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I. GRAPHENE TIGHT-BINDING HAMILTONIAN DETAILS 

We provide here additional technical details on the TB Hamiltonian employed throughout the simulations presented 

in the main text. The lattice primitive vectors are given as 𝐚1 = 𝑎0�̂�, 𝐚2 = 𝑎0(−�̂�/2 + √3�̂�/2), with the graphene 

experimental lattice parameter 𝑎0=2.456Å. The NN hopping vectors on this lattice are provided in Table S1 below 

with the notation 𝐯𝑖,𝑗, where 𝑖 is the order of the hopping process (e.g. 𝑖=3 is 3rd NN hopping), and 𝑗 is the index of 

the vector (there are either three or six vectors for a given hopping process, see Fig. S1 for illustration). The resulting 

structure factors 𝑓𝑖(𝐤) are given as: 

 𝑓𝑚(𝐤) = ∑exp{𝑖𝐤 ∙ 𝐯𝑚,𝑛}

𝑛

 (S1) 

where the sum runs over all existing 𝑛’s for that particular order of hopping. 

Table S1 – NN hopping vectors, vi,j, given in basis of real space vectors in 2D. 

NN 

order 
Hopping vectors 

1 𝑎0 {0,
1

√3
} 𝑎0 {−

1

2
,−

1

2√3
} 𝑎0 {

1

2
, −

1

2√3
}    

2 𝑎0 {−
1

2
,−

√3

2
} 𝑎0 {

1

2
,
√3

2
} 𝑎0{−1,0} 𝑎0{1,0} 𝑎0 {−

1

2
,
√3

2
} 𝑎0 {

1

2
, −

√3

2
} 

3 𝑎0 {1,
1

√3
} 𝑎0 {−1,

1

√3
} 𝑎0 {0,−

2

√3
}    

4 𝑎0 {−1,−
2

√3
} 𝑎0 {

1

2
,

5

2√3
} 𝑎0 {−

3

2
,−

1

2√3
} 𝑎0 {

3

2
, −

1

2√3
} 𝑎0 {−

1

2
,

5

2√3
} 𝑎0 {1,−

2

√3
} 

5 𝑎0 {−
3

2
,−

√3

2
} 𝑎0 {

3

2
,
√3

2
} 𝑎0 {

3

2
, −

√3

2
} 𝑎0 {−

3

2
,
√3

2
} 𝑎0{0, √3} 𝑎0{0,−√3} 
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FIG. S1. System illustration. (a) Schematic graphene lattice model with NN hopping terms. Red (blue) denote A (B) sublattice 

sites, and arrows indicate the different hopping processes and lattice vectors. (b) DFT obtained bands for graphene along a path 

traversing the BZ from Γ through K in fractional coordinates (solid), compared to the TB model (dashed). Blue and red denote 

occupied and unoccupied bands, respectively.   

II. GROUND-STATE DFT CALCULATIONS 

We provide here technical details for performed DFT calculations, which were also employed for obtaining initial 

states for the TDDFT simulations outlined below (for calculating the ARPES spectra presented in the main text). All 

DFT calculations were performed with Octopus code1–3 in a real-space grid representation. The grid was represented 

on the non-orthogonal primitive unit cell of graphene with equidistant spacings of 0.38 Bohr along the lattice vectors, 

periodic boundary conditions in the monolayer plane (xy plane), and finite boundary conditions along the z-axis (where 

the total length of the z-axis was converged at 110 Bohr). We used the experimental lattice parameter of graphene, 

𝑎0=2.456Å. A discrete k-grid was converged at a Γ-centered 12x12x1 grid for representing the electron density, but a 

much finer mesh of 36x36x1 k-points was employed for outputting the band structure for the fitting procedures 

described below (presented in Fig. S1). Calculations were performed within the local density approximation (LDA) 

for the exchange-correlation (XC) functional, and while neglecting spin degrees of freedom and spin-orbit coupling. 

We employed norm-conserving pseudopotentials for describing core states of Carbon4. The Kohn-Sham (KS) 

equations were solved to a strict self-consistency tolerance of 10-9 Hartree per unit cell. 

