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Abstract
Three-dimensional RNA structures frequently contain atomic clashes. Usually, corrections approximate the 
biophysical chemistry, which is computationally intensive and often does not correct all clashes. We 
propose fast, data-driven reconstructions from clash-free benchmark data with two-scale shape analysis: 
microscopic (suites) dihedral backbone angles, mesoscopic sugar ring centre landmarks. Our analysis 
relates concentrated mesoscopic scale neighbourhoods to microscopic scale clusters, correcting within- 
suite-backbone-to-backbone clashes exploiting angular shape and size-and-shape Fréchet means. Validation 
shows that learned classes highly correspond with literature clusters and reconstructions are well within 
physical resolution. We illustrate the power of our method using cutting-edge SARS-CoV-2 RNA.
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1 Introduction
Understanding the structure of active biomolecules is ever more important for maintaining and 
improving human health, as has been summarised by Schlick and Pyle (2017). In particular, 
this pertains to RNA molecules in designing drugs which target-specific structures (see Batool 
et al., 2019), as recently impressively demonstrated by the worldwide effort confronting the 
SARS-CoV-2 (severe acute respiratory syndrome) virus responsible for the COVID-19 (corona vi-
rus disease) pandemic (see Croll et al., 2021).

Extracting RNA primary structure (sequencing) is nowadays fairly well feasible using currently 
available gene sequencing technology (e.g., Wang et al., 2009). Predicting the 3D structure (heli-
ces, etc.,) from that, however, is a still unsolved fundamental problem (e.g., Schlick & Pyle, 2017). 
Although elaborate methods such as X-ray crystallography and cryo-EM (cryogenic electron mi-
croscopy) are used that determine spatial electron densities—and from these densities individual 
atom positions can be inferred—frequently, the inferred molecular structures contain the so-called 
clashes as detailed by Murray et al. (2003), Chen et al. (2010) and others.

Definition 1.1 A clash is a forbidden molecular configuration, where two atoms are recon-
structed closer to each other than is chemically possible.
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In the case of RNA, clashes most relevant and most difficult to correct are between atoms along 
the backbone (main chain), in particular when single hydrogen atoms not contributing to electron 
densities are added to inferred structures (see Figure 1); a detailed discussion is given in Murray 
et al. (2003).

In order to correct such clashes, methods from molecular dynamics are usually employed: 
Simulated atoms are allowed to fluctuate into positions of minimal energy, following approxima-
tions of the laws of biophysical chemistry (e.g., Chou et al., 2013a). For RNA molecules, these sim-
ulations are highly computation intensive due to the large variability of RNA shape. If local and 
not global energy minima are achieved, thus corrected molecules may still feature clashes and their 
geometries may be outliers in comparison to clash-free geometries (e.g., Richardson et al., 2018). 
Online Supplementary Material, Supplement D briefly sketches the state of the art correction 
method ERRASER by Chou et al. (2013a) and details this observation.

As most RNA backbone clashes appear within suites (the section from one sugar ring to the 
next, e.g., Murray et al., 2003, see Figure 1 and Notation 3.1, Section 3), we therefore apply 
our method to within-suite-backbone-to-backbone clashes here; although it can be more gener-
ally applied. For the scope of this article, we call here suites clash free if they are free of 
within-suite-backbone-to-backbone clashes. We analyse the RNA backbone simultaneously at 
two scales exploiting their interdependence as follows.

We work on two levels, the microscopic (atomic level) and the mesoscopic (level of objects). At 
the microscopic scale we model the backbone of suites by tuples of 7 dihedral angles, each between 
0 and 2π from the backbone atoms, giving a data point on the seven-dimensional torus T7. We are 
thus working on a form of shape analysis from angles (angular shape analysis). At the mesoscopic 
scale, we model k suites before and k suites after a central suite of concern represented by 2k + 2 
pseudo-landmarks, the centres of sugar rings, see Figure 2. Our interest will be the size-and-shape 
(see Dryden & Mardia, 2016) of these landmarks. Setting k = 2. That is, six landmarks in total 
(which depicts roughly a half helix turn), our data analysis leads to the conclusion that for clash- 
free data, concentrated clusters at mesoscopic scale correspond to clusters at microscopic scale. 

Figure 1. 2D scheme of backbone suite number i with 7 dihedral angles (see Figure 6) δi , ϵi , ζ i , αi+1, βi+1, γi+1, δi+1 
describing the suite’s 3D structure.

Figure 2. The mesoscopic shape for k = 2 centred at the ith suite is determined by the six centres of the sugar rings 
x̅i−2, . . . , x̅i+3. Their connecting backbones give 5 suites, two before and two after suite i.
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This correspondence is at the heart of our two-scale correction method: Since we aim to correct 
potential errors at the microscopic scale, we first learn classes of clash-free microscopic shapes 
by clustering a benchmark data set of clash-free data at the microscopic scale. As illustrated in 
the left two panels of Figure 3 we provide a data-driven correction (green) for a clash suite 
(red) by a Fréchet mean on the torus at the microscopic scale (left panel) within a specific class 
of clash-free suites (grey) from Tang et al. (2001) (file 1f8v, see Online Supplementary Material, 
Table 16). To determine the class which is used for microscopic structure correction, we leverage 
the corresponding mesoscopic shape describing the geometry of the RNA strand in proximity to 
the clash suites by determining a set of closest mesoscopic shapes to the mesoscopic shape contain-
ing the clash suite. We then consider the microscopic suite shapes corresponding to these nearby 
mesoscopic shapes and determine the class which dominates this set (centre left panel, same col-
ours). At the mesoscopic scale, our correction (green) is the geodesic projection of the correspond-
ing Procrustes mean to the mesoscopic shape featuring the same endpoints and the length of the 
corrected suite. Typically, our correction at mesoscopic scale requires only a few moderate shifts 
of sugar centres (left centre, see also Figure 13, right panel).

We validate our correction method based on the interdependence of clash-free RNA backbone 
shape at the two scales (microscopic and mesoscopic) by showing that the corrections proposed 
stay well below resolution level on the benchmark data. We also validate our classification by com-
parison with a suite clustering proposed by Richardson et al. (2008) who investigated a larger data 
set (comprising about twice as many suites than our benchmark data set): The classes we propose 
correspond well to their clusters, where some of our classes comprise several of their clusters.

In application, we propose clash-free corrections for ten structure proposals from Zhang et al. 
(2021) for two suites of the frameshift stimulation element (which facilitates decoding more than 
one protein from a single RNA strand) of SARS-CoV-2 which are difficult to reconstruct, and for 
which, to the best knowledge of the authors, there are no consistent 3D structures known to date. 
Our method proposes structure which are strikingly consistent, and by design, are clash free. For 
one of the two suites, the situation is exemplified below in the two right panels of Figure 3: For 
each of the 10 clashing proposals (red), at mesoscopic scale (right panel) we propose clash-free cor-
rections (green) and at microscopic scale (centre right panel, same colours) our corrections agree 
nearly unambiguously.

