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Autism is a neurodevelopmental condition involving atypical sensory-perceptual functions together with language and socio-
cognitive deficits. Previous work has reported subtle alterations in the asymmetry of brain structure and reduced laterality of
functional activation in individuals with autism relative to non-autistic individuals (NAI). However, whether functional asymmetries
show altered intrinsic systematic organization in autism remains unclear. Here, we examined inter- and intra-hemispheric
asymmetry of intrinsic functional gradients capturing connectome organization along three axes, stretching between sensory-
default, somatomotor-visual, and default-multiple demand networks, to study system-level hemispheric imbalances in autism. We
observed decreased leftward functional asymmetry of language network organization in individuals with autism, relative to NAI.
Whereas language network asymmetry varied across age groups in NAl, this was not the case in autism, suggesting atypical
functional laterality in autism may result from altered developmental trajectories. Finally, we observed that intra- but not inter-
hemispheric features were predictive of the severity of autistic traits. Our findings illustrate how regional and patterned functional
lateralization is altered in autism at the system level. Such differences may be rooted in atypical developmental trajectories of

functional organization asymmetry in autism.
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INTRODUCTION

Autism is a heterogeneous neurodevelopmental condition with a
prevalence exceeding 2% in a recent survey in the U.S. [1]. It is
characterized by life-long differences in social interaction and
communication alongside restricted and repetitive interests/
behaviors [2]. The widespread behavioral differences observed in
individuals with autism are paralleled by reports of structural and
functional alterations in both sensory and association regions of
the brain [3-12].

Whole brain differences in structure and function between
autistic and non-autistic individuals (NAI) are augmented by
observations of disrupted patterns of brain asymmetry [13, 14],
possibly linked to abnormal lateralization of functional processes
supporting language and social cognition [15-20]. Asymmetry is
a key feature of brain organization, supporting a flexible interplay
between specific local neural modules linked to functional
specialization underlying human cognition [21]. In particular,
left-hemispheric regions have been reported to be biased to
interact more strongly within the hemisphere, whereas interac-
tions of the right hemispheric regions are more bilateral [22].
Recent work has shown that individuals with autism display
marked and widespread atypical patterns of asymmetry of local

structure [13]. Such differences may reflect changes in network-
level embedding, in particular in association regions, as measured
by structural covariance [14]. Functionally, individuals with autism
exhibit idiosyncratic alterations in homotopic inter-hemispheric
connectivity patterns, indicating more variation in the autistic
population [23, 24]. Further, they show atypical rightward
functional lateralization in mean motor circuit connectivity [25].
Independent component analysis (ICA) using the resting state
functional connectome suggests that component loadings are
more rightward in individuals with autism [26]. Last, decreased
asymmetry of functional activation patterning has been observed
in individuals with autism during the letter fluency task [27].
Functional differences may be rooted in altered developmental
trajectories of functional lateralization in autism [28], leading to
altered global features of brain organization and asymmetry, as
captured by low dimensional connectome embeddings [29, 30].
Thus, observed localized asymmetry differences may reflect
altered system-wide functional organization.

To further understand system-level functional lateralization
alterations in autism, here we investigated the asymmetry of intra-
and inter-hemispheric functional connectome gradients [22, 31],
which robustly capture associated organizational features [30, 32].
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Cortical regions show organizational axes reflecting integration
and segregation [22] along different dimensions [32-35]. The
principal gradient (G1) transitions between sensory and default
mode networks, the secondary gradient (G2) between sensory and
visual cortices, and the tertiary gradient (G3) between default
mode and multiple demand networks. These gradients can be
reliably identified [29], and are among the most widely studied in
the gradient literature [36]. Together, these gradients describe
patterns of developmental and heritable variation in the human
cortex [37-39]. In previous work, we and others [31, 40, 41] have
shown that, whereas intrinsic functional organization within left
and right hemispheres differentiates sensory (visual, sensory-
motor) from transmodal (e.g., DMN, control, language) networks,
there are also subtle asymmetries. For example, regions involved
in language processing show stronger differentiation from sensory
anchors in the left hemisphere, whereas regions associated with
executive function show stronger differentiation from sensory
anchors in the right hemisphere. Given that language impairments
and verbal imbalances are key traits of autism [42-45] and
executive function may underlie the psychological and behavioral
neurodivergence observed in autism [46, 47], we hypothesize that
atypical lateralization axes in autism may contribute to autistic
behaviors.

To answer our research question, we first compared the
asymmetry of functional gradients between autistic individuals
and NAI to reveal the differences between groups. Because brain
asymmetry [48, 49] and gradients [37, 39, 50] are affected by age,
we also evaluated the interaction of age and autism status to
reveal the cross-sectional developmental trajectory. Given the
heritability of functional gradient asymmetry [31], and of autism
[51, 52], we used prior heritability estimates [31], to evaluate
whether autism is associated with differences in regions found to
be heritable in adulthood. Finally, supervised machine learning
was used to establish phenotypical relevance. We also tested
robustness using the functional connectome after global signal
regression (GSR).