III. HOPPING AMPLITUDES FITTING PROCEDURE 

From the ground-state DFT calculations we obtained the KS eigenvalues on a finite k-grid, 𝜖𝐾𝑆,𝑛(𝐤𝐢), where 𝑛 is the 

band index and 𝑘𝑖 is a grid point in the BZ. The KS valence (𝑛 = 4) and conduction (𝑛 = 5) band eigenvalues were 

then fitted to the TB model bands, 𝜖±(𝐤), by employing a least-squares fitting procedure. We optimized the following 

target function: 

 𝑀(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5) = ∑|𝜖𝐾𝑆,5(𝐤𝐢) − 𝜖+(𝐤𝐢)| + ∑|𝜖𝐾𝑆,4(𝐤𝐢) − 𝜖−(𝐤𝐢)|

𝑖𝑖

 (S2) 

where the sum included all discrete k-points in the BZ that upheld the condition 
2𝜋

𝑎0
(𝑘𝑖,𝑥 + √3𝑘𝑖,𝑦) ≥ 0.5. This 

condition essentially selects points within the K and K’ valleys for the fitting procedure (removing points near Γ where 

the band dispersions invert), and further utilized TRS. The resolution of the k-grid used for fitting was 360x360x1, 

where the KS eigenvalues for points in-between the original k-grid were linearly-interpolated (with the original grid 

being 10-fold less dense, 36x36x1). This further guaranteed proper weights were given to the linear region around K 

and K’. The resulting fitted hopping amplitudes are: -2.0470, 0.4462, -0.0225, 0.1808, and 0.1021 eV, respectively, 

for t1-t5. Comparison between the band structures is presented in Fig. S1. 

IV. TDDFT-ARPES CALCULATIONS 

We provide here the full details for the ab-initio TDDFT-ARPES calculations presented in the main text. We described 

the laser-induced electron dynamics within the KS-TDDFT framework, where the following KS equations of motion 

(in atomic units) were solved within the primitive unit-cell of the graphene lattice (with the additional vacuum spacing 

above and below the monolayer as discussed above): 
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𝑖𝜕𝑡|𝜑𝑛,𝑘
𝐾𝑆 (𝑡)⟩ = (

1

2
(−𝑖𝛁 +

𝐀(𝑡)

𝑐
)

2

+ 𝑣𝐾𝑆(𝐫, 𝑡)) |𝜑𝑛,𝑘
𝐾𝑆 (𝑡)⟩ (S3) 

where |𝜑𝑛,𝑘
𝐾𝑆 (𝑡)⟩ is the KS-Bloch state at k-point k and band index n, 𝐀(𝑡) is the total vector potential of all laser pulses 

interacting with matter within the dipole approximation, such that −𝜕𝑡𝐀(𝑡) = 𝑐𝐄(𝑡), c is the speed of light in atomic 

units (c≈137.036). 𝑣𝐾𝑆(𝐫, 𝑡) in Eq. (S3) is the time-dependent KS potential given by: 

 
𝑣𝐾𝑆(𝐫, 𝑡) = −∑

𝑍𝐼

|𝐑𝐼 − 𝐫|
𝐼

 +  ∫𝑑3𝑟′
𝑛(𝐫′, 𝑡)

|𝐫 − 𝐫′|
 + 𝑣𝑋𝐶[𝑛(𝐫, 𝑡)] (S4) 

where 𝑍𝐼 is the charge of the I’th nuclei and 𝑹𝑰 is its coordinate (describing the two carbon atoms in the graphene 

primitive unit cell), 𝑣𝑋𝐶  is the XC potential that is a functional of 𝑛(𝐫, 𝑡)=∑ |⟨𝐫|𝜑𝑛,𝑘
𝐾𝑆 (𝑡)⟩|

2
𝑛,𝑘 , the time-dependent 

electron density (where we employed the adiabatic LDA approximation). Note that practically, the bare Coulomb 

interaction of electrons with the nuclei was replaced with non-local pseudopotentials (described above, assuming the 

frozen core approximation for core states of Carbon). We neglected coupling to phonons and assumed frozen ions.  