Our paper is structured as follows. First, we introduce the two shape spaces: the torus (angular 
shape space) describing the RNA backbone uniquely at microscopic (atomic) scale and the 
size-and-shape space describing the RNA backbone at mesoscopic scale. Then follows the concept 
of Fréchet means used at both scales for clash correction. At mesoscopic scale (here Fréchet means 
are Procrustes means), we provide a novel projection (preserving constraints from the original 
mesoscopic shape and its microscopic correction) for the Procrustes mean. In Section 3, we link 
the 3D RNA backbone structure at two scales to our two shape spaces, overview clash detection 
and provide our benchmark data. Section 4 proposes our multiscale RNA backbone correction 

Figure 3. Left two panels: A clashing suite (red) (from benchmark file 1f8v, (Tang et al., 2001), see Online 
Supplementary Material, Table 16) with its clash-free neighbours (black) and proposed clash-free correction (green) 
at microscopic scale (left) and mesoscopic scale (left centre). Right two panels: Ten proposed reconstructions (red) 
by Zhang et al. (2021), which are all clashing, for Suite 28/29 (cf. Figure 5) connecting two helical segments in the 
frameshift stimulation element of SARS-CoV-2 and our 10 clash-free corrections (green) at microscopic scale (centre 
right) and at mesoscopic scale (right).
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method, first introducing learned classes from the clash free benchmark data and validating them. 
We then present the interdependence of clash-free RNA backbone shape at the two scales (micro-
scopic and mesoscopic) and detail how we exploit this for the new method proposed and validate 
it. Finally, we apply our method to the correction of the RNA backbone of SARS-CoV-2. In 
Section 6, we discuss further potentials of our method, in particular how multiscale shape analysis 
can be more fully developed and how it could be used to complement existing reconstruction meth-
ods for long stranded biomolecules based on molecular dynamics.

While we measure angles in radians, for instant comparison with other research in this area, 
some of the Figures report results in degrees.

Finally we list the content of our online supplementary material, containing all code and all 
data, as well as further data analysis and an overview of the MINT-AGE algorithm from 
Mardia et al. (2022).

2 Tools from shape analysis
For Fréchet means defined in Section 2.3, we will need appropriate distances for the microscopic 
and mesoscopic scale which we now give in Sections 2.1 and 2.2, respectively. For the mesoscopic 
scale, we develop in Section 2.4 a geodesic projection since we have to impose suitable geometric 
constraints.

2.1 The torus for microscopic scale
The one-dimensional torus is

T := [0, 2π]/ ∼ 

where ‘∼’ denotes that 0 and 2π are identified. It is a metric space with canonical distance

dT(ϕ, ψ) = min {|ϕ − ψ|, 2π − |ϕ − ψ]}, ϕ, ψ ∈ T. (1) 

The canonical product of m one-dimensional tori is the m-dimensional torus Tm with the canon-
ical product distance given by

dTm (ϕ, ψ) =

���������������
m

j=1

d(ϕj, ψj)
2




 , (2) 

for ϕ = (ϕ1, . . . , ϕm), ψ = (ψ1, . . . , ψm) ∈ Tm. Several authors have studied data on the torus, espe-
cially representing large biomolecules, and developed specialised methods, including (AlQuraishi, 
2019; Altis et al., 2008; Eltzner et al., 2018; Kent & Mardia, 2009; Parsons et al., 2005; Sargsyan 
et al., 2012; Zoubouloglou et al., 2021).

2.2 Size-and-shape for mesoscopic scale
We describe a landmark configuration matrix X = (x1, . . . , xm) ∈ R3×m encoding m ∈ N, three- 
dimensional landmark positions xi ∈ R3, i = 1, …, m by its size-and-shape as follows, see 
Dryden and Mardia (2016): Proper (i.e., orientation preserving) Euclidean transformations com-
prising rotations and translations T = (R, v) ∈ SO(3) × R3 act on X columnwise via

T.X := (Rx1 + v, . . . , Rxm + v).

Then

SΣm
3 := {[X] : X ∈ R3×m} where [X] := {T.X : T ∈ SO(3) × R3} (3) 
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is the size-and-shape space which is equipped with the quotient distance, also called Procrustes dis-
tance

dΣ([X], [Y]) := min
T∈SO(3)×R3

‖X − T.Y‖ (4) 

with the standard Frobenius norm on R3×m. We say that X and Y are in optimal position if

dΣ([X], [Y]) = ‖X − Y‖.

Taking derivatives and using a singular value decomposition (SVD) it follows at once that config-
urations X, Y in optimal position have coinciding mean landmarks with symmetric YXT (e.g., 
Dryden & Mardia, 2016, Result 7.1). For this reason, we assume that all landmark configurations 
are centred, i.e., their landmarks vectors add up to zero. Optimal positioning is then conveyed by 
rotations R ∈ SO(3) only, i.e., RY is in optimal position to X if R = VSUT with a suitable diagonal 
matrix S with entries in {−1, 1} and a SVD YXT = UDVT (here U, V are orthogonal, D is diagonal 
with non-negative entries).

2.3 Fréchet means for both scales

Definition 2.1 For data X1, …, Xn ∈ M on an arbitrary metric space (M, d), define their 
Fréchet means by

argmin
X∈M

n

j=1

d(X, Xi)
2.

The Fréchet mean is a generalisation of the classical Euclidean mean. On complete spaces, 
Fréchet means exist, and on manifolds, if samples are drawn from continuous distributions, 
they are almost surely unique (see Arnaudon & Miclo, 2014). On stratified quotient spaces, 
such as size-and-shape space for 3D configurations, they lie on the manifold part (the top- 
dimensional dense stratum) if the manifold part is assumed with positive probability (see 
Huckemann, 2012).

On SΣm
3 , Fréchet means defined by Procrustes distance are also called Procrustes means. On Tm 

we call them torus means.

2.4 Geodesic projection to constrained size-and-shape
Our CLEAN MINT-AGE Algorithm in Section 4.3.1 corrects clashes not only at atomic suite 
(microscopic) scale but also at mesoscopic scale. The corrected mesoscopic shape mτc 

in Section 
4.3.1 features two constraints. The first one sets the distance between its first and last landmark 
to the corresponding distance of the original mesoscopic shape, thus assuring its fit into a larger 
RNA strand. The second one sets the distance between its two central landmarks to the length 
of the corrected suite, assuring the fit of the latter into the former.

With more general future applications in mind, assume that the distances between r ∈ N, (2 ≤  
2r ≤ m) landmark pairs are constants a1, …, ar > 0. With a permutation σ of (1, …, m) we may 
assume that landmark σ( j) is paired with landmark σ( j + r) for j = 1, …, r while landmarks σ( j) 
for 2r < j ≤ m (if 2r < m) are unconstrained.

Definition 2.2 Let r ∈ N with 2r ≤ m, a : = (a1, …, ar) with a1, …, ar > 0 and σ be a per-
mutation of (1, …, m). Then the constrained-size-and-shape space is given 
by

SΣm
3 (σ, a) : = {[Y] ∈ SΣm

3 : Y = (y1, . . . , ym) ∈ R3×m,

‖yσ(j) − yσ(j+r)‖ = aj for j = 1, . . . , r}.

An orthogonal projection from Σm
3 to Σm

3 (σ, a) can be given explicitly as the following theorem 
teaches.
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Theorem 2.3 Let r ∈ N with 2r ≤ m, a = (a1, …, ar) with a1, …, ar > 0, [Z] ∈ SΣm
3 with 

centred Z ∈ (z1, …, zm), i.e., z1 + · · · + zm = 0 and σ be a permutation of 
(1, …, m). Then Y∗ = (y∗1, . . . , y∗m) with

y∗σ(j) = βσ(j)z
′
σ(j) + (1 − βσ(j))z

′
σ(j+r),

y∗σ(j+r) = (1 − βσ(j))z
′
σ(j) + βσ(j)z

′
σ(j+r), with

βσ(j) =
1
2

1 +
a j

‖z′σ(j) + z′σ(j+r)‖

 

, 

for j = 1, …, r where we set z′σ( j) : = zσ( j), z′σ( j+r) : = zσ( j+r), if zσ( j) ≠ zσ( j+r) and 
z′σ( j) : = zσ( j) + vj, z′σ( j+r) : = zσ( j) − vj if zσ( j) = zσ( j+r) with an arbitrary non-
zero vector vj ∈ R3×m, and, furthermore

y∗σ(j) = zσ(j) for j = 2r + 1, . . . , m, 

gives an orthogonal projection

[Y∗] ∈ argmin
[Y]∈SΣm

3 (σ,a)
dSΣm

3
([Z], [Y]).

