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ABSTRACT
Shape stability is key to avoiding degradation of performance for metallic nanocrystals synthesized with facetted non-equilibrium shapes to
optimize properties for catalysis, plasmonics, and so on. Reshaping of facetted nanocrystals is controlled by the surface diffusion-mediated
nucleation and growth of new outer layers of atoms. Kinetic Monte Carlo (KMC) simulation of a realistic stochastic atomistic-level model is
applied to precisely track the reshaping of Pd octahedra and nanocubes. Unexpectedly, separate constrained equilibrium Monte Carlo analysis
of the free energy profile during reshaping reveals a fundamental failure of the classical nucleation theory (CNT) prediction for the reshaping
barrier and rate. Why? Nucleation barriers can be relatively low for these processes, so the system is not locally equilibrated before crossing
the barrier, as assumed in CNT. This claim is supported by an analysis of a first-passage problem for reshaping within a master equation
framework for the model that reasonably captures the behavior in KMC simulations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0138266

I. INTRODUCTION

In the 1950s, Herring, Mullins, and others initiated analy-
sis of the reshaping of micrometer-sized three-dimensional (3D)
metallic particles mediated by surface diffusion.1–3 Recent investiga-
tions have explored the reshaping of metallic nanoclusters4–7 (NCs)
formed via solution-phase synthesis with faceted shapes and sizes
from 5 to 40 nm or 104–106 atoms.8,9 These “larger” NCs have a
bulk crystal structure. Other recent studies considered clusters with
“small and intermediate” sizes below 1000 atoms, which can adopt
non-bulk crystal structures, and where structural and shape evolu-
tion, as well as thermal fluxional dynamics, can occur by many-atom
concerted processes.10,11 We focus on the regime of larger NCs,
where shape evolution is mediated by surface diffusion, primarily
involving single-atom hops (but see Sec. II A). However, the clas-
sic Mullins-type treatment, which is based on a continuum surface
diffusion equation, cannot treat reshaping for NCs with facetted
synthesized shapes and equilibrium Wulff shapes. Specifically, it

cannot account for the feature that evolution is controlled by the 2D
nucleation and growth of new layers of atoms on outer NC facets.

These limitations of the Mullins-type treatment for reshaping
of facetted 3D particles were actually recognized in the 1950s.12,13

However, a more detailed assessment of nucleation-mediated
reshaping was only provided around 2000 in an atomistic-level study
by Combe et al.4 for nanoscale clusters and in more coarse-grained
studies by Mullins and Rohrer14,15 based on changes in step ener-
getics. These studies focused on the analysis of the above-mentioned
2D nucleation and growth process. As an aside, the Mullins treat-
ment also fails for the analogous lower-dimensional problem of
the reshaping of supported single-atomic-layer-thick 2D epitaxial
NCs.16–19

In particular, for 3D NCs, Combe et al.4 analyzed a generic
stochastic lattice-gas model with a simple prescription of surface
diffusion kinetics for the reshaping of facetted nanoclusters. A
fixed initial shape distorted from the Wulff shape was assigned,
so that the size of all facets increased with the overall NC size,
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N (in atoms). Kinetic Monte Carlo (KMC) simulation analysis
assessed the characteristic time for substantial shape relaxation, τeq,
as a function of N for a range of temperatures, T. Observed behav-
ior was consistent with nucleation-mediated reshaping, where one
traditionally expects from classic nucleation theory (CNT) that τeq
∼ exp[ΔFnuc(N)/(kBT)] with Boltzmann constant kB. The nucleation
barrier, ΔFnuc(N), for forming new outer layers on the side facets
of the NC was shown to increase with N. Additional equilibrium
Monte Carlo (MC) simulations indicated an expected variation of
free energy during reshaping.14,15 No quantitative comparison was
made between predictions from CNT and KMC for the reshaping
barrier (see the supplementary material Sec. I). Our study will make
such a comparison, but it also differs significantly in focusing on the
initial stages of reshaping for only slightly truncated octahedra and
nanocubes.

As indicated above, the current extensive interest in 3D metal-
lic NCs is motivated by advances in solution-phase synthesis, which
can produce facetted non-equilibrium shapes tailored to optimize
performance in applications such as catalysis or plasmonics.8,9 Thus,
the shape stability of such NCs is key to avoiding degradation of
performance. Considering structure-sensitive catalytic reactions, it
is natural to utilize octahedra and nanocubes for reactions optimized
on fcc {111} and fcc {100} facets, respectively. This study will ana-
lyze the reshaping of: (i) Pd octahedra synthesized with minority
{100} facets at the truncated corners or vertices,20,21 which are used
for catalysis,22,23 and H-storage;24,25 (ii) Pd nanocubes synthesized
with minority {111} facets at the corners, and minority {110} facets
along the edges16,26 also used for catalysis.16,27–29 Octahedra30–32 and
nanocubes33–35 have also been synthesized for multiple other metals.
Recent studies comparing reshaping rates of nanocubes and octa-
hedra have suggested a correlation with barriers for single-atom
terrace diffusion across {100} vs {111} facets,36 or for extraction
from edges to side facets.37 However, as indicated above, reshap-
ing is a cooperative many-body process, and appropriate nucleation
theoretic concepts should be invoked, although we shall reveal a fun-
damental failure of CNT to provide a quantitative description of
reshaping.

