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Binary black hole simulations become increasingly more computationally expensive with smaller mass ratios,
partly because of the longer evolution time, and partly because the lengthscale disparity dictates smaller time
steps. The program initiated by Dhesi et al. [Phys. Rev D 104, 124002 (2021)] explores a method for alleviating
the scale disparity in simulations with mass ratios in the intermediate astrophysical range (10−4 . 𝑞 . 10−2),
where purely perturbative methods may not be adequate. A region (“worldtube”) much larger than the small
black hole is excised from the numerical domain, and replaced with an analytical model approximating a tidally
deformed black hole. Here we apply this idea to a toy model of a scalar charge in a fixed circular geodesic orbit
around a Schwarzschild black hole, solving for the massless Klein-Gordon field. This is a first implementation
of the worldtube excision method in full 3+1 dimensions. We demonstrate the accuracy and efficiency of the
method, and discuss the steps towards applying it for evolving orbits and, ultimately, in the binary black-hole
scenario. Our implementation is publicly accessible in the SpECTRE numerical relativity code.

I. INTRODUCTION

Inspiraling binary black holes (BBHs) are the most nu-
merous source of gravitational wave signals detected by
the LIGO and Virgo observatories [1–4]. The mass ra-
tio is one of the most important characteristics of these
binaries, and observations so far [3, 5–8] predominantly
find mass ratios close to unity. However, GW190814 and
GW200210 092254 have mass ratios 𝑞 ≡ 𝑚2/𝑚1 ∼ 0.11 [4,
9], and GW191219 163120—where the secondary’s mass
suggests it is a neutron star—is estimated to have 𝑞 ∼ 0.04 [4].

It is likely that upcoming observing runs by ground-based
detectors will continue to record binaries with small mass-
ratios. Future ground-based detectors like the Einstein Tele-
scope [10] and Cosmic Explorer [11], featuring an improved
low-frequency sensitivity, will be able to detect the capture
of stellar-mass black holes (BHs) by intermediate-mass BHs,
with mass-ratios down to 𝑞 ∼ 10−3 [12]. Moreover, space-
borne detectors, like the LISA observatory [13, 14], will be
sensitive to binaries with mass ratios in the entire range from
𝑞 ∼ 1 to extreme mass-ratio inspirals with 𝑞 ∼ 10−5 [12, 15–
17].

In anticipation of this remarkable expansion in observa-
tional reach, it is important to develop accurate theoretical
waveform templates that reliably cover the entire relevant
range of mass ratios. Standard Numerical Relativity (NR)
methods [18] work well for mass ratios in the range 0.1 . 𝑞 ≤
1 (see e. g. [19]). However, simulations become progressively
less tractable at smaller 𝑞, and few numerical simulations have
been performed at 𝑞 < 0.1 so far. The root cause is a prob-
lematic scaling of the required simulation time with 𝑞. Fun-
damentally, one expects the required simulation time to grow

in proportion to 𝑞−2, where one factor of 𝑞−1 is associated
with the number of in-band orbital cycles, and the second fac-
tor 𝑞−1 comes from the Courant-Friedrich-Lewy (CFL) stabil-
ity limit on the time step of the numerical simulation, arising
from the requirement to resolve the smaller black hole. The
state of the art in small-𝑞 NR is represented by the recent sim-
ulations performed at RIT of the last 13 orbital cycles prior to
merger of a black-hole binary system with 𝑞 = 1/128 [20, 21].
Head-on simulations, where the needed evolution time is or-
ders of magnitudes shorter than for inspirals, are possible at
even smaller mass-ratios [20, 22]. While these simulations
represent an important proof of concept, their computational
cost is extremely high, and it is presently impossible to ex-
plore the full parameter space including spin and eccentricity.

Binaries with extreme mass-ratios, say 𝑞 . 10−4, corre-
sponding to a compact object orbiting a massive black hole in
a galactic nucleus, can be modeled with a perturbative expan-
sion in 𝑞. This “gravitational self-force” (GSF) approach [23,
24] incorporates order-by-order in 𝑞 the small deviations of
the motion of the small body away from the geodesic mo-
tion that applies for test-bodies. The GSF approach is the
only method for modeling extreme-mass-ratio inspirals, and
development is ongoing towards waveform models suitable
for signal identification and interpretation with LISA [25–
30]. With NR being well-suited to comparable masses and the
GSF approach to extreme mass-ratios, the question arises of
how to model the intermediate mass-ratio regime. For simple
binary systems (of nonspinning black holes in quasi-circular
or eccentric inspirals) NR simulations suggest [31, 32] that
GSF calculations may be sufficiently accurate even at mass-
ratios reaching the NR regime. “Post-adiabatic” GSF wave-
forms [30] for non-spinning, quasi-circular binaries have
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shown those predictions were somewhat over-optimistic in the
𝑞 > 0.1 range [33], but they have borne out the prediction
for smaller mass ratios . 0.1. However, it remains unclear
whether the two methods, separately applied, can achieve re-
liable waveform models of intermediate-mass-ratio inspirals
over the full astrophysically relevant parameter space.

In this paper we continue the work of [34] to develop a
new approach to the simulation of intermediate-mass-ratio
systems, combining NR techniques with black hole perturba-
tion theory. The general idea is to excise a large region around
the smaller black hole. Inside this region—a “worldtube” in
spacetime—an approximate analytical solution is prescribed
for the spacetime metric, arising from the perturbation theory
of compact objects in a tidal environment. An NR simulation
is set up for the binary, in which the worldtube’s interior is
excised from the numerical domain, and replaced with the an-
alytical solution. At each time step of the numerical evolution,
the numerical solution (outside the worldtube) and analytical
solution inside are matched across the worldtube’s boundary,
in a process that fixes a priori unknown tidal coefficients in the
analytical solution, gauge degrees of freedom, and also pro-
vides boundary conditions to the NR evolution. The intended
effect of this construction is to partially alleviate the scale dis-
parity that thwarts the efficiency of the numerical evolution at
small 𝑞: The smallest length scales on the numerical domain
is now that of the worldtube-radius 𝑅, rather than the scale 𝑚2
of the smaller body. As a result, the CFL limit is expected to
increase by a factor 𝑅/𝑚2 � 1, with a comparable gain in
computational efficiency.

In Ref. [34], as also in the present work, we consider a
linear scalar-field toy model where the small black hole is
replaced with a pointlike scalar charge moving on a circu-
lar geodesic around a Schwarzschild black hole. Instead of
tackling the full Einstein’s equations, one solves the less com-
plicated massless linear Klein-Gordon equation for a scalar
field. Our previous work [34] decomposed the scalar field into
spherical harmonics and solved the resulting 1+1-dimensional
(1+1D) partial differential equation for each mode separately.
Such a modal decomposition will not be possible in the fully
nonlinear BBH case. As a step towards the BBH case, in
this paper, we derive and implement a generalized match-
ing scheme in full 3+1D. Our implementation is based on
the SpECTRE platform [35], a new general-relativistic code
developed by the SXS collaboration, which employs a nodal
discontinuous Galerkin method with task-based parallelism.
SpECTRE uses Charm++/Converse [36, 37], which was
developed by the Parallel Programming Laboratory in the
Department of Computer Science at the University of Illi-
nois at Urbana-Champaign. SpECTRE uses Blaze [38,
39], HDF5 [40], the GNU Scientific Library (GSL) [41],
yaml-cpp [42], pybind11 [43], libsharp [44], and
LIBXSMM [45]. The figures in this article were produced with
matplotlib [46, 47], NumPy [48], and ParaView [49,
50].

The paper is organized as follows. In Section II we describe
our scalar-field model, and formulate it as an initial-boundary
evolution problem suitable for implementation on SpECTRE.
Section III describes the construction of the approximate ana-

lytical solution inside the worldtube. In Section IV, we show
how the unknown parameters of this local solution can be con-
tinuously determined from the evolution data on the world-
tube boundary, using a set of ordinary differential equations
(in time) derived from the Klein-Gordon equations. The fully
specified solution inside the worldtube is then used to formu-
late boundary conditions for the evolution system. We present
the results of our simulations in Section V, and demonstrate
a good agreement with both analytical solutions in limiting
cases, and numerical results from other simulations. We ex-
plore the convergence of our numerical solutions with world-
tube size, and show that its rate matches our theoretical ex-
pectations. Finally, in Section VI, we summarize our findings
and discuss the next steps in our program. We use geometrized
units throughout the text with 𝐺 = 𝑐 = 1.

II. NUMERICAL FIELD EVOLUTION OUTSIDE THE
WORLDTUBE

We place a pointlike particle with scalar charge 𝑞 on a fixed,
geodesic circular orbit 𝛾 around a Schwarzschild black hole of
mass 𝑀 . The evolution of the scalar field Ψ is governed by the
massless Klein-Gordon equation,

𝑔𝜇𝜈∇𝜇∇𝜈Ψ = −4𝜋𝑞
∫
𝛾

𝛿4 (𝑥 − 𝑥𝑝 (𝜏))√−𝑔 𝑑𝜏. (1)

Here 𝑔𝜇𝜈 is the inverse Schwarzschild metric, and ∇𝜇 is the
covariant derivative compatible with it. 𝑥𝑝 (𝜏) is the particle’s
geodesic worldline parameterized in terms of proper time 𝜏.
In Kerr-Schild coordinates 𝑥𝛼 = (𝑡, 𝑥𝑖), the worldline with

orbital radius 𝑟𝑝 and angular velocity 𝜔 =

√︃
𝑀/𝑟3

𝑝 is given
by

𝑥𝛼𝑝 (𝑡) =
(
𝑡, 𝑟𝑝 cos(𝜔𝑡), 𝑟𝑝 sin(𝜔𝑡), 0

)
, (2)

where we have fixed the orbital plane and phase without loss
of generality.