The orthogonal projection is unique if zσ( j) ≠ zσ( j+r) for all j = 1, …, r.

Proof. W.l.o.g. assume that σ is the identity. Furthermore, note that by construction Y* is 
centred as Z is centred.

Every orthogonal projection is a minimiser of the Lagrange function

L(Y, λ1, . . . , λr) = ‖Y − Z‖2 +
r

j=1

λj(‖y j+r − y j‖
2 − a2

j ) 

incorporating proximity of Y = (y1, …, ym) to Z and the constraining conditions. 
All of its critical points Y* are determined by the equations

y∗j − zj = λj(y∗j+r − y∗j ) for j = 1, . . . , r (5) 

y∗j+r − z j+r = −λj(y∗j+r − y∗j ) for j = 1, . . . , r

y∗j = zj for j ∈ {2r + 1, . . ., m}.
(6) 

Notably, the last equations yield the unique minimisers of the non-constrained 
landmarks. Now fix j ∈ {1, …, r} and subtract (6) from (5) to obtain

(y∗j − y∗j+r)(1 + 2λj) = zj − z j+r. (7) 

If zj ≠ zj+r then (5) yields

y∗j = zj −
λj

1 + 2λj
(zj − z j+r), 
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i.e., with βj = (1 + λj)/(1 + 2λj)

y∗j = βjzj + (1 − βj)z j+r, (8) 

and similarly, (6) yields

y∗j+r = z j+r +
λj

1 + 2λj
(zj − z j+r), 

i.e.,

y∗j+r = (1 − βj)zj + βjz j+r. (9) 

This implies at once that

‖y∗j − zj‖
2 + ‖y∗j+r − z j+r‖

2 = 2(1 − βj)
2‖zj − z j+r‖

2

=
2λ2

j

(1 + 2λj)
2 ‖zj − z j+r‖

2.
(10) 

In order to determine λj we exploit the constraining condition to obtain from (7) 
that |1 + 2λj| = ‖zj+r − zj‖/aj. The cases of 1 + 2λj > 0 and 1 + 2λj < 0 correspond to

λj =
1
2
‖z j+r − z j‖

aj
− 1

 

and λj = −
1
2
‖z j+r − z j‖

aj
+ 1

 

respectively, so that, taking into account (10), L assumes the minimal value for the 
positive branch yielding

βj =
1
2

1 +
aj

‖z j+r − z j‖

 

, 

as asserted. Moreover, then the above equations (8) and (9) yield the asserted land-
marks for y∗j and y∗j+r in case of zj ≠ zj+r.

If zj = zj+r adding (6) to (5) yields

y∗j + y∗j+r =
zj

2
, 

which, taking into account the constraining condition, is solved by

y∗j = zj + aj
vj

2‖vj‖
, y∗j+r = zj − aj

vj

2‖vj‖

with an arbitrary nonzero vector vj ∈ R3×m. Then the above argument, after re-
placing zj with z′j : = zj + vj and z′j+r : = zj − vj above in (5) and (6), yields the as-
serted equations.

We note that we have indeed found a minimum, for we can reparametrize the 
matrix Y by arbitrary Y′ := (y1, . . . , yr, y2r+1, . . . , ym) ∈ R3×(m−r), and by (w1, … 
wr), each wj arbitrary on the compact sphere {w ∈ R3 : ‖w‖ = 1} which model 
the constraining conditions via yj+r = yj + aj wj for j = 1, …, r. Along the columns 
of Y′, there is a unique minimum and along each of the wj (j = 1, 2) there is a max-
imum and a minimum given by the two choices of λj as detailed above and illus-
trated in Figure 4, and each such minimum is unique if zj ≠ zj+r.
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Finally, we claim that Y* is already in optimal position to Z. In fact it suffices to 
see this for two landmarks only zj, zj+r (1 ≤ j ≤ r) and y∗j , y∗j+r from (8) and (9). 
Indeed, in case of zj ≠ zj+r, with the 3 × 3 unit matrix I, minimising

‖zj − Ry∗j ‖
2 + ‖z j+r − Ry∗j+r‖

2 = ‖(I − βR)zj − (1 − β)Rz j+r‖
2 + ‖(I − βR)z j+r

− (1 − β)Rz j‖
2 

over R ∈ SO(m) can be cast into the two-dimensional complex problem with 
z = zj, w = z j+r ∈ C, β = βj > 1/2 minimising

|(1 − β eiα)z − (1 − β) eiαw|2 + |(1 − β eiα)w − (1 − β) eiαz|2

= (|z|2 + |w|2)(1 + β2 − 2β cos α + (1 − β)2) − 4(1 − β) Re(z w)( cos α − β) 

over α ∈ [0, 2π). Due to 0 ≤ |z ± w|2 = |z|2 + |w|2 ± 2Re(z w) and β > 1/2 this is 
minimised for α = 0, corresponding to R = I above.

In case of zj = z = zj+r, with arbitrary but fixed vj ∈ R3, ‖vj‖ = 1 such that y∗j = 
z + ajvj/2 and y∗j+r = z − ajvj/2, as above, we have similarly for R ∈ SO(3) that

‖zj − Ry∗j ‖
2 + ‖z j+r − Ry∗j+r‖

2 = ‖z − R(z + ajvj/2)‖2 + ‖z − R(z − ajvj/2)‖2

= 2‖z − Rz‖2 +
a2

j

2
, 

which is minimised by R = I.  □

Remark 2.4 The case zj = zj+r has been discussed for exhaustive mathematical treatment. 
In the application in Section 4.3.1, this only happens if the neighbourhoods 
in the classes learned feature degenerate Procrustes means, a clear sign that 
the learning algorithm failed. In this case, we suggest to re-evaluate learned 
classes, rather than choosing any vj of suitable length.

3 Multiscale modelling of RNA backbone geometry,  
clash detection, and data sets
Ribonucleic acid (RNA) molecules are composed of repeating elements called nucleotides and 
each nucleotide is composed of three building blocks, see Watson et al. (2004) and Figure 1: A sug-
ar ring called ribose comprising five carbon atoms, one of four possible nucleobases which is 

Figure 4. Planar representation of the o.g. projection of Z = (z1, z2, z3) to the constraint ||y1 − y2|| = a1. Left: The 
global minimum determined by 1 + 2λ1 > 0 is attained for y∗1 and y∗2 balanced between z1 and z2. Notably, fixing y1 = 
y∗1 the constrained y2 is confined to a sphere of radius a1, centred at y∗1 . Right: Swapping the minimal y∗1 and y∗2 from 
the left side corresponds to 1 + 2λ1 < 0. Fixing y2 = y∗2 , the constrained y1 lies on a sphere of radius a1, centred at y∗2 , 
for which y1 = y∗1 produces a local maximum.
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attached to the ribose at the C1′ position and a phosphate group connected to the ribose ring at the 
O5′ atom. The single nucleotides are connected by their O3′ atoms to the next phosphate group to 
form long RNA chains.