RESULTS

Data demographics

We utilized resting-state fMRI data from five sites from the Autism
Brain Imaging Data Exchange (ABIDE-I) [53] including: New York
University Langone Medical Center (NYU-l, n =86), University of
Pittsburgh, School of Medicine (Pitt, n = 39), and University of Utah,
School of Medicine (USM, n = 83), as well as Trinity Center for Health
Sciences, Trinity College Dublin (TCD, n =32) and NYU-Il (n =43)
from ABIDE-II [54]. We selected those sites that included children,
adolescents, and adults. All participants were male (n ,utism = 140
and n yrc = 143) with age ranging from 5 to 40 years. There was no
significant age difference (t=—0.030, p =0.976) or simple size
across data sites (t=5.212, p=0.266) between individuals
with autism and NAI. The resting state fMRI data were preprocessed
based on C-PAC (https://fcp-indi.github.io/). Functional connectome
gradients of each individual were aligned to the group-level
gradient template that is derived from Human Connectome
Project (HCP) [31]: sensory-default (G1), somatomotor-visual (G2),
and default-multiple demand (G3) gradients. Procrustes is a
technique for rotating a matrix to maximum similarity with a target
matrix minimizing sum of squared differences. The inclusion and
exclusion criteria and detailed computation can be seen in the
Methods.

The full intelligence quotient (FIQ) and Autism Diagnostic
Observation Schedule (ADOS, Generic version) score are shown in
Supplementary Table S1. Of note, there are differences between
autism and NAI in FIQ (t=—5.710, p<0.001) and head motion
(t=2.636, p=0.009). Multi-site effect was removed before
analyses via data harmonization that follows an empirical Bayesian
approach to balance the effects of each scanner/batch [55].

SPRINGER NATURE

Asymmetry along functional organization axes (Fig. 1)

We first computed the functional connectome for each individual,
and applied diffusion embedding [30, 32] to decompose the first
10 gradients of different connectivity patterns (i.e., LL connec-
tome: from left to left, LR connectome: from left to right, RL
connectome: from right to left, and RR connectome: from right to
right). Then, we aligned individual gradients of all the participants
to the HCP group-level gradient of the left-left functional
connectivity pattern [31] with Procrustes rotations. This allowed
direct comparison of the organization of functional asymmetry
across groups and individuals, in line with previous work
[4, 9, 10, 31]. Individual functional gradient computation and
analyses with Python packages BrainSpace [30] and BrainStat [56]
are described in the Methods.

Next, we calculated the asymmetry index (Al) along the three
organizational axes (Fig. 1A) for intra-hemispheric FC patterns (LL
minus RR) and inter-hemispheric FC patterns (LR minus RL)
following previous work [31]. Overall, the spatial asymmetric
pattern was similar to the HCP asymmetric pattern [31], with NAI
showing more similar patterns than autism (Supplementary
Results). We then took a multivariate approach using Hotelling’s
T to discover shared effects across the three eigenvectors. In post-
hoc analyses we further investigated contributions of individual
gradients to the overall effects, correcting for the number of
gradients considered (p < 0.05/3). For this analysis, age effect was
entered as a covariate during data harmonization.

Parcel-wise multivariate analyses with prpr<0.05 mapped
overall differences between individuals with autism and NAI
(Fig. 1B). This revealed group differences in language-related and
somatosensory areas for intra-hemispheric patterns, and inter-
hemispheric differences in dorsal prefrontal, superior temporal,
and postcentral cortices. We performed post-hoc single gradient
comparisons of these parcels (Supplementary Results and
Table S2). Positive and negative t-values indicate lower and
higher left-right asymmetry in individuals with autism relative to
NAl In particular, for intra-hemispheric G1, parcels included
medial posterior superior frontal lobule (SFL, t = 2.758, p = 0.006),
area 43 (posterior opercular, t = —3.058, p = 0.002), and the dorsal
posterior superior temporal sulcus (STSdp, t=3.796, p <0.001).
For inter-hemispheric G1 parcels included area 33pr (anterior
cingulate, t=—2.436, p=0.015), area a24pr (anterior cingulate,
t=—4.390, p<0.001), area p32pr (anterior cingulate, t = —3.548,
p <0.001), area 47m (frontal pole, t=2.648, p =0.009), area 47s
(frontal pole, t=3.384, p<0.001), auditory 5 complex (A5,
t=2.813, p=0.005), dorsal anterior superior temporal sulcus
(STSda, t=3.838, p<0.001), and temporo-parieto-occipital junc-
tion 1 (TPOJ1, t=2.815, p=0.005). The parcel labels refer to
ref. [57]. G2 and G3 showed less strong asymmetric differences
between individuals with autism and NAI and have been
described in the Supplementary Results.

When evaluating network-wise asymmetries [58], we observed
four significant networks for multivariate comparisons after FDR
correction (Fig. 1B and Supplementary Table S3). Only three were
observed with statistical significance in single-gradient analyses
(Fig. 1C and Supplementary Table S3). Specifically, the language
network (Lan., intra-hemispheric G1, t=3.682, p <0.001; inter-
hemispheric G1, t=3.973, p <0.001), cingulo-opercular network
(CON, inter-hemispheric G1, t = —2.248, p =0.007), and somato-
motor network (SMN, inter-hemispheric G3, t =3.443, p <0.001)
showed differentiable asymmetry. Results remained robust when
performing GSR. Detailed reports can be found in Supplementary
Results Fig. S2. Findings did not change after including FIQ and
head motion as covariates during data harmonization.

