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In this work we present a derivation of modified Raychaudhuri and Friedmann equations from a 
phenomenological model of quantum gravity based on the thermodynamics of spacetime. Starting from 
general gravitational equations of motion which encode low-energy quantum gravity effects, we found 
its particular solution for homogeneous and isotropic universes with standard matter content, obtaining 
a modified Raychaudhuri equation. Then, we imposed local energy conservation and used a perturbative 
treatment to derive a modified Friedmann equation. The modified evolution in the early universe we 
obtained suggests a replacement of the Big Bang singularity by a regular bounce. Lastly, we also briefly 
discuss the range of validity of the perturbative approach and its results.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

As of today, a complete theory of quantum gravity remains 
elusive. Nevertheless, various approaches proposing a quantisation 
of gravity have been applied in highly symmetric settings, which 
allow to obtain definite results. The simplest such setting is a ho-
mogeneous and isotropic cosmological spacetime, whose dynamics 
is fully described by a single function of the cosmological time t , 
the scale factor a (t). The importance of applying quantum gravity 
to cosmology lies, on the one side, in finding potentially testable 
predictions of quantum gravitational effects in the early universe. 
On the other side, the lessons learned in this relatively simple case 
can provide clues to the general behaviour of quantum gravity.

A well explored approach of this kind is loop quantum cos-
mology [1–3]. It employs quantisation techniques inspired by loop 
quantum gravity in a symmetry reduced setting (minisuperspace) 
corresponding, in its simplest case, to the homogeneous, isotropic 
cosmological spacetime. The most notable prediction of loop quan-
tum cosmology is the replacement of the Big Bang singularity by a 
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regular bounce, i.e. a point at which the universe stops contracting 
and starts to expand.1

This approach has some drawbacks, mainly concerned with its 
relation to the full theory, values of the constants parametrising 
the theory, and also its regime of validity. Nevertheless, it presents 
solid predictions for the early universe cosmology (For a criti-
cal analysis of the current state of loop quantum cosmology see, 
e.g. [5]).

Here, we propose a novel approach to quantum gravitational 
effects in cosmology. It employs general low energy quantum grav-
itational dynamics we previously derived from thermodynamics of 
spacetime [6]. The key assumption of our approach is that local, 
observer-dependent causal horizons posses Bekenstein entropy of 
the same form as black hole horizons. Then, thermodynamic equi-
librium conditions for local causal horizons encode the equations 
governing gravitational dynamics [7].2

1 According to improved dynamics of loop quantum cosmology, the bounce oc-
curs when the density reaches the order of the Planck scale, ρcrit ≈ 0.41ρP [4]. The 
value of ρcrit depends on the Barbero-Immirzi parameter and in this case, it is fixed 
by demanding that one correctly reproduces Bekenstein expression for black hole 
entropy in loop quantum gravity.

2 Let us remark that the equilibrium conditions can also be phrased fully in terms 
of quantum entanglement [8]. This allows a more rigorous derivation of equations 
of gravitational dynamics from equilibrium conditions, details of which are not rel-
evant for our current purposes (for an extensive discussion, see [6]). The leading 
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In the mentioned approach, to study low energy quantum grav-
itational dynamics, we consider the leading order correction to 
Bekenstein entropy, i.e., a term logarithmic in horizon area A

SB = kBA
4l2P

+ 18π DkB ln

(
A
A0

)
+ O

(
kBl2P
A

)
, (1)

where kB is the Boltzmann constant, lP is the Planck length, A0
is an arbitrary constant with dimensions of area, and D ∈ R is 
a dimensionless parameter whose value and sign depend on the 
particular model in which we calculate the modified Bekenstein 
entropy (since D appears in the modified gravitational equations, 
we write the proportionality constant in entropy here as 18π D). 
This form of Bekenstein entropy is nearly universally predicted by 
the diverse candidate theories to quantum gravity (e.g. loop quan-
tum gravity [11], string theory [12], AdS/CFT correspondence [13]), 
as well as by various model independent phenomenological argu-
ments [14–16] and by entanglement entropy calculations [9].