3.1 RNA folding
In contrast to DNA which usually forms a double helix of complementary strands, in principle, 
RNA is single stranded and the form of its ribose (which is not ‘desoxy’ as in DNA, i.e., it has 
an additional hydroxyl group) allows for complex folding structures. Figure 5 shows helical struc-
tures followed by mismatching sites: a hairpin in a 2D schematic and the 3D structure of the frame-
shift stimulation element of the SARS-CoV-2 genome proposed by Zhang et al. (2021). Its 2D 
schematic is depicted in the first panel of Figure 15.

3.2 Multiscale modelling
In this section, we describe the two scales modelled. Their surprising interaction which has lead to 
the two Hypotheses 4.1 and 4.2 underlying our method is detailed in Section 4.2.

On a microscopic scale, nucleotides are either studied as suites, i.e., from one sugar to the next, 
or as residues, i.e., from one phosphate to the next, e.g., Murray et al. (2003), Jain et al. (2015). As 
clashes often occur between neighbouring residues but within same suites, cf. Murray et al. (2003), 
for our analysis, we use suites. Indexing, however, is usually done on residue level, so that within a 
single suite, atom indices change, cf. Figure 1. For the dihedral angles of concern, Figure 6 lists the 
four consecutive atoms, defining the respective dihedral angle of the bond between the two central 
atoms.

On the mesoscopic scale, we additionally take the coordinates of the k preceding and k succeed-
ing sugar rings into account. This can be seen as an intermediate scale between the microscopic 
suite scale and the macroscopic scale of a whole RNA strand.

Notation 3.1 We consider a connected RNA strand with N ∈ N consecutive nucleotides 
indexed by i ∈ {1, …, N}.

Figure 5. Left: 2D schematic of the common hairpin structure: Double helices (stems) formed by bindings between 
matching nucleobases (blue) are followed by mismatching nucleobases (bulges), not depicted, and a terminating 
mismatching site (loop). Orientation is conveyed by the 5′ and 3′ ends. Right: One out of 10 proposed 3D RNA 
structures of the SARS-CoV-2 frameshift stimulation element by Zhang et al. (2021), graphically reproduced with 
PyMOL (Schrödinger, 2015) with backbone (orange) and nucleobases (blue), yielding helical structures whenever 
the latter point to each other. Arrows indicate suites with problematic (blue arrow, Suite 2 determined by Residues 
33/34) and non-connected backbone (red arrow, Suite 1 determined by Residues 28/29) proposals discussed in 
Figures 3 and 15.
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Microscopic scale: The ith suite comprises the RNA region between a C5i′ atom and the second 
next O3′ atom labelled O3′i+1 and the backbone shape of the suite is described by the seven dihe-
dral angles (δi, ϵi, ζ i, αi+1, βi+1, γi+1, δi+1) ∈ T7 for i = 1, …, N − 1, cf. Figure 1. Mesoscopic scale: 
As each nucleotide comes with a sugar ring formed by the atoms C1′i, C2′i, C3′i, C4′i and O4′i (see 
Figure 1), denoting their centres of gravity (i.e., average location) with x̅i, for all i = k + 1, …, N −  
k − 1, the mesoscopic strand corresponding to the ith suite is the configuration matrix 
X(i) = (x̅i−k, x̅i−k+1, . . . , x̅i+k+1) ∈ R3×(2k+2). Its size-and-shape in SΣ2k+2

3 is called its mesoscopic 
shape.

Indeed, geometric suite variability is solely governed by the dihedral angles, since bond lengths 
(distances between two consecutive atoms) and bond angles (angles between three consecutive 
atoms) are approximately constant due to the laws of chemistry, see e.g., Watson et al. (2004). 
In consequence, the geometry of the ith suite is described, up to a proper Euclidean transformation 
(translation and rotation), by an element of the seven-dimensional torus T7 given by its seven di-
hedral angles.

Since distances between two neighbouring sugar rings and angles between three consecutive 
sugar rings vary due to folding at microscopic scale, see Figure 7, dihedral angles defined by 
four consecutive sugar rings are not sufficient to completely define the geometry of mesoscopic 
strands up to proper Euclidean transformations. The size-and-shape representation, modelling 
geometric landmark configurations determined by central positions of sugar rings modulo trans-
lation and rotation, however, suffices.

Remark 3.2 For the mesoscopic strands, we include the sugar ring centres of the k = 2 
suites preceding and the k = 2 suites following the suite of concern, cf. 
Figure 2. This choice of k presents a trade-off, since a small k emphasises 
the central, potentially faulty, suite and a large k leads to a great variety of 
shapes at transitions between secondary structure elements. For a given 
mesoscopic shape, this reduces the number of potentially similar mesoscopic 
shapes. Empirically, k = 2 yields a good balance between these two effects by 
modelling the local geometry at an intermediate (mesoscopic) scale. On the 
side of biochemistry, the 5 + 1 = 6 bases from the 2k + 1 = 5 suites corres-
pond roughly to the number of bases involved in a half helix turn, see e.g., 
Watson et al. (2004). For future applications, we anticipate that involving 
more scales by suitably choosing larger k will prove useful.

We only work with suites that have a corresponding mesoscopic strand, i.e., we exclude the two 
suites at the end of an RNA strand.

Figure 6. Left: Names (first column) of dihedral angles along the two central atoms of the four atoms involved 
(second column), see Figure 1. Right: The dihedral angle δ of the bond between the atoms C4′ and C3′ is the directed 
angle between the plane spanned by the atoms C5′, C4′, C3′ and the plane spanned by C4′, C3′, O3′. More 
precisely, it is the angle determined by turning the vector normal to the plane spanned by C3′, C4′, C5′ to the vector 
normal to the plane spanned by O3′, C3′, C4′ (with fixed orientation of normals determined by the order of spanning 
points).
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Definition 3.3 For an RNA strand of length N ≥ 2k + 2 the suites numbered i = k + 1, …, 
N − k − 1 are called admissible, so that every admissible suite a has a meso-
scopic shape ma ∈ SΣ2k+2

3 and vice versa.

Definition 3.4 We call a suite a clash suite if two of its backbone atoms (including asso-
ciated hydrogen atoms and oxygen atoms associated with the phosphate) 
clash with each other. All other suites that have 2k = 4 neighbouring non- 
clash suites (i.e., their mesoscopic strands have no within-suite- 
backbone-to-backbone clashes) are called clash free.

3.3 Cryo-EM, X-ray crystallography and clash detection
Cryo-EM (cryogenic electron microscopy) and X-ray crystallography are popular methods to de-
termine atomic positions in RNA, protein, and similar biomolecular structures, cf. Jain et al. 
(2015). For the former, molecules are shock frosted and subjected to electron microscopy. For 
the latter, using a suitable substrate, molecules are crystallized and subjected to X-ray imaging. 
The resolution of X-ray crystallography is defined as the smallest distance of two objects such 
that their diffraction patterns can be separated. In cryo-EM, resolution has been defined in various 
ways, usually via properties of the Fourier transformed electron density, in order to be comparable 
to the resolution values given for X-ray crystallography measurements. For a review, see Liao and 
Frank (2010). From different angles, via inverse Fourier transforms, the electron density can be 
reconstructed and, in principle, density peaks correspond to atom positions. Figure 8 shows exem-
plary level surfaces of electron densities with estimated atom positions.