These equations were propagated in time from the initial states obtained in ground state DFT calculations (with 

the 12x12x1 Γ-centered k-grid for describing 𝑛(𝐫, 𝑡)), with a time step of 2.9 attoseconds. The main difference here 

compared to the calculations described above is that the ground state used for the ARPES calculations also involved 

an artificial doping of the graphene system to populate small electronic charges in the conduction band (making its 

contribution more visible in ARPES spectra). To this end, we added an additional 0.35�̅� charge to each unit cell, which 

was compensated for by an attractive potential arising from the following constructed classical charge density: 

 𝜌𝑑𝑜𝑝𝑒(𝐫) = 𝑁exp{−5𝑧2} (S5) 

where 𝑁 = 0.02359 is a normalization constant set such that the total charge from 𝜌𝑑𝑜𝑝𝑒  integrates to -0.35�̅� per unit 

cell. This guarantees that the system is neutral to avoid issues of charging with periodic boundary conditions. The 

classical electrostatic potential essentially binds the additional charge on the monolayer, making sure that it occupies 

graphene bands rather than continuum states. The entire procedure is roughly analogous to the experimental technique 

of adding a gate potential to dope the conduction band, and only slightly perturbs the overall electronic structure (the 

band structure is roughly unchanged with and without the doping procedure).  

The time-dependent equations of motion were also solved on auxiliary k-grids along which the ARPES spectra 

was calculated. These grids traversed through the K point in the BZ and stretched along 𝑘𝑦, or 𝑘𝑥, with a total of 144 

points, starting from 𝐤 =
2𝜋

3𝑎0
(1,

2

√3
) and ending at 𝐤 =

2𝜋

3𝑎0
(1,

4

√3
) for the grid that is parallel to 𝑘𝑦, and starting at 

𝐤 =
2𝜋

𝑎0
(

1

3
−

√3

9
,

1

√3
) and ending at 𝐤 =

2𝜋

𝑎0
(

1

3
+

√3

9
,

1

√3
) for the grid that is parallel to 𝑘𝑥. However, the electron density 

was not contributed from this grid, but only from the 12x12x1 grid on which the ground state was calculated. During 

propagation we added a smooth complex absorbing potential (CAP) to avoid spurious reflection of electrons from the 

boundary. The CAP had a sin2(𝑧) shape that saturates to a height of -1 along the z-axis grid edges and a total width 

of 30 Bohr from both sides. 

The employed vector potential 𝐀(𝑡), comprised of two pieces – the pump pulse that induces a light-driven Floquet 

state (discussed in the main text), and an additional probe pulse that photoionizes electrons from the monolayer which 

can be detected in ARPES experiments. The resulting form is: 

 𝐀(𝑡) = 𝐀pump(𝑡) + 𝐀probe(𝑡) (S6) 

, with  

 
𝐀pump(𝑡) = 𝑓(𝑡)

𝑐𝐸0

𝜔
sin(𝜔𝑡) �̂� 

𝐀probe(𝑡) = 𝑓xuv(𝑡 − 𝑡0)
𝑐𝐸xuv

𝜔xuv

sin(𝜔xuv𝑡)�̂� 

(S7) 
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where 𝑓(𝑡) is a temporal envelope function taken to have the following ‘super-sine’ form5: 

 

𝑓(𝑡) = (𝑠𝑖𝑛 (𝜋
𝑡

𝑇𝑝

))

(

|𝜋(
𝑡
𝑇𝑝

−
1
2
)|

𝜎 )

 
(S8) 

where σ=0.75, Tp is the duration of the laser pulse which was taken to be Tp=16(2𝜋/𝜔). This form is roughly 

analogous to a super-gaussian, but where 𝑓(𝑡) starts and ends exactly at zero which is numerically convenient. The 

corresponding full-width-half-max (FWHM) of the pulse is ~85.5 femtoseconds for the chosen 𝜔, which corresponded 

to 3200nm wavelength driving, assuring the system enters a Floquet steady-state. The envelope function for the probe 

laser pulse was taken to have a similar form: 

 

𝑓𝑥𝑢𝑣(𝑡) = (𝑠𝑖𝑛 (𝜋
𝑡

𝑇𝑥𝑢𝑣

))

(
|𝜋(

𝑡
𝑇𝑥𝑢𝑣

−
1
2
)|

𝜎 )

 
(S9) 

where 𝑇𝑥𝑢𝑣 is the total duration of the probe pulse taken here as 𝑇𝑥𝑢𝑣 = 2000(2𝜋/𝜔𝑥𝑢𝑣), which had a FWHM of 51.7 

femtoseconds, such that the probe samples multiple cycles of the pump pulse and corresponds to probing Floquet-

related physics. The photon energy of the probe was chosen as 𝜔𝑥𝑢𝑣=80 eV, and its intensity was taken as 2×108 

W/cm2 to only stimulate single-photon ionization. Both pulses were synchronized to overlap in time such that their 

peak powers coincided. 