We excise the interior of a sphere with constant Kerr-Schild

radius 𝑅 =

√︃
𝛿𝑖 𝑗 (𝑥𝑖 − 𝑥𝑖𝑝) (𝑥 𝑗 − 𝑥 𝑗𝑝), centered on the particle’s

position, from the numerical domain. We refer to this excision
region as the worldtube and elaborate in Sec. IV how bound-
ary conditions are provided to the evolution domain.

Outside the worldtube, the numerical evolution of the
scalar-field variable ΨN (‘N ’ for ‘numerical’, to contrast with
the analytical solution inside the worldtube, to be introduced
below) is governed by the source-free Klein-Gordon equation
on the fixed background spacetime:

𝑔𝜇𝜈∇𝜇∇𝜈ΨN = 0. (3)

The background spacetime is given in the usual 3+1 split,

𝑑𝑠2 = −𝛼2𝑑𝑡2 + 𝛾𝑖 𝑗 (𝑑𝑥𝑖 + 𝛽𝑖𝑑𝑡) (𝑑𝑥 𝑗 + 𝛽 𝑗𝑑𝑡), (4)

where 𝛼 is the lapse, 𝛽𝑖 is the shift and 𝛾𝑖 𝑗 is the spatial metric
on 𝑡 = const. hypersurfaces. The background spacetime of
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our simulations is a single Schwarzschild black hole in Kerr-
Schild coordinates.

The Klein-Gordon equation is transformed into the stan-
dard first-order form by introducing the auxiliary vari-
ables [51]

Π = −𝛼−1 (𝜕𝑡ΨN − 𝛽𝑖𝜕𝑖ΨN), (5a)

Φ𝑖 = 𝜕𝑖Ψ
N . (5b)

This introduces two constraint fields [52],

𝐶𝑖 = 𝜕𝑖Ψ
N −Φ𝑖 , (6)

𝐶𝑖 𝑗 = 𝜕𝑖Φ 𝑗 − 𝜕 𝑗Φ𝑖 , (7)

which must vanish for any solution to the original, second-
order evolution equation. Following [53], we write the first-
order evolution equations for the vacuum Klein-Gordon equa-
tion (3) as

𝜕𝑡Ψ
N − (1 + 𝛾1)𝛽𝑖𝜕𝑖ΨN = −𝛼Π − 𝛾1𝛽

𝑖Φ𝑖 ,

(8a)

𝜕𝑡Π − 𝛽𝑘𝜕𝑘Π + 𝛼𝛾𝑖𝑘𝜕𝑖Φ𝑘 − 𝛾1𝛾2𝛽
𝑖𝜕𝑖Ψ

N =

−𝛾𝑖 𝑗Φ𝑖𝜕𝑗𝛼 − 𝛾1𝛾2𝛽
𝑖Φ𝑖 ,

(8b)

𝜕𝑡Φ𝑖 − 𝛽𝑘𝜕𝑘Φ𝑖 + 𝛼𝜕𝑖Π − 𝛾2𝛼𝜕𝑖Ψ
N =

−Π𝜕𝑖𝛼 +Φ𝑗𝜕𝑖𝛽
𝑗 − 𝛾2𝛼Φ𝑖 .

(8c)

The lapse 𝛼, shift 𝛽𝑖 , spatial metric 𝛾𝑖 𝑗 , inverse spatial met-
ric 𝛾𝑖 𝑗 , trace of the extrinsic curvature 𝐾 := 𝛾𝑖 𝑗𝐾𝑖 𝑗 and trace
of the spatial Christoffel symbol Γ𝑖 := 𝛾 𝑗𝑘Γ𝑖

𝑗𝑘
appearing in

Eqs. (8) depend only on the background Schwarzschild space-
time. Explicitly, they read as follows in Kerr-Schild coordi-
nates:

𝛼 =

(
1 + 2𝑀

𝑟

)−1/2
, (9a)

𝛽𝑖 =
2𝑀𝛼2

𝑟2 𝑥𝑖 , (9b)

𝛾𝑖 𝑗 = 𝛿𝑖 𝑗 +
2𝑀𝛼2

𝑟3 𝑥𝑘𝑥𝑙𝛿𝑖𝑘𝛿 𝑗𝑙 , (9c)

𝛾𝑖 𝑗 = 𝛿𝑖 𝑗 − 2𝑀𝛼2

𝑟3 𝑥𝑖𝑥 𝑗 , (9d)

𝐾 =
2𝑀𝛼3

𝑟2

(
1 + 3𝑀

𝑟

)
, (9e)

Γ𝑖 =
8𝑀2 + 3𝑀𝑟(
2𝑀𝑟 + 3𝑟2)2 𝑥

𝑖 , (9f)

where 𝑟 =
√︃
𝛿𝑖 𝑗𝑥

𝑖𝑥𝑘 is the areal radius from the central black
hole. The variables 𝛾1 and 𝛾2 appearing in Eqs. (8) are con-
straint damping parameters. Compared to the first-order re-
duction presented in [52], the additional term 𝛾1𝛾2𝛽

𝑖𝐶𝑖 in
Eq. (8b) ensures that the system is symmetric hyberbolic for
any values of 𝛾1 and 𝛾2 [53]. For 𝛾2, we found that a central

Gaussian profile 𝛾2 = 𝐴𝑒−(𝜎𝑟 )
2 + 𝑐 with 𝐴 = 10, 𝜎 = 10−1/𝑀

and 𝑐 = 10−4 results in a long-term stable evolution for all
tested systems. We choose 𝛾1 = 0 throughout.

The evolution equations (8) are in the general symmetric
hyperbolic form

𝜕𝑡𝜓
𝑎 + 𝐴𝑖𝑎𝑏𝜕𝑖𝜓𝑏 = 𝐹𝑎, (10)

with 𝜓𝑎 := (Ψ,Π,Φ𝑖) representing the set of first-order vari-
ables, enumerated by the indices 𝑎 and 𝑏. For the imposition
of boundary conditions at a boundary with normal co-vector
𝑛̂𝑖 , we solve the (left) eigenvalue problem

𝑒𝑎̂𝑎 𝑛̂𝑖𝐴
𝑖𝑎
𝑏 = 𝑣 (𝑎̂)𝑒

𝑎̂
𝑏 (11)

for the eigenvalues 𝑣 (𝑎̂) and eigenvectors 𝑒𝑎̂𝑏 , enumerated by
the index 𝑎̂. The 𝑣 (𝑎̂) are known as the characteristic speeds,
and the parentheses indicate that there is no implicit sum con-
vention on the right hand side of Eq. (11). The co-vector 𝑛̂𝑖 is
normalized with respect to the three metric, i.e. 𝛾𝑖 𝑗 𝑛̂𝑖 𝑛̂ 𝑗 = 1,
and we define 𝑛̂𝑖 = 𝛾𝑖 𝑗 𝑛̂ 𝑗 . The characteristic fields 𝜓 𝑎̂ are ob-
tained by projecting the evolved variables 𝜓𝑎 onto the set of
eigenvectors 𝑒𝑎̂𝑎:

𝜓 𝑎̂ = 𝑒𝑎̂𝑎 𝜓
𝑎 . (12)

For the evolution system (8), the characteristic fields are 𝜓 𝑎̂ =

(𝑍1, 𝑍2
𝑖
,𝑈+,𝑈−) with

𝑍1 = ΨN , (13a)

𝑍2
𝑖 = 𝑃

𝑘
𝑖 Φ𝑘 , (13b)

𝑈± = Π ± 𝑛̂𝑖Φ𝑖 − 𝛾2Ψ
N . (13c)

Here, 𝑃𝑘
𝑖
= 𝛿𝑘

𝑖
− 𝑛̂𝑘 𝑛̂𝑖 denotes the projection operator or-

thogonal to 𝑛̂𝑖 , so that 𝑍2
𝑖

carries only two degrees of free-
dom. The corresponding characteristic speeds are 𝑣𝑍 1 =

−𝑛̂𝑖𝛽𝑖 (1 + 𝛾1) , 𝑣𝑍 2 = −𝑛̂𝑖𝛽𝑖 and 𝑣𝑈± = −𝑛̂𝑖𝛽𝑖 ± 𝛼. We note
that the fields 𝑈± reduce to the known physical retarded/ad-
vanced derivatives 𝜕𝑡Ψ ± 𝜕𝑟Ψ in flat space with 𝛾2 = 0. The
other characteristic fields result from the reduction of the PDE
system to first order.

Boundary conditions must be specified at the external
boundaries of the domain for each characteristic field, if and
only if it is flowing into the domain, specifically those with
negative characteristic speeds. There are three external bound-
aries in our domain: one excision sphere within the central
black hole, one excision sphere around the scalar charge (the
surface of the worldtube), and the outer boundary.

At the black hole excision sphere, all characteristic fields
are flowing out of the computational domain into the excised
domain, so no boundary conditions need to be applied. For
the outer boundary and at the worldtube boundary, the fields
𝑍1, 𝑍2

𝑖
may require boundary conditions, while 𝑈− always

requires ones and𝑈+ never requires ones.
Boundary conditions for the physical characteristic field

𝑈− at the outer boundary are derived from the second-order
Bayliss-Turkel radiation condition [54]. These boundary con-
ditions are applied with the method of Bjorhus [55]. At the
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worldtube boundary, the local solution inside the worldtube is
used to provide boundary conditions for 𝑈−, as explained in
detail in Section IV.

Boundary conditions for 𝑍1 and 𝑍2
𝑖

can be derived by re-
quiring that there are no constraint violations flowing into the
domain [56], as described in Appendix A. These constraint-
preserving boundary conditions are applied with the method
of Bjorhus [55] at the worldtube boundary and at the outer
boundary; see Eq. (A11).