Indeed, our focus in this contribution is on providing a crit-
ical assessment of the applicability of the CNT picture for the
reshaping of facetted fcc metallic NCs of at least 5 nm or ∼104

atoms, sizes typical for solution-phase synthesis. A detailed anal-
ysis is provided for the reshaping of slightly truncated fcc metal
octahedra and nanocubes utilizing a model crafted to realistically
describe the kinetics of surface diffusion for fcc metals. Para-
meters are chosen to correspond to Pd, but the basic conclusions
apply for any fcc metal. We extend previous KMC studies yield-
ing precise results for the effective barrier for reshaping, thereby
providing benchmark results for subsequent analysis. Then, we per-
form constrained equilibrium MC simulations to determine free
energy profiles during reshaping for our model and associated free
energy barriers. We find a substantial discrepancy between effec-
tive barrier predictions from this conventional CNT-type free energy
profile analysis and those from the KMC simulation. We eluci-
date the discrepancy between the CNT predictions and the actual
kinetics by a novel formulation of reshaping as a first-passage
problem within a master equation (MEQ) framework. The lat-
ter provides a fundamental description of evolution in stochastic
models.

II. MODELING AND SIMULATION METHODS
A. Stochastic lattice-gas modeling

We adopt a previously developed38 stochastic lattice-gas model
for NC evolution with atoms at fcc lattice sites subject to an effec-
tive nearest-neighbor (NN) attractive interaction of strength ϕeff
> 0. The successful use of effective NN interactions for description
of surface thermodynamics and diffusion processes for fcc metals
has been confirmed by density functional theory (DFT) analysis.39

Under-coordinated surface atoms hop to empty NN fcc surface
sites with Arrhenius rates, h = ν exp[−Eact/(kBT)], where Eact is a
local environment-dependent activation barrier, and ν a common
prefactor. In the following, ninit (nfnl) denote the initial (final) coor-
dination of an atom before (after) hopping, and Einit = −ninit ϕeff
(Efnl = −nfnl ϕeff) are the corresponding energies.

Most previous lattice-gas studies of NC evolution have
employed a generic bond-breaking prescription, Eact = E0 − Einit,
also known as an initial value approximation (IVA), where E0 is
an adjustable parameter.4–7 However, other prescription of barri-
ers has also been employed, including a recently developed pre-
scription that effectively allows adjustment of the location of the
transition state relative to initial and final states.40,41 This capa-
bility is in the spirit of the Bronsted-Evans-Polyani (BEP) for-
mulation, a symmetric version of which is a common choice for
treatment of surface diffusion.42 All these choices, as well as a
Metropolis prescription, satisfy the essential constraint of detailed-
balance that ensures that evolution will lead to the correct ther-
modynamic equilibrium state. However, the IVA prescription, as
well as all these other generic formulations, fails to capture even
some of the basic features of diffusion on fcc metal surfaces, such
as the relative values of barriers for terrace diffusion of differ-
ent facets or for step edge vs terrace diffusion, or the presence of
Ehrlich–Schwoebel barriers.7,43 Trends in and reliable values for
barriers are well-established through extensive studies by the exper-
imental and theoretical surface science community focusing on
the growth and post-deposition evolution of homoepitaxial metal
films.7,43–46

Realistic treatments of surface diffusion kinetics in modeling
are rare.7,38,47,48 Our approach to avoid the shortcomings of generic
treatments is to adopt a refinement of a symmetric BEP formulation,
Eact = Eα + 1/2 (Efnl − Einit). Contrasting traditional BEP implemen-
tation for surface diffusion,42 all possible hops of surface atoms are
divided into several classes, α, for terrace diffusion on {100} and
{111} facets, for edge diffusion along {100}- and {111}-microfacetted
steps, etc., while still satisfying detailed-balance. This refinement
provides the flexibility for Eact to recover precise DFT values
for multiple key barriers in these classes by appropriate selection
of Eα.7,38,48

Based on our DFT analysis for Pd,48,49 for terrace diffusion,
we choose Eα = 0.11 eV on {111} facets and Eα = 0.65 eV on {100}
facets. For diffusion along straight steps, we choose Eα = 0.45 eV
for along {100}-microfacetted steps and Eα = 0.42 eV along {111}-
microfacetted steps. We also choose δES = 0.22 eV for the additional
Ehrlich–Schwoebel step edge barrier. Finally, we select ϕeff = 0.32 eV
for Pd optimally recovers surface thermodynamics. In contrast, to
recover bulk thermodynamics for Pd, one would choose an NN-
interaction ϕbulk = Ecoh/6 = 0.65 eV, where Ecoh = 3.89 eV is the bulk
cohesive energy for Pd.
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On some fcc metal surfaces, two-atom concerted exchange
diffusion processes for terrace and interlayer diffusion have lower
barriers than single-atom hopping. However, this feature can be
effectively captured by the above type of modeling with single-atom
hopping by selecting Eα to match the barrier for any more facile con-
certed process, as demonstrated by previous successful modeling of
thin film growth.43

B. Initial truncated nanocluster geometries
Experimental synthesis cannot produce perfect complete

nanocubes or octahedra but rather these have various degrees of
truncation at the corners and/or edges, as noted in Sec. I. For con-
venience, we consider one-parameter families of initial truncated
geometries of octahedra and nanocubes. For octahedra, we con-
sider various degrees of truncation of the six vertices of a complete
octahedron to produce {100} corner facets of different sizes. Trun-
cations with (j + 1) × (j + 1) atom {100} facets at the vertices for
j ≥ 1 are denoted by TRj [see Fig. 1 (top)]. For these octahedra, we
do not truncate the edges since the central edge atoms have a high
coordination of 7. For nanocubes, the jth-order truncation, TRj, cre-
ates {110} edge facets with a width corresponding to rows of length
Le = j + 1 atoms. Edge truncation automatically exposes generally
distorted hexagonal {111} corner facets with three edges of length
Le, but the other three having length Lc ≥ Le. For each Le, we choose
an appropriate value of Lc, thereby obtaining a one-parameter fam-
ily, TRj48 [see Fig. 1 (bottom) and supplementary material Sec. III].
Reshaping will primarily involve the transfer of atoms from nar-
row edge facets for nanocubes, or small vertex (or corner) facets for
octahedra, to form new layers on the large side facets.