The ARPES spectra were calculated directly from the propagated KS states, and without additional fundamental 

assumptions, using the highly accurate and efficient surface-flux method T-SURFF6,7. The momentum-resolved flux 

of photoelectrons was recorded across a surface normal to the monolayer located at the onset of the CAP. The 

photoemission from all KS-Bloch states was coherently summed, producing k-resolved spectra along the auxiliary k-

grid. The resulting spectra were smoothed with a moving mean filter and saturated to enhance the visibility of the 

emission lines. 

V. NUMERICAL DETAILS IN OTHER MATERIAL SYSTEMS 

1. hBN CALCULATIONS 

The TB model Hamiltonian employed for the hBN calculations was equivalent to that in eq. (1) in the main text, but 

with an added mass term of size Δ (opening a gap of size Δ at K and K’)8, which has the form: 

 
�̂�0,ℎ𝐵𝑁 = �̂�0,𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒 +

Δ

2
(𝜎0̂ + 𝜎�̂�) (S10) 

but where the hopping amplitudes 𝑡𝑖 all differ from those chosen from the graphene model. The hopping amplitudes 

chosen for hBN were fitted to ground-state DFT calculations for its band structure performed with a similar 

methodology to that described above for graphene (we used the experimental lattice constant of 2.52Å). The resulting 

employed hopping parameters were -2.1430, 0.3376, -0.0630, 0.1825, and 0.0928 eV, for 𝑡1 , 𝑡2 , 𝑡3 , 𝑡4 , and 𝑡5 , 

respectively, and Δ was set at 4.4269 eV (the DFT gap within LDA). The Floquet Hamiltonian and diagonalization 

procedures were the same as employed in graphene. 

2. Na3Bi CALCULATIONS 

The model Hamiltonian employed for the three-dimensional Dirac semimetal Na3Bi was adapted from the low energy 

continuum form of the TB expansion in ref.9. The resulting 4 × 4 field-free Hamiltonian has the from: 

 

�̂�0,𝑁𝑎3𝐵𝑖 = 𝜖0(𝐤) +

(

 
 

𝑀(𝐤) 𝐴(𝑘𝑥 + 𝑖𝑘𝑦)

𝐴(𝑘𝑥 − 𝑖𝑘𝑦) −𝑀(𝐤)

𝑀(𝐤) −𝐴(𝑘𝑥 − 𝑖𝑘𝑦)

−𝐴(𝑘𝑥 + 𝑖𝑘𝑦) −𝑀(𝐤) )

 
 

 (S11) 
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where 𝜖0(𝐤)= 𝐶0 + 𝐶1𝑘𝑧
2 + 𝐶2(𝑘𝑥

2 + 𝑘𝑦
2), 𝑀(𝐤)=𝑀0 − 𝑀1𝑘𝑧

2 − 𝑀2(𝑘𝑥
2 + 𝑘𝑦

2), and all parameter values were taken 

as in ref.9. The Floquet Hamiltonian for the driven system was computed with the same approach used for the 2 × 2 

system calculations, but where the additional z-axis and bands were also considered. 

3. SrSi2 CALCULATIONS 

The model Hamiltonian employed for the three-dimensional charge-II Weyl semimetal SrSi2 was taken from the low 

energy expansion in ref.10 around the Weyl cones, including the spin-orbit interaction terms. The resulting 4 × 4 field-

free Hamiltonian has the from: 

 

�̂�0,𝑆𝑟𝑆𝑖2 =

(

 
 

𝑣𝑡𝑘𝑧 𝑣(𝑘𝑥 − 𝑖𝑘𝑦)

𝑣(𝑘𝑥 + 𝑖𝑘𝑦) −𝑣𝑡𝑘𝑧 2Δ

2Δ 𝑣𝑡𝑘𝑧 𝑣(𝑘𝑥 − 𝑖𝑘𝑦)

𝑣(𝑘𝑥 − 𝑖𝑘𝑦) −𝑣𝑡𝑘𝑧 )

 
 

 (S12) 

where for the numerical calculations we employed arbitrary model parameters of 𝑣=0.5, 𝑣𝑡=0.7, and Δ=0.125 a.u. The 

Floquet Hamiltonian for the driven system was computed in the same manner as the other systems.  

