
PHYSICAL REVIEW FLUIDS 8, L032601 (2023)
Letter

Lagrangian acceleration and its Eulerian decompositions in
fully developed turbulence

Dhawal Buaria 1,2,* and Katepalli R. Sreenivasan 1,3

1Tandon School of Engineering, New York University, New York, New York 11201, USA
2Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany

3Department of Physics and the Courant Institute of Mathematical Sciences, New York University,
New York, New York 10012, USA

(Received 27 October 2022; accepted 28 February 2023; published 15 March 2023)

We study the properties of various Eulerian contributions to fluid particle acceleration
by using well-resolved direct numerical simulations of isotropic turbulence, with the
Taylor-scale Reynolds number Rλ in the range 140–1300. The variance of convective
acceleration, when normalized by Kolmogorov scales, increases as Rλ, consistent with
simple theoretical arguments, but differing from classical Kolmogorov’s phenomenology,
as well as Lagrangian extension of Eulerian multifractal models. The scaling of the local
acceleration is also linear in Rλ to the leading order, but more complex in detail. The
strong cancellation between the local and convective acceleration—faithful to the random
sweeping hypothesis—results in the variance of the Lagrangian acceleration increasing
only as R0.25

λ , as recently shown by Buaria and Sreenivasan [Phys. Rev. Lett. 128, 234502
(2022)]. The acceleration variance is dominated by the irrotational pressure gradient
contribution, whose variance essentially follows the R0.25

λ scaling; the solenoidal viscous
contributions are comparatively small and follow R0.13

λ , which is the only acceleration
component consistent with multifractal prediction.
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I. INTRODUCTION

In classical mechanics, the dynamics of particle motion is characterized by the acceleration a,
defined by the rate of change of the particle velocity u in a Lagrangian frame. Given its fundamental
role, the statistics of acceleration are of obvious interest in the study of turbulent fluid flows [1–5]
and also for stochastic modeling of associated transport phenomena [6–9]. Of particular interest
is the scaling of acceleration variance 〈|a|2〉 which, according to Kolmogorov’s 1941 mean-field
phenomenology [10] (henceforth K41), can be written as 〈|a|2〉 = a0〈ε〉3/2ν−1/2 [11], where 〈ε〉 is
the mean dissipation rate, ν is the kinematic viscosity, and a0 is a universal constant. However, it
is widely known that, owing to small-scale intermittency, a0 is instead a variable that depends on
the Reynolds number. Following a few decades of investigations [12–20], recent data from direct
numerical simulations (DNS) of isotropic turbulence at high Reynolds numbers have established
that a0 ∼ Rχ

λ with χ ≈ 0.25 [21], where Rλ is the Taylor-scale Reynolds number. This result is
obviously at odds with K41 but, as demonstrated in [21], it is also at odds with the prediction
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χ ≈ 0.135 from Lagrangian extensions of Eulerian multifractal models [22,23]. Our goal here is to
further analyze the scaling of acceleration variance by considering the underlying contributing parts
to the acceleration (as described next).

While particle acceleration is inherently Lagrangian, an Eulerian viewpoint is often more conve-
nient to study fluid flows, whereby the Lagrangian or material derivative is given as

a = Du/Dt = ∂u/∂t + u · ∇u, (1)

where

aL ≡ ∂u/∂t, aC ≡ u · ∇u (2)

are, respectively, the local and convective components, such that aL captures the unsteady rate
of change at a fixed spatial position and aC captures the rate of change due to spatial variations.
Evidently, a = aL + aC (note that the subscripts L and C denote local and convective parts, re-
spectively) [24,25]. In addition, the dynamics of fluid motion in incompressible turbulent flows is
governed by the Navier-Stokes equations

a = −∇P + ν∇2u, (3)

where P is the kinematic pressure. Since ∇ · u = 0 from incompressibility, the viscous term is
solenoidal as well, whereas the pressure gradient term is irrotational, i.e., its curl is zero. Thus the
acceleration can also be written as a = aI + aS (with subscripts I and S representing irrotational
and solenoidal parts, respectively) [13,24], with

aI ≡ −∇P, aS ≡ ν∇2u. (4)