Inter-subject similarity analyses across each data site [24] tested
the populational differences between individuals with autism
and NAI in cortical functional asymmetric patterns. We observed
that individuals with autism showed a lower similarity score
relative to NAI along the three axes. Detailed reports are shown
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Fig. 1 Comparison between individuals with autism and NAI in gradient asymmetry index along functional organizational axes. A HCP

group-level gradients of left-left (LL) functional connectome described by [31] including G1: sensory-default gradient, G2: somatosensory-
visual gradient, and G3: default-multiple demand gradient. Asymmetry has intra- and inter-hemispheric patterns derived from [LL, RR] and [LR,
RL] functional connectome. B Multivariate comparison across G1, G2, and G3. The brain maps show the Hotelling’s T values (pgpg < 0.05) for
multivariate comparison. C Network-wise comparisons. The multivariate analyses were summarized from parcel-wise comparison using multi-
modal parcellation [57] to network-wise comparison using Cole-Anticevic (CA) atlas [58]. Radar-bar plots show network-wise decomposition
results (from multivariate to single gradient). Dark, middle dark, and light colors indicate t-values of each network along G1, G2, and G3.
*marks significant networks. NAI non-autistic individuals, Vis1: primary visual network, Vis2: secondary visual network, SMN: somatomotor
network, CON cingulo-opercular network, DAN dorsal attention network, Lan. language network, FPN frontoparietal network, Aud. auditory
network, DMN default mode network, PMN posterior multimodal network, VMN ventral multimodal network, OAN orbito-affective network.

in Supplementary Results and Supplementary Table S8. This
suggests that autism is quite heterogeneous in terms of functional
organization asymmetry.

Developmental effects (Fig. 2)

To explore whether the asymmetry of functional gradients
develops differently between individuals with autism and NAlI,
we categorized participants into three age groups including
children (5-12 years, n =74), adolescents (12-18 years, n=93),
and adults (18-40 years, n = 130).

We first examined whether there were age differences within
autism and NAI groups. In the comparisons between age groups,
we set p < 0.05/3 (Bonferroni correction) as the significance level.
We observed no significant asymmetry changes with age
in autism. However, there were significant age differences
in Vis1, Lan, and OAN in NAI For example, in NAI, children
showed increased leftward asymmetry relative to adults in
Lan. along G3 (intra-hemispheric, t=—3.852, p <0.001; inter-
hemispheric, t = —2.443, p = 0.016). See Supplementary Results
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and Supplementary Table S4 for further details. We then studied
the interaction between age and autism status to evaluate
whether the age effects are different between autism and NAL.
Parcel-wise multivariate analyses revealed interaction effects
of age with autism status in parcels primarily located in
dorsolateral prefrontal and posterior temporal cortices for the
intra-hemispheric pattern, and in parcels mainly located in
postcentral and visual cortices for the inter-hemispheric pattern
(Fig. 2A). The detailed parcel-wise and single-gradient results are
presented in Supplementary Table S5. Regarding network-wise
comparisons, Fig. 2B illustrates intra- and inter-hemispheric
patterns of age by autism status effects (Supplementary
Table S5). Among them, we found interaction effects in Lan.
along intra-hemispheric G3 (t = 3.830, p < 0.001) after Bonferroni
correction. Interaction between autism status and age using GSR
replicated the intra-hemispheric asymmetry results but not the
inter-hemispheric asymmetry results (Supplementary Results).
Results did not change after including FIQ and head motion as
covariates during data harmonization.

SPRINGER NATURE
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Fig. 2 Interaction effects between age and autism status on asymmetry index (Al). A Parcel-wise interaction using multivariate analyses.
The brain maps show the Hotelling's T values (prpr < 0.05) for multivariate comparison across the three gradients. B Network-wise interaction
from multivariate to single gradient. Vis1: primary visual network, Vis2: secondary visual network, SMN somatomotor network, CON cingulo-
opercular network, DAN dorsal attention network, Lan. language network, FPN frontoparietal network, Aud. auditory network, DMN default
mode network, PMN posterior multimodal network, VMN ventral multimodal network, OAN orbito-affective network.

Analyses for diagnostic differences in each age group have
been shown in Supplementary Results and Supplementary
Table Sé. Overall, diagnostic differences in Lan. along G1 and
SMN along G3 were present in adolescents but not in children or
adults.

Meta-analytic functional decoding and heritability (Fig. 3)
Having established marked alterations in asymmetry of functional
organization between individuals with autism and NAI, which
varied across age-groups, we further aimed to contextualize the
findings. In particular, to explore how the differences between
autism and NAI are related to cognitive functions, we performed
meta-analytic decoding using NeuroSynth [59] using 24 terms-
related z-activation maps, similar to previous work [31, 32, 38].
Second, we performed decoding of asymmetry effects relative to
heritability of asymmetry observed in previous work, based on
HCP twin-based data (Fig. 3A) from [31]. Details can be found in
the Methods.

Regarding functional decoding, the t-map calculated from
Fig. 3B of intra-hemispheric G1 (Fig. 3C) showed strong relevance
to language, reading, and social cognition (Fig. 3D). The t-map of
inter-hemispheric G1 showed strong relevance to auditory,
language, and social cognition. Autism status*age effects along
intra-hemispheric G3 showed strong relevance to auditory,
language, and affective. Autism status*age effects along inter-
hemispheric G3 showed strong relevance to affective, auditory,
and autobiographical memory. Other functional decoding results
are shown in Supplementary Results.