FIG. 1. Schematics of NC truncations TR1 and TR2 (for small NC sizes to high-
light atomistic details). Top: octahedra with surface atoms in a corner {100} facet
indicated by black dots. Bottom: nanocubes with surface atoms in a corner {111}
facet indicated by black dots, and edge atoms in {110} facets close to this corner
facet indicated by blue dots.

C. KMC and MC simulation, and MEQ analysis
KMC simulations to precisely track kinetics of the stochastic

atomistic-level model for reshaping implement atomistic hopping
processes with probabilities proportional to their physical rates. A
rejection-free simulation algorithm is implemented to enhance com-
putational efficiency given the broad distribution of possible hop
rates. As evolution tracked by KMC is stochastic, many KMC tri-
als are typically run to accurately capture average behavior. In the
majority of cases, we run 200 trials for smaller NCs with N ∼ 104.
However, in some cases, for larger NC sizes and/or lower T, less
trials are run as the simulation is computationally more expensive.
A comprehensive listing of the number of trials for different cases
is provided in the supplementary material Sec. II. The key point is
that we run a sufficient number of trials so that our KMC results are
quantitatively accurate.

Equilibrium Monte Carlo simulations are employed to obtain
the system free energy, F(q), as a function of the number, q, of atoms
transferred from edges or vertices to side facets. These probe equilib-
rium configurations in our NC model within a constrained window,
q− ≤ q ≤ q+, by blocking events that would lead to a q-value out-
side this range.50 For computational efficiency, simulations are often
performed for multiple contiguous smaller widows rather than a sin-
gle large window covering the q-range of interest. Then, results for
the probability, P(q) for q transferred atoms are pieced together to
generate a continuous P(q) and thus F(q), as presented in Sec. III B.

For viable master equation (MEQ) analysis, it is essential to
judiciously select a subset of key NC configurations for the reshap-
ing process. Key input to the MEQ analysis is the energetics and
degeneracies of these configurations, as well as the rates for tran-
sitions between them. Quantitative analysis of the master equations
is performed by numerical integration.

III. KMC AND MC ANALYSIS OF RESHAPING
FOR OCTAHEDRA AND NANOCUBES

As noted above, solution-phase synthesis of octahedra and
nanocubes produces geometries with some degree of truncation
of corners and/or edges. Reshaping primarily involves transfer of
atoms from the small corner and/or narrow edge facets to the much
larger side facets. This leads to nucleation and growth of 2D islands
(i.e., formation of new outer layers) of atoms on those side facets.

A. KMC simulation results for reshaping
KMC simulations of reshaping start with configurations corre-

sponding to the truncations TRj and track evolution for the above
stochastic model. Figure 2 illustrates the evolution for small NCs
with truncation TR1. However, our quantitative analysis (which
focuses on much larger sizes) tracks evolution until the formation
of the first 2D island on a side facet reaching the prescribed critical
size, qc (in atoms), and identifies that time, τeq, as the characteris-
tic time for the initial stages of shape relaxation. For lower-order
truncations, j = 1–3, we select qc = 19 for octahedra (for a hexag-
onal island on a {111} facet with side length three atoms), and
qc = 9 for nanocubes (for a square island on a {100} facet with side
length three atoms). That these are reasonable choices for critical
sizes is indicated by the free energy analysis in Sec. III B, and also by
previous analytic studies.48,51 Thus, one expects that by replacing qc
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FIG. 2. KMC simulation illustrating
reshaping of a Pd nanocube (octahe-
dron) of size N = 1584 (N = 1828) atoms
at 900 K (1300 K) with initial truncation
TR1. We show images for small sizes to
highlight the atomistic details of config-
urations, but our analysis will focus on
larger sizes.

TABLE I. KMC simulation results for the effective barrier, Eeff = Eeff (KMC), for reshaping of truncated Pd nanocubes (cube)
and octahedra (oct).

Cube Eeff for TR1 (600–800 K) 1.30 eV @ N = 7649 1.27 eV @ N = 34 201
Cube Eeff for TR2 (750–900 K) 1.87 eV @ N = 7209 1.90 eV @ N = 33 569
Cube Eeff for TR3 (900–1150 K) 2.24 eV @ N = 7730 2.27 eV @ N = 31 845

Oct Eeff for TR1 (1000–1300 K) 1.08 eV @ N = 8113 0.93 eV @ N = 33 775
Oct Eeff for TR2 (1100–1400 K) 2.27 eV @ N = 8089 2.02 eV @ N = 33 751
Oct Eeff for TR3 (1200–1500 K) 2.84 eV @ N = 8035 2.56 eV @ N = 33 697

with a larger value will make little difference to τeq, as a 2D island
that reaches the critical size will quickly grow thereafter. Results for
τeq relevant for our subsequent analysis are summarized in Table I
(see also supplementary material Sec. IV). Arrhenius analysis of
τeq ∼ exp[Eeff/(kBT)] has shown previously that the effective bar-
rier, Eeff, increases strongly with an order of truncation.48,51 Here,
we emphasize the feature that Eeff for nanocubes depends extremely
weakly on the overall NC size, N, for a specific truncation. Octahe-
dra exhibit only a slightly stronger systematic decrease in Eeff with
increasing N. This behavior is in marked contrast to the strong
dependence of Eeff on N for reshaping, where all NC facets have
comparable size.4 In addition, we note that while a single value can
reasonably be assigned for Eeff over a narrower T-range of width ΔT
≈ 200–300 K, our analysis over a broader T-range (presented later)
indicates that Eeff systematically decreases with increasing T.