In this Letter, we shall consider both methods of decomposition and study how the Eulerian
components contribute to the observed scaling of acceleration variance. It is worth noting that inter-
mittency theories such as multifractals do not inherently differentiate between various components
and naively predict the same scaling result for all of them, i.e., their variance when scaled with
Kolmogorov variables would scale as Rχ

λ , with χ ≈ 0.135. However, we consider each component
individually and demonstrate that this is not the case, partly because the components are nontrivially
correlated. Utilizing data from the state-of-the-art DNS of isotropic turbulence, we show that
the variance of convective acceleration varies as Rλ, which follows from very simple theoretical
arguments, but differs from multifractal predictions. The variance of local component also varies as
Rλ to the leading order (with weaker second order dependencies), while always remaining slightly
smaller than a2

C . The Lagrangian acceleration results from strong cancellation between these two
large quantities, varying as R0.25

λ . We additionally explore how the properties aI and aS relate to
local and convective accelerations.

II. NUMERICAL APPROACH AND DATABASE

The DNS data utilized here are obtained by solving the incompressible Navier-Stokes equations,
corresponding to the canonical setup of forced stationary isotropic turbulence in a periodic do-
main [26,27]. Highly accurate Fourier pseudospectral methods are utilized for spatial calculations,
with aliasing errors controlled using a combination of grid shifting and truncation [28]. An explicit
second-order Runge-Kutta scheme is used for time integration. The database for the present work
is the same as that of our recent study on acceleration [21] and several other recent works [29–34].
The grid resolution is as high as 122883 and the Taylor-scale Reynolds number Rλ lies in the range
140–1300. Convergence with respect to small-scale resolution and statistical sampling has been
assessed in these previous studies.

As in [21], we have also calculated the relevant statistics using Lagrangian fluid particle tra-
jectories in the same range of Rλ, albeit with lower small-scale resolution [35–37]. At the level
of second order moments reported in this work, the statistics are essentially identical from both
Eulerian and Lagrangian data. However, the Lagrangian particle data are not suitable for studying
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higher order moments, due both to the lack of resolution and accumulated numerical errors resulting
from interpolation of particle velocities [12].

III. RESULTS

A. Theoretical analysis

Before analyzing the DNS data, we present a brief theoretical analysis of various Eulerian
components of acceleration. It is straightforward to prove that, in homogeneous turbulence, the
correlation between an irrotational and a solenoidal vector is always zero (see the Appendix). From
this property, it follows that

〈aI · aS〉 = 0, (5)

〈aI · aL〉 = 0. (6)

Additionally, using statistical stationarity, we can show (see the Appendix) that

〈aS · aL〉 = 0. (7)

Since a = aI + aS , it also follows from Eqs. (6) and (7) that

〈a · aL〉 = 0, (8)

i.e., the Lagrangian acceleration Du/Dt is uncorrelated to the Eulerian acceleration ∂u/∂t . This
property directly yields the following result:

〈aL · aC〉 = −〈|aL|2〉. (9)

These relations allow us to write the acceleration variance as

〈|a|2〉 = 〈|aI |2〉 + 〈|aS|2〉, (10)

〈|a|2〉 = 〈|aC |2〉 − 〈|aL|2〉. (11)

Thus, while the acceleration variance is given by the sum of variances of the pressure gradient and
viscous terms, it is also obtained via a direct cancellation of convective and local components. We
will now explore how the scaling of all these Eulerian contributions affect the scaling of acceleration
variance itself.