At a resolution of 2.5–4 Å, which is typical for large RNA strands, base pairings can be predicted 
well and phosphates are well identified by strong peaks of density (Jain et al., 2015). It is, however, 
more challenging to precisely estimate single atom positions along the backbone, see for example 
(Murray et al., 2003). In addition, structural disorder due to crystallization and thermal oscillation 
contribute to uncertainties.

Since it is computationally not feasible to include the positions of all atoms and a full quantum 
chemical treatment into the fitting, the ambiguities in the measured density occasionally result in 
incompatible reconstructed atom positions. Indeed, our benchmark data set contains approxi-
mately 2.5% clash suites.

The PHENIX (Python-based Hierarchical ENvironment for Integrated Xtallography) software 
by Liebschner et al. (2019) provides validation tools that detect such errors. Since hydrogen atoms 
are not visible in the electron density measurements (H-atoms contain only one electron which is 
shifted to the covalent-bond partner atom), first, the PHENIX tool phenix.reduce adds the 
hydrogen atoms. Then, phenix.probe performs an all-atom contact analysis (Word et al., 
1999), which declares atoms that are not bonded to each other as a clash if they are closer together 

Figure 7. Histograms of the distribution of distances between two successive sugar ring centres in Å (left) and of 
the distribution of angles in degrees spanned by three successive sugar ring centres (right).
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than is physically possible (i.e., if van der Waals shells overlap by more than 0.4 Å). For each PDB 
file, phenix.clashscore generates a list of all clashes. From all of the different types of clashes 
detected, in this work we are only concerned with within-suite-backbone-to-backbone clashes as 
in Definition 3.4.

3.4 The benchmark, training, and test data sets
In our applications, we analyse a subset of a classical RNA data set. The classical RNA data set 
comprises 8,665 suites, carefully selected for high experimental X-ray precision (of 3 Å =  
0.3 nm) by Duarte and Pyle (1998), Wadley et al. (2007) and analysed by them and by others, 
for example (Eltzner et al., 2018; Murray et al., 2003; Richardson et al., 2008). The data originate 
from 71 different measurements and the atomic positions of each measurement have been stored in 
the PDB format of a protein data bank file, online at the Protein Data Bank, see Berman et al. 
(2000). More details on the PDB files can be found in Online Supplementary Material, 
Table 16 of Supplement A.

From this classical data set, we consider the 7,648 admissible suites (which have an associated 
mesoscopic strand, see Definition 3.3) and call this data set the benchmark data set.

Applying PHENIX as detailed in Section 3.3 to the benchmark data set, we obtain 5,957 clash- 
free suites that also have clash-free mesoscopic strands (see Definition 3.4) and these form the 
benchmark training data set T. Online Supplementary Material, Figure 17 gives a scatterplot at 
microscopic scale for all pairs of the seven dihedral angles.

From the remaining suites, we chose those suites that feature within-suite-backbone-to- 
backbone clashes, forming the benchmark test data set C, containing 198 suites.

As our purpose lies in demonstrating our methods rather than correcting all clashes, all other 
suites (e.g., those not themselves clashing but featuring clashes in their mesoscopic strands) are dis-
regarded in our analysis.

4 CLEAN-MINT-AGE
After classifying clash-free suites by the MINT-AGE algorithm (Mardia et al., 2022) from the 
benchmark training data set, we validate the classes obtained by comparing with the outcome 
of the clustering method by Richardson et al. (2008). Motivating our multiscale approach by ana-
lysing clusters at two scales, then we propose and validate the CLEAN method classifying suites 
exploiting the observed relationship between the two scales.

4.1 Microscopic classification and its validation
We apply the non-supervised cluster learning method from Mardia et al. (2022) to the microscopic 
suite representations on the torus T7, of the benchmark training data set. In brief, in a first step 

Figure 8. Left: Histogram of X-ray crystallography resolutions in the benchmark data set from Section 3.4 below. 
Middle and right: reconstructed RNA structure and electron density contour surface created with PyMOL at level of 
one σ, see Schrödinger (2015), at resolution 1.6 Å (middle, from benchmark file 1csl, (Ippolito & Steitz, 2000), see 
Online Supplementary Material, Table 16 in the supplement) and at resolution 3 Å (right, from benchmark file 1f8v, 
(Tang et al., 2001), see Online Supplementary Material, Table 16).
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(AGE) it proposes preclusters based on an iterative, adaptive, average linkage clustering method 
for general metric spaces, that allows to detect clusters of different densities and sizes. In a second 
step (MINT), each precluster is subjected to torus PCA (see Eltzner et al., 2018) and its projection 
to its main one-dimensional component is subjected to circular mode hunting, so that each statis-
tically significant antimode corresponds to a post-cluster boundary. For convenience the 
MINT-AGE (Mode huntINg on Torus pca post iterative Adaptive linkaGe clustEring) algorithm 
is reproduced in Online Supplementary Material, supplement Section C including a discussion of 
parameters and our choices. It builds on Dümbgen and Walther (2008), Everitt (1993), Florek et 
al. (1951), Huckemann and Eltzner (2015), Huckemann et al. (2016), Langfelder et al. (2007), 
Obulkasim et al. (2015), Sokal and Michener (1958), its general version is described in Mardia 
et al. (2022).

As discussed in detail in Eltzner et al. (2018), performing PCA analogues on non-Euclidean 
manifolds may be challenging, in particular on a torus: tangent space PCA (e.g., Fletcher 
et al., 2004) misses data periodicity, intrinsic PCA (see Huckemann & Ziezold, 2006) produces 
geodesics winding infinitely often around, each of which approximating all possible data per-
fectly, and restricting winding numbers (e.g., Altis et al., 2008; Kent & Mardia, 2009, 2015) 
greatly reduces flexibility. In contrast on spheres, principle nested spheres [PNS, by Jung et al. 
(2012)] is a PCA analogue that is even more flexible and this flexibility persists on suitably strati-
fied spheres which represent the torus in torus PCA (see also Mardia et al., 2022): On the 
m-dimensional sphere, the dimension of the family of main principal nested circle components 
is 3(m − 1), while the dimension of the family of first PCs for data on an m-dimensional 
Euclidean space is dimension 2(m − 1). This feature is advantageous for PCA-based clustering, 
since clusters that would require two Euclidean PCs to be separated can often be separated along 
the main principal nesting circle.

Application of MINT-AGE to the benchmark training data set yields 17 classes. The largest 
corresponding to the A helix shape contains 3,933 elements and is highly dominant. All classes 
are rather dense and even the smallest has a credible size of 21 elements. The number of outliers 
(881), however, is quite large. We conjecture that a considerable number of these are due to in-
correct structure reconstructions, which have not been detected because they have not led to 
clashes. Online Supplementary Material, Figure 18 displays all classes in dihedral angle 
representation.

The table in Figure 10 compares our MINT-AGE classes with clusters found by Richardson 
et al. (2008, Table 2) in a larger set encompassing the benchmark training data set. As they report 
every cluster only by its mean dihedral angles, we have manually assigned these means to 
MINT-AGE classes. Typically, Figure 9 illustrates how three (Richardson et al., 2008) cluster 
means are assigned to MINT-AGE Class 6. This larger data set and allowing some clusters with 
less than 10 elements has lead to a larger number of 46 (Richardson et al., 2008) clusters. 
Remarkably, more than half (24) of them can be assigned to MINT-AGE clusters and among 
the ones that could not be assigned, only two have more than 20 elements (7p with 27 elements 
and 8d with 24).