The evolution equations (8) are solved with SpECTRE [35],
which employs a nodal discontinuous Galerkin (DG) scheme
in 3+1 dimensions. The domain is built up of several hundred
DG elements, each endowed with a tensor product of Leg-
endre polynomials using Gauss-Lobatto quadrature. The ele-
ments are deformed from unit cubes to fit the domain structure
using a series of smooth maps as illustrated in Fig. 1. Dis-
continuous Galerkin methods require a choice of numerical
flux that dictates how fields are evolved on element bound-
aries where they are multiply defined [57]. Here we employ
an upwind flux.

SpECTRE uses dual coordinate frames [58] to solve the
evolution equations. The components of the tensors in the
evolution Eqs. (8) are constructed in Kerr-Schild coordinates
𝑥𝑖 . We refer to these as the inertial frame because the coor-
dinates are not rotating with respect to the asymptotic frame
at spatial infinity. The evolution equations for the inertial
components are solved as functions of co-rotating coordinates
(𝑡, 𝑥𝚤) = (𝑡, 𝑥, 𝑦̄, 𝑧) given by the transformation

𝑡 = 𝑡, (14a)
𝑥 = 𝑥 cos(𝜔𝑡) + 𝑦 sin(𝜔𝑡), (14b)
𝑦̄ = −𝑥 sin(𝜔𝑡) + 𝑦 cos(𝜔𝑡), (14c)
𝑧 = 𝑧. (14d)

Tensor components in this frame we denote with a bar, as in
𝑔𝛼̄𝛽 . For more demanding situations (e.g. binary black hole
simulations), the transformation 𝑥𝑖 → 𝑥𝚤 can take a much
more complicated form [59, 60]. The grid points of the DG
domain, as well as the particle position 𝑥𝚤𝑝 = (𝑟𝑝 , 0, 0) are
constant in space in these coordinates, which we will refer
to as grid coordinates. The internal worldtube solution is
evolved in the grid frame directly, which considerably sim-
plifies the formulation of the matching scheme in Sec. IV.

A Dormand-Prince time stepper is used to advance the solu-
tion of the numerical fields with a global time step. We apply a
weak exponential filter to the evolution fields after every time
step to ensure stability of the evolution.

The code is parallelized using the heterogeneous task-based
parallelism framework Charm++ [61]. The inclusion of the
worldtube does not adversely impact the parallel efficiency,
as its computational cost is negligible compared to even a sin-
gle DG element evaluation, and no additional communication
between cores is introduced.

Figure 1. Illustration of the computational domain: Shown is the
equatorial plane, with height-deformation proportional to the value
of the scalar field. The grid lines correspond to the DG-element
boundaries of the 3-D numerical evolution. The central blue/green
peak represents the worldtube, where the approximate solution is
dominated by the singularity of the scalar field at the point-charge.
Left of the peak an excision region is cut out within the horizon of
the central black hole. A zoomed-out view of the entire domain is
shown in Figure 2.

III. APPROXIMATE SOLUTION INSIDE THE
WORLDTUBE

Inside the worldtube, the scalar field is given by an ana-
lytical expansion in powers of coordinate distance from the
particle’s worldline 𝛾. We use ΨA to denote this analytical
solution, and we use a formal parameter 𝜖 = 1 to count pow-
ers of the separation between the worldline and the field point.

As in Ref. [34], we split the field ΨA into a puncture field
ΨP and a regular field ΨR :

ΨA = ΨP +ΨR . (15)

ΨP is an approximate particular solution to the inhomoge-
neous equation (1), and it will be fully determined in ad-
vance; ΨR is an approximate smooth solution to the ho-
mogeneous equation, and it will be determined dynamically
through matching ΨA to ΨN at the worldtube boundary.

We express both ΨP and ΨR in terms of the coordinate
distance Δ𝑥𝛼 := 𝑥𝛼 − 𝑥𝛼, where 𝑥𝛼 is a reference point on
𝛾. For a given field point 𝑥𝛼 at coordinate time 𝑡, we let 𝑥𝛼 :=
𝑥𝛼𝑝 (𝑡) be the point on 𝛾 at the same value of 𝑡, such that Δ𝑡 = 0.
Tensors evaluated at 𝑥𝛼 are written with a tilde, as in 𝑔̃𝜇𝜈 . To
facilitate matching ΨA to ΨN , we ultimately express both ΨP

and ΨR in the co-rotating grid coordinates (𝑡, 𝑥𝚤) introduced
in Eq. (14), but most of this section applies in both inertial and
co-rotating coordinates.

Unlike in Ref. [34], for ΨP we use an approximation to the
Detweiler-Whiting singular field [62]; this choice ensures that
we can calculate the scalar self-force directly from the regu-
lar field ΨR . Covariant expansions of the Detweiler-Whiting
singular field are readily available to high order in 𝜖 ; see [63–
65], for example, with [63] deriving the scalar singular field
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to the highest order in the literature, O(𝜖4). These covariant
expressions contain several ingredients. First among them is
Synge’s world function 𝜎(𝑥, 𝑥) [66], which is equal to half
the squared geodesic distance between 𝑥 and 𝑥. Its gradient,
𝜎̃𝛼 := ∇̃𝛼𝜎(𝑥, 𝑥), is a directed measure of distance from 𝑥 to
𝑥. The projection of 𝜎̃𝛼 tangent to the worldline has magni-
tude

𝜚 := 𝜎̃𝛼𝑢̃𝛼, (16)

and the projection normal to the worldline has magnitude

𝑠 :=
√︃
(𝑔̃𝛼𝛽 + 𝑢̃𝛼𝑢̃𝛽)𝜎̃𝛼𝜎̃𝛽 , (17)

where 𝑢̃𝛼 is the particle’s four-velocity at time 𝑡. In terms of
these quantities, the covariant expansion of ΨP through order
𝜖2 is given by [63, 65]

ΨP = 𝑞

{
1
𝜖 𝑠

+ 𝜖

6𝑠3
(𝜚2 + 𝑠2)𝐶̃𝑢𝜎𝑢𝜎

+ 𝜖2

24𝑠3
[
(𝜚2 − 3𝑠2)𝜚𝐶̃𝑢𝜎𝑢𝜎 |𝑢 − (𝜚2 − 𝑠2)𝐶̃𝑢𝜎𝑢𝜎 |𝜎

]
+ O(𝜖3)

}
. (18)

Here

𝐶̃𝑢𝜎𝑢𝜎 := 𝐶̃𝛼𝛽𝜇𝜈 𝑢̃𝛼𝜎̃𝛽 𝑢̃𝜇𝜎̃𝜈 , (19)

𝐶̃𝑢𝜎𝑢𝜎 |𝜎 := ∇̃𝛾𝐶̃𝛼𝛽𝜇𝜈 𝑢̃𝛼𝜎̃𝛽 𝑢̃𝜇𝜎̃𝜈𝜎̃𝛾 (20)

are contractions of the Weyl tensor 𝐶𝛼𝛽𝜇𝜈 and its derivative
evaluated at the reference point 𝑥 on the particle’s worldline.

We now express the covariant expansion (18) in terms
of Kerr-Schild coordinates. To achieve this we follow the
method in [65], which begins from an expansion of 𝜎(𝑥, 𝑥)
in powers of Δ𝑥𝛼,

𝜎 =
1
2
𝑔̃𝛼𝛽Δ𝑥

𝛼Δ𝑥𝛽 + 𝐴̃𝛼𝛽𝛾Δ𝑥𝛼Δ𝑥𝛽Δ𝑥𝛾

+ 𝐵̃𝛼𝛽𝛾𝛿Δ𝑥𝛼Δ𝑥𝛽Δ𝑥𝛾Δ𝑥 𝛿

+ 𝐶̃𝛼𝛽𝛾𝛿𝜌Δ𝑥𝛼Δ𝑥𝛽Δ𝑥𝛾Δ𝑥 𝛿Δ𝑥𝜌 + . . . (21)

Differentiating this with respect to 𝑥𝛼, we obtain

𝜎̃𝛼 = −𝑔̃𝛼𝛽Δ𝑥𝛽 + (𝑔̃𝛽𝛾,𝛼 − 3𝐴̃𝛼𝛽𝛾)Δ𝑥𝛽Δ𝑥𝛾

+ ( 𝐴̃𝛽𝛾𝛿,𝛼 − 4𝐵̃𝛼𝛽𝛾𝛿)Δ𝑥𝛽Δ𝑥𝛾Δ𝑥 𝛿

+ (𝐵̃𝛽𝛾𝛿𝜌,𝛼 − 5𝐶̃𝛼𝛽𝛾𝛿𝜌)Δ𝑥𝛽Δ𝑥𝛾Δ𝑥 𝛿Δ𝑥𝜌 + . . .
(22)

We then use the identity 2𝜎 = 𝜎̃𝛼𝜎̃
𝛼 to recursively determine

the coefficients 𝐴̃𝛼𝛽𝛾 , 𝐵̃𝛼𝛽𝛾𝛿 , 𝐶̃𝛼𝛽𝛾𝛿𝜌 and so on. This yields,
for example, 𝐴̃𝛼𝛽𝛾 = 1

4 𝑔̃(𝛼𝛽,𝛾) . We now contract 𝜎̃𝛼 with
the four-velocity, metric and Weyl tensor to get the coordinate
expressions for 𝜚, 𝑠, 𝐶̃𝑢𝜎𝑢𝜎 , and 𝐶̃𝑢𝜎𝑢𝜎 |𝜎 as per their defini-
tions (16), (17), (19), and (20). Our final expression for ΨP is
obtained by substituting all of these results into Eq. (18) and
re-expanding in powers of Δ𝑥𝛼.

We write the result in the style of [67]:

ΨP = 𝑞

[
1
𝜖 𝑠1

+ P3 (Δ𝑥𝛼)
𝑠31

+ 𝜖P6 (Δ𝑥𝛼)
𝑠51

+ 𝜖
2P9 (Δ𝑥𝛼)
𝑠71

+ O(𝜖3)
]
.