The modified equations for gravitational dynamics were de-
rived starting from the modified Bekenstein entropy (1) and using 
equilibrium conditions applied to local causal diamonds [6]. These 
equations incorporate in that way low energy quantum gravita-
tional corrections fully determined by the value of the proportion-
ality constant D . Given the universality of equation (1), the result-
ing equations do not depend on any specific assumptions about the 
fundamental theory of quantum gravity. Notably, for a given theory 
of quantum gravity, D tends to be a universal constant indepen-
dent of any arbitrary parameters [10]. For instance, D is a universal 
constant in loop quantum gravity, whereas the proportionality con-
stant in the leading order term in black hole entropy depends on 
the (in principle arbitrary) Barbero-Immirzi parameter [11]. Like-
wise, the logarithmic correction appearing in entanglement en-
tropy calculations does not depend on the regularisation scheme 
employed [10] (unlike the leading term). Therefore, our approach 
to low energy quantum gravitational dynamics is not only model 
independent, but should avoid even the dependence on parame-
ters of the full quantum gravity (unlike loop quantum cosmology, 
whose predictions depend on the Barbero-Immirzi parameter and 
the area gap).

In this work, we specialise these general modified equations 
of motion to the case of homogeneous, isotropic cosmological 
spacetimes. In the present analysis, we approximate matter con-
tent of the universe as a classical perfect fluid (in general multi-
component). We find that for D > 0 our model perturbatively 
yields predictions equivalent with the effective dynamics of loop 
quantum cosmology [17] and, therefore, suggests the replacement 
of the Big Bang singularity with a regular bounce. Due to the 
considered perturbative expansion, the domain of validity of our 
equations does not extend all the way to the bounce. Neverthe-
less, we find that the dynamics continue to behave consistently 
with loop quantum cosmology picture almost all the way to the 
Planck scale. Given the model independence of our approach and 
the thermodynamic motivation for it, our results suggests that the 
loop quantum cosmology picture of the early universe (up to the 
Planck scale) may be qualitatively accurate independently of the 
final theory of quantum gravity.

The paper is organised as follows. In section 2 we derive the 
modified Raychaudhuri and Friedmann equations and find their 
perturbative analytical solutions for some special cases. Section 3
then contains numerical calculations of the perturbative correc-
tions to the �CDM model. The domain of applicability of our 
approach is analysed in section 4. Finally, section 5 sums up our 
results and discusses possible future directions.

order corrections to entanglement entropy can be rigorously shown to be logarith-
mic, as required by our approach [9,10].
2

2. Modified cosmology

In this section, we specialise our general quantum phenomeno-
logical gravitational equations to a cosmological model. The modi-
fications we find will be relevant at scales near the Planck density 
but still large enough to consider just low-energy quantum grav-
ity effects and a continuous spacetime. Of course, at late times, we 
expect to recover the classical cosmology up to negligible correc-
tions.

First, we briefly summarize the origin of the quantum phe-
nomenological equations of motion developed in the literature that 
we will use for the derivation of the cosmological solutions in 
this work. Then we obtain a modified Raychaudhuri equation for 
a universe filled with a (in general multi-component) perfect fluid. 
Finally, we develop a perturbative approach to solve that equation, 
finding a modified Friedman equation. Lastly, we obtain analytical 
solutions for some particular cases.

2.1. Modified equations of gravitational dynamics

The modified equations for gravitational dynamics we consider 
are derived from an entanglement equilibrium condition imposed 
on local causal diamonds constructed in every point of the space-
time. It has been shown that such condition encodes the grav-
itational dynamics [8]. The derivation is based on the maximal 
vacuum entanglement hypothesis, which establishes that at first 
order variation of matter fields and geometry from a vacuum max-
imally symmetric spacetime, the total entanglement entropy vari-
ation vanishes in a small geodesic ball of fixed volume [8]. The 
variation of the total entropy is the sum of the variations of the 
matter entanglement entropy, δSm, and entanglement entropy of 
the horizon corresponding to (modified) Bekenstein entropy [6,8], 
δSB, i.e.