Heritability is a marker that illustrates the proportion of variance
across a population to be attributed to genetic factors. Here
we sought to understand whether regions showing asymmetry
differences between individuals with autism and NAI would
be heritable within a population in young adulthood (22-37 years,
HCP sample), as a proxy for a potential genetic versus environmental

SPRINGER NATURE

interplay associated with asymmetry. We extracted heritability
values with standard error (SE) of the regions displaying diagnostic
effects (Fig. 3E and Supplementary Table S7). The regions displaying
diagnostic effects along intra-hemispheric G1 showed low herit-
ability, ranging from 0.069 to 0.083. The regions displaying
diagnostic effects along inter-hemispheric G1 showed moderate
heritability, ranging from 0.074 to 0.293, of which 33pr (h*> = 0.163,
SE=0.057, prpog=0006), 47m (h?>=0.137, SE=0062, Prpr=
0.027), A5 (h* =0.162, SE = 0.065, prpr = 0.015), STSdp (h* = 0.146,
SE = 0.062, pror = 0.020), and TPOJ1 (A% = 0.293, SE = 0.061, prpr <
0.001) survived after FDR correction. Moreover, STSda (h? = 0.133,
SE=0.059, prpr=0.038) along inter-hemispheric G2, SFL
(h*=0.212, SE=0.060, prog = 0.001), 47| (h*>=0.267, SE=0.065,
Pror < 0.001), and FST (h® =0.133, SE =0.062, pepr = 0.028) along
inter-hemispheric G3 survived after FDR correction.

Phenotypic associations (Fig. 4)

Lastly, we aimed to test whether asymmetry features (540 features
based on 180 parcels * 3 gradients) can predict autistic traits as
measured by ADOS (n=132). To do so, we combined a linear
regression with elastic net 5-fold cross validation (CV) with a
supervised machine learning approach (Fig. 4A) using scikit-learn
(https://scikit-learn.org). Here we used L1_ratio = 0.1 to set up the
regularization. Details using other L1_ratio parameters can be
found in Supplementary Results.

Briefly, we randomized the whole sample for train-test (4:1)
samples for 100 permutations. Multi-site and age effects were
regressed out using neuroCombat data harmonization [55] for
training and testing samples separately. To automatically tune
hyperparameters, we set a series of alphas from 0.0001 to 1. Elastic
net with 5-fold CV estimated the models. The model with the
lowest mean absolute error (MAE) was selected as being well-
trained. Finally, to evaluate how much the model fit the testing
sample, we calculated the Pearson r between the actual score and

Molecular Psychiatry
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estimates derived from panel A.

the predicted score in the testing sample. Across 100 permuta-
tions, MAE distributions are shown in Fig. 4B with the mean £SD
being 4.875 £ 0.508 for the training sample and 4.314 + 0.595 for
the testing sample.

Figure 4C illustrates the frequency of each selected feature
across the 100 permutations. In our pipeline, each feature had at
least 50% possibility of being selected. High frequency occurred in
DMN, PEN, and Lan. along G1, DAN, Lan., and OAN along G2, and
Lan., FPN, and VMN along G3. Out-of-sample prediction suggests
mean = SD Pearson r to be 0.215+0.148 for ADOS total score
(Fig. 4D). However, the models using inter-hemispheric asymmetry
features did not show good performance, with a mean+SD
Pearson r of —0.035 + 0.108 for ADOS total score (Supplementary
Results). Regarding prediction for ADOS subscores, intra-
hemispheric asymmetry features fit positively for communication
(Pearson r=0.130+0.142) and social (Pearson r=0.153 £ 0.160)
but not RRB (Pearson r=—0.097 £0.121), possibly in line with
functional relevance of functional brain asymmetry.

DISCUSSION

In the current work, we studied the difference in asymmetry of
functional organization between autistic and NAI. Here functional
organization was defined within a gradient framework [30, 32, 36],
differentiating three main axes of organization differentiating:
sensory from default networks, linked to a differentiation of
perceptual from abstract cognitive functions (G1), sensorimotor
from visual networks (G2), and default from multiple demand
networks, associated with a differentiation of attention/control
functions from more task-negative functions such as autobiogra-
phical memory (G3) [32, 33, 60-62]. Overall we observed that
asymmetry effects could be best described by a combination of
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asymmetry in these axes; yet, we observed axis-specific effects as
well. For example, the language network showed an altered
embedding along the sensory-transmodal intrinsic functional axes
when comparing neurotypical controls and autistic individuals. On
the other hand, when studying age-related change in embedding,
we found that again the language network showed altered
embedding, however, this time, this was largely linked to its
embedding on a functional axis differentiating attention/control
from the off-task, mnemonic functions, G3. Moreover, individuals
with autism showed higher population heterogeneity for the
spatial patterns of asymmetry. Intra-hemispheric asymmetry in
language areas such as STS, found to differ between autistic
individuals and NAI, were previously found to have low heritability
in a young adult sample of NAI. However, group differences in
inter-hemispheric asymmetry were observed to have moderate
heritability strengths in NAI. These diverging patterns also suggest
that both genetic and environmental components may be
important to consider in the context of functional asymmetry
differences between autism and NAI across development. Last, we
found that, rather than inter-hemispheric asymmetry features,
intra-hemispheric asymmetry features were more predictive of
autistic traits. Together, our work shows extended differences in
functional organization asymmetry between autism and NAI,
which may be rooted in development and highly variable across
individuals.