4.2 Motivation for a multiscale ansatz
In a first fundamental study, we establish a relationship between suites that have similar meso-
scopic shapes, see Figure 2 and Notation 3.1. To this end, we cluster the mesoscopic shapes of 
the suites of the benchmark training data set (Section 3.4) using the simple version of AGE 
from Mardia et al. (2022) (Online Supplementary Material, Algorithm C.1 from Supplement C. 
1, performing only Steps 1 and 2 with κ = 5 and dmax such that 50% of the mesoscopic strands 
are outliers) yielding the simple mesoscopic clusters. By design, we obtain many (110) clusters 
that are rather concentrated. It turns out that 

1. the suites corresponding to each simple mesoscopic cluster also form rather concentrated suite 
clusters: for most, the standard deviation of angles (between 0 and 2π) of their suites is less than 
0.6 and only very few clusters with low cardinality (close to the minimum of κ + 1 = 6) have 
higher suite standard deviation (Figure 11, third panel);
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Figure 9. Scatterplots of all two-dimensional dihedral angle pairs (in degrees) of MINT-AGE Class 6 (black) and the 
reported means of Clusters 7a, 3a and 9a from Richardson et al. (2008).

Figure 10. Left: MINT-AGE class numbers and outliers (left column) with size (middle column) from the benchmark 
training data set with corresponding two-character cluster names (a number for the first character and a letter or ‘[’ 
for the second character) from Richardson et al. (2008). Asterisks mark MINT-AGE classes displayed in the right 
panel. Right: Five exemplary classes that can be well displayed together at microscopic scale: Class 1 (black), class 2 
(red), class 4 (turquoise), class 10 (yellow), class 16 (magenta). Parentheses indicate that Richardson et al. (2008)
cluster means are at boundaries of MINT-AGE classes.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/72/2/271/7085395 by M

ax-Planck Society user on 05 June 2023



J R Stat Soc Series C: Applied Statistics, 2023, Vol. 72, No. 2                                                               285

2. simple mesoscopic clusters are in high correspondence with the 17 MINT-AGE classes from 
Section 4.1 as clearly visible in the rightmost panel of Figure 11 and detailed for exemplary 
clusters in the caption of Figure 11.

This leads to the following hypothesis.

Hypothesis 4.1 Correctly reconstructed suites with similar mesoscopic shapes have also 
similar suite shape. In particular, concentrated mesoscopic clusters relate 
to suite classes.

In a second fundamental study, we consider the 198 clash suites in the benchmark data set form-
ing the test data set, see Section 3.4. Their suite shapes as well as their mesoscopic shapes feature a 
rather larger spread, see Figure 12 (first two panels). As before, we consider training suites from 
concentrated neighbourhoods in the mesoscopic shape space, of size ρ ∈ N. For a given clash suite 
c such a neighbourhood is

Uc := {t ∈ T : #{t′ ∈ T : dΣ(mt′ , mc) ≤ dΣ(mt, mc)} ≤ ρ}. (11) 

The neighbourhood Uc is the set of the ρ suites of the training data, whose mesoscopic shapes are 
most similar to mc with respect to mesoscopic shape space distance. Recall from Section 3.4 that T 

Figure 11. Left: Four exemplary simple mesoscopic clusters at mesoscopic scale. Centre left: Their central suites at 
microscopic scale. Simple mesoscopic Cluster 1 (black) of size 77 contains 73 suites from MINT-AGE Class 1, all of 
the others clusters are in 1-to-1 correspondence to MINT-AGE classes: Cluster 30 (turquoise, size 13) to Class 4, 
Cluster 55 (blue, size 8) to 7 and Cluster 92 (red, size 6) to Class 2. Centre right: Binned torus (angular) standard 
deviation of the suites belonging to simple mesoscopic clusters. For instance, the suites of Cluster 1 from the two 
left panels have a standard deviation of 0.83, so that Cluster 1 is counted in the 4th green bar from the left. Right: 
Percentages of the largest MINT-AGE class in each cluster. For instance, the rightmost bar indicates that for 75 out 
of the 110 clusters at least 95% of their suites belong to a single MINT-AGE class.

Figure 12. Left: The 198 clash suites from the benchmark data set in Section 3.4 with carbon (dark red), oxygen 
(dark blue), and phosphorus atoms (pink), cf. Figure 1 at microscopic scale. Left centre: Same at mesoscopic scale. 
Right centre: At microscopic scale, a typical clash suite c (red), the 46 suites (black) from the dominant MINT-AGE 
class and the other 4 suites (blue) in the neighbourhood Uc with respect to mesoscopic shape distance, see also 
Figure 3. Right: Same at mesoscopic scale where shapes are highly concentrated. The landmarks (teal) of the clash 
suite at mesoscopic scale (red), except for the middle one, require only very moderate correction.
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is the set of training suites (the clash-free suites in the benchmark data set) and that mt denotes the 
mesoscopic shape of t ∈ T. On close inspection of the 198 Uc’s we find a situation typically illus-
trated in the last two panels of Figure 12, which leads to the following hypothesis.

Hypothesis 4.2 While at microscopic scale, clash suite shapes are rather irregular among 
the suite shapes of their clash-free neighbours, at mesoscopic scale, their 
mesoscopic shapes differ only mildly from nearby clash-free mesoscopic 
shapes.

The theoretical argument underlying this hypothesis is that even drastic errors on the atomic 
suite scale can still be compatible with electron density measurement results due to finite reso-
lution, while drastic errors on the mesoscopic scale are excluded since they would strongly contra-
dict the measured electron density. Indeed, we find empirically at mesoscopic scale that only one of 
the four teal landmarks in the middle (Figure 12, right panel) differs more strongly from the neigh-
bouring clash-free mesoscopic shapes in Uc. For all 198 clash shapes the histogram in Figure 13
shows that for the vast majority of clash suites c ∈ C, the distance (detailed in Section 4.4) of its 
mesoscopic shape to its clash-free correction is only rarely barely above and mostly well below 
the resolution order.

Remark 4.3 There are databases that store different RNA motifs and their interaction: In 
RNA Bricks (Chojnowski et al., 2013), the elements of simple mesoscopic 
Clusters 1 and 92 are often found in a stem cluster (corresponding to helical 
backbone shapes) and the elements of simple mesoscopic Cluster 30 are 
found in a loop cluster. Similarly, in Petrov et al. (2013), the elements of sim-
ple mesoscopic Cluster 30 are classified in the hairpin loop with the name 
HL_43074.14. Stems and loops are depicted in the hairpin structure scheme 
in the left panel of Figure 5.

4.3 The multiscale RNA backbone structure correction prodecure
Exploiting the above Hypotheses 4.1 and 4.2, the following multiscale backbone correction pro-
cedure simultaneously corrects clashing suites at microscopic and at mesoscopic scale, working 
with concentrated neighbourhoods as in (11), defined by mesoscopic shape distance. In these con-
centrated neighbourhoods, dominating classes from MINT-AGE of the training data set provide 

Figure 13. Left: At mesoscopic scale the clash suite from Figure 12 (right) and its mesoscopic shape corrected by 
CLEAN. Right: Histogram of relative distances dc between corrected mesoscopic shapes and original mesoscopic 
shapes from (13) over all c ∈ C.
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guidance for correction. Recall from the two left panels of Figure 3, with more detail in the two 
right panels of Figure 12, that even a minor correction of one of the sugar ring centres at meso-
scopic scale can have great impact on the shape of the suite of interest, which is positioned between 
the third and fourth sugar ring at mesoscopic scale.