δSB + δSm = 0. (2)

The modified entanglement entropy of the horizon is given by 
equation (1). The matter entanglement entropy crossing the hori-
zon for small perturbations of the vacuum can be expressed in 
terms of a local modular Hamiltonian proportional to the stress-
energy tensor (see [8] for details). Plugging expressions for both 
entropies to the equation (2) yields, after some nontrivial manip-
ulations, the traceless modified equations governing gravitational 
dynamics

Sμν − Dl2P Sμλ Sλ
ν + Dl2P

4

(
RκλRκλ − 1

4
R2

)
gμν

= 8πG

c4

(
Tμν − 1

4
T gμν

)
, (3)

where Sμν = Rμν − Rgμν/4, and Rμν and Tμν represent, respec-
tively the Ricci and stress-energy tensors. For the full derivation 
of the modified equations, we refer the reader to the original pa-
per [6].

2.2. Modified Raychaudhuri equation

In this subsection, we obtain the modified Raychaudhuri equa-
tion governing the dynamics of the quantum phenomenological 
cosmological model. The modified equations introduce a correction 
term quadratic in the curvature tensors and proportional to param-
eter D which quantifies the quantum gravitational modifications. 
It is easy to see that in the limit D → 0 where the quantum ef-
fects vanish, we recover the standard traceless part of the Einstein 
equations. The tracelessness, together with some other features of 
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these equations actually makes them a natural generalisation of 
the equations of motion of unimodular gravity, rather than general 
relativity. However, this distinction does not play a major role in 
the present work (for details, see [6]).

We then apply these general equations to the Friedmann-
Lemaître-Robertson-Walker metric3

ds2 = −c2dt2 + a2(t)

(
dr2

1 − kr2
+ r2

(
dθ2 + sin2 θdφ2

))
, (4)

where a(t) is the scale factor and k the curvature of the space.
To describe the matter content of the universe, we use the 

stress-energy tensor of a perfect fluid with two components: dust 
(non-relativistic matter) with the equation of state pm = 0 and 
radiation (relativistic matter) with pr = ρrc2/3. The stress-energy 
tensor reads

Tμν =
(
ρ + p

c2

)
uμuν + p

c2
gμν, (5)

where the energy and pressure density are the sums of the differ-
ent perfect fluid components.

Since the equations of motion are traceless, they only yield one 
nontrivial condition. After some straightforward computations, we 
obtain for it

Ḣ − k

a2
− Dl2P

c2

(
Ḣ − k

a2

)2

= −4πG
(
ρ + p

c2

)
, (6)

where H = ȧ/a is the Hubble parameter. We recognize this expres-
sion as the Raychaudhuri equation with an extra term proportional 
to the correction parameter D . Taking the limit D → 0, we repro-
duce the classical Raychaudhuri equation, confirming the validity 
of this modified equation in the classical limit.

This modified Raychaudhuri equation is, in fact, an ordinary dif-
ferential equation non-linear in the second derivatives of the scale 
factor. To obtain a solution, we develop in the following subsec-
tions a perturbative treatment in the non-linear term, appropriate 
when the gravitational fields are not too strong (i.e., everywhere 
except for the very beginning of the universe). This means assum-
ing that the Hubble parameter corresponds to its classical value 
H(0) up to O (l2P) terms and neglecting the O (l4P) contributions. We 
discuss the range of validity of this approach in detail in section 4.

2.3. Modified Friedman equation: perturbative solution

In this subsection, we introduce a perturbative approach to 
solve the modified Raychaudhuri equation. For this purpose, we 
treat the term quadratic in Ḣ in the modified Raychaudhuri equa-
tion (6) as a small correction. Then, we can perturbatively expand 
H around its classical value H(0) as

H = H(0) + H(1)

H2
(0)l

2
P

c2
+ O

(
H4

(0)l
4
P

c4

)
, (7)

and neglect the O  
(
l4P

)
terms. However, we keep the lowest non-

trivial quantum modification of the order H(1)l2P. This approxi-
mation corresponds to the regime in which H2

(0) (which can be 
thought of as the spacetime curvature scale) is significantly smaller 