B. Free energy variation from constrained
equilibrium MC sampling

One might attempt to obtain additional insight into NC reshap-
ing from an assessment of the variation of the free energy, F(q), vs
the number of transferred atoms, q, from NC corners and/or edges
to side facets during reshaping.4 Then, the CNT-based free energy
barrier, ΔFnuc, and the associated effective barrier for reshaping,
Eeff(CNT), satisfy

ΔFnuc = maxq [F(q) − F(0)], and Eeff(CNT) = ΔFnuc + Ediff, (1)

where Ediff is an appropriate activation barrier for surface diffusion,
as described in the following. In this formulation, for each q, the
system is assumed to be in a constrained equilibrium (at least for
q below a critical size). However, such local equilibration requires
a separation of time scales in the actual stochastic model between
slow processes leading to evolution along the “reshaping reaction
pathway” for increasing q and fast processes “orthogonal” to that
pathway.

To obtain F(q), we implement equilibrium Monte Carlo simu-
lations utilizing an umbrella sampling type approach.45 Simulations
probe equilibrium configurations in our NC reshaping model within
a constrained window, q− ≤ q ≤ q+, where q is the number of atoms
transferred to side facets. One extracts the probability, P(q), for
q− ≤ q ≤ q+ for the constrained system to be in a configuration
with exactly q transferred atoms. Then, the free energy follows from
F(q) = −(kBT) ln[P(q)] to within an arbitrary reference. We expect
that near the peak of F(q) vs q, transferred atoms are typically
arranged into a single 2D island on a single side facet. Since F(q)
should primarily reflect NC configurations with surface atoms incor-
porated into 2D islands or complete facets, we argue that Ediff = Ed
+ Eex should include the energy cost, Eex, of atom extraction from
the island as well as an appropriate terrace diffusion barrier, Ed. For
octahedra, we select Ed ≈ 0.1 eV as the Pd diffusion barrier on {111}
facets, and for nanocubes Ed ≈ 0.65 eV as the Pd diffusion barrier
on {100} facets. We also select Eex ≈ 3ϕeff ≈ 0.9 eV for octahedra,
and Eex ≈ 2ϕeff ≈ 0.6 eV for nanocubes, reflecting typical extraction
energies.
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FIG. 3. Equilibrium MC simulation of the
free energy profiles (left) F(q) = −(kBT)
ln[P(q)] vs the number of transferred
atoms, q. (a) Reshaping of TR3 Pd octa-
hedra with N = 8035, where atoms are
transferred to {111} facets. (b) Reshap-
ing of Pd nanocubes with N = 7730,
where atoms are transferred to {100}
facets. Insets: free energy barrier, ΔFnuc,
vs kBT .

Figure 3 shows results for F(q) vs q from such an analy-
sis for Pd octahedra and nanocubes with size N ≈ 0.8 × 104 for
truncation TR3 and for a range of T. ΔFnuc = ΔFnuc(T) decreases
strongly with increasing T (see insets). We emphasize that results
for ΔFnuc and the corresponding Eeff(CNT) are not consistent with
Eeff(KMC) for the same range of higher T. For TR3 octahedra,
KMC analysis for reshaping from 1200 to 1500 K yielded Eeff(KMC)
≈ 2.8 eV. However, Eeff(CNT) ≈ 1.6 eV at 1200 K is far lower. For
TR3 nanocubes, KMC analysis for reshaping from 900 to 1150 K
yielded Eeff(KMC) ≈ 2.2 eV. However, Eeff(CNT) ≈ 1.5 eV at 900 K
is again far lower. Figure 3 shows results for only one truncation
and one NC size. However, extensive additional results reported
in the supplementary material Sec. V for octahedra for truncations
TR2–TR4, and supplementary material Sec. VI for nanocubes for
TR3, and sizes from N ≈ 0.8 × 104 to N ≈ 3 × 104, all display simi-
lar behavior. In particular, these results show a systematic increase
in ΔFnuc with truncation order for a fixed T. Furthermore, they
show that F(q) varies only weakly with N, consistent with our view
that reshaping should not depend strongly on NC size. Finally, for
a discussion of the initial decrease of F(q) with q at higher T, see
supplementary material Sec. VII.

IV. MASTER EQUATION ANALYSIS vs CNT AND KMC
A. Overview

Using constrained equilibrium sampling to determine free
energy profiles is effective in elucidating kinetic phenomena such as
classical nucleation with large barriers where the system is close to
locally equilibrated before crossing the barrier. However, we hypoth-
esize that the “low barrier” reshaping processes considered here do
not achieve such local equilibrium. In that case, equilibrium simu-
lations sample more states for each number q of transferred atoms
than sampled in kinetic evolution. Then, the associated entropic
contribution assuming local equilibration would lower the barrier
for reshaping more significantly that in the kinetic simulations.