B. Properties of aI and aS

It is well known that acceleration variance is dominated by the irrotational pressure gradient
contribution and the corresponding viscous contribution is negligible, i.e., |aI | � |aS| [13,24]. We
first reaffirm this result in Fig. 1(a), which shows the fractional contributions of aI and aS , and also
the correlation 〈aI · aS〉, which is zero as expected. It is evident that 〈|a|2〉 ≈ 〈|aI |2〉. We can readily
show that

〈a · aI〉 = 〈aC · aI〉 = 〈|aI |2〉, 〈a · aS〉 = 〈aC · aS〉 = 〈|aS|2〉, (12)

which demonstrate that both the pressure gradient and viscous contributions predominantly arise
from the convective component. This is not surprising since 〈aI · aL〉 and 〈aS · aL〉 are both zero
[from Eqs. (6) and (7)]. We shall elaborate on this point in the next subsection.

It is worth noting that, while the contribution from the viscous term aS is negligible in comparison
to aI , it is nevertheless finite and intimately connected to the fundamental dynamics of turbulence.
In particular, its variance can be written as [11,13]

〈|aS|2〉/a2
K = −35

2

S
(15)3/2

, (13)
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FIG. 1. (a) Fractional contributions of the irrotational pressure gradient and solenoidal viscous terms to
the acceleration variance, as well as their mutual correlation, as functions of Rλ. (b) Variance of the solenoidal
viscous acceleration normalized by the Kolmogorov scales, as a function of Rλ. For all data points, the statistical
error bars are smaller than the marker size.

where aK = 〈ε〉3/4ν−1/4 and S is the skewness of longitudinal velocity gradients, which is always
negative in turbulence, characterizing the energy cascade from large to small scales [38,39]. The
skewness can also be related to vortex stretching [40] and is known to weakly increase in mag-
nitude as R0.13

λ [41]. This scaling matches the prediction from extending Eulerian multifractals to
Lagrangian variables [22,39,42]. Figure 1(b) shows a satisfactory agreement with this result (except
at the lowest Reynolds number).

However, our recent work [21] computed the acceleration variance 〈|aI |2〉 and found it to vary
as R0.25

λ . We expressed the acceleration analytically in terms of the fourth order velocity structure
functions [43,44] and showed that

〈|a|2〉/a2
K ≈ 〈|aI |2〉/a2

K ∼ R0.25
λ . (14)

The data from various sources, including our own DNS, show excellent agreement with this
prediction (see [21]; we also reaffirm it below). It then follows that an extension of Eulerian
multifractals to explain intermittency of Lagrangian quantities is fraught with uncertainties.

C. Properties of aL and aC

It follows from Eq. (11) that acceleration variance results from direct cancellation between the
variances of aC and aL. This cancellation is consistent with the random sweeping hypothesis [45,46],
which states that the small scales of turbulence are swept past an Eulerian observer on a much shorter
time scale than the time scale governing their dynamical evolution. The nominal validity of this
hypothesis is also implicitly reflected in the result that a = Du/Dt and aL = ∂u/∂t are uncorrelated
[see Eq. (8)].

The convective acceleration aC = u · ∇u essentially represents a correlation between the velocity
and its gradients. Given the general understanding that the former characterizes the large scales
and the latter the small scales, we can assume that the two are essentially uncorrelated (provided
Rλ is sufficiently high). Thus simple scaling arguments suggest that |aC | ∼ u′/τK , where u′ is the
root-mean-square (rms) velocity and τK is the Kolmogorov time scale, characterizing the rms of
velocity gradients. We then have

〈|aC |2〉/a2
K = c Rλ, (15)

L032601-4



LAGRANGIAN ACCELERATION AND ITS EULERIAN …

FIG. 2. (a) Variances of local and convective acceleration, normalized by Kolmogorov scales, as a function
of Rλ. (b) Ratio of variance of local and convective acceleration; inset shows deficit of the ratio from unity.
(c) Difference between the convective and local acceleration as a function of Rλ, compared directly with
acceleration variance. For all data points, the statistical error bars are smaller than the marker size.