3 Given the unimodular nature of the modified equations (3), we should more 
appropriately use a unimodular form of the metric [6]. However, it can be checked 
that the Raychaudhuri equation derived from the standard and unimodular metric 
have exactly the same form (essentially due to conformal flatness of the met-
ric). Therefore, we work with the standard version of the Friedmann-Lemaître-
Robertson-Walker metric, as it is more familiar and somewhat easier to handle.
3

than c2/l2P, but still large enough that the term H2
(0)

l2P/c2 is non-
negligible. Since the derivation of the modified gravitational equa-
tions (3) also neglects O  

(
l4P

)
terms, this is in fact just a consistency 

condition for our approach.
We can now approximate the correction term in the modified 

Raychaudhuri equation as

Dl2P
c2

Ḣ2 = Dl2P
c2

Ḣ2
(0) + O

(
l4P

)
. (8)

This yields the perturbative Raychaudhuri equation of the form

Ḣ = −4πG
(
ρ + pc2

)
+ 16π2G2 Dl2P

c2

(
ρ + pc2

)2 + k

a2
. (9)

We consider a universe filled with a perfect fluid with two com-
ponent, dust and radiation, because of its interest in cosmology. 
Using the equations of state, pi/c2 = ωiρi with ωr = 1/3 for the 
relativistic matter and ωm = 0 for non-relativistic matter, we have 
for the perturbative Raychaudhuri equation

Ḣ = −4πG
∑

i

ρi (ωi + 1)

+ (4πG)2 Dl2P
c2

(∑
i

(ωi + 1)ρi

)2

+ k

a2
,

Ḣ = −4πG
∑

i

ρi (ωi + 1)

+ (4πG)2 Dl2P
c2

(∑
i

(ωi + 1)2 ρ2
i

+2
∑
i> j

(
ωiω j + ωi + ω j + 1

)
ρiρ j

⎞
⎠ + k

a2
. (10)

The modified equations of motion only yield one nontrivial con-
dition for the metric, which does not suffice to fully determine 
it. This is a situation familiar from classical unimodular gravity, 
where one needs to add an equation for the divergence of the 
stress-energy tensor to obtain a complete system of equations [18]. 
In principle, this divergence can be proportional to gradient of 
some scalar, i.e., ∇μT μν = ∇νJ [19]. If J �= 0, the energy is not 
locally conserved. While this possibility has been considered in 
cosmology [20], we assume, for simplicity, that the local energy 
conservation holds, i.e., ∇μT μν = 0. Moreover, we assume that the 
components of the fluid do not interact, and each of them is con-
served separately (this is a reasonable assumption except for very 
early universe). This implies for each component

ρ̇i + 3H (ρi + pi) = 0. (11)

Multiplying equation (10) by 2H and then integrating using the 
energy conservation for each fluid, yields the perturbative Fried-
man equation

H2 =
∑

i

8πG

3
ρi −

∑
i

16π2G2

3

Dl2P
c2 (ωi + 1)ρ2

i

− 32π2G2

3

Dl2P
c2

∑
i> j

(
ωiω j + ωi + ω j + 1

)
ωi + ω j + 2

ρiρ j

− k

a2
+ �̃. (12)

For our case of the two component fluid, the perturbative Fried-
man equation yields
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H2 = 8πG

3
(ρm + ρr) − k

a2

− 16π2G2 Dl2P
3c2

(
4

3
ρ2

r + ρ2
m + 7

5
ρmρr

)
+ �̃. (13)

In the limit of D → 0 this equation again reduces to the classi-
cal Friedman equation. The arbitrary integration constant �̃ plays 
the role of the cosmological constant, namely �̃ = �c2/3. Since, 
in classical unimodular gravity the cosmological constant also ap-
pears as an integration constant, being consistent with the uni-
modular nature of the modified equations we mentioned previ-
ously. It is convenient to write the Friedman equation in terms of 
dimensionless variables using the notation �i = (

8πG/3H2
0

)
ρi,0

for the relativistic and non-relativistic matter, with i being r, m, 
�k = −k/ 

(
a2

0 H2
0

)
for the curvature density and �� = �c2/ 

(
3H2

0

)
, 

where a0, H0, and ρi,0 denote the reference values of a, H , and 
ρi , typically taken to be the ones in the present day universe. The 
perturbative Friedmann equation in terms of these dimensionless 
variables reads