(23)
Here 𝑠1 =

√︁
(𝑔̃𝛼𝛽 + 𝑢̃𝛼𝑢̃𝛽)Δ𝑥𝛼Δ𝑥𝛽 is the leading coordinate

approximation to 𝑠, and P𝑛 (Δ𝑥𝛼) is a polynomial in Δ𝑥𝛼 of
homogeneous order 𝑛.

The form (23) is valid in any coordinate system. In the
co-rotating grid coordinates, the reference point on 𝛾 is 𝑥 𝛼̄ =

𝑥 𝛼̄𝑝 (𝑡) = (𝑡, 𝑟𝑝 , 0, 0), and the coordinate separation Δ𝑥𝚤 := 𝑥𝚤 −
𝑥𝚤𝑝 (𝑡) is Δ𝑥 = 𝑥 − 𝑟𝑝 , Δ𝑦 = 𝑦̄, and Δ𝑧 = 𝑧. The distance 𝑠1
then reduces to

(𝑠1)2 =

(
1 + 2𝑀

𝑟𝑝

)
Δ𝑥2 + Δ𝑦2 + Δ𝑧2

+ (𝑢̃𝑡 )2
(
2𝑀Δ𝑥

𝑟𝑝
+ 𝑟𝑝𝜔Δ𝑦

)2
, (24)

where 𝑢̃𝑡 = (1 − 3𝑀/𝑟𝑝)−1/2. The polynomials P3 (Δ𝑥𝛼),
P6 (Δ𝑥𝛼), and P9 (Δ𝑥𝛼) are too long to be included here. In-
stead we have made them available online as MATHEMATICA
code https://github.com/nikwit/Puncture-Field-KS-Coords.

We now turn to the regular field ΨR . Because it approxi-
mates a smooth homogeneous solution, we can write it as a
Taylor series around 𝑥𝛼. In the grid coordinates, such an ex-
pansion reads

ΨR (𝑡, 𝑥𝚤) = ΨR
0 (𝑡) + 𝜖ΨR

𝑖 (𝑡)Δ𝑥𝚤 + 𝜖2ΨR
𝚤 𝚥 (𝑡)Δ𝑥𝚤Δ𝑥 𝚥 + O(𝜖3),

(25)
with the notation ΨR

0 (𝑡) := ΨR (𝑡, 𝑥𝚤𝑝), ΨR
𝚤
(𝑡) := 𝜕𝚤ΨR (𝑡, 𝑥 𝚥𝑝),

ΨR
𝚤 𝚥
(𝑡) := 1

2𝜕𝚤𝜕𝚥Ψ
R (𝑡, 𝑥 𝑘̄𝑝), and so on. The coefficients ΨR

𝚤1...𝚤𝑘
in this series contain the full freedom in the approximate so-
lution ΨA . However, not all of these coefficients are in-
dependent; the field equation imposes relationships between
them. As shown in Ref. [68], once the field equation is en-
forced, only the trace-free piece of each ΨR

𝚤1...𝚤𝑘
is left un-

determined. An 𝑛th-order approximate solution ΨR contains∑𝑛
𝑘=0 (2𝑘 + 1) = (𝑛 + 1)2 of these undetermined functions.

All other functions of 𝑡 in ΨR are related to these by ordi-
nary differential equations (ODEs) that result from the field
equations. In the next section we show how all the functions
ΨR
𝚤1...𝚤𝑘

(𝑡) can be determined through the combination of (i)
matching ΨR to ΨN and (ii) solving the ODEs in 𝑡 that follow
from the field equation.

IV. MATCHING METHOD

The idea behind the matching method is straightfor-
ward. We numerically solve the scalar wave equation on a
Schwarzschild background, excising the worldtube contain-
ing the scalar charge from the numerical domain. Inside the
worldtube, the solution is given by the analytical approxima-
tion ΨA = ΨP + ΨR described above. Outside the worldtube
we have the numerical field ΨN . We demand

ΨN Γ
= ΨP +ΨR , (26)

https://github.com/nikwit/Puncture-Field-KS-Coords
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where Γ
= henceforth represents an equality that holds on the

(2+1D) worldtube’s boundary Γ. We will show that this
matching condition, together with the scalar wave equation,
fully determine the regular field ΨR inside the worldtube. This
solution, in turn, provides boundary conditions for the evolu-
tion of the numerical field, specifically for𝑈−.

We formulate the matching scheme in the co-moving grid
coordinates 𝑥𝚤 introduced in Eq. (14). The Euclidean distance
to the particle is defined as 𝜌 :=

√︁
𝛿𝚤 𝚥Δ𝑥

𝚤Δ𝑥 𝚥 =
√︁
𝛿𝑖 𝑗Δ𝑥

𝑖Δ𝑥 𝑗 .
The boundary of the worldtube is located at 𝜌 = 𝑅, with nor-
mal vector 𝑛𝚤 := Δ𝑥𝚤/𝜌. We note that 𝑛𝚤 is normalized with
respect to 𝛿𝚤 𝚥 , whereas 𝑛̂𝑖 in Sec. II is normalized with respect
to the 3-metric 𝛾𝑖 𝑗 .

We now introduce the details of our matching scheme for
order 𝑛 = 0, 1 and 2, which are the expansion orders imple-
mented numerically in this work. The matching scheme for
an expansion of arbitrary order 𝑛 is given in Appendix B. We
start by re-writing the Taylor expansion in Eq. (25) in terms
of the quantities 𝜌 and 𝑛𝚤 , and we introduce an analogous ex-
pansion for the time derivative of the regular field:

ΨR (𝑡, 𝑥𝚤) = ΨR
0 (𝑡)+𝜌ΨR

𝚤 (𝑡)𝑛𝚤+𝜌2ΨR
𝚤 𝚥 (𝑡)𝑛𝚤𝑛 𝚥+O(𝜌3), (27a)

¤ΨR (𝑡, 𝑥𝚤) = ¤ΨR
0 (𝑡)+𝜌 ¤ΨR

𝚤 (𝑡)𝑛𝚤+𝜌2 ¤ΨR
𝚤 𝚥 (𝑡)𝑛𝚤𝑛 𝚥+O(𝜌3), (27b)

where we now drop the order-counting parameter 𝜖 = 1. The
set of coefficients

{
ΨR

0 (𝑡),ΨR
𝚤
(𝑡),ΨR

𝚤 𝚥
(𝑡)

}
have one, three and

six independent components, respectively, for a total of ten.
We will show that all of these can be uniquely determined at
each time step from (i) the numerical field ΨN (𝑡, 𝑥𝚤) at the
worldtube boundary, and (ii) the Klein-Gordon equation (3).

A. Worldtube boundary data

At each time step 𝑡𝑠 we enforce the continuity condition

ΨR (𝑡𝑠 , 𝑥𝚤)
Γ
= ΨN (𝑡𝑠 , 𝑥𝚤) −ΨP (𝑡𝑠 , 𝑥𝚤), (28)

both for the field itself and its time derivative. In the following
section we will omit explicit expressions which enforce conti-
nuity between the time derivative of the regular field ¤ΨR (𝑡, 𝑥𝚤)
and the numerical field 𝜕𝑡Ψ

N (𝑡, 𝑥𝚤) because they are com-
pletely analogous to the expressions for the fields themselves.

We will utilize symmetric trace-free (STF) tensors, in-
dicated with angular brackets, e.g. 𝐴 〈𝑘1...𝑘𝑙 〉 . Note that
𝐴 〈𝑘1 · · ·𝑘𝑙 〉𝐵𝑘1 · · ·𝑘𝑙 = 𝐴

𝑘1 · · ·𝑘𝑙𝐵 〈𝑘1 · · ·𝑘𝑙 〉 = 𝐴
〈𝑘1 · · ·𝑘𝑙 〉𝐵 〈𝑘1 · · ·𝑘𝑙 〉; more

details about STF tensors are given in Appendix B. Trans-
forming Eq. (27a) to a STF basis using (B7) yields, at order
𝑛 = 2,

ΨR (𝑡𝑠 , 𝑥𝚤) = ΨR
0 (𝑡𝑠) +

1
3
𝜌2𝛿𝚤 𝚥ΨR

𝚤 𝚥 + 𝜌ΨR
〈𝚤〉𝑛

〈𝚤〉

+ 𝜌2ΨR
〈𝚤 𝚥〉𝑛

〈𝚤𝑛 𝚥〉 , (29)

with 𝑛 〈𝚤〉 = 𝑛𝚤 and 𝑛 〈𝚤𝑛 𝚥〉 = 𝑛𝚤𝑛 𝚥 − 1
3𝛿
𝚤 𝚥 . Equation (29) will be

used on the left-hand side in Eq. (28).

The right-hand side of Eq. (28) is obtained by evaluating the
puncture field of Eq. (23) and its time derivative at the coordi-
nates of the DG collocation points on the worldtube surface,
and subtracting them pointwise from the corresponding values
of ΨN (𝑡𝑠 , 𝑥𝚤) and 𝜕𝑡ΨN (𝑡𝑠 , 𝑥𝚤). This expression is then pro-
jected numerically onto the set of spherical harmonics defined
on the worldtube Γ with constant radius 𝜌,

ΨN (𝑡𝑠 , 𝑥𝚤) −ΨP (𝑡𝑠 , 𝑥𝚤)
Γ
=

𝑛=2∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑎
N,R
𝑙𝑚

(𝑡𝑠)𝑌𝑙𝑚 (𝑛𝚤), (30)

where

𝑎
N,R
𝑙𝑚

(𝑡𝑠) =
∮
Γ

[
ΨN (𝑡𝑠 , 𝑥𝚤) −ΨP (𝑡𝑠 , 𝑥𝚤)

]
𝑌 ∗
𝑙𝑚 (𝑛

𝚤)𝑑Ω (31)

are the spherical harmonic coefficients of the numerical, reg-
ular field ΨN (𝑡𝑠 , 𝑥𝚤) − ΨP (𝑡𝑠 , 𝑥𝚤) and 𝑑Ω is the area element
of the flat-space unit 2-sphere. In practice we use real-valued
spherical harmonics and evaluate the integral with the Gauss-
Lobatto quadrature used by the DG method.