VI. ADDITIONAL RESULTS IN GRAPHENE 

1. DIRAC HAMILTONIAN MAGNUS EXPANSION 

In the main text we showed that the 2nd-order term in the Magnus expansion of the Floquet Hamiltonian vanishes for 

the driven low-energy expanded Dirac Hamiltonian with any field that respects TRS. We present here the 

generalization of this proof to all higher order even terms. The 2𝑛’th-order term in the Magnus expansion generally 

comprises of temporal integrals of commutators of the form: 

 
�̂�2𝑛(𝐊) ∝ ∫𝑑𝑡 ∫𝑑𝑡′ ∫𝑑𝑡′′ ⋯ [�̂�(𝐤, 𝑡), [�̂�(𝐤, 𝑡′), [�̂�(𝐤, 𝑡′′),⋯ ]]] (S13) 

where there are 2𝑛 Hamiltonians appearing taking different time arguments, and 2𝑛 temporal integrals. All other 

permutations of the commutators also appear in summation, but it is enough to prove that one of them vanishes because 

the others are connected by permutations of the temporal arguments. Due to the linearity of the Dirac Hamiltonian, 

�̂�𝐷(𝐤), and the linearity of the Peierls substitution, the driven Hamiltonians that enter eq. (S10) can be separated into: 

�̂�(𝐤, 𝑡)=�̂�𝐷(𝐤)-
1

𝑐
�̂�𝐷(𝐀(𝑡)). This results in different terms in the commutators that mix different orders of the vector 

potential. The terms can be sorted according to their power-law proportionality to the vector potential, ranging from 

∝ (𝐸0)
0, up to ∝  (𝐸0)

2𝑛. All of the terms that depend on 𝐤 vanish when evaluated at K, and only one term in Eq. 

(S13) is k-independent, which is the term proportional to (𝐸0)
2𝑛. That term arises from substituting in eq. (S13) 

�̂�(𝐤, 𝑡) → −
1

𝑐
�̂�𝐷(𝐀(𝑡)) for every temporal argument, such that it is necessarily proportional to:  

 
�̂�2𝑛(𝐊) ∝ ∫𝑑𝑡 ∫𝑑𝑡′ ∫𝑑𝑡′′ ⋯ [�̂� ∙ 𝐀(𝑡), [�̂� ∙ 𝐀(𝑡′), [�̂� ∙ 𝐀(𝑡′′),⋯ ]]] (S14) 

where here �̂� is the vector of Pauli matrices. Since only 𝜎�̂� and 𝜎�̂� terms exist in each �̂�𝐷, after 2𝑛 commutations we 

are left with one 𝜎�̂� term, which is proportional to: 

 
�̂�2𝑛(𝐊) ∝ 𝜎�̂� ∫ 𝑑𝑡 ∫𝑑𝑡′ ∫ 𝑑𝑡′′ ⋯ ∑ 𝐴𝑖(𝑡)𝐴𝑗(𝑡

′)𝐴𝑝(𝑡′′)⋯

𝑖,𝑗,𝑝

 (S15) 

where the indices 𝑖, 𝑗, 𝑝… refer to the cartesian components of the vector potential, which alternate with different 

permutations for different temporal arguments. Importantly, each of the sums in Eq. (S12) contains a product of 2𝑛 

vector potential terms taking different temporal arguments. Consequently, the first integral can be separated out just 

like performed in the main text for the 2nd-order term. Another important point is that regardless of the permutations 

of the cartesian components in the sum in eq. (S12) (which are not described here), every cartesian component of 𝐀(𝑡) 

upholds TRS on its own. Thus, if the field upholds TRS, then 𝐴𝑖(𝑡) is time-odd for any 𝑖, and the first integral 

generates a pure time-even function. Each subsequent integral flips the parity of the resulting function, because each 

vector potential in the product takes a unique time argument. After 2𝑛 − 1 integrals the resulting function (under the 
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last integral) is necessarily time-odd, such that the final integral vanishes. This mathematical result occurs in any 

permutation of the cartesian components and time arguments in the sum in Eq. (S15), and in every permutation of 

time arguments in eq. (S13). Therefore, we have proven that if the drive respects TRS, all even-order terms in the 

Magnus expansion of the Floquet Hamiltonian at K vanish for the driven Dirac Hamiltonian, such that there are no 

gap-opening terms at K. This result relies on the linearity of the Hamiltonian, as discussed in the main text.  