4.3.1 Multiscale correction (CLEAN)
Input: 

• a training data set T comprising only clash-free admissible suites (suites that feature a meso-
scopic shape, see Definition 3.3),

• a list of classes C1, …, Cr and an outlier set R for T obtained from applying the MINT-AGE 
algorithm (see Section 4.1 and Online Supplementary Material, Algorithm C.3),

• a clash suite c and its corresponding mesoscopic shape mc.
• the size ρ ∈ N of the neighbourhood Uc from (11), we choose ρ = 50 as roughly twice the size 

of the smallest class, and
• the flag DOMINATING set to ABSOLUTE or RELATIVE which will return either the absolutely 

dominating cluster in Uc or the relatively dominating cluster with at least ρ/10 elements, tak-
ing into account cluster size (in Step (b) below).

Implementation steps: 

1. Calculate 
(a) the neighbourhood Uc as defined in (11) of the ρ suites of the training data, whose meso-

scopic shapes are most similar to mc with respect to mesoscopic shape space distance;
(b) according to flag DOMINATING, the number

jc ∈ argmax
j=1, ..., m

#(Cj ∩ Uc), (ABSOLUTE), or

jc ∈ arg max
j=1, ..., m

1{Cj | #(Cj∩Uc)≥ρ/10}#(Cj ∩ Uc)/#Cj, 

(RELATIVE), respectively, of the dominant MINT-AGE class in Uc;
(c) a Fréchet mean τc ∈ argmint∈T7


t′∈Cjc ∩Uc

dT7 (t, t′)2, of the dominant class’ suites in the 
neighbourhood;

(d) the approximate length ℓτc 
of the suite by the mean distance of the two central sugar rings 

k + 1 and k + 2 of the mesoscopic shapes corresponding to the suites of Cjc
∩ Uc;

(e) a Procrustes mean

μc ∈ argmin
m∈SΣ2k+2

3



t∈Cjc ∩Uc

dΣ(m, mt)
2, 

of the corresponding mesoscopic shapes.
2. With a mesoscopic shape mc = [x1, . . . , x2k+2] defined as in Equation (3) by a landmark con-

figuration matrix (x1, …, x2k+2), determine the corrected mesoscopic shape mτc 
as the orthog-

onal projection of the size-and-shape Y* of the Procrustes mean μc = [z1, . . . , z2k+2] to the set

{m = [y1, . . . , y2k+2] ∈ SΣ2k+2
3 : ‖y1 − y2k+2‖ = a1, ‖yk+2 − yk+1‖ = a2} (12) 

of mesoscopic shapes whose configurations have distance a1 = ‖x1 − x2k+2‖ between the first 
and the last landmark given by that of any configuration of mc and whose distance a2 between 
the central landmarks is the length ℓτc 

which is chosen so that the Fréchet mean suite τc fits 
between them. By Theorem 2.3, with m = 2k + 2, r = 2, σ(1) = k + 2, σ(k + 1) = k + 2 and 
σ( j) = j for j ∈ {2, …, k, k + 3, …, 2k + 1}, the (in practice there will no ties between the land-
marks) desired orthogonal projection to SΣ2k+2

3 (σ, a1, a2) which is the space determined by 
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(12) is given by

y∗1 = αz1 + (1 − α)z2k+2, y∗2k+2 = αz2k+2 + (1 − α)z1

y∗k+1 = βzk+1 + (1 − β)zk+2, y∗k+2 = βzk+2 + (1 − β)zk+1 

where

α =
1
2

1 +
‖x2k+2 − x1‖

‖z2k+2 − z1‖

 

, β =
1
2

1 +
ℓτc

‖zk+2 − zk+1‖

 

and y∗j = zj for j ∈ {1, . . . 2k + 2}\{1, k + 1, k + 2, 2k + 2}.

Output: 

• the corrected suite shape τc and its corrected mesoscopic shape mτc
:= [Y∗].

As mentioned above, we suggest to choose ρ = 50 as roughly twice the size of the smallest class. 
A larger value for ρ would make it very unlikely that the plurality of neighbouring suites for a clash 
suite are from the smallest cluster, because any other nearby clusters will outnumber it. A smaller 
value for ρ would lead to less reliable results and, in some cases, to a majority of outliers in the set.

For many applications of CLEAN, setting DOMINATING = ABSOLUTE can be used as we do 
for analysing two suites of SARS-CoV-2 RNA in the following Section 5. If considerably differing 
class sizes are of concern, setting DOMINATING = RELATIVE ensures assignment to smaller 
classes that dominate neighbourhoods at mesoscopic scale only relatively to their total size. 
This results in greater diversity as illustrated in Online Supplementary Material, Figure 19, apply-
ing CLEAN to the entire benchmark test set from Section 3.4.

4.4 Validation of CLEAN
We apply the CLEAN method from Section 4.3.1 to the 198 clash suites which form the test data 
set C from Section 3.4. For validation, we confirm that backbone correction is realistic and neither 
arbitrary nor ambiguous. For the former, we verify that corrections happen on a scale not larger 
than the underlying X-ray crystallography resolution, see Section 3.3, and for the latter we verify 
that the largest MINT-AGE classes in neighbourhoods Uc from (11) are indeed strongly dominat-
ing in most cases.

In order to relate the amount of correction to resolution, consider the normalised Procrustes dis-
tance between the mesoscopic shape mc of a clash suite c ∈ C and the mesoscopic shape mτc 

of its 
correction by CLEAN,

d2
c :=

1

resolution2

3
degrees of freedom

dΣ(mc, mτc
)2. (13) 

Recalling that the group of 3D Euclidean transformations is of dimension 6, the degrees of free-
dom are given by 3(2k + 2) − 6 = 3 · 2k, so that the inverse of the second quotient above gives 
the number 2k of free landmarks in Σ2k+2

3 taking into account that the resolution incorporates 
the spatial dimension 3.

The histogram in Figure 13 shows that for the vast majority of clash suites c ∈ C, dc is smaller 
than 1. Thus, corrections are only rarely slightly above and mostly well below the order of 
resolution.

In order to assess how dominating torus MINT-AGE classes are in neighbourhoods Uc (c ∈ C), 
the histogram in Figure 14 shows the number of suites in the dominating classes Cjc

. Indeed, for 
considerably more than half of the neighbourhoods, the dominating cluster contains more than 
half of the neighbouring suites. Remarkably, the negative correlation visible in the scatter plot 
in Figure 14 (right) shows that a smaller amount of correction tends to correlate with more ele-
ments being in the dominating cluster.
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5 Application to SARS-CoV-2 suites
With the recent worldwide pandemic of the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), the virus’ RNA structure reconstruction and backbone correction has become 
ever more relevant. Indeed, effective drug and vaccine development necessitates good understand-
ing of the three-dimensional RNA structure, see Croll et al. (2021). Recently, a large number of 
measurements has been added to the Protein Data Bank, see Berman et al. (2000), and as part 
of the Coronavirus Structural Task Force (CSTF) headed by Andrea Thorn, a large number of 
data sets of SARS-CoV-2 and related structures are compiled in a git repository, see Thorn 
et al. (2021). While X-ray crystallography can achieve very high resolution in principle, the large 
viral genome, comprising ∼20,000 bases, is very difficult to crystallize. Therefore, many structures 
are determined by cryogenic electron microscopy (cryo-EM).