H2

H2
0

=
(

�r

(a0

a

)4 + �m

(a0

a

)3 + �k

(a0

a

)2 + ��

)

− Dl2P
12c2

H2
0

(
4

3
�2

r

(a0

a

)8 + �2
m

(a0

a

)6

+7

5
�r�m

(a0

a

)7
)

. (14)

Therefore we can obtain a modified equation for the universe’s 
content nowadays when we take into account phenomenological 
quantum-gravity modifications

�r + �m + �k + ��

− Dl2P
12c2

H2
0

(
4

3
�2

r + �2
m + 7

5
�r�m

)
= 1. (15)

Note that, in the present day universe, this equation differs from 
the established classical results for cosmology only negligibly, since 
the value of Dl2P/c2 is very small, and the variation provided by 
the modified model can be included in the uncertainties of the 
measurements. The present day estimates for the dimensionless 
factors are �r = 2.47 × 10−5h−2 with h = 0.704 ± 0.025, �m =
0.3111 ± 0.0056, �� = 0.6889 ± 0.0056 and �k = 0.0007 ± 0.0019
and for the Hubble parameter H0 = 67.66 ± 0.42 km s−1Mpc−1

[21,22].
The perturbative Friedman equation (14) can be solved analyt-

ically, provided that we set k = 0, � = 0, and limit ourselves to a 
single component perfect fluid. In particular, we obtain analytical 
solutions for the evolution of the scale factor for dust domination 
and radiation domination. In the case of dust domination, i.e., ne-
glecting radiation, the scale factor reads

am(t) = a0

(
9

4
�m H2

0t2 + Dl2P
12c2

�m H2
0

)1/3

. (16)

It is direct to check that in the classical limit (D → 0), the standard 
dependence a ∝ t2/3 for the dust domination period is recovered. 
For the case of radiation domination equation (14) yields

ar(t) = a0

(
4�r H2

0t2 + Dl2P
9c2

�r H2
0

)1/4

. (17)

In the classical limit, we again recover the standard solution for 
radiation domination period, a ∝ t1/2. In both cases, it is remark-
able that for t → 0 the initial singularity obtained in the standard 
4

cosmological model vanishes, and a minimum value for the scale 
factor appears. It depends on the correction term Dl2P/c2 and the 
actual values of H0 and �i . It is also observable in a very short 
period where the scalar factor evolves very fast as it is shown in 
Fig. 1. This period could be interpreted as a kind of inflationary 
period. For the Hubble parameter, we have

Hm = 2

3

t

t2 + Dl2P
27c2

and Hr = t

2t2 + Dl2P
18c2

. (18)

In both cases, we recover the classical result for D → 0, or for 
large t . We stress that around t = 0, the Hubble parameter has a 
linear tendency with a value of zero at the origin. Nevertheless, we 
should take into account that we used a perturbative expansion to 
obtain these results, and we should study the limitations of this 
model. The maximum of the Hubble parameter for radiation dom-

ination is obtained for tmax =
√

Dl2P/36c2, this corresponds with 

Hmax =
√

9c2/4Dl2P. We will discuss the limitations of this model 
in more detail in section 4.

3. Cyclic cosmology and numerical analysis

Once we have derived the modified equations and studying 
their perturbative solutions for dust and radiation analytically, we 
proceed to carry out a numerical analysis that allows us to address 
more complicated and realistic settings that cannot be studied an-
alytically.

First of all, we need to confirm that our model reproduces the 
standard model of cosmology at late times. For this purpose, we 
use a numerical analysis based on the Forth Order Runge-Kutta 
Method to solve the modified Raychaudhuri equation (6) taking 
into account all of the parameters. This method permits us to 
study the evolution of the system forwards and backward in time 
from today and to use different sets of parameters as the initial 
conditions. The parameters chosen for the system are the density 
parameters (�r, �m, ��, �k), the today’s value for the scale factor 
(fixed to a0 = 1 by convenience) and the dimensionless parame-
ter D . The theoretical predictions for this parameter are suggested 
to be in general about order of one [6], thus we fix D = 1 just 
for showing graphically the results. We also choose an adjusted 
time scale to study the system. For convenience, we use the Hub-
ble scale for time, fixing thus today’s Hubble parameter H0 = 1. 
Moreover, we set the beginning of time parameter so that H0 cor-
responds to τ = 0. We did a change of variable to respect the 
cosmic time t , τ = t + t0, where t0 is the age of the universe.

