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Abstract

We prove the weak Harnack inequality for the functions u which belong to the corre-

sponding De Giorgi classes DG−(Ω) under the additional assumption that u ∈ Ls

loc
(Ω) with

some s > 0. In particular, our result covers new cases of functionals with a variable exponent

or double-phase functionals under the non-logarithmic condition.

Keywords: non-autonomous functionals, unbounded minimizers, weak Harnack in-

equality.
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1 Introduction and Main Results

It is known that for integrands with p, q-growth, it is crucial that the gap between p and q is not

too large. Otherwise, in the case q >
np

n− p
, p < n there exist unbounded minimizers and at the

same time, the constant in Harnack inequality cannot be independent of the function, in contrast

to the standard case, i.e. if p = q (we refer the reader to [1–11,14–17,20–25,27–29] for results,

references, historical notes and extensive survey of regularity issues). It was Ok [23], who proved

the boundedness of minimizers of elliptic functionals of double-phase type in the case q >
np

n− p
under some additional assumption. More precisely, under the condition osc

Br(x0)
a(x) 6 Ara,

a > q−p the function u belonging to the corresponding De Giorgi class DG+(Ω) is bounded by a

constant depending on ||u||Ls with s >
(q − p)n

a+ p− q
. This condition, for example, gives a possibility

to improve the regularity results [3–5,8, 9] for unbounded minimizers with constant depending

on ||u||Ls . The weak Harnack inequality for unbounded supersolutions of the corresponding

elliptic equations with generalized Orlicz growth under the so-called logarithmic conditions was

proved by the Moser method in [6].

It seems that for the corresponding De Giorgi classes DG−(Ω) this question remains open

even under the so-called logarithmic conditions, i.e. if λ(r) ≡ 1 (see condition (Φλ) below). In

this note, we will prove the weak Harnack inequality for functions belonging to the corresponding

elliptic De Giorgi classes DG−(Ω).

We write W 1,Φ(·)(Ω) for the class of functions u ∈ W 1,1(Ω) with
´

Ω

Φ(x, |∇u|)dx < ∞ and we

say that a measurable function u : Ω → R belongs to the elliptic class DG±

Φ (Ω) if u ∈ W 1,Φ(·)(Ω)
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and there exist numbers c > 0, q > 1 such that for any ball B8r(x0) ⊂ Ω, any k ∈ R and any

σ ∈ (0, 1) the following inequalities hold:

ˆ

A±

k,r(1−σ)

Φ
(

x, |∇u|
)

dx 6
c

σq

ˆ

A±

k,r

Φ

(

x,
(u− k)±

r

)

dx, (1.1)

here (u− k)± := max{±(u− k), 0}, A±

k,r := Br(x0) ∩ {(u− k)± > 0}.

Further, we suppose that Φ(x, v) : Ω × R+ → R+ is a non-negative function satisfying the

following properties: for any x ∈ Ω the function v → Φ(x, v) is increasing and lim
v→0

Φ(x, v) = 0,

lim
v→+∞

Φ(x, v) = +∞. We also assume that

(Φ) There exist 1 < p < q such that for x ∈ Ω and for w > v > 0 there holds

(w

v

)p

6
Φ(x,w)

Φ(x, v)
6

(w

v

)q

.

(Φλ) There exist s > 0, R > 0 and continuous, non-decreasing function λ(r) ∈ (0, 1) on the

interval (0, R), lim
r→0

λ(r) = 0, lim
r→0

r

λ(r)
= 0, such that for any Br(x0) ⊂ BR(x0) ⊂ Ω and

some A > 0 there holds

Φ+
Br(x0)

(

λ(r)v

r1+
n
s

)

6 A Φ−

Br(x0)

(

λ(r)v

r1+
n
s

)

, r1+
n
s 6 λ(r)v 6 1,

here Φ+
Br(x0)

(v) := sup
x∈Br(x0)

Φ(x, v), Φ−

Br(x0)
(v) := inf

x∈Br(x0)
Φ(x, v), v > 0.

For the function λ(r) we also need the following condition

(λ) For any 0 < r < ρ < R there holds

λ(r) > λ(ρ)

(

r

ρ

)b

,

with some b > 0.

For the function λ(r) =

[

log
1

r

]−
β

q−p

, β > 0 this condition holds evidently, provided that R is

small enough.

Remark 1.1. Consider the function Φ(x, v) := vp+a(x)vq, a(x) > 0, osc
Br(x0)

a(x) 6 Kra
[

log 1
r

]β
,

a ∈ (0, 1], β > 0, K > 0. Evidently condition (Φλ) holds with
n(q − p)

a+ p− q
6 s 6 ∞, a > q − p,

λ(r) :=
[

log 1
r

]−
β

q−p and A = Kq−p.