The above hypothesis motivates the development of a theo-
retical treatment of NC reshaping kinetics without any a priori
assumption of local equilibration for each q. Such a treatment can,
in principle, be formulated as a first-passage time problem utilizing
the master equations (MEQ) for the stochastic model.52 Specifically,
these equations track the evolution of the probabilities for the NC

to be in various configurations or states starting from a prescribed
initial state, TRj with q = 0. States for q > 0 are progressively popu-
lated with increasing time. Such states include those on the optimal
or minimal energy path (MEP) for reshaping, which involves con-
figurations with the lowest energy E(q) for each q. We can exactly
determine the energy change ΔE(q) = E(q) − E(0), and further-
more emphasizes that ΔEmax = maxq ΔE(q) is a key parameter in
determining reshaping kinetics. In this respect, we note that the free
energy barriers for nucleation ΔFnuc(T) assessed in Sec. III B satisfy
ΔEmax = ΔFnuc(T → 0) (see supplementary material Sec. IV). Nat-
urally, stochastic evolution during reshaping leads to a population
of states not just along the MEP, but also “orthogonal” to this path-
way (i.e., states with higher energy for each q). Once a sufficiently
large 2D island of say q = q∗ atoms has formed on a side facet, where
q∗ exceeds some critical size, qc, and the energy on the MEP has
decreased well below its maximum, then the likelihood of the sys-
tem evolving back toward the initial state is negligible. Thus, one can
regard q = q∗ as being a trapping or absorbing state in the evolution
upon blocking transitions with q > q∗, and then analyze the master
equations with this trapping boundary condition.

Specifically, one can determine the probability, Pq=q∗ (t) for the
system to be in the trapping state with q = q∗, where this quan-
tity increases monotonically in time from 0 to 1. One can then
extract a characteristic time for shape relaxation, τeq, from the time
when Pq=q∗ (t) reaches some assigned threshold value, e.g., Pq=q∗ (τeq)
= 1/2. Performing such an analysis for a narrow range of temper-
ature around a target temperature, T, yields an effective barrier
Eeff = Eeff(MEQ) for reshaping, which will depend on the target T.
Results can be compared with those from KMC, or from the free
energy analysis.

Our master equation treatment will necessarily include vari-
ous approximations. A major challenge is that evolution occurs in a
multi-dimensional space involving a vast number of NC configura-
tions. A viable treatment requires identifying and explicitly treating
only a subset of states that are most significant. Also, our master
equation formalism will not include transitions between individual
states connected by single-atom hops, as in the KMC simulation of
the stochastic model. Rather, all states with one isolated adatom on a
side facet will be grouped into a single state. Nonetheless, this treat-
ment should capture the key features of behavior in the reshaping
process.
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B. Master equation analysis for TR1
octahedra: Detailed example
1. Selection of states for the MEQ analysis

We first describe the master equation formulation for octa-
hedra with truncation TR1, where Fig. 4 illustrates a subset of
significant states explicitly included in the analysis, together with the
allowed transitions between them. States on the lowest row in Fig. 4
correspond to the lower component of the MEP where q atoms are
transferred from consecutive 2 × 2 {100} corner facets to form a sin-
gle 2D island on a {111} side facet, so as to minimize the relative
energy, ΔE(q) = E(q) − E(0), for each q = 0, 1, . . .. However, evo-
lution between these states for consecutive q necessarily occurs by
transitions through states on the second lowest row in Fig. 4, which
can be regarded as the upper component of the MEP. These states,
which include one isolated adatom on a {111} facet transferred from
a {100} facet and which has yet to join an island of n atoms on a {111}
facet, are labeled by n ⊕ 1. Energies changes, ΔE, are listed for both
components of the MEP in Table II, revealing a maximum ΔEmax
= 6ϕeff on the upper component of the MEP (see also supplementary
material Sec. VIII).

FIG. 4. Key NC states for a TR1 octahedron and transitions between them in our
master equation treatment. ΔE (writing ϕ for ϕeff) are state energies, and Ω are
degeneracies (see supplementary material Sec. VIII). A is the total area (in adsorp-
tion sites) for all {111} side facets. Open circles indicate locations on {100} corner
facets from which atoms (solid circles) were transferred to {111} side facets. Red
arrows indicate transitions along the MEP.

Our formulation also includes other selected states off the MEP
with the highest degeneracies, the analysis of which is described in
more detail in supplementary material Sec. IX. These states would
have significant population relative to the MEP states as determined
by the Gibbs distribution if the system is locally equilibrated. In these
states, the single 2D island in the MEP state has been fragmented,
and the multiple atoms and smaller clusters can populate different or
the same {111} side facet. Figure 4 illustrates the former. This frag-
mentation results in high state degeneracies due to the large total
area, A (measured in adsorption sites), of the {111} side facets and
thus a large number of possible locations of the 2D island and/or of
the isolated adatoms on {111} side facets.

We assign the MEP state with q = q∗ = 12, where ΔE(q∗) = 0 as
the trapping state. Then, in our master equation analysis, the system
can evolve into but not out of this state, so transitions to states with
q ≥ 13 are blocked. A total of 79 distinct states are retained in this
master equation analysis with q∗ = 12.

