute salience to ac-
entuated events. We tested this view by particularly focusing on binary
ccents ( Fig. 4 C-F) and showed that neural responses in the beta-band
or tones falling on odd-numbered (‘strong’ (‘S’)) positions were sig-
ificantly greater from those in even-numbered positions (‘weak’ (‘w’);
ig. 4 E, F) on a selection of trials. This suggests that individuals spon-
aneously superimpose binary accents (S-w) while listening to equitone
equences to parse and segment continuous sensory streams, potentially
llocating attentional resources to salient sensory events and to optimize
erception ( Nobre and Van Ede, 2018 ; Shalev et al., 2019 ). However,
ost trials ( ∼60%) did not reflect either binary or ternary accents (both

pproximately in 20% of trials, Fig. 4 B). This observation may result
or at least four reasons: (i) individuals do not always accentuate, when
ot instructed to do so; (ii) individuals do accentuate, but switch be-
ween accentuation patterns over time; (iii) the applied method or the
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ata per se are not sensitive enough to pick up spontaneous and varied
ccentuations; (iv) the employed stimulation rate may be suboptimal to
nduce different accentuation patterns such as ternary and longer pat-
erns ( Baath, 2015 ; Poudrier, 2020 ). Indeed, prior studies on predictive
iming and beta-band actvity relied on source-reconstructed neural MEG
ata ( Fujioka et al., 2012 , 2015 ), thus probably benefitted from a higher
ignal-to-noise ratio than the current study. Furthermore, although it is
nown cognitive bias might induce the structuring of tonal sequences
nto groups of two ( Polak et al., 2018 ; Savage et al., 2015 ) rather than
ther groupings, other studies have shown a link between stimulation
ates and preferred accentuation patterns ( Baath, 2015 ; Poudrier, 2020 ).
ccordingly, inter-stimulus intervals between 500–900 ms should pref-
rentially induce a binary accent (and its double, i.e., accents over
roups of four tones), while ternary and other accentuations are pos-
ible, although less common, at this and slower rates. 

In the absence of perceptual reports, we cannot preclude these op-
ions. However, we show positive evidence that in a portion of trials
articipants display clear binary and ternary accentuation patterns inde-
endent of behavioral reporting or finger or foot tapping. These results
upport the notion that humans sample the environment in an individ-
al, dynamic manner ( Large and Jones, 1999 ). 

We note that classifying trials based on beta fluctuations, followed
y testing beta time-locked responses over sequence positions might
e circular, but is confirmatory. Thus, we compared neural responses
o unpredicted (deviant) tones falling on S-w positions in the classi-
ed binary trials and found a significant effect in ERP responses to
EV tones ( Fig. 4 F). Notably, the modulation of DEV processing was
bsent in those trials which did not adhere to a specific accentuation
attern (non-classified trials; Suppl. Fig. 1). These observations parallel
arlier findings ( Brochard et al., 2003 ; Jongsma et al., 2004 ; Schmidt-
assow et al., 2011 ) and indicate that accentuations might affect how
e allocate attention to the auditory environment. However, further

nvestigations are needed to clarify this intricate link between atten-
ion deployment, attentional shifts, and temporal processing in listen-
ng contexts. Thus, future studies could further dive in the frequency-
pecificity of such effects and complement neural data with perceptual
eports. 

In summary, we characterize individual neurophysiological signa-
ures of temporal processing, and associate them with specific delta-
and phase-coupling mechanisms and with beta-band dynamics, respec-
ively. The findings showcase the feasibility of using EEG to identify
ndividual neurophysiological signatures of temporal processing, sug-
esting that common trial- and group-level averaging approaches might
nevitably obscure inter-individual differences and trial-by-trial vari-
bility. In contrast, the approach adopted here allows the monitoring
f neurophysiological variability underlying flexible but consistent mech-

nisms for evaluating and adapting to (un)predictable environmental
timuli. Consequently, we propose that zooming into individual vari-
bility might allow to better predict behavioral variability in process-
ng simple and complex environmental rhythms (e.g., speech tracking;
andylaki and Criscuolo, 2021 ) in neurotypical and pathological popu-

ations ( Schwartze et al., 2015 , 2016 ). 

. Conclusions 

When listening to isochronous equitone sequences, humans’ neural
ctivity tends to spontaneously align and track the timing of auditory
vents. A novel trial-level modeling approach additionally confirms that
ndividuals tend to superimpose accentuation patterns onto isochronous
quitone sequences, indicating active sampling of the acoustic environ-
ent and (potentially) differential allocation of cognitive resources. We

xplored inter-individual and trial-level neurophysiological variability
n temporal processing and auditory accentuation, and reveal flexible,
ime-varying neural mechanisms involved in effective evaluation and
daptation to environment rhythms. The combined findings highlight
hat an individualized analysis approach to neurophysiological data can
10 
ndicate meaningful variation in a listening context and should be con-
idered in a more differentiated account of the role of temporal dynamics
n audition. 
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