Both the spherical harmonics 𝑌𝑙𝑚 and the STF normal vec-
tor 𝑛 〈𝑘̄1 · · · 𝑛𝑘̄𝑙 〉 provide an orthogonal basis for functions on
a sphere. They can be transformed into each other using
Eqs. (B9),

𝑛=2∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑎
N,R
𝑙𝑚

(𝑡𝑠)𝑌𝑙𝑚 (𝑥𝚤)

= Ψ
N,R
〈0〉 (𝑡𝑠) +Ψ

N,R
〈𝚤〉 (𝑡𝑠)𝑛 〈𝚤〉 +Ψ

N,R
〈𝚤 𝚥〉 (𝑡𝑠)𝑛

〈𝚤𝑛 𝚥〉 . (32)

We have thus expressed both sides of the continuity condi-
tion (28) in a basis of STF normal vectors, using Eqs. (29)
and (32). Orthogonality of the STF basis allows us to match
order by order in the STF expansion:

Ψ
N,R
〈0〉 (𝑡𝑠) = ΨR

0 (𝑡𝑠) +
1
3
𝜌2𝛿𝚤 𝚥ΨR

𝚤 𝚥 (𝑡𝑠), (33a)

Ψ
N,R
〈𝚤〉 (𝑡𝑠) = 𝜌ΨR

𝚤 (𝑡𝑠), (33b)

Ψ
N,R
〈𝚤 𝚥〉 (𝑡𝑠) = 𝜌

2ΨR
〈𝚤 𝚥〉 (𝑡𝑠). (33c)

The continuity conditions for a field expanded to arbitrary or-
der are given in Equation (B14). For expansion orders 𝑛 = 0
or 𝑛 = 1 the second term in Eq. (33a) falls away. The regular
field inside the worldtube is then fully determined by the con-
tinuity condition and can directly be used to provide boundary
conditions for the future evolution. In one dimension, this is
equivalent to a linear polynomial in an interval being fully de-
termined by its two endpoints.

For 𝑛 = 2, Eqs. (33) provide only 9 equations for the 10
coefficients of ΨR (𝑡𝑠 , 𝑥𝚤) because the monopole of the reg-
ular numerical field Ψ

N,R
〈0〉 in Eq. (33a) contributes to both

the zeroth-order coefficient ΨR
0 and the trace of the second-

order coefficient, 𝛿𝚤 𝚥ΨR
𝚤 𝚥

. More generally, for arbitrary or-
der, the STF expansion on the worldtube, Eq. (B14), provides
only the trace-free components of ΨN,R , so that boundary-
matching determines only the trace-free parts of the expansion
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ΨR (𝑡𝑠 , 𝑥𝚤) but not its traces. Therefore, for expansions of or-
der 𝑛 ≥ 2, additional equations are needed to fully determine
the regular field inside the worldtube. These are provided by a
series expansion of the Klein-Gordon equation, as we describe
below in Sec. IV B.

The coefficients of the regular field’s time derivative are de-
termined completely analogously, with the continuity condi-
tion

𝜕𝑡Ψ
R (𝑡𝑠 , 𝑥𝑖)

Γ
= 𝜕𝑡Ψ

N (𝑡𝑠 , 𝑥𝑖) − 𝜕𝑡ΨP (𝑡𝑠 , 𝑥𝑖). (34)

𝜕𝑡Ψ
N (𝑡𝑠 , 𝑥𝑖) is evaluated using its evolution equation (8a) and

then transformed into the co-moving grid frame by adding the
advective term 𝑣𝑖𝑔𝜕𝑖Ψ

N , where 𝑣𝑖𝑔 is the instantaneous local
grid velocity. The matching conditions for the time derivative
of the regular field ¤Ψ𝑅 (𝑡𝑠) are then just the time derivative of
the matching conditions for Ψ𝑅 (𝑡𝑠), Eqs. (33).

B. Klein-Gordon equation

We rewrite the Klein-Gordon equation (3) in grid coordi-
nates

0 = 𝑔 𝜇̄𝜈̄𝜕𝜇̄𝜕𝜈̄Ψ
R − Γ𝜌̄𝜕𝜌̄Ψ

R , (35)

where Γ𝜌̄ B 𝑔 𝜇̄𝜈̄Γ
𝜌̄

𝜇̄𝜈̄
. The metric quantities 𝑔𝜇𝜈 and Γ𝜇 are

expanded in the grid coordinates 𝑥𝚤 to the same order 𝑛 as the
regular field at each time step 𝑡𝑠 . For 𝑛 = 2 these expansions
read

𝑔 𝜇̄𝜈̄ (𝑡𝑠 , 𝑥𝚤) = 𝑔 𝜇̄𝜈̄0 (𝑡𝑠) + 𝑔 𝜇̄𝜈̄𝚤 (𝑡𝑠)Δ𝑥𝚤

+ 𝑔 𝜇̄𝜈̄
𝚤 𝚥

(𝑡𝑠)Δ𝑥𝚤Δ𝑥 𝚥 + O(𝜌3), (36)

Γ𝜇̄ (𝑡𝑠 , 𝑥𝚤) = Γ
𝜇̄

0 (𝑡𝑠) + Γ
𝜇̄

𝚤
(𝑡𝑠)Δ𝑥𝚤

+ Γ
𝜇̄

𝚤 𝚥
(𝑡𝑠)Δ𝑥𝚤Δ𝑥 𝚥 + O(𝜌3). (37)

The expansion coefficients are given by 𝑔 𝜇̄𝜈̄0 := 𝑔 𝜇̄𝜈̄ (𝑡𝑠 , 𝑥𝚤𝑝),
𝑔
𝜇̄𝜈̄

𝚤
:= 𝜕𝚤𝑔

𝜇̄𝜈̄ (𝑡𝑠 , 𝑥 𝚥𝑝), and 𝑔 𝜇̄𝜈̄
𝚤 𝚥

(𝑡𝑠) := 1
2𝜕𝚤𝜕𝚥𝑔

𝜇̄𝜈̄ (𝑡𝑠 , 𝑥 𝑘̄𝑝), and

similarly for Γ𝜇̄0 , Γ𝜇̄
𝚤

, and Γ
𝜇̄

𝚤 𝚥
. Due to the spherical symmetry

of the Schwarzschild spacetime, and our circular-orbit setup,
these expansion coefficients are in fact independent of 𝑡𝑠 .

We now expand the Klein-Gordon equation in powers of
𝜌 by inserting the expansions for ΨR , 𝑔𝜇𝜈 and Γ𝜇 from
Eqs. (27a), (36) and (37), respectively, into Eq. (35). The
𝑂 (𝜌0) piece of the equation reads

𝑔𝑡𝑡0
¥ΨR

0 (𝑡𝑠) + 2𝑔𝑡𝚤0 ¤ΨR
𝚤 (𝑡𝑠) + 2𝑔𝚤 𝚥0 Ψ

R
𝚤 𝚥 (𝑡𝑠)

− Γ𝑡0
¤ΨR

0 (𝑡𝑠) − Γ𝚤0Ψ
R
𝚤 (𝑡𝑠) = 0. (38)

This ODE provides an additional, independent relation be-
tween the expansion coefficients ΨR

0 , ΨR
𝚤

and ΨR
𝚤 𝚥

, which
enables us to determine the remaining, trace degree of free-
dom of the regular field at 𝑛 = 2. Specifically, combin-
ing Eq. (38) with the continuity conditions (33), and using

ΨR
𝚤 𝚥
= ΨR

〈𝚤 𝚥〉 +
1
3𝛿
𝑙 𝑘̄ΨR

𝑙 𝑘̄
𝛿𝚤 𝚥 , we obtain

𝑔𝑡𝑡0
¥ΨR

0 (𝑡𝑠) + 2𝑔𝑡𝚤0 ¤ΨN,R
𝚤

(𝑡𝑠) + 2𝑔𝚤 𝚥0 Ψ
N,R
〈𝚤 𝚥〉 (𝑡𝑠)

+
2𝛿𝚤 𝚥𝑔𝚤 𝚥0
𝜌2

(
Ψ

N,R
0 (𝑡𝑠) −ΨR

0 (𝑡𝑠)
)

− Γ0
0
¤ΨR

0 (𝑡𝑠) − Γ𝚤0Ψ
N,R
𝚤

(𝑡𝑠) = 0. (39)

We reduce this ODE to first order and use a Dormand-Prince
time stepper to advance the zeroth-order coefficient ΨR

0 and
its time derivative to the next time step 𝑡𝑠+1, taking the same
global time step as the DG evolution. Together with the con-
tinuity conditions (33) at time step 𝑡𝑠+1, this completely de-
termines all components of the second-order expansion of
ΨR (𝑡, 𝑥𝚤) in Eq. (27a) at 𝑡𝑠+1.

The coefficients of the numerical, regular field Ψ
N,R
〈𝑘̄0 · · ·𝑘̄𝑙 〉

are
updated each sub-step. As initial conditions of the ODE (39)
we take ΨR

0 (𝑡0) = ¤ΨR
0 (𝑡0) = 0.

In Appendix B we formulate the generalization of this
method to an arbitrary order 𝑛, and in particular we derive
the generalized form of the ODE on Γ.