In the current work we leveraged the ABIDE sample, an openly
available, multi-site cohort of individuals with autism and NAI
[53, 54] through data harmonization. Previous work on the same
sample has revealed that both sensory and default regions are
functionally more integrated in autism relative to NAI [4]. Here, we
extend these findings by showing that the language network had
higher integration in the left hemisphere in NAI whereas in autism

SPRINGER NATURE
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Fig. 4 Autism traits and functional asymmetry. A Machine learning pipeline. We used 540 features (180 parcels * 3 gradients) to predict the
total score of ADOS. All subjects were split into 4:1 training:test samples. Linear regression with elastic net (L1_ratio = 0.1) was the feature
selector during which 5-fold cross validation was employed. We permuted this procedure 100 times by splitting the subjects randomly.
B Shows how the model works in the training and testing samples using mean absolute error (MAE) during the 100 permutations.
C Summarizes the frequency of this feature being selected across the 100 permutations. D lllustrates the distribution of correlations between
the observed ADOS total score and predicted ADOS total score in the testing samples across the 100 permutations. Vis1: primary visual
network, Vis2: secondary visual network, SMN somatomotor network, CON cingulo-opercular network, DAN dorsal attention network, Lan.
language network, FPN frontoparietal network, Aud. auditory network, DMN default mode network, PMN posterior multimodal network, VMN
ventral multimodal network, OAN orbito-affective network.

higher integration was found in the right hemisphere. Interestingly, Such a developmental alteration may be in line with reported
networks that show rightward asymmetry in healthy individuals, delays in language and communication in autism [67]. The
e.g., FPN and CON along the sensory-default axis [31], are more developmental trajectory of language-task activation lateralization
rightward in individuals with autism compared with NAL This follows an upwards trend from early childhood to adolescence,
differing processing pattern between hemispheres in autism is plateaus between 20 and 25 years, and slowly decreases between
consistent with the idea of pervasive rightward lateralization in the 25 and 70 years [68]. This converges with our observations in
disorder [25, 26, 63]. Cardinale and colleagues (2013) used ICA to language network asymmetry using a system-level approach
reveal 10/17 asymmetric networks and found that these networks along G, i.e, increased leftward asymmetry from childhood to
(visual, auditory, motor, executive, language, and attentional) adolescence and slightly decreased asymmetry from adolescence

without exception display atypical rightward asymmetry in autism. to adulthood in NAI. At the same time, we did not observe such
Atypical motor performance in autism is correlated with their developmental changes in autism, nor an interaction between
rightward motor circuits [25]. These findings are mirrored by task- autism status and age. This may indicate that the embedding of

based reports, including language [27, 64] and face processing [65] the language network, relative to attention networks, shows
tasks and may be linked to increased rightward or decreased differential changes during development in individuals with
leftward functional activation in autism [27]. As a system-level autism relative to NAI, whereas its embedding between percep-
measurement, the gradients approach describes a regional feature tual and abstract cognitive functions varies within autism, relative
as a function of an interregional embedding [36]. Thus, observed to NAI, irrespective of age. It has been suggested that initially
local regional asymmetries reported in prior work may result from bilateral language activation becomes more left-lateralized in
systemic alterations in integration and segregation of functional typically developing children, whereas children with autism show
connectivity as reported here. a different developmental trajectory becoming increasingly right-

Both cortical asymmetry and organization of intrinsic function ward lateralized [28]. This indicates there should be an interaction
show developmental change. For example, though left-right with respect to language network asymmetry. We indeed

asymmetry is observed in the neonatal brain, frontal and temporal observed such an interaction along G3. Language network
asymmetry in neonates differs from observations in adults [66]. asymmetry along G3 alters its direction from leftward to rightward
Here, we revealed a developmental component to deviating during typical maturation whereas for autism we observed a
asymmetry of functional organization in language-related regions. subtle and leftward trend. It may suggest that language functions
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have multidimensional maturation trajectories (i.e, G1 and G3).
The network-wise results were driven by language-related parcels
in the temporal gyrus instead of frontal gyrus. It is of note that the
current sample includes largely high-functioning individuals with
autism. Yet, oral language impairments are observed in various
degrees along the autism spectrum [67] and language compre-
hension (especially under social context), instead of oral language,
might be more apparent in individuals with high-functioning
autism. Thus, in future work it will be relevant to study asymmetry
in brain organization in a possibly more heterogeneous sample of
individuals with autism.

Importantly, we observed age differences in functional gradient
asymmetry in NAI but not in autism. This suggests that whilst
asymmetry of functional organization in NAI changes over the
course of development, this is not the case in individuals with
autism. Other work also supports the notion that age effects of
brain asymmetry are not found in individuals with autism
[48, 68-70]. This may reflect a maturation failure model in
neurodevelopmental conditions and disorders [71], which in the
case of autism may lead to different asymmetry development.
Research shows that cortical asymmetries may largely be
determined prenatally and that they may constrain the develop-
ment of lateralized functions in later life [66]. This suggests
asymmetry is determined by genetics and environment in utero.
In particular, environmental effects over the left hemisphere may
be stronger than the right hemisphere in utero [72]. Thus, the
maturation alterations of brain asymmetry in autism might result
from a complex interplay between genetic and environmental
effects. Our study analyzed cross-sectional development, yet
longitudinal data are necessary to evaluate the maturation failure
model in autism.