2. TB FLOQUET HAMILTONIAN GAP-OPENING TERMS 

We explore here the scaling of the first gap-opening term in the Magnus expansion of the Floquet Hamiltonian for the 

driven TB model of graphene. Specifically, we numerically compute the integrals of the 𝑔(𝑡, 𝑡′) function discussed in 

the main text for varying laser power and wavelength. The function takes the form: 

 

𝑔(𝑡, 𝑡′) = sin (
𝑆(𝑡, 𝑡′)

3
)

[
 
 
 
 cos (

𝑆(𝑡, 𝑡′)

3
) + cos (

4𝜋

3
+

𝑆(𝑡, 𝑡′)

3
) + cos (

4𝜋

3
−

𝑆(𝑡, 𝑡′)

3
)

−cos(𝑆(𝑡, 𝑡′)) − cos (
2𝜋

3
+ 𝑆(𝑡, −𝑡′)) − cos (

2𝜋

3
− 𝑆(𝑡, −𝑡′))

]
 
 
 
 

 (S16) 

with S(𝑡, 𝑡′) =
√3𝑎0𝐸0

4𝜔
(sin(𝜔𝑡) − sin(𝜔𝑡′)). Fig. S2 presents the numerical results showing a cubic power-law scaling 

with the field amplitude, and 5th power-law scaling with wavelength. Notably, these do not agree with the full 

numerical results obtained by directly diagonalizing the Floquet Hamiltonian (Fig. S3 in the next SI section). The 

main reason is that the Magnus expansion converges extremely slowly, and even diverges for high power and long 

wavelength drives. Nonetheless, the gap term clearly converges to zero in the limit of weak driving, as expected.  

 

FIG. S2. (a) Scaling of the first gap-opening term in the Magnus expansion of the driven TB model (up to 2nd order TB terms) with 

wavelength for a driving power of 1011 W/cm2. (b) Same as (a) but with field power and for a wavelength of 1600nm. Dashed black 

lines present fitted scaling laws. 

We also present here the analytic expression for the 2nd-order term in the Magnus expansion of the driven 5th-

order TB Hamiltonian (where the main text and Fig. S2 only discuss the driven 2nd-order NN TB model while setting 

𝑡3 = 𝑡4 = 𝑡5 = 0). The resulting �̂�2(𝐤) for the same condition explored in the main text (𝑘𝑦 driving by a linearly-

polarized field) is: 

 

�̂�2(𝐊) = 𝑖𝜎�̂�

𝜔

𝜋
∫ 𝑑𝑡 ∫ 𝑑𝑡′ℎ(𝑡, 𝑡′)

𝑡

0

2𝜋
𝜔

0

 (S17) 

where the function under the integral is: 

 

ℎ(𝑡, 𝑡′) = sin (
𝜅 sin𝜔𝑡

2
) sin (

𝜅 sin𝜔𝑡′

2
) [

𝑒𝑖𝜅
sin 𝜔𝑡−sin 𝜔𝑡′

6 𝑝(𝑡)𝑝∗(𝑡′)

−𝑒𝑖𝜅
sin 𝜔𝑡′−sin𝜔𝑡

6 𝑝∗(𝑡)𝑝(𝑡′)

] (S18) 

where 

 𝑝(𝑡) = 𝑡4 − 𝑡1 + 𝑡3 − 𝑖(𝑡3 − 2𝑡4) sin(𝜅 sin 𝜔𝑡) + 𝑡3 cos(𝜅 sin 𝜔𝑡) (S19) 

, and with 𝜅 =
√3𝑎0𝐸0

2𝜔
. Numerical integration of eq. (S17) leads to very similar results to those presented in Fig. S2 for 

the 2nd-order TB model (not presented), but the main difference here is that the interference between the different 
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hopping amplitudes becomes apparent. In particular, different hopping terms contribute to separate parts of the 

integrand in eq. (S17). This further highlights the role of the full band structure in determining the gap opening at K. 