C. Boundary conditions for ΨN

Once the expansion of the regular field has been fully de-
termined, it can be used to provide boundary conditions to the
DG elements neighboring the worldtube. DG methods com-
monly formulate boundary conditions between elements using
the numerical flux, and these conditions are applied to each of
the characteristic fields defined in Eqs. (13). We use the in-
ternal solution ΨA of the worldtube to provide boundary con-
ditions for the characteristic field 𝑈− as if the interior of the
worldtube were simply another DG element. From the def-
inition of 𝑈− in Eq. (13c) and the definitions in Eq. (5), we
obtain the boundary condition

𝑈− (𝑡𝑠)
Γ
= −𝛼−1𝜕𝑡Ψ

A (𝑡𝑠) +
(
𝛽𝚤 − 𝑛̂𝚤

)
𝜕𝚤Ψ

A (𝑡𝑠) − 𝛾2Ψ
A (𝑡𝑠).

(40)
The analytical solution ΨA (𝑡𝑠) was defined in Eq. (15) as
the sum of the regular field ΨR and the puncture field ΨP ,
both of which are now fully determined. The time and spatial
derivative are simply obtained from 𝜕𝑡Ψ

A (𝑡𝑠) = 𝜕𝑡Ψ
N (𝑡𝑠) +

𝜕𝑡Ψ
P (𝑡𝑠) and 𝜕𝚤ΨA (𝑡𝑠) = 𝜕𝚤Ψ

N (𝑡𝑠) + 𝜕𝚤ΨP (𝑡𝑠). The fields
ΨR (𝑡𝑠) and 𝜕𝑡ΨR (𝑡𝑠) are given by Eq. (27) and its time deriva-
tive. The derivative normal to the worldtube boundary is sim-
ilarly obtained by taking the appropriate spatial derivative of
ΨR in Eq. (27a) analytically. The expression for the punc-
ture field ΨP (𝑡𝑠) is given in Eq. (25), and its time and normal
derivative are computed analytically. We evaluate all of these
expressions at the grid coordinates 𝑥𝚤 of all DG grid points
that lie on element faces abutting the worldtube to formulate
pointwise boundary conditions. The value of 𝑈− (𝑡𝑠) at the
boundary is used to apply a correction to the time derivative
of the evolution equations using the upwind flux [57].

We initially tried to provide boundary conditions in the
above fashion for all characteristic fields entering the numer-
ical domain, including 𝑍1 and 𝑍2

𝑖
. However, we found that
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this caused substantial constraint violations entering the nu-
merical domain at the worldtube boundary. Instead, we use
constraint-preserving boundary conditions for 𝑍1 and 𝑍2

𝑖
as

described in Appendix A.

D. Roll-on function

The initial conditions we use for the simulations are Ψ =

𝜕𝑡Ψ = 0 for both the DG fields outside the worldtube and
the regular field inside it. The puncture field ΨP added to
the regular field in Eq. (40) initially creates a discontinuity at
the worldtube boundary, due to the unphysical instantaneous
appearance of the scalar charge source 𝑡 = 0. DG methods are
very inefficient at resolving discontinuities within elements,
due to the Gibbs phenomenon.

To alleviate this, we multiply the puncture field ΨP with
a roll-on function 𝑤(𝑡) that smoothly grows from 0 to 1 (up
to double precision) between 𝑡 = 0 and 𝑡 = 𝑡end. We found
that this effectively stretches out the initial discontinuity and
causes the fields to settle more smoothly to their final values.

We tested two different roll-on functions: 𝑤(𝑡) =

sin[𝜋𝑡/(2𝑡end)] and 𝑤(𝑡) = erf (12𝑡/𝑡end − 6)/2 + 1/2, where
erf is the Gaussian error function. There was little difference
in the long term evolution between the two choices.

The roll-on function ensures a smooth settling of the solu-
tion corresponding to the scalar charge slowly being turned
on over its first 4 orbits. We found 𝑡end = 300𝑀 to be a good
choice for the simulations with orbital radius 𝑟𝑝 = 5𝑀 .

E. Error estimates

To estimate the errors that our matching method incurs, we
apply the same analysis as we did for the 1 + 1D case in [34].
The estimates follow from a Kirchhoff representation of the
scalar field. We first consider the field in the numerical do-
main, outside the tube Γ. Call this region 𝑉 . Inside 𝑉 , our
field ΨN satisfies the same homogeneous field equation as the
exact solution Ψ, 𝑔𝜇𝜈∇𝜇∇𝜈ΨN = 0, but it inherits errors that
propagate out from Γ. We introduce a retarded Green’s func-
tion 𝐺 (𝑥, 𝑥 ′) satisfying

�𝐺 (𝑥, 𝑥 ′) = �′𝐺 (𝑥, 𝑥 ′) = 𝛿4 (𝑥, 𝑥 ′) , (41)

where 𝑥 and 𝑥 ′ denote any two points, primes denote quan-

tities at 𝑥 ′, � := 𝑔𝜇𝜈∇𝜇∇𝜈 , and 𝛿4 (𝑥, 𝑥 ′) := 𝛿4 (𝑥𝜇−𝑥𝜇′ )√−𝑔 . If
we now take any point 𝑥 ∈ 𝑉 , then the equations (41) and
�ΨN = 0 imply the identity

ΨN (𝑥 ′)𝛿4 (𝑥, 𝑥 ′) = ΨN (𝑥 ′)�′𝐺 (𝑥, 𝑥 ′) − 𝐺 (𝑥, 𝑥 ′)�′ΨN (𝑥 ′).
(42)

Integrating this equation over all 𝑥 ′ ∈ 𝑉 and then integrating
by parts, we obtain the Kirchhoff representation

ΨN(𝑥) =
∫
𝑉

[
ΨN (𝑥 ′)�′𝐺 (𝑥, 𝑥 ′) − 𝐺 (𝑥, 𝑥 ′)�′ΨN (𝑥 ′)

]
𝑑𝑉 ′

=

∫
𝜕𝑉

[
ΨN (𝑥 ′)∇𝜇′𝐺 (𝑥, 𝑥 ′)−𝐺 (𝑥, 𝑥 ′)∇𝜇′ΨN(𝑥 ′)

]
𝑑Σ𝜇

′
.

(43)

Here 𝑑Σ𝜇
′
is the outward-directed surface element on 𝜕𝑉 . For

us the relevant portion of 𝜕𝑉 is the tube boundary Γ, where
𝑑Σ𝜇

′
= O(𝑅2)𝑑𝑡 𝑑Ω. As in Eq. (31), here 𝑑Ω is the area

element of the unit 2-sphere.
In the integral over Γ, we may replace ΨN with ΨA . Our

truncated expansion of ΨA introduces an inherent O(𝑅𝑛+1)
error in ΨN (𝑥 ′) and O(𝑅𝑛) error in ∇𝜇′ΨN (𝑥 ′) on the
worldtube. Equation (43) implies that the O(𝑅𝑛) error in
∇𝜇′ΨN (𝑥 ′) dominates. Accounting for the O(𝑅2) surface el-
ement, we see that this creates an O(𝑅𝑛+2) error in ΨN (𝑥).

An important takeaway from this analysis is that the error in
the numerical domain is suppressed by the small spatial size
of Γ. As a consequence, the error converges two orders faster
than the analogous error in the 1 + 1D problem in [34].

However, we note that this analysis applies only at a fixed
location 𝑥 outside the worldtube. At a point on the worldtube
boundary Γ, the errors in ΨN are inherently O(𝑅𝑛+1), and the
errors in ∇𝜇ΨN are inherently O(𝑅𝑛). There is no suppres-
sion due to the small spatial size of the worldtube in this case.
The same is true of the errors at a point outside the worldtube
if we consider a point 𝑥 that is at a fixed multiple of 𝑅 away
from the worldline rather than at a fixed physical location.

We also note that in applications, we require outputs other
than ΨN : the regular field on the particle’s worldline and
the self-force, for example. The omitted terms in our expan-
sion (25) scale with a power of distance from the worldline,
which might make us expect that we incur no error in ΨR (𝑥𝑝)
and 𝜕𝜇ΨR (𝑥𝑝) (and therefore in the self-force). However, we
can see this is incorrect by referring again to a Kirchhoff rep-
resentation of the field. Our method enforces the field equa-
tion (1) on ΨA up to an error ∼ 𝑅𝑛−1 (two derivatives of the
truncation error in ΨA). If we momentarily ignore that error
term in the field equation, and if we consider 𝑉 to be the in-
terior of Γ and repeat the steps that led to Eq. (43), then we
obtain the Kirchhoff representation

ΨA (𝑥) = −4𝜋𝑞
∫
𝛾

𝐺 (𝑥, 𝑥𝑝 (𝜏))𝑑𝜏+
∫
Γ

[
ΨA (𝑥 ′)∇𝜇′𝐺 (𝑥, 𝑥 ′)

− 𝐺 (𝑥, 𝑥 ′)∇𝜇′ΨA (𝑥 ′)
]
𝑑Σ𝜇

′
. (44)

If we now take 𝑥 to be a point 𝑥𝑝 on the worldline and con-
sider the integral over Γ, then we have 𝐺 (𝑥, 𝑥 ′) ∼ 1/𝑅 and
∇𝜇′𝐺 (𝑥, 𝑥 ′) ∼ 1/𝑅2. We can combine this with 𝑑Σ𝜇

′ ∼
𝑅2 and with the errors O(𝑅𝑛+1) in ΨA (𝑥 ′) and O(𝑅𝑛) in
∇𝜇′ΨA (𝑥 ′) to deduce that the error in ΨA (𝑥𝑝) is O(𝑅𝑛+1).
If we take a derivative of Eq. (44), we find that the error in
𝜕𝜇Ψ

A (𝑥𝑝) is O(𝑅𝑛). These error estimates apply immedi-
ately to ΨR (𝑥𝑝) as well.
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It is also straightforward to see that these estimates are not
altered by the O(𝑅𝑛−1) error in the field equation, which we
neglected in deriving Eq. (44). That error contributes an error
∼

∫
𝑅𝑛−1𝐺 (𝑥𝑝 , 𝑥 ′)𝑑𝑉 ′ ∼ 𝑅𝑛+1 to ΨR (𝑥𝑝), consistent with

the error from the boundary integral.
In summary, we expect that for an 𝑛th-order analytical ap-

proximation, our method introduces the following errors:

Error in ΨN (𝑥) : O(𝑅𝑛+2), (45)

Error in ΨR (𝑥𝑝) : O(𝑅𝑛+1), (46)

Error in 𝜕𝛼ΨR (𝑥𝑝) : O(𝑅𝑛), (47)

where 𝑥 is a point outside Γ and 𝑥𝑝 is a point on the particle’s
worldline. Our numerical results in the next section will bear
out these predictions. The error in 𝜕𝛼ΨR (𝑥𝑝), and hence in
the self-force, will be particularly relevant when we allow the
system to evolve (as opposed to keeping the particle on a fixed
geodesic orbit). We defer discussion of this to the Conclusion.