Further investigating the interplay of developmental effects
from genes on brain asymmetry, we evaluated whether regions
showing differential asymmetry in autism are heritable in a
normative non-autistic adult sample [31]. We found that temporal
language regions such as posterior STS and TPOJ1 along G1
between autism and NAI were heritable, whereas they were not
heritable under intra-hemispheric connections. This different
heritability of asymmetry patterns may suggest that the global
feature in superior STS is more variable during intra-hemispheric
specialization and may show stronger genetic constraints during
inter-hemispheric specialization. Recent work using single-
nucleotide polymorphisms (SNPs)-based analyses in the UK
Biobank suggest high heritability in surface area asymmetry in
these two regions. Further work, using more refined genetic
imaging analysis, may help to further understand the neurobio-
logical mechanisms underlying regional asymmetry and its
functional consequences [73]. Thus, inter- but not intra-
hemispheric connectivity might be linked in some manner to
additive genetic factors. As mentioned previously, environmental
factors may have double effects on the left vs right hemisphere in
brain volume in utero development [72]. One possibility is that
genes influence spatial organization in the right hemisphere,
relevant to the inter-hemispheric function of superior STS, but that
genes associated with autism impact inter-hemispheric connec-
tivity. Further work using multilevel genetic and imaging data as
well as brain models may help provide answers to these
questions.

Lastly, we identified multiple areas related to autism traits via
machine learning procedures similar to previous work [4, 9]. This
indicates that the model optimizes the parameters by averaging
the features’ effects in autism and may reflect the complexity of
autism traits using asymmetry features. We observed that the
prediction using inter-hemispheric features is not as good as using
intra-hemispheric features to predict ADOS total score. Follow-up
indicated that subscores of communication and social traits
showed acceptable out of sample prediction. Yet, repeated
behaviors did not, underscoring the social and communicative
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trait relevance of individual variation in functional asymmetry. The
differentiation between intra- and inter-hemispheric differences in
terms of their predictability may again point to differential
association between developmental and baseline effects. Indeed,
intra- and inter-hemispheric asymmetry is primarily differentiated
by the developmental timing of the role of corpus callosum
[74, 75]. Some studies have reported atypical cross-hemispheric
connectivity and reduced corpus callosum size in autism
compared to NTC [76, 77]. However, agenesis of the corpus
callosum is not enough to specify the autistic traits [78]. Future
work may investigate the interplay between genes and environ-
ment in the context of intra- and inter-hemispheric connectivity
and its clinical relevance to autism. Such differences may have
already led to the differential idiosyncrasy of inter- and intra-
hemispheric patterning, with idiosyncrasy of inter-hemispheric
connectivity to be more extended in autism.

Overall, through studying the organization of intrinsic func-
tional asymmetry, our work provides a framework to study
hemispheric differences in individuals with autism versus NAI.
However, there are several limitations to note. First of all, the
current study was based on neuroimaging data from multiple
acquisition sites, enhancing the sample size but at the same
time also introducing potential site-related confounds. We used
data harmonization [55] to reduce this influence as much as
possible. Second, the enrichment decoding results are indirect. If
we want to understand the genetic basis and cognitive
relevance of asymmetry in autism and healthy individuals, it is
necessary to measure genetic and cognitive features in autism.
Moreover, in the current sample, we could not provide the
causal link between development and functional asymmetry.
Longitudinal design and/or high-risk autism models may help to
highlight the neurodevelopmental foundations of functional
asymmetry in autism and guide implications for support. Finally,
we excluded autistic females, however, research shows that
brain lateralization differs by sex [41, 48, 79, 80] and autism
shows sex and gender differences in prevalence, behavior and
brain [1, 81-84]. Future studies should investigate whether there
exist sex and gender-differential patterns of atypical asymmetry
in autism.

To conclude, we report functional organization asymmetry in
autism, its age-related changes, and trait relevance. In particular,
we detected decreased leftward asymmetry in the language
network along the sensory-default gradient and somatomotor
network along the default-multiple demand gradient in autism. A
differing developmental trajectory in autism was observed in the
language network along the default mode-multiple demand
gradient. Moreover, functional asymmetry is a central feature of
autism, linking to autistic traits, with marked deviations from
controls in terms of development and idiosyncrasy. Future work
may study the impact of environmental factors upon genes
associated with autism during early development and associated
traits and cognitive development across the lifespan.

METHODS

We employed five datasets that covered children, adolescents, and young
adults from the Autism Brain Imaging Data Exchange (ABIDE, https://
fcon_1000.projects.nitrc.org/indi/abide), of which ABIDE-I includes New
York University Langone Medical Center (NYU-I), University of Pittsburgh-
School of Medicine (Pitt), and University of Utah-School of Medicine (USM),
and ABIDE-Il includes NYU-II and Trinity Center for Health Sciences-Trinity
College Dublin (TCD). In accordance with HIPAA guidelines and 1000
Functional Connectomes Project / INDI protocols, all ABIDE datasets have
been anonymized, with no protected health information included.

Participants

We restricted our analyses to males (n=300) due to the low number of
females with autism, consistent with previous work [4]. Individuals with
autism underwent a structured or unstructured in-person interview and had
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a diagnosis of Autistic, Asperger’s, or Pervasive Developmental Disorder Not-
Otherwise-Specified. These were established by expert clinical opinion aided
by ‘gold standard’ diagnostics: Autism Diagnostic Observation Schedule
Generic version (ADOS-G [85], and/or Autism Diagnostic Interview-Revised
(ADI-R). Subdomains include communication, social interaction, and
restricted repetitive behaviors (RRB). Intelligence quotient (IQ) was measured
by the Wechsler Abbreviated Scale of Intelligence including I, IV, and V
versions [86].