For the function Φ(x, v) := vp(x), osc
Br(x0)

p(x) 6
L

log 1
r

, L > 0 condition (Φλ) holds with s > 0,

λ(r) ≡ 1 and A = exp
(

L(1 + n
s
)
)

.

Remark 1.2. We note that conditions (Φλ) and (A1− s∗) with s∗ =
ns

n+ s
from [6] essentially

coincide in the case λ(r) ≡ 1.
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We refer to the parameters n, p, q, s, c, A as our structural data, and we write γ if it can

be quantitatively determined a priory in terms of the above quantities. The generic constant γ

may change from line to line.

Our main result reads as follows.

Theorem 1.1. Let u ∈ DG−(Ω), u > 0, let conditions (Φ), (Φλ), (λ) be fulfilled. Let B8ρ(x0) ⊂

BR(x0) ⊂ Ω, let additionally u ∈ Ls
loc(Ω) with some s > q − p and

(

´

B2ρ(x0)

us

) 1
s

6 d. Then

there exists a positive constant C depending only on the known parameters and d, such that







 

Bρ(x0)

(u+ ρ)θdx







1
θ

6
C

λ(ρ)

(

inf
B ρ

2
(x0)

u+ ρ

)

, (1.2)

where
ffl

Bρ(x0)

uθdx := |Bρ(x0)|
−1

´

Bρ(x0)

uθdx and θ > 0 is some fixed number depending only on

the known data.

The conditions of Theorem 1.1 are precise, we refer the reader to [6] for the examples. In

the case s = ∞, Theorem 1.1 was proved in [3, 25].

The main difficulty arising in the proof of our main result, Theorem 1.1, is related to the

so-called theorem on the expansion of positivity. Roughly speaking, having information on the

measure of the ”positivity set” of u over the ball Br(x̄):

|{x ∈ Br(x̄) : u(x) > N}| > α|Br(x̄)|,

with some r,N > 0 and α ∈ (0, 1), we need to translate it into the expansion of the set of

positivity to a ball B2r(x̄). Difficulties arise not only due to the presence of a factor λ(r)

in condition (Φλ), but also due to the presence of the second term on the right-hand side of

inequality (1.1). We do not use the classical covering argument of Krylov and Safonov [18],

DiBenedetto and Trudinger [13] as it was done in the ”bounded” case, i.e. if s = +∞ (see

e.g. [3]), instead we use the local clustering lemma due to DiBenedetto, Gianazza, and Vespri [12]

and moreover, instead of sup
B2r(x̄)

u we are forced to use averages of u over the ball B2r(x̄).

The rest of the paper contains proof of the above theorem. In Section 2 we collect some aux-

iliary propositions and required integral estimates of functions belonging to the corresponding

De Giorgi classes. Section 3 contains the proof of weak Harnack inequality, Theorem 1.1.

2 Auxiliary Material and Integral Estimates

2.1 Local Clustering Lemma

The following lemma will be used in the sequel, it is the local clustering lemma, see [12].

Lemma 2.1. Let Kr(y) be a cube in R
n of edge r centered at y and let u ∈ W 1,1(Kr(y)) satisfy

||(u− k)−||W 1,1(Kr(y)) 6 K k rn−1, and |{Kr(y) : u > k}| > α|Kr(y)|, (2.1)
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with some α ∈ (0, 1), k ∈ R
1 and K > 0. Then for any ξ ∈ (0, 1) and any ν ∈ (0, 1) there exists

x̄ ∈ Kr(y) and δ = δ(n) ∈ (0, 1) such that

|{Kr̄(x̄) : u > ξ k}| > (1− ν)|Kr̄(y)|, r̄ := δα2 (1− ξ)ν

K
r. (2.2)

2.2 Local Energy Estimates

The following lemma is a consequence of inequalities (1.1).