Finally, before proceeding, we note that our error esti-
mate for 𝜕𝛼ΨR (𝑥𝑝) might be too pessimistic in some in-
stances. Specifically, time-antisymmetric components, linked
to the dissipative pieces of the self-force, might converge more
rapidly with 𝑅. This is because these components arise from
the radiative piece of the field, equal to half the retarded solu-
tion minus half the advanced solution [69]. For these pieces
of the field, we can replace the Green’s function 𝐺 in Eq. (44)
with its radiative piece, 𝐺Rad = 1

2 (𝐺
Ret − 𝐺Adv). 𝐺Rad is

smooth when its two arguments coincide (because singulari-
ties cancel between𝐺Ret and𝐺Adv), meaning it does not intro-
duce the negative powers of 𝑅 that𝐺Ret introduces in Eq. (44).
We therefore might expect that errors scale with a higher
power of 𝑅 in the dissipative components of 𝜕𝛼ΨR (𝑥𝑝). That
could be extremely beneficial in practice because dissipative
effects dominate over conservative ones on the long timescale
of an inspiral [70], and dissipative effects must therefore be
computed with higher accuracy. However, our numerical ex-
periments in the next section do not entirely bear out this ex-
pectation of more rapid convergence, and we leave further in-
vestigation of it to future work.

V. RESULTS

We use a central black hole of mass 𝑀 for the simulations.
The excision sphere inside the black hole has radius 1.9𝑀 .
The outer boundary is placed at 400𝑀 . We use a CFL safety
factor of 0.4. The scalar charge is placed on a circular orbit
with radius 𝑟𝑝 = 5𝑀 with angular velocity 𝜔 = 𝑀1/2𝑟−3/2

𝑝 ≈
0.09𝑀−1.

The expansion terms of the puncture field converge more
quickly with larger orbital radii of the scalar charge. The trun-
cation error of the puncture field and hence of the worldtube
solution is therefore particularly large at the relatively small
orbital radius of 𝑟𝑝 = 5𝑀 used in our simulations. This en-
sures that the scheme is tested in an extreme region, compa-
rable to binary black holes close to merger. Because the error
due to the worldtube is comparatively large for a small 𝑟𝑝 , it

Figure 2. The equatorial plane of the domain, depicting the steady-
state solution of the scalar field Ψ. The scalar charge creates an out-
ward propagating spiral as it orbits the central black hole. Figure 1
shows a tilted perspective zoomed into the center of the same plane
with the spiral arms visible in the background.

0 50 100 150 200 250 300
r [M]

10 2

10 1

x-axis
z-axis

Figure 3. The steady-state solution of the scalar field ΨN along the
co-moving 𝑥-axis and 𝑧-axis of the domain.

can be resolved with a lower resolution in the numerical do-
main, lowering the computational cost of the simulations.

We have implemented the worldtube scheme with the local
solution expanded to orders 𝑛 = 0, 1 and 2. The radius of
the worldtube was varied between 0.2𝑀 and 1.6𝑀 . The sim-
ulations were run until the field had settled to its steady state
solution over the entire domain, which took between 3000𝑀
and 7000𝑀 , depending on the magnitude of the settled error.
Figure 2 shows a cut through the equatorial plane of the com-
putational domain.

Figure 3 plots the steady state solution along two lines cut
through the domain at late, constant Kerr-Schild times 𝑡: one
along the co-moving 𝑥-axis connecting the central black hole
center and the scalar charge and one along the 𝑧-axis normal to
the charge’s orbital plane. The undulations of the scalar field
on the 𝑥-axis correspond to the arms of the spiral in Fig. 2. The
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missing part of the ‘𝑥-axis’ line corresponds to the worldtube;
the field increases strongly near the worldtube, because of the
scalar charge contained at the center of the worldtube.

We verify the validity and convergence of our simulations
in three different ways: First, in Sec. V A, we compare the
value of the regular field ΨR and its spatial derivative 𝜕𝚤ΨR at
the position of the charge to published numerical results ob-
tained using frequency-domain self-force methods. Second,
in Sec. V B we compare with the known axially symmetric
analytical solution along the 𝑧-axis, given below in Eq. (54).
Finally, we perform an internal convergence test along the co-
moving 𝑥-axis in Sec. V C. For each simulation in the follow-
ing sections, the resolution of the DG domain was increased
until it no longer affected the steady-state solution. This guar-
anteed that the error measured was due to the worldtube, not
the numerical evolution.

A. Regular field ΨR at the charge’s position

The value of the regular field for a scalar charge in a circu-
lar geodesic orbit in Schwarzschild spacetime has been calcu-
lated in self-force literature. We compare the regular field of
our simulations with the results of [71], who quote the value
ΨR

ref (0) = –0.01023418𝑞/𝑀 for a circular orbit with radius
5𝑀 .

For expansion orders 𝑛 = 0 and 𝑛 = 1, the regular field
at the charge position is given directly by the monopole of
the numerical field Ψ

N,R
〈0〉 (𝑡𝑠) in Eq. (33a) (the second term on

the right-hand side is absent for 𝑛 = 0, 1). For 𝑛 = 2, it is
determined by solving the ODE (39) inside the worldtube.

The relative error 𝜀 = |ΨR (0) − ΨR
ref (0) |/|Ψ

R
ref (0) |, where

ΨR (0) is the final value of the regular field at the scalar
charge, is shown in the top panel of Fig. (4), with each marker
representing a simulation. The dashed lines show fits of the
data, for each expansion order 𝑛, to a relation of the form
𝜀 ∝ 𝑅𝛼, where 𝑅 (recall) is the worldtube radius. The bottom
panel displays the local convergence order, defined through

𝛼loc,𝑖 =
log(𝜀𝑖) − log(𝜀𝑖−1)
log(𝑅𝑖) − log(𝑅𝑖−1)

, (48)

where 𝑅𝑖 are the worldtube radii in our sample, and 𝜀𝑖 are the
corresponding errors. We find that the error always decreases
with smaller worldtube radius or higher order 𝑛 of the local
solution as expected. Equation (46) indicated a convergence
order inside the worldtube of 𝛼 = 𝑛 + 1 at sufficiently small
worldtube radii. For 𝑛 = 1 and 2 we find that this predic-
tion is confirmed quite well, with global convergence orders
measured as ∼ 2.07 and ∼ 3.08, respectively, and local con-
vergence order uniformly close to this value. At 𝑛 = 0 we
measure a global convergence order of ∼1.72 and a local con-
vergence order that appears to decrease with the worldtube
radius. This suggests that for 𝑛 = 0 the scheme is not fully
in the convergent regime for the values of 𝑅 we consider;
rather, there are still significant contributions from higher-
order terms. At smaller worldtube radii 𝑅, these higher-order-
in-𝑅 contributions become less significant and the local con-
vergence rate approaches the expected value of 1.
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Figure 4. Top panel: The relative error of the regular field at the po-
sition of the charge compared to the value computed in [71]. Each
cross represents the settled error at the final simulation time. The
dashed lines are best fits for the relation 𝜀 ∝ 𝑅𝛼. Bottom panel: The
local convergence order between simulations of neighboring world-
tube radii.

We also compare the gradient of ΨR at the position of
the particle, which enters the expression for the self-force
acting on the particle due to back-reaction from the scalar
field. The value of the radial derivative is given in [71] as
𝜕𝑟𝑠Ψ

R
ref (0) = 0.0004149937𝑞/𝑀2 using Schwarzschild co-

ordinates (𝑡𝑠 , 𝑟𝑠 , 𝜃𝑠 , 𝜑𝑠). We are not aware of any works
which report the angular derivative of the scalar field at 𝑟𝑝 =

5𝑀 . Instead, it was computed for us to be 𝜕𝜑𝑠Ψ
R
ref (0) =

−0.01009125769𝑞/𝑀2 using the frequency domain code of
[72]. The coordinate transformation from Kerr-Schild time 𝑡
to Schwarzschild time 𝑡𝑠 is given by

𝑡𝑠 = 𝑡 + 2𝑀 ln
( 𝑟

2𝑀
− 1

)
, (49)

which makes the conversion between 𝜕𝑟𝑠Ψ
R and the Kerr–

Schild radial derivative 𝜕𝑟ΨR

𝜕𝑟𝑠 = 𝜕𝑟 +
2𝑀

2𝑀 − 𝑟 𝜕𝑡

= 𝜕𝑟 +
2𝑀

2𝑀 − 𝑟 (𝜕𝑡 +
𝜕𝑥𝚤

𝜕𝑡
𝜕𝚤), (50)

where in the second line we have transformed into the co-
moving coordinate frame given in Eqs. (14). The reference
values of the regular field’s gradient at the particle’s position
are then given by

𝜕𝑟Ψ
R
ref (0) = 𝜕𝑥̄Ψ

R
ref (0) = 𝜕𝑟𝑠Ψ

R
ref (0) −

2𝑀𝜔
2𝑀 − 𝑟𝑝

𝜕𝜑𝑠Ψ
R
ref (0),

(51)
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Figure 5. Top panel: The absolute difference between the radial and
angular derivatives of the regular field at the position of the particle
and the reference values of Eqs. (51) and (52). Each cross represents
the final value of a simulation. The dashed lines are best fits to the
power-law relation ∝ 𝑅𝛼. Bottom panel: The local convergence
order between the simulations of adjacent worldtube radii as defined
in Eq. (48). The simulations at order 𝑛 = 1 show a convergence order
consistent with the predicted rate 𝛼 = 1. The 𝑛 = 2 simulations show
a higher convergence rate likely due to dominant higher order terms.
Some anomalies are not visible.