Regarding approximations in our MEQ treatment, we only
include explicitly a small portion of states off the MEP with the
highest configurational degeneracy. Arrows at the bottom of Fig. 4
indicate possible transitions to other states. For example, just for
q = 0, atoms can be transferred between {100} facets, or from the
edges separating {111} facets to {100} facets. Analogous states exist
for each q > 0. The degeneracy of these states is relatively small
being controlled by the number of vertices and the length of edges
rather than the area of {111} facets. Also, as noted above, we group
many individual states into a single state (e.g., states with different
locations of one isolated atom on a side facet are grouped into a sin-
gle state denoted n ⊕ 1). This may induce a higher degree of local
equilibration than in the stochastic model (cf. Sec. IV B 2).

The rates for “forward” transitions in the master equations have
the form k = ν m exp[−(nϕeff + Ed)/(kBT)], where ν is a prefactor,
and Ed is the terrace diffusion barrier for {111} facets. For upward
diagonal transitions in Fig. 4 with increasing q, one has n = n100
− n111 where n100 = 6, 5, or 4 is the initial coordination of the atom
which is moved from the {100} facet, and n111 = 3 is its coordina-
tion as an isolated adatom on the {111} facet (before joining the
growing 2D island). Thus, n corresponds to the magnitude of the
reduction in coordination moving from the {100} to {111} facet.
In this prescription, atoms with the minimum n are selected, and
m denotes the number of such atoms on {100} facets. For upward
vertical transitions involving detaching atoms from the 2D island
onto the {111} facet, n denotes the number of lateral bonds broken
upon detachment from the island. Again, atoms with the minimum
n are selected, and m denotes the number of such atoms. Thus,
in both cases, nϕeff + Ed corresponds to an “extraction barrier.”
Rates for “reverse” transitions follow from those for forward tran-
sitions via the detailed-balance constraint and thus depend on the

TABLE II. Energies for states along the MEP for the TR1 octahedron both for the lowest row in Fig. 4 (states q = n) and the
second lowest row (states n ⊕ 1). Bold: states with ΔE = ΔEmax.

n 0 1 2 3 4 5 6 7 8 9 10 11 12
ΔE(q = n)/ϕeff 0 3 4 4 3 4 4 3 2 3 2 2 0
ΔE(n ⊕ 1)/ϕeff 5 6 5 6 6 6 4 5 5 4 3 3
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energies and degeneracies of initial and final states shown in Fig. 4
(see supplementary material Sec. X for examples and supplementary
material Sec. XI for a complete listing of energetics and forward rates
along the MEP).

2. MEQ results and comparison with other treatments
In the following, we compare results for Eeff = Eeff(MEQ) from

a master equation analysis with Eeff(KMC) from KMC simulation, as
well as with Eeff(CNT) from an analytic version of a CNT-type free
energy analysis. For the latter, we note that the free energy for a set
of states, S, relative to that of the non-degenerate initial state q = 0
can be calculated from

ΔF(S) = −(kBT) ln[Q(S)],

where

Q(S) =∑j Ωj(S) exp[−ΔEj(S)/(kBT)], (2)

where Ωj(S) and ΔEj(S) are the degeneracies and relative energies
of the states in S labeled by j, respectively. The free energy barrier
ΔFnuc is obtained by choosing S = STS as the transition state, and then
Eeff(CNT) = ΔFnuc + Ediff, where Ediff is an appropriate surface diffu-
sion barrier. In this analysis, since ΔFnuc will be determined from a
transition state STS corresponding to a 2 ⊕ 1 type state that already
has an isolated adatom, Ediff just corresponds to an appropriate ter-
race diffusion barrier Ed = 0.11 eV for diffusion on {111} facets (i.e.,
it does not include an additional extraction energy contribution as
in Sec. III B). With STS = 2 ⊕ 1 for TR1 octahedra, one has that

ΔFnuc ≈ ΔEmax − (kBT) ln (162A2) = 6Φeff − (kBT) ln (162A2). (3)

Choosing SST = {2 ⊕ 1, 1 ⊕ 1 ⊕ 1} just gives a somewhat lower
value of ΔFnuc. Note that other MEP states (4 ⊕ 1, etc.) with ΔE
= ΔEmax = 6ϕeff correspond to a lower ΔF due to higher degeneracy
and thus do not determine ΔFnuc.

Figure 5 and Table III show results for Eeff vs T for N = 8113
(corresponding to A ≈ 2000) from (i) more extensive KMC simula-
tions, which in contrast to those reported in Table I allow assessment
of the T-dependence of Eeff (see also supplementary material Sec.
XII); (ii) our master equation analysis using Pq=q∗=12(τeq) = 1/2
(where P12 is the probability to be in any state with 12 transferred

FIG. 5. Eeff vs T for reshaping of TR1 truncated Pd octahedra with N = 8113. Com-
parison of results from KMC simulation (KMC), master equation analysis (MEQ),
and a free energy analysis (CNT) with STS = 2 ⊕ 1, setting Ed = 0.11 eV.

TABLE III. Eeff (in eV) vs T for reshaping of TR1 truncated Pd octahedra with
N = 8113 from KMC simulation (KMC), master equation analysis (MEQ), and a free
energy analysis (CNT).