In order to depict Fig. 2 we used different sets of parame-
ters: today’s parameters based on the �CMB model, Einstein-de 
Sitter configuration (only matter component), de Sitter configura-
tion, only radiation component and finally a closed universe (k = 1) 
with the today’s parameters based on the �CMB model too. We 
stress that the impact of the modification of the Friedman equation 
is almost negligible on large scales, as the Hubble scale, since the 
evolution is quite similar to the evolution without modifications 
(D → 0). In the figure we can easily see a change of behaviour in 
the expansion of scale factor and Hubble parameter near the ori-
gin.

In the last section, we pointed out a minimum positive value 
for the scale factor using a perturbative treatment for the modified 
Raychaudhuri equation (6). The emergence of this minimal value 
and the avoidance of the singularity are consequences of reaching 
a zero value for the Hubble parameter at the moment of the “Big 
Bang”. This point can represent a bounce between a contracting 
phase of the universe (H < 0) to the expanding one (H > 0). The 
emergence of a cyclic universe appears immediately if the universe 
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Fig. 1. On the left: Evolution of the scale factor under matter/radiation domination corresponding to the analytical solutions given in equations (16) and (17). On the right: 
Evolution of the Hubble parameter under the same matter/radiation domination expressions (18). For the figure, we fix D = 1 and a0 = 1.

Fig. 2. On the left: Evolution of the scale factor under different sets of parameters in Hubble scale. On the right: Evolution of the Hubble parameter under the same sets of 
parameters. For the figure, we fix D = 1 and a0 = 1. We set the time coordinate so that the (present day) values a0, H0 correspond to τ = 0.
is not flat, concretely in a closed universe with positive curva-
ture (k > 0 and �k < 0) where a turning point arrives as in the 
standard cosmology to reach the cyclical evolution. The “Big Bang” 
singularity is replaced by a regular bounce between the expansion 
and contraction phases, thus giving rise to cosmic bounce. This last 
idea will be developed in detail in the next section.

4. Domain of validity of the model

In this section we want to bring the attention to the range 
of validity of the phenomenological model we have developed 
throughout the paper. As we have previously pointed out, the regu-
lar bounce we observed for D > 0 is a perturbative result obtained 
when neglecting all O  

(
l2P

)
terms. This is consistent with the origi-

nal derivation of the modified equations for gravitational dynamics 
resulting in the expression (3) which also treats the O  

(
l4P

)
contri-

butions to entropy as negligible. Nevertheless, we may ask whether 
the modified Raychaudhuri equation we derived still has validity 
even when we formally treat it as a nonperturbative, exact equa-
tion. In that case, we obtain for Ḣ (the sign of the square root is 
chosen so that we reproduce the classical Raychaudhuri equation 
in the limit D → 0)

2Dl2P
2

(
Ḣ − k

2

)
= 1 −

√
1 + 16πG Dl2P

2

(
ρ + p

2

)
. (19)
c a c c

5

One can see in this expression, on the one side, that for D > 0 we 
have Ḣ < 0 at all times and a bounce is therefore not possible. On 
the other side, for D < 0 we again have Ḣ < 0, but the square root 
develops a zero when the matter density reaches the Planck scale. 
At this point, Ḣ attains an imaginary part, making the evolution 
of H ill-defined. Since Ḣ < 0 when this point is reached, it can-
not correspond to a bounce. This behaviour strongly suggests that 
our equations can be trusted only perturbatively, and all the O  

(
l4P

)
corrections should be consistently neglected.