Lemma 2.2. Let u ∈ DG−(Ω), u > 0, Br(x̄) ⊂ Bρ(x0) ⊂ B8ρ(x0) ⊂ Ω, and let condition (Φ)

holds, then for any k > 0, any σ ∈ (0, 1) there holds

ˆ

Br(1−σ)(x̄)

|∇(u− λ(r)k)−|
p dx 6 γσ−q

Φ+
Br(x̄)

(λ(r)k
r

)

Φ−

Br(x̄)

(λ(r)k
r

)

(

λ(r)k

r

)p

|A−

λ(r)k,r|. (2.3)

If additionally condition (Φλ) holds and

r 6 λ(r)k 6
1

r
n
s

, (2.4)

then
ˆ

Br(1−σ)(x̄)

|∇(u− λ(r)k)−|
p dx 6 γσ−q

(

λ(r)k

r

)p

|A−

λ(r)k,r|. (2.5)

Proof. First, note the following Young’s inequality

Φp(x, a)b
p
6 Φ(x, a) + Φ(x, b), a, b > 0, Φp(x, a) := a−pΦ(x, a),

indeed, if b 6 a, then Φp(x, a)b
p 6 Φ(x, a) and if b > a, using the fact that by condition (Φ),

function Φp(x, a) is increasing, we obtain Φp(x, a)b
p 6 Φ(x, b).

Using this Young’s inequality and inequalities (1.1) we get

ˆ

Br(1−σ)(x̄)

Φ−

Br(x̄)

(

λ(r)k

r

)

|∇(u− λ(r)k)−|
p dx 6

6

(

λ(r)k

r

)p ˆ

Br(1−σ)(x̄)

Φp

(

x,
λ(r)k

r

)

|∇(u− λ(r)k)−|
pdx 6

6

(

λ(r)k

r

)p{

Φ+
Br(x̄)

(

λ(r)k

r

)

|A−

λ(r)k,r|+

ˆ

Br(1−σ)(x̄)

Φ
(

x, |∇(u− λ(r)k)−|
)

dx

}

6

6 γσ−q

(

λ(r)k

r

)p

Φ+
Br(x̄)

(

λ(r)k

r

)

|A−

λ(r)k,r|,

which proves (2.3). To prove (2.5) we note that by condition (Φλ)

Φ+
Br(x̄)

(λ(r)k
r

)

Φ−

Br(x̄)

(λ(r)k
r

)
6 γ, (2.6)

provided that r1+
n
s 6 λ(r)r

n
s k 6 1, which proves (2.5). This completes the proof of the

lemma.
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2.3 Expansion of the Positivity

The following lemma is a consequence of Lemma 2.2 and Lemmas 6.2, 6.3 from [19, Chap. 2].

Lemma 2.3. Let u ∈ DG−(Ω), u > 0, Br(x̄) ⊂ Bρ(x0) ⊂ B8ρ(x0) ⊂ Ω, assume that the

number k > 0 satisfies the condition

λ(r)k 6
1

r
n
s

, (2.7)

and assume also that with some α0 ∈ (0, 1) there holds

|
{

B r
2
(x̄) : u > λ(r)k

}

| > α0|B r
2
(x̄)|, (2.8)

then there exists number η0 ∈ (0, 1), depending only on the data and α0, such that either

λ(r)k 6
r

η0
, (2.9)

or

u(x) > η0 λ(r) k, x ∈ Br(x̄). (2.10)

The proof of the lemma is almost standard. If (2.9) is violated, then by (2.7) inequalities

(2.4) hold. So, (2.5) define the standard De Giorgi classes DG−
p (Ω) with the appropriate choice

of number k. We refer the reader for the details to Lemmas 6.2 and 6.3 of [19, Chap. 2].

3 Weak Harnack Inequality, Proof of Theorem 1.1

First, we prove the following lemma.

Lemma 3.1. Let Bρ(x0) ⊂ B8ρ(x0) ⊂ Ω,

(

´

B2ρ(x0)

us

) 1
s

6 d and let the following inequality

holds
∣

∣

∣

{

B ρ
2
(x0) : u > N

}∣

∣

∣ > α
∣

∣

∣B ρ
2
(x0)

∣

∣

∣ , (3.1)

for some N > 0 and some α ∈ (0, 1). Then, under the conditions of Lemma 2.2, there exist C2,

τ > 0 depending only on the data and d such that either

ατ
6

C2ρ

Nλ(ρ)
, (3.2)

or

ατ
6

C2

Nλ(ρ)
inf

B ρ
2
(x0)

u. (3.3)

Proof. Further we will assume that inequality (3.2) is violated, i.e. with some τ > 0

ατNλ(ρ) > C2ρ. (3.4)

Let ε ∈ (0, 1) be some number to be chosen later. Applying inequality (2.3) for

(u− λ(ρ)εN)− over the pair of balls B ρ
2
(x0) and Bρ(x0), we obtain

 

B ρ
2
(x0)

|∇(u− λ(ρ)εN)−|
p dx 6 γ

Φ+
Bρ(x0)

(λ(ρ)εN
ρ

)

Φ−

Bρ(x0)

(λ(ρ̄)εN
ρ

)

(

λ(ρ)
εN

ρ

)p

. (3.5)



A note on the weak Harnack inequality.... 6

Now we need to estimate the right-hand side of the last inequality, for this we note that inequality

(3.1) yields






 

B2ρ(x0)

us dx







1
s

> 4−
n
s α

1
sN, (3.6)

and moreover

|{B ρ
2
(x0) : u > λ(ρ)(1 + d)−14−

n
s α

1
sN }| > |{B ρ

2
(x0) : u > N }| > α|B ρ

2
(x0)|.