TR1
octahedron 750 K 800 K 850 K 900 K 950 K 1000 K 1100 K

Eeff(KMC) 2.47 2.42 2.29 2.02 1.73 1.41 1.15
Eeff(MEQ) 2.08 2.02 1.87 1.67 1.36 1.15 0.91
Eeff(CNT) 0.72 0.63 0.54 0.46 0.37 0.28 0.11

atoms), with Ed = 0.11 eV; and (iii) our analytic free energy analysis
with STS = 2⊕ 1 with Ed = 0.11 eV. A key feature emerging from these
analyses is that Eeff exhibits a systematic decrease with increasing
T. Eeff(MEQ) and Eeff (KMC) are both far above Eeff(CNT), consis-
tent with our proposal that the NC is not locally equilibrated for
each q during reshaping. There is reasonable consistency between
KMC and MEQ predictions, certainly regarding the variation with
T. However, a systematic discrepancy is also evident with Eeff(KMC)
slightly exceeding Eeff(MEQ). This discrepancy is explained in terms
of the above-mentioned feature of our MEQ treatment, specifically
grouping into a single state n ⊕ 1 many individual states with dif-
ferent locations of one isolated atom on a side facet. This feature is
anticipated to induce a higher degree of local equilibration among
configurations with a fixed number of transferred atoms than in the
stochastic model. This, in turn, results in a slight artificial lowering
of Eeff (analogous to the same stronger effect in the CNT treatment).

Finally, we note that a further simplified master equation anal-
ysis retaining a more restricted set of states, specifically just those
along the MEP, yields qualitatively similar Eeff to Eeff(MEQ) reported
here from the more complete master equation analysis (except for
higher T above 1000 K) (see supplementary material Sec. X).

C. Master equation analysis for other TRj octahedra
and nanocubes
1. TRj octahedra with j > 1

From the analysis of energy changes, ΔE, for states along the
MEP, one finds that ΔEmax = 9ϕeff for TR2, ΔEmax = 11ϕeff for TR3,
and so on (vs ΔEmax = 6ϕeff for TR1). The rates for forward tran-
sitions in the master equations have the same form as for TR1,
and those for reverse transitions are again determined by detailed-
balance. We have implemented a master equation (MEQ) analysis,
but just for TR2 with N = 8089 where the total area of {111} side
facets is A ≈ 1980, and just retaining states along the MEP. One could
assign q∗ = 27 where ΔE(q∗) = 0 as the trapping state. However, to
reduce the number of retained equations in the MEQ treatment, we
will choose q∗ = 18 where ΔE(q∗) = 3ϕ is already well below ΔEmax
(see supplementary material Sec. X for a listing of the energies and
degeneracies of all states, as well as transition rates between them).
The general conclusion is the same as for TR1. Eeff(MEQ) for TR2 Pd
octahedra are significantly above Eeff(CNT) = ΔFnuc + Ed assigning
STS = 6 ⊕ 1 with degeneracy Ω ≈ 2688A2 as the transition state, and
setting Ed = 0.11 eV as for TR1 octahedra (see Table IV). For the TR2
case, one has that Eeff(KMC) ≈ 2.2 eV at 1100–1400 K roughly com-
patible with Eeff(MEQ) at around 1100 K, and more detailed analysis
of the limited KMC data indicates that Eeff(KMC) does decrease with
increasing T.
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TABLE IV. Eeff (in eV) for reshaping of TR2 truncated Pd octahedra with N = 8089
from a master equation analysis just including MEP states, (MEQ)∣MEP, and from a
free energy analysis (CNT) with STS = 6 ⊕ 1, and setting Ed = 0.11 eV. Note that
Eeff(KMC) ≈ 2.2 eV at 1100–1400 K.

TR2 octahedra 850 K 950 K 1050 K 1150 K 1250 K

Eeff(MEQ)∣MEP 2.87 2.63 2.19 1.72 1.38
Eeff(CNT) 1.30 1.10 0.90 0.70 0.63

2. TRj nanocubes for j ≥ 1
In this case, atoms tend to be transferred from {110} edges

to {100} side facets of nanocubes, so the total length, L, of edges
(measured in atoms), as well as the total area, A, of side facets
(measured in adsorption sites), feature in the state degeneracies.
For TR1 nanocubes, Fig. 6 shows a subset of particularly signifi-
cant states and the transitions between them, analogous to Fig. 4 for
TR1 nanocubes. Analysis of the MEP reveals that ΔEmax = 4ϕeff (see
Sec. IV C 3 and supplementary material Sec. XIII). For this system,
one might reasonably select q∗ = 16 where ΔE(q∗) = 0 as the trap-
ping state. We have implemented a master equation analysis, but
just for TR1 and just retaining states along the MEP. The rates for
forward transitions in the master equations have the same form as
for nanocubes (except that now n = n110 − n100 with n110 = 5 or 6
and n100 = 4), and those for reverse transitions are again determined
by detailed-balance (see supplementary material Sec. XII for further
details). Results are presented in Table V selecting a smaller NC with
N ≈ 1584 where A ≈ 360 and L ≈ 60, which reduces degeneracies
and thus reduces the influence of neglected states not on the MEP.
We also show results for Eeff(CNT) = ΔFnuc + Ed assigning the state

FIG. 6. Key states and allowed transitions between them for a TR1 nanocube
in our master equation treatment. ΔE (writing ϕ for ϕeff) are state energies and
are Ω degeneracies (see supplementary material Sec. XII). A is the total area (in
adsorption sites) for all {100} side facets, and L the total edge length (in atoms)
of all {110} edges. Open circles indicate locations from which edge atoms (solid
circles) were transferred to {100} side facets. Red arrows: transitions along the
MEP.

TABLE V. Eeff (in eV) for reshaping of TR1 truncated Pd nanocubes with N = 1584
from a master equation analysis just including MEP states, (MEQ)∣MEP, and from a
free energy analysis (CNT), and setting Ed = 0.65 eV. Note that Eeff(KMC) ≈ 1.3 eV
at 600–800 K.