We excluded subjects with age greater than 40 years (n = 2) to retain a
centralized population age and full 1Q below 70 (n=1) to avoid
developmental delay of intelligence. Regarding head motion, we
measured mean framewise displacement (FD), derived from Jenkinson's
relative root mean square algorithm [87]. We excluded individuals whose
mean FD was greater than 0.3 mm (n = 14), consistent with the previous
report [4]. The final sample size taken into analyses was n = 283. Among
these, we categorized them into three age groups including 142 young
adults (18-40 years, autism: n = 66), 97 adolescents (12-17 years, autism:
n=>51), and 76 children (6-11 years, autism: n = 40).

To reduce the effects of data sites, we conducted data harmonization
(Fortin et al., 2018) using the toolbox neuroCombat (https://github.com/
Jfortin1/neuroCombat). It provides a Bayesian approach to balance the
effects of each scanner/site as well as continuous or categorized covariates.
FIQ and head motion were entered as covariates during data harmoniza-
tion. Results remain consistent and can be seen in our online iPython
notebook.

Preprocessing of resting state fMRI data

High-resolution T1-weighted images (T1w) and resting-state functional
magnetic resonance imaging (fMRI) data were available from all five sites.
The scanning parameters and preprocessing procedures are reported in
previous work [4]. In short, 3D-TurboFLASH was used for T1w of NYU
datasets and 3D-MPRAGE was used for T1w of the other three datasets. TR
ranged from 2100 to 300 ms and TE from 2.91 to 3.90 ms. The resolution
was 1.1%1.0%1.1 mm? voxels. A 2D EPI sequence was employed for resting
state fMRI data with the TR ranging from 1500 to 2000 ms, volumes
ranging from 180 to 236 (NYU-I: 176, PITT: 196, USM: 236, TCD: 210, NYU-II:
180), and a resolution of 3.0%3.03.4 mm? voxels.

Tiw data processing was done with FreeSurfer (v5.1; http:/
surfer.nmr.mgh.harvard.edu/). Image processing included bias field correc-
tion, registration to stereotaxic space, intensity normalization, skull-
stripping, and white matter segmentation. Our fMRI analysis was based
on preprocessed data previously made available by the Preprocessed
Connectomes initiative  (http://preprocessed-connectomesproject.org/
abide/). Preprocessing was based on C-PAC (https:/fcp-indi.github.io/)
and included slice-time correction, head motion correction, skull stripping,
and intensity normalization. Statistical corrections removed effects of head
motion, white matter, and cerebrospinal fluid signals using the CompCor
tool, based on the top 5 principal components, as well as linear/quadratic
trends. After band-pass filtering (0.01-0.1 Hz), we co-registered resting
state fMRI and T1w data in MNI152 space through combined linear and
non-linear transformations.

Surface alignment was verified for each case and we interpolated voxel-
wise rs-fMRI time-series along the mid-thickness surface. We resampled rs-
fMRI surface data to downsampled Conte69 (10 k vertices per hemisphere),
a template mesh from the HCP pipeline (https://github.com/Washington-
University/Pipelines), and applied surface-based smoothing (FWHM =5
mm). MRI quality control was complemented by assessment of signal-to-
noise ratio and visual scoring of surface extractions for T1w.

Parcellation

To reduce the high computational demands of processing vertex-based
fMRI data, we downsampled vertex-based fMRI data to 180 parcels per
hemisphere using multimodal parcellation (MMP [57], and summarized
features into Cole-Anticevic (CA) 12 functional networks [58]. MMP has
been generated using the gradient-based parcellation approach with
similar gradient ridges presenting in roughly corresponding locations
in both hemispheres, which is suitable for studying asymmetry across
homologous regions. Regarding cortical functional communities, CA atlas
summarizes 12 functional networks based on MMP including primary
visual (Vis1), secondary visual (Vis2), somatosensory (SMN), cingulate-
opercular (CON), dorsal attention (DAN), language (Lan.), frontoparietal
(FPN), auditory (Aud.), default mode (DMN), posterior-multimodal (PMN),
ventral-multimodal (VMN), and orbito-affective (OAN).
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Functional connectome gradients
After parcellating the preprocessed time series, we obtain the arrays of
time series * parcels. We first computed the Pearson correlation between
parcels using time series and transformed r values to z values using Fisher
z-transformation. This generates the functional connectivity (FC) matrices
of 360*360 for each individual. Then, to compute the functional
connectome gradients, we used a non-linear manifold learning algorithm,
to perform dimensionality reduction of the FC matrix. Consistent with the
framework of asymmetry of functional gradients [31], we aligned each
individual gradient to the template gradient (i.e., left-left group level
gradients) with Procrustes rotation to make individual gradients compar-
able [30]. To gain an unbiased left-left group-level gradients template,
without age or gender bias, in young adults, we employed data from
Human Functional Connectome project S1200 release (HCP S1200). This
has been done previously [31]. Briefly, we averaged 1104 subjects FC
matrices of HCP $S1200 and computed the group level gradients based on
the mean left-left FC matrix. The first eigenvectors reflect unimodal-
transmodal gradient (G1), sensory-visual gradient (G2), and multi-demand
gradient (G3) explaining 24.1, 18.4, and 15.1% of total variance each.
Gradient analysis was performed in BrainSpace [30], a Matlab/python
toolbox for brain dimensionality reduction (https://brainspace.readthedocs.io/
en/latest/pages/install.html). Gradients are low dimensional eigenvectors of
the connectome, along which cortical nodes that are strongly interconnected,
by either many suprathreshold edges or few very strong edges, are situated
closer together. Similarly, nodes with little connectivity are farther apart. This
reflects the similarity/dissimilarity of functional connectivity profiles, which
can be interpreted as functional integration and segregation between regions
described in the form of a common coordinate space [33] built by the first
three gradients. The name of this approach, which belongs to the family of
graph Laplacians, is derived from the equivalence of the Euclidean distance
between points in the diffusion map embedding [32, 88]. It is controlled by a
single parameter a, which reflects the influence of the density of sampling
points on the manifold (a = 0, maximal influence; a = 1, no influence). On the
basis of the previous work [32], we followed recommendations and set
a=0.5, a choice that retains the global relations between data points in
the embedded space and has been suggested to be relatively robust to
noise in the covariance matrix. The top 10% of values in the FC matrix were
used for the threshold to enter the computation, consistent with previous
studies [4, 31, 32].