3. K-GAP-OPENING 

We numerically investigate here the size of the gap opening in graphene at K vs. the laser driving parameters, which 

complements the analysis presented in the main text for the position of the Dirac nodes in the BZ. Figure S3 shows 

the resulting exemplary Floquet gaps at K for various conditions, and their scaling with: (a) the NN hopping amplitude 

𝑡1, (b) the next-NN hopping amplitude 𝑡2, (c) driving wavelength, and (d) driving power, for the case of a laser 

polarized along 𝑘𝑦 . The gap indeed scales parabolically with 𝑡1 , and is independent of 𝑡2 , as expected from the 

analytical analysis. It exhibits an initial parabolic power-law scaling with the driving field amplitude (up until 

deviations appear from ~5×1010 W/cm2 onwards), and an initial parabolic scaling with wavelength (until deviations 

arise from ~1000nm onwards). We also note that due to higher order NN hopping terms (that can have opposite signs), 

there can be non-trivial interference terms that cause gap closing and re-opening (e.g. vs. wavelength in Fig. S3(c) at 

~2500nm, or vs. power in Fig. S3(d) at ~6×1011 W/cm2). This arises when the vector potential term increases in 

magnitude and probes different regions in the bands (e.g. where their dispersion flips), and connects with the 

oscillations of the Dirac node around K discussed in the main text for y-polarized driving. 

Figures S3(e) and (f) present the gap scaling with laser wavelength and power when the drive is polarized along 

𝑘𝑥, which leads to slightly different behavior, but a similar initial scaling with field power and wavelength. The 

differences arise due to the distinct shape of the field-free bands along those lines. In particular, 𝑘𝑥 driving tends to 

open a larger gap that can be as high as ~0.5 eV in strong-field driving conditions. Note that in principle, such gap 

opening and re-closing dynamics could also be approximately described by effective time-independent Hamiltonians 

with the ground-state tunneling amplitudes modified by the laser (e.g. as in ref.11).  

 
FIG. S3. Analysis of pseudo-gap opening in graphene driven by linearly-polarized light. (a) Floquet gap at K calculated numerically with the TB 

model for a laser power of 1011 W/cm2 and 1600nm wavelength polarized along ky vs. the NN hopping amplitude, t1. (b) Same as (a), but vs. 2nd 

NN hopping amplitude, t2. (c) Same as (a) but for changing wavelength. (d) Same as (a) but for changing power, where the gap is shown in log 

scale. (e,f) Same as (c,d), but for driving along the kx axis. Dashed black lines in all cases present fitted scaling laws as discussed in the main text. 

4. Interactions with Floquet replicas 

We numerically explore the Floquet band structure vs. the pumping wavelength in the strong-field regime, and 

specifically, the Dirac point merger event with nearby sidebands indicated in Fig. 1(a) in the main text. Similar events 

occur when increasing the driving power as well. Fig. S4 shows the Floquet band structure while tuning the driving 

wavelength. The original Dirac point (which starts at K in the field-free case, and high frequency regime) slightly 

shifts right along the kx-axis as the wavelength increases, until another sideband replica of K’ approaches from the 
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right. For a critical wavelength of ~1940 nm the two points merge. At this stage another gapless sideband approach 
from the left. 

 
FIG. S4. Floquet band structure and Floquet quasi-energy gap along the kx-axis for driving conditions similar to Fig. 1(a) in the main text along the 
y-axis, and vs. the driving wavelength. (a) Conduction and valence bands vs. driving wavelength, showing the motion of the Dirac point as the drive 
wavelength is tuned, up until it merges with a nearby replica band. (b) Same as (a), but showing the Floquet quasi-energy gap in logarithmic scale. 
Plot calculated with the same methodology as in Fig. 1 in the main text. 

5. LONG WAVELENGTH ARPES 

We numerically explore here ARPES signals from the Floquet pumped system with TDDFT, as in Fig. 3 in the main 
text, but in the case of longer wavelength driving, and weaker pulse peak power. Figure S5 shows ARPES spectra 
analogous with Fig. 3(a) in the main text, but for pumping wavelength of 4500nm, and peak power of 4×1010 W/cm2 
(which is achievable with current technology12). The spectra clearly show that in the long wavelength pumping regime 
(since the vector potential is large), large movements of the Dirac point in graphene can still be observed even in lower 
peak powers. 

 
FIG. S5. Ab-initio TDDFT calculations of ARPES from light-driven graphene for linearly-polarized driving along kx at 4500nm and 4×1010 W/cm2. 
The spectrum is plotted along kx in the region of K, and is saturated for clarity. The overlayed dashed lines denote the Floquet quasi-energy bands 
obtained from the model in the same driving conditions. Arrows indicate shifting of the Dirac node and opening a gap at K. 
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