TR1 nanocubes 450 K 550 K 650 K 750 K 850 K

Eeff(MEQ)∣MEP 1.71 1.36 1.18 1.09 1.02
Eeff(CNT) 1.10 0.92 0.73 0.56 0.37

STS = 2 ⊕ 1 with degeneracy Ω ≈ 4L2A2 as the transition state.
Here, Ed ≈ 0.65 eV is the diffusion barrier for Pd on a {100} facet.
Eeff(MEQ) values are more consistent with Eeff(KMC) ≈ 1.3 eV at
600–800 K than the much lower Eeff(CNT).

Master equation analysis for nanocubes can be extended to
higher-order truncations, where ΔEmax = 6ϕeff for TR2, ΔEmax
= 7ϕeff for TR3 (vs ΔEmax = 6ϕeff for TR1). See Sec. IV C 3
and supplementary material Sec. XIV. As for octahedra, a signifi-
cantly higher number of states and equations must be retained for
these higher-order truncations. Also, again Eeff(CNT) is well below
reliable estimates of Eeff.

3. Dependence of reshaping on truncation order
From the KMC results reported in Table I, it is clear that for

both octahedra and nanocubes, the effective barrier, Eeff, for reshap-
ing systematically increases with truncation order. This same trend
is captured in our MEQ analysis (e.g., compare results in Tables III
and IV for TR1 and TR2 octahedra, respectively, consistently choos-
ing the same T). Furthermore, even though the CNT treatment
greatly underestimates Eeff values, it does also incorporate this trend.

This trend might seem surprising as higher-order truncated
structures might seem to be intermediate structures in the evolu-
tion of lower-order truncated structures toward equilibrium Wulff
shapes. In particular, during reshaping toward a Wulff shape, one
might expect that a TR1 NC would evolve through an intermediate
TR2 (or TR3, etc.) structure as outer layers of atoms are removed
from the small edge or corner facets. This would imply that TR1
reshaping would be controlled by the higher effective barriers for
TR2, TR3, etc. structures. However, these intermediate structures
for TR1 NCs are not perfect TR2, TR3, etc. structures as the atoms
removed from edge or corner facets have formed a 2D island on a
large side facet. The presence of this 2D island substantially reduces
the cost of removing further atoms from the intermediate structure
(relative to a perfect TR2, TR3, etc. structure). Also, at this stage in
evolution, the system energy is well below the initial energy (i.e., the
system is well past the “transition state”).

We also emphasize that our analysis focuses on the initial stages
of reshaping, the behavior of which is not strongly tied to the equi-
librium shape. Instead, kinetics is controlled by the energy cost of
transferring atoms from narrow edge facets or small vertex facets
to large (effectively infinite) side facets. This cost increases for wider
edge facets or larger vertex facets due to the increased cost of extract-
ing atoms from those facets. These trends can be readily quantified in
the low-T regime by exact determination of MEP energetics, ΔE(q),
vs q, thereby allowing the determination of ΔEmax. In Fig. 7, the
behavior of ΔE(q) vs q is presented for truncations TR1, TR2, and

J. Chem. Phys. 158, 104102 (2023); doi: 10.1063/5.0138266 158, 104102-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0138266
https://www.scitation.org/doi/suppl/10.1063/5.0138266
https://www.scitation.org/doi/suppl/10.1063/5.0138266
https://www.scitation.org/doi/suppl/10.1063/5.0138266


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 7. Energetics, ΔE(q) vs q, along the minimum energy path for octahedra (and
nanocubes in the inset) for truncations TR1, TR2, and TR3. Results for integer
q = n give the energy change after n atoms have been removed from vertex (edge)
facets for octahedra (nanocubes) and incorporated into a single 2D island on a side
facet (e.g., states in the lowest row of Figs. 4 and 6). Values for half-integer q = n
+ 0.5 correspond to the energy change for states n⊕ 1, where the (n + 1)st atom
has been removed but is not yet incorporated into the 2D island.

TR3 for octahedra (and in the inset for nanocubes). From these
plots, it is clear that ΔEmax increases systematically with truncation
order (as reported above in Sec. IV C 2), and this behavior directly
correlates with a corresponding increase in Eeff.

V. CONCLUSIONS
Analysis of a realistic stochastic atomistic level model for the

reshaping of facetted fcc nanocrystals mediated by nucleation of
new layers on side facets has been analyzed. This analysis reveals a
fundamental breakdown of the classical free energy picture in CNT
for the determination of the effective activation barrier and rate for
reshaping. Precise values of the effective barrier obtained from KMC
simulation are generally significantly higher than those determined
from the free energy barriers for nucleation of 2D islands on side
facets. The latter is extracted from constrained equilibrium Monte
Carlo simulations of the model which determine the free energy pro-
file during reshaping. Insight into the failure of the free energy-based
picture is provided by analysis of reshaping based upon master equa-
tions for the model just focusing on the most important nanocrystal
configurations or states. This analysis reveals that for these low-
barrier reshaping processes, the system is not locally equilibrated
before crossing the barrier, as assumed in a free energy-based anal-
ysis. This feature results in a smaller entropic reduction to the
reshaping barrier than predicted by the CNT analysis.

SUPPLEMENTARY MATERIAL

See the supplementary material for more details on: reshaping
of elongated facetted fcc NCs; initial nanocube truncations; KMC

results for τeq; MC simulation of F(q) vs q; analytic assessment of
F(q) for small q; characterization of the MEP; configurational degen-
eracies and rates in master equations for octahedra; and master
equations for nanocubes.
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