5.1 The frameshift stimulation element
In Zhang et al. (2021), the frameshift stimulation element of the SARS-CoV-2 genome was studied 
(see Figure 5, right panel), which, due to its slippery site encodes different proteins simultaneously 
(this method of information compression is shared with other viruses such as HIV-1). As their bal-
anced expression is required for virus replication, this element is believed to be fairly resistant 
against mutations. Hence it is a promising target for antiviral drug design. Its three-dimensional 
structure has been assessed by cryo-EM with a resolution of 6.9 Å using the ribosolve pipeline 
from Kappel et al. (2020), see also Section 3.3. Using a consensus secondary structure of the mol-
ecule and the cryo-EM map, Zhang et al. (2021) proposed 10 possible three-dimensional structure 
models (based on a measurement with mean pairwise root mean squared deviation of 5.68 Å) and 
stored them to the Protein Data Bank. Notably, it was not possible to reliably assign individual 
atom positions, but the secondary arrangement of helical segments and the non-helical linking seg-
ments could be reconstructed, see Zhang et al. (2021) and first panel of Figure 15. In particular, the 
suites linking different helical segments have been difficult to reconstruct. Here we focus on the 
suite determined by Residues 28/29 which we call Suite 1 and on the suite determined by 
Residues 33/34 which we call Suite 2 (referring to enumeration in the PDB file).

5.2 Reconstructing suite 1
Suite 1 (red arrow in Figure 5, right panel, and the left red dot in Figure 15, left panel) is a clash 
suite in all 10 models proposed by Zhang et al. (2021), as determined by PHENIX, see Section 3.3. 
Notably, the P′-O3′ bonds are unphysically long (red verticals in Figure 3, centre right panel), hint-
ing towards a bad structure fit of all 10 proposals. Figure 15 (3rd panel) shows c1, the first clashing 
proposal for Suite 1, at mesoscopic scale and its highly concentrated neighbourhood Uc1 from (11), 
in which 43 out of the 50 suites belong to MINT-AGE Class 4. Its torus mean and c1 at microscopic 
scale are shown in Figure 15 (2nd panel). The situation is very similar for the other clashing 

Figure 14. Left: Histogram of the number of suites in Uc from (11), over all (198) clash suites c ∈ C (test data set), of 
the dominating MINT-AGE class. Right: Scatter plot relating the number of suites in the dominating class of Uc and 
the normalised distance dc from (14), over c ∈ C.
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proposals c2, . . . , c10 for Suite 1: MINT-AGE Class 4 dominates strongly in their concentrated 
neighbourhoods, each warranting only minor corrections at mesoscopic scale (Figure 3, 4th panel) 
and all of their torus means at microscopic scale are nearly indistinguishable (Figure 3, 3rd panel). 
Notably, MINT-AGE Class 4 corresponds to one (Richardson et al., 2008) cluster only (namely 
2a, see Figure 10) which has been characterised there as GNRA 1-2; U-turn.

5.3 Reconstructing suite 2
Suite 2 (blue arrow in Figure 5, right panel, and the right red dot in Figure 15, left panel) is a clash 
suite only in one out of the 10 models proposed by Zhang et al. (2021), as determined by PHENIX, 
see Section 3.3. At microscopic scale (Figure 15, fourth panel, red and black) these models are in-
conclusive as they feature two different clusters and one of the models (red) from the larger cluster 
has a clash score 0.401 Å, slightly above the threshold of 0.4 Å. As before, at mesoscopic scale 
(Figure 15, fifth panel, red and black), the shapes of all 10 models proposed are very similar 
and consistent and there is a single MINT-AGE class that strongly dominates every neighbour-
hood (11), namely Class 1. Figure 15 (fifth panel, green) shows its Procrustes means projected 
to the mesoscopic shapes featuring length constraints from the corresponding mesoscopic shapes 
mc1 , . . . , mc10 of the 10 models and the suite lengths of the corrections from c1, . . . , c10 as detailed 
in Section 4.3.1. In consequence, the CLEAN-MINT-AGE corrections are the torus means of the 
suites of Class 1 in the respective neighbourhoods. Again these are nearly indistinguishable, giving 
one consistent correction for Suite 2 in Figure 15 (fourth panel, green).

6 Discussion
The CLEAN-MINT-AGE procedure presented here, yielding 

1. hierarchical (different shape spaces for multiscale interrelationships),
2. probabilistic (Fréchet means in iterative adaptive torus clusters obtained after circular mode 

hunting, projected to a shape space featuring data-driven constraints),
3. clash free, and
4. fast,

RNA backbone correction which is an important and challenging contribution warranting further 
research in various directions, of which we sketch three.

In particular, we have discovered, described and exploited a relationship of RNA 3D structure 
between a microscopic and a mesoscopic scale. Further research, building on larger data sets, be-
yond the scope of this paper, will investigate this relationship more closely and identify 

Figure 15. First: 2D scheme of the SARS-CoV-2 frameshift stimulation element, adapted from (Zhang et al., 2020, 
Figure 8), see also Figure 5 (right panel), with double-stranded helical stems (green, yellow and blue) and connecting 
Suites 1 and 2 (red dots, only one nucleotide is on the red branch) Second: Model 1 (c1) of Suite 1 (red, clashing) 
proposed by Zhang et al. (2021), the 43 suites from MINT-AGE Class 4 dominating in neighbourhood Uc1 (black) and 
their torus mean (green) at microscopic scale. Third: The corresponding mesoscopic shape mc1 (red), the 43 
mesoscopic shapes of suites from MINT-AGE Class 4 in neighbourhood Uc1 (black) and their Procrustes mean 
geodesically projected to a mesoscopic shape featuring length constraints from mc1 and the microscopic correction 
of c1 (green). Fourth: The 10 different model proposals (one in red clashes, the others in black form two clusters) by 
Zhang et al. (2021) of Suite 2 and their highly consistent correction from MINT-AGE Class 1 (green) at microscopic 
scale. Right: Using same colouring, at mesoscopic scale all 10 models from Zhang et al. (2021) of Suite 2 form one 
cluster for which CLEAN-MINT-AGE provides a moderate correction only.
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relationships between other scales as well and exploit these similarly. As we have found that shape 
at different scales is best described by fundamentally different shape spaces, this involves statistic-
ally linking different geometrical models of shape.

At this point, the two-scale correction method CLEAN we propose corrects a central suite at micro-
scopic scale only. More realistic, again beyond the scope of this paper, are simultaneous corrections of 
all suites involved at the mesoscopic scale (notably, adjacent suites overlap at four atoms), and cor-
rection of suites linked by nucleobase bindings, potentially far away along the backbone. Such cor-
rections can, after elaborate extension, also address backbone-to-backbone-extra-suites clashes and 
even the more rare nucleobase clashes. Obviously, these methods extend to various other biomole-
cules and in particular to protein structure correction, see Hamelryck et al. (2010).

As mentioned in the Introduction, there are elaborate correction methods, for example 
ERRASER from Chou et al. (2013b), building on approximations of highly complex molecular 
dynamics simulations yielding 3D structures following the laws of biophysical chemistry. This 
aims not only at correcting all clashes (i.e., within-suite and between-suites, as well as backbone 
or base to backbone or base), it also aims at various other structure improvements. While for 
the test data set this entire process took several days on the ROSIE servers (Chou et al., 2013a), 
frequently not removing all clashes, our CLEAN method, removing all within-suite- 
backbone-to-backbone clashes, ran within minutes. Since in contrast to corrections based on 
molecular dynamics, as demonstrated in Figures 3 and 15, our proposed corrections can be quite 
different from original clash suite shapes, they may serve as additional initial states for subsequent 
molecular dynamics, and thus provide a powerful tool.
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