Nevertheless, we can use equation (19) to estimate the limit of 
applicability of the perturbative approach. Expanding it up to the 
O  

(
l4P

)
order yields

Ḣ − k

a2
= −4πG

(
ρ + p

c2

)
+ 16π2G2 Dl2P

c2

(
ρ + p

c2

)2

− 128π3G3 D2l4P
c4

(
ρ + p

c2

)3 + O
(

l6P

)
. (20)

We see here that the O  
(
l4P

)
contribution has an opposite sign as 

the O  
(
l2P

)
. The absolute values of both contributions become equal 

at

ρ + p

c2
= c2

8πG Dl2
= ρP

8π D
, (21)
P



A. Alonso-Serrano, M. Liška and A. Vicente-Becerril Physics Letters B 839 (2023) 137827

Fig. 3. On the left: Qualitative evolution of the scale factor under the hypothesis of cyclic universe. On the right: Qualitative evolution of the Hubble parameter under the 
hypothesis of cyclic universe.
where ρP = c2/ 
(
Gl2P

)
denotes the Planck density. At this density, 

a perturbative expansion neglecting O  
(
l4P

)
certainly fails, as these 

become equally important as the O  
(
l2P

)
ones. Since the bounce 

corresponds to

ρ + p

c2
= ρP

4π D
>

ρP

8π D
, (22)

it already lies beyond the limit of applicability of our perturbative 
expansion. Therefore, the presence of the bounce cannot be con-
firmed by our model, although, for D > 0, the modified dynamics 
do suggest it. To provide stronger results, the O  

(
l4P

)
(or higher) 

terms would have to be included already in deriving the general 
modified equations for gravity (3). This would in turn introduce 
additional undetermined parameters besides D , making the pre-
dictions we obtain dependent on their precise interplay. Then, the 
predictive power of our model would not be improved by such ap-
proach. Instead, it appears more worthwhile to apply the modified 
equations to phenomena that lie still in their regime of validity, 
but can be already affected by the Planck scale corrections we in-
troduced.

5. Discussion

Starting from a general phenomenological approach based on 
thermodynamics of spacetime, we have obtained low energy quan-
tum gravitational modifications to the homogeneous, isotropic uni-
verse filled with a perfect fluid. For the case of single compo-
nent perfect fluids (dust or radiation) we found perturbative an-
alytical solutions. However, the case including dust and radiation 
together needed to be studied numerically. Both analytical and 
numerical results show that the late time evolution corresponds 
almost precisely to the classical cosmology (this is the natural, 
since the modifications we introduced are proportional to Planck 
length squared). In the early universe, the modifications we in-
troduced suggest the replacement of the Big Bang singularity by 
a regular bounce provided that D > 0. If the universe starts con-
tracting again at late times (e.g. due to having a positive spatial 
curvature), this implies a cyclic cosmological model, in Fig. 3 we 
can see the qualitative evolution expected for this cyclic universe. 
These results are also consistent with the predictions of loop quan-
tum cosmology. This is expected, since our perturbative modified 
Raychaudhuri equation is very similar to the one valid for the ef-
fective dynamics of loop quantum cosmology.

While the dynamics of our model suggests the resolution of the 
Big Bang singularity, this result is obtained perturbatively. There-
fore, we cannot conclusively show that the singularity resolution 
6

indeed occurs without including higher order terms in the Planck 
length already on the level of the derivation of the general mod-
ified equations (we stress that this is a general issue affecting 
most of the quantum cosmological approaches, not particular to 
our model). Nevertheless, the present form of the modified cosmo-
logical equations can yield novel and definite results in the regime 
at which gravity is very strong, but still sufficiently below Planck 
scale.

The modifications to the cosmological evolution we derived 
from a local thermodynamic approach are also qualitatively con-
sistent with other thermodynamic approaches in the literature 
which instead consider thermodynamics of the global apparent 
horizon [23,24]. These approaches introduce corrections to Beken-
stein entropy from modified GUP [23] or use different definitions 
for the entropy [24]. In both cases, they found the emergence of a 
cosmic bounce and study the existence of the resulting cyclic uni-
verse.

In particular for future projects, our model can have implica-
tions for the inflation period, for the cosmological perturbations 
and for cosmic microwave background. Moreover, it is of interest to 
apply it to anisotropic cosmological models. All of these questions 
were studied in the context of loop quantum cosmology [25–30]
and in a future work we will study them in our model checking as 
well the equivalence with the particular previous results.
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