where c is some proportionality constant and we have utilized the classical estimate u′/uK ∼ R1/2
λ

[39] (uK being the Kolmogorov velocity scale). To the first order, it can be also expected that 〈|aL|2〉
also follows a similar scaling. This can be inferred indirectly by noting that

〈|aL|2〉 = 〈|aC |2〉 − 〈|a|2〉 (16)

= 〈|aC |2〉 − 〈|aI |2〉 − 〈|aS|2〉, (17)

where observations show that the scaling of |aC |2 dominates over the other two components.
Figure 2(a) shows the variances of local and convective acceleration. It can be immediately seen

that |aC |2/a2
K follows a simple linear scaling in Rλ, as anticipated in Eq. (15). On the other hand,

|aL|2/a2
K approaches this scaling as Rλ increases, but noticeably deviates at low Rλ. Using the results

in Eqs. (13)–(17), the precise scaling of 〈|aL|2〉 can be quantified as

〈|aL|2〉/a2
K = cRλ − c1R0.25

λ − c2R0.13
λ , (18)

where c1 and c2 are proportionality constants. Evidently, the deviations at lower Rλ can be un-
derstood in terms of these additional terms. It also follows from here that the ratio 〈|aL|2〉/〈|aC |2〉
has the form 1 − (c1/c)R−0.75

λ − (c2/c)R−0.87
λ . Asymptotically, when normalized by Kolmogorov

variable, 〈|a|2〉 = 〈|aC |2〉 − 〈|aL|2〉 ≈ c1R−0.25
λ .
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FIG. 3. (a) Ratio of variance of local acceleration to that of solenoidal component of convective accelera-
tion, as a function of Rλ. (b) Ratio of variance of solenoidal viscous acceleration to that of local acceleration.
For all data points, the statistical error bars are smaller than the marker size.

To verify the behaviors of aL and aC we plot in Fig. 2(b) the ratio y = 〈|aL|2〉/〈|aC |2〉 as a function
of Rλ. The inset shows 1 − y, which is in excellent agreement with a power law R−0.75

λ . The ratio
steadily approaches unity, which demonstrates that, asymptotically, only the R0.25

λ term contributes
to Lagrangian acceleration. This is also confirmed by Fig. 2(c), which shows 〈|aC |2〉 − 〈|aL|2〉
normalized by Kolmogorov scales with the acceleration variance data from [21]—both sets of points
are indistinguishable and in excellent agreement with R0.25

λ scaling.

D. Further analysis of the role of aC

The near cancellation between aL and aC can be further analyzed by noticing that aL is solenoidal,
whereas aC is not; thus they can never completely cancel each other. Further, since aI is irrotational
and aS is solenoidal, we can write [24]

aCI = aI , (19)

aL + aCS = aS, (20)

where we have decomposed aC into irrotational and solenoidal components, i.e., aC = aCI + aCS .
Such a decomposition can readily be implemented in Fourier space using the Helmholtz decom-
position, i.e., for a vector V with Fourier coefficient V̂, the Fourier coefficients of irrotational and
solenoidal parts are, respectively, given as

V̂I (k) = (k · V̂)k/k2, V̂S (k) = V̂ − V̂I , (21)

where k is the wave vector and k = |k|. Note that irrotationality is imposed in Fourier space by the
condition k × V̂I = 0 and solenoidality by k · VS = 0 (both of which can be easily verified).