Asymmetry index

To quantify the left and right hemisphere differences, we chose left-right
as the asymmetry index (Al) [31]. We did not opt for normalized Al, i.e.,
(left-right)/(left +right), as gradient variance (normalized angle) has both
negative and positive values [14] and normalized Al exaggerates the
difference values or results in a discontinuity in the denominator [89]. The
normalized Al is highly similar to non-normalized Al with correlation
coefficients greater than 0.9 [31]. For the intra-hemispheric pattern, the Al
was calculated using left-to-left connectome gradients minus right-to-right
connectome gradients. A positive Al-score meant that the hemispheric
feature dominated leftwards, while a negative Al-score dominated
rightwards. For the inter-hemispheric pattern, we used left-to-right
connectome gradients minus right-to-left connectome gradients to
calculate the Al. We added a ‘minus’ to Cohen’s d scores in the figures
in order to conveniently view the lateralization direction (i.e., leftward or
rightward).

Heritability and meta-analytic decoding

Regarding the meta-analytic decoding, we used functional MRI activation
data from the NeuroSynth database [59]. We selected 24 cognitive domain
terms, consistent with previous studies [31, 32, 38, 90]. In the present
study, to decode both hemispheres, we separately fed the t values for the
left and right hemisphere to the NeuroSynth. Then we generated 20 bins
for the brain map (5% per bin) according to the t values. For each cognitive
domain term, we averaged the activation z-score within each bin. To
assess what functional processes may link to the regions observed to
differ between controls and individuals with autism, we studied the
association between the t values of the group difference map and meta-
analytical maps. We calculated a weighted score by mean activation
(where activation z-score greater than 0) multiplied by loading of the t
values per bin. A bigger shape in the word cloud reflects a higher
weighted score (i.e., atypically lateralized intrinsic functional organization
in autism).

Molecular Psychiatry


https://github.com/Jfortin1/neuroCombat
https://github.com/Jfortin1/neuroCombat
http://surfer.nmr
http://surfer.nmr
http://preprocessed-connectomesproject.org/abide/
http://preprocessed-connectomesproject.org/abide/
https://fcp-indi.github.io/
https://github.com/Washington-University/Pipelines
https://github.com/Washington-University/Pipelines
https://brainspace.readthedocs.io/en/latest/pages/install.html
https://brainspace.readthedocs.io/en/latest/pages/install.html

The heritability data were derived from a prior study by our team [31]
that was based on a study of non-autistic adult twins/non-twins. After
selecting the parcels where autism showed differences from NAI, we could
describe their genetic underpinnings with heritability data from HCP.

Prediction
We performed supervised machine learning to predict the ADOS total and
subscale scores. Regarding cross-validation, we applied a 5-fold leave-one-
out strategy to learn the data. Among the 5-time iterations, the one with
averaged MAE was chosen as the final model to predict the clinical
symptoms. Linear regression with elastic net (L1_ratio =0.1) was used as
the feature selector. This follows an Empirical Bayesian approach to
balance the effects of each scanner/batch. After the features’ contributions
had been built, we used Pearson correlation coefficients to evaluate how
strong the model could be applied to the current sample.

First, we divided the participants into training and testing samples using
a 4 to 1 ratio. Next, we applied data harmonization for training and testing
samples separately. We then used the cross-validation as described above
to select features in the training sample. The selected features were then fit
in the independent testing sample to evaluate the model. We permuted
the whole procedure 100 times with a random number to split the
participants into training and testing samples. This enabled us to know the
frequency of how often features are selected over the 100 permutations.

Data and code availability

The ABIDE open data can be acquired from https://fcon_1000.projects.-
nitrc.org/indi/abide/. All the analysis scripts and visualization for this study
are openly available at a Github repository (https://github.com/wanb-
psych/autism_gradient_asymm). Key dependencies are Python 3.9 (https://
www.python.org/), BrainSpace (https://brainspace.readthedocs.io/), and
BrainStat (https://brainstat.readthedocs.io/).
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