Choosing ε = (1 + d)−14−
n
s α

1
s , by (3.4), (3.6), we obtain

ρ 6 λ(ρ)εN 6 (1 + d)−1







 

B2ρ(x0)

us dx







1
s

6
d

(d+ 1)ρ
n
s

6
1

ρ
n
s

, (3.7)

provided that τ >
1

s
and C2 > (1 + d)4

n
s . Therefore Lemma 2.2 and inequalities (3.5), (3.7)

yield
 

B ρ
2
(x0)

|∇(u− λ(ρ)εN)−|
p dx 6 γ

(

λ(ρ)
εN

ρ

)p

. (3.8)

The local clustering Lemma 2.1 with k = λ(ρ)εN , ν = 1
4 , ξ = 1

4 , K = γ, r = ρ
2 implies the

existence of a point x̄ ∈ B ρ
2
(x0) and δ ∈ (0, 1) depending only on the data, such that

∣

∣

∣

∣

{

Br̄(x̄) : u >
λ(r̄)

4
εN

}∣

∣

∣

∣

>

∣

∣

∣

∣

{

Br̄(x̄) : u >
λ(ρ)

4
εN

}∣

∣

∣

∣

>
3

4
|Br̄(x̄)|, r̄ = δ0α

2ρ, δ0 :=
3δ

16K
.

Since λ(r) is non-decreasing, inequality (3.7) implies

λ(r̄)

4
εN 6

λ(ρ)

4
εN 6

1

ρ
n
s

6
1

r̄
n
s

, (3.9)

and moreover, by condition (λ) and by (3.4)

λ(r̄)

4
εN >

λ(ρ)

4

(

r̄

ρ

)b

εN = λ(ρ)
δb0

41+
n
s

(1 + d)−1α
1
s
+2bN > ρ > r̄,

provided that τ > 2b+
1

s
and C2 > (1 + d)

41+
n
s

δb0
.

So, Lemma 2.3 is applicable with α0 =
3

4
and k =

ε

4
N , so we obtain with some η0 ∈ (0, 1)

depending only on the data

u(x) >
η0λ(r̄)εN

4
, x ∈ B2r̄(x̄),

provided that C2 > (1 + d)
41+

n
s

η0δ
b
0

.

Repeating this procedure j times we obtain

u(x) >
η
j
0 λ(r̄)εN

4
, x ∈ B2j r̄(x̄), (3.10)
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provided that

2j r̄ 6
η
j
0 λ(r̄)εN

4
6

1

(2j r̄)
n
s

. (3.11)

Choose j by the condition 2j r̄ = ρ, that is 2jδ0α
2 = 1, the second inequality in (3.11) holds by

(3.9). By (3.4) and condition (λ), we have

η
j
0λ(r̄)εN >

δ
log 1

η0
+b

0

(1 + d)4
n
s

α
2 log 1

η0
+2b+ 1

s N λ(ρ) > ρ = 2j r̄,

provided that τ = 2 log
1

η0
+ 2b +

1

s
and C2 = C2(d, η0, δ0) > 0 is large enough. Therefore,

inequality (3.10) yields

u(x) >
λ(ρ)

C2
ατN, x ∈ B ρ

2
(x0),

which completes the proof of the lemma.

To complete the proof of the weak Harnack inequality, we set m̄(ρ) =
1

λ(ρ)

(

inf
B ρ

2
(x0)

u(x) + ρ

)

,

then Lemma 3.1 with θ ∈
(

0, 1
2τ

]

yields

 

Bρ(x0)

uθ dx =
θ

|Bρ(x0)|

∞̂

0

|{Bρ(x0) : u(x) > N}|N θ−1 dN 6

6 [m̄(ρ)]θ + γ[m̄(ρ)]
1
τ

∞̂

m̄(ρ)

N θ− 1
τ
−1 dN 6 γ[m̄(ρ)]θ,

which proves Theorem 1.1.
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