From the above decomposition, it trivially follows that |aCI |2 = |aI |2 and 〈|aC |2〉 = 〈|aCI |2〉 +
〈|aCS |2〉 and we can also show that

〈aL · aCS 〉 = −〈|aL|2〉, (22)

〈|aS|2〉 = 〈|aCS |2〉 − 〈|aL|2〉. (23)

Thus the very small solenoidal component aS results from near perfect cancellation between aCS

and aL. We quantify this in Fig. 3. Panel (a) shows that the ratio 〈|aL|2〉/〈|aCS |2〉 steadily approaches
unity as Rλ increases (though it cannot be strictly unity since |aS| is always finite). In panel (b), the
ratio 〈|aS|2〉/〈|aL|2〉 is shown, which steadily decreases with Rλ, as expected.
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In summary, based on the present analysis, we can essentially write |aC | � |aCS | � |aL| � |a| ≈
|aI | = |aCI | � |aS|. Perhaps surprisingly, 〈|a|2〉 ≈ 〈|aI |2〉 ∼ R0.25

λ , while variances of the compo-
nents aC and aL have far stronger dependencies on Rλ; for example, 〈|aC |2〉 essentially scales
as Rλ.

IV. CONCLUSIONS

The most interesting result of the analysis is that the local and convection terms of acceleration
are anticorrelated and both of them depart from both K41 and also from the multifractal predictions.
In particular, the variance of both essentially scale linearly with Rλ. The two terms are, however,
strongly anticorrelated. Thus the difference between the two, which specifies the Lagrangian
acceleration, scales as R0.25

λ [21]. This result, which is an indication that the two terms are separately
much more intermittent than their algebraic (vector) sum, is also at odds with Kolmogorov’s and
Lagrangian extensions of Eulerian multifractals, but not nearly as much as their sum. The scaling
〈|aC |2〉 ∼ Rλ comes from the assumption that u and ∇u are uncorrelated, so essentially 〈|aC |2〉
follows the same scaling as 〈|u|2〉. The interpretation is that the small scales are simply swept by
the large scale velocity without getting affected, which is consistent with the random sweeping
hypothesis. The only part that is consistent with mutlifractals is the solenoidal viscous part, but its
overall contribution to acceleration is essentially negligible. Overall, our results demonstrate that
the behavior of Lagrangian acceleration and its Eulerian components is unlikely to be captured by
phenomenological approaches, such as multifractals, due to underlying nontrivial correlations—
highlighting the need for alternative models that also take into account the Navier-Stokes dynamics.
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APPENDIX: VANISHING CORRELATIONS BETWEEN VARIOUS EULERIAN
CONTRIBUTIONS TO ACCELERATION

Let us assume that vector A is irrotational and vector B is solenoidal; this implies ∇ × A = 0
and ∇ · B = 0 (or ∂Bi/∂xi = 0). For the former, we can write Ai = ∂φ/∂xi, where φ is some scalar
quantity. Thus the correlation can be simplified as

〈A · B〉 =
〈
∂φ

∂xi
Bi

〉
(A1)

=
〈
∂ (φBi )

∂xi
− φ

∂Bi

∂xi

〉
(A2)

= ∂〈φBi〉
∂xi

−
〈
φ

∂Bi

∂xi

〉
(A3)

= 0, (A4)

where the first term is zero from statistical homogeneity and the second term is zero since ∂Bi/∂xi.
Thus, for the components of acceleration, we can write

〈aI · aS〉 = 0, (A5)

〈aI · aL〉 = 0. (A6)
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For the correlation between aS and aL, the following steps have to be considered:

〈aS · aL〉 =
〈
ν

∂2ui

∂xk∂xk
· ∂ui

∂t

〉
(A7)

= ν

〈
∂

∂xk

(
∂ui

∂xk

∂ui

∂t

)
− ∂ui

∂xk
· ∂

∂t

(
∂ui

∂xk

)〉
(A8)

= ν

〈
∂

∂xk

(
∂ui

∂xk

∂ui

∂t

)〉
− ν

2

〈
∂

∂t

(
∂ui

∂xk

)2
〉

(A9)

= 0. (A10)

The last step follows from the fact that the first term is zero from statistical homogeneity, whereas
the second term is zero from statistical stationarity. Since a = aI + aS , it also follows that

〈a · aL〉 = 0. (A11)
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