𝜕𝜑Ψ
R
ref (0) = 𝑟𝑝𝜕𝑦̄Ψ

R
ref (0) = 𝜕𝜑𝑠Ψ

R
ref (0), (52)

which we use to compare to our simulation values.
Figure 5 compares the radial and azimuthal derivative of

ΨR obtained by our worldtube evolutions against these ref-
erence values. Shown are the differences from the reference
values for orders 𝑛 = 1 and 2, with power-law fits ∝ 𝑅𝛼. At
zeroth order, the regular field is constant across the worldtube
so the derivatives can not be computed. The lower panel of
Fig. 5 plots the local convergence order 𝛼loc defined in (48).

We argued in Eq. (47) that the error of the regular field’s
derivatives at the particle position should scale with the world-
tube radius as ∝ 𝑅𝑛. For 𝑛 = 1, this behavior is confirmed by
the local convergence 𝛼loc of our simulations with the excep-
tion of worldtube radius 𝑅 = 1.6𝑀 , which is anomalously
lower than expected and skews the global convergence order.
For 𝑛 = 2, the radial derivative 𝜕𝑟ΨR (linked to the conser-
vative, time-symmetric piece of the self-force) shows a lo-
cal convergence that approaches the expected order of 𝑅2 at
smaller worldtube radii. This suggests that the error is just
entering the regime where the O(𝑅𝑛) contribution becomes
dominant. For the angular derivative 𝜕𝜑ΨR (linked to the
dissipative, time-antisymmetric piece of the self-force), the
local convergence order is larger than 3 for all simulations.
This could indicate that the error is still dominated by higher-

order contributions at the sampled worldtube radii. Alterna-
tively, it could indicate that dissipative quantities converge
more rapidly with 𝑅 than conservative one, as suggested in
Sec. IV E; however, the results for 𝑛 = 1 do not support that
proposal, showing the same convergence rate for 𝜕𝜑ΨR as for
𝜕𝑟Ψ

R . We stress that in any case, the convergence is at least
as rapid as predicted in Eq. (47).

B. Solution along the 𝑧-axis

The spherical symmetry of the Schwarzschild background
allows for the Klein-Gordon Eq. (3) to be decomposed
into separately evolving spherical harmonic modes Ψ𝑙𝑚 (𝑟, 𝑡),
where the spherical harmonic decomposition is centered on
the black hole (different to the spherical harmonics introduced
in Eq. (30), which are centered on the worldtube). On the
polar axis (𝑥 = 𝑦 = 0) all modes vanish except the axially
symmetric ones, i.e. those with 𝑚 = 0. These modes are also
static and admit simple analytical solutions [34]. Along the
polar axis these solutions read

Ψ𝑙0 (𝑧) =
4𝜋

√︁
1 − 3𝑀/𝑟𝑝
𝑀

𝑌𝑙0 (𝑛𝑥)×(
𝑄𝑙 (𝑟𝑝/𝑀 − 1)𝑃𝑙 (𝑧/𝑀 − 1)Θ(𝑟𝑝 − 𝑧)

+𝑄𝑙 (𝑧/𝑀 − 1)𝑃𝑙 (𝑟𝑝/𝑀 − 1)Θ(𝑧 − 𝑟𝑝)
)
,

(53)

where 𝑃𝑙 and 𝑄𝑙 are Legendre functions of the first and sec-
ond kind, respectively, 𝑛𝑥 is the normal vector pointing in the
direction of the 𝑥 coordinate axis, and Θ is the Heaviside func-
tion. The full solution along the 𝑧-axis is then given by

Ψ𝑧 (𝑧) = 𝑞
∞∑︁
𝑙=0

Ψ𝑙0 (𝑧)𝑌𝑙0 (𝑛𝑧), (54)

where 𝑛𝑧 is normal vector pointing in the coordinate z direc-
tion. The expansion (54) converges exponentially in 𝑙 every-
where except in the neighborhood of 𝑧 = 𝑟𝑝 , where the con-
vergence is too slow to yield good results in practice. We
therefore ignore this region and cut it out of plots when com-
paring with the analytical solution Ψ𝑧 .

Figure 6 shows the relative error |ΨN−Ψ𝑧 |/Ψ𝑧 between our
numerical worldtube solutions ΨN and Eq. (54), computed at
late evolution time, after ΨN has settled into its steady state.
The error is fairly constant along the axis. It is immediately
clear that smaller 𝑅 and higher 𝑛 lead to improved agreement.

To investigate convergence with worldtube radius, we de-
fine the 𝐿1-norm

‖ 𝑓 (𝑥)‖ :=
∫ 100𝑀

10𝑀
| 𝑓 (𝑥) |𝑑𝑥, (55)

which we use to integrate the relative error shown in Fig. 6 be-
tween 𝑧 = 10𝑀 and 𝑧 = 100𝑀 for each simulation. Using this
norm, the top panel of Fig. 7 plots the relative differences be-
tween the analytical solution Eq. (54) and numerical solutions
ΨN using various 𝑅 and 𝑛 and evaluated at late time in steady
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Figure 6. The relative error of the scalar field Ψ along the 𝑧-axis com-
pared to the analytical solution Ψ𝑧 given by Eq. (54). We show two
simulations with worldtube radii 1.6𝑀 and 0.6𝑀 for each order, 0,
1 and 2. The error decreases with higher order or smaller worldtube
radius, as expected. A small region is cut out around 𝑧 = 𝑟𝑝 = 5 M,
where Eq. (54) converges too slowly to be calculated to sufficient
accuracy in practice.
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Figure 7. Top panel: The relative difference between the numerical,
retarded field ΨN along the 𝑧-axis and the analytical solution Ψ𝑧
given in Eq. (54), integrated between 𝑧 = 10 and 𝑧 = 100 using
the 𝐿1-norm of Eq. (55). Each cross represents the final value of a
simulation. The straight lines are a best fit to the power-law relation
𝜀 ∝ 𝑅𝛼. Bottom panel: The local convergence order between the
simulations of adjacent worldtube radii as defined in Eq. (48). The
simulations with 𝑛 = 1 and 𝑛 = 2 show a constant convergence order
consistent with the predicted rate 𝛼 = 𝑛 + 2. The 𝑛 = 0 simulations
show a higher convergence rate at larger worldtube radii but approach
the expected value at smaller radii.
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Figure 8. The relative error along the 𝑥-axis between 𝑥 = 0𝑀 and
𝑥 = 100𝑀 for two sample simulations of each order. The worldtube
is centered at 𝑥 = 5𝑀 and cut out from the plots.

state. Each symbol represents the integrated, relative error of
a simulation’s final value. Also plotted is a best fit of the error
convergence ∝ 𝑅𝛼, where 𝑅 is the worldtube radius and 𝛼 is
the global convergence order. The lower panel of Fig. 7 shows
the local convergence order 𝛼loc as defined in Eq. (48).

As explained in Section IV E, we expect the convergence
order 𝛼 = 𝑛 + 2 in the volume outside the worldtube. At order
𝑛 = 2, the global convergence order is best fit to 𝛼 = 4.07
which matches the predicted error. Order 1 has a fitted global
convergence order of 3.14 and a local convergence order close
to this value across the worldtube radii sampled. For the
zeroth-order expansion, a global value of 2.33 is calculated,
but the local order consistently decreases with smaller world-
tube radii, which suggests that the error might still get contri-
butions from higher-order terms at the larger worldtube radii,
similar to the zeroth-order expansion in Fig. 4.

C. Solution along the 𝑥-axis

The tests of our method so far compared to previously
known data, either at the position of the charge or on the 𝑧-
axis. We now evaluate the convergence with worldtube radius
in the volume, at locations where no analytic solution is avail-
able. To this end, we evaluate our numerical solutions 𝜓N

along the co-rotating 𝑥-axis, which passes through the center
of the Schwarzschild black hole and the point charge. The set-
tled field along this axis is shown as the blue curve in Figure 3.
The simulation with 𝑛 = 2 and 𝑅 = 0.4𝑀 is used as a refer-
ence solution, denoted Ψref , since it has the lowest error inside
the worldtube and along the 𝑧-axis, as demonstrated above.

Figure 8 shows the relative difference with respect to the
reference solution between 𝑥 = 1.9𝑀 and 𝑥 = 100𝑀 for two
sample simulations at each order. The field along the 𝑥-axis
has more features as it lies in the orbital plane of the charge.
The error along the 𝑥-axis is therefore not quite as smooth
as along the 𝑧-axis; for instance at 𝑥 ≈ 80 some features are
apparent, which coincide to a wave-crest in 𝜓N (see Fig. 3).
The error decreases with both a higher expansion order 𝑛 and
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Figure 9. Top panel: The relative error 𝜀 integrated along the co-
moving x-axis compared to a reference solution Ψref with 𝑛 = 2
and 𝑅 = 0.4. Each cross represents a simulation, and the straight
lines are a best fit of the relation 𝜀 ∝ 𝑅𝛼. Bottom panel: The local
convergence order as defined in Eq. (48). At first and second order,
the simulations reproduce the expected convergence order of 𝛼 =

𝑛+2. At zeroth order, the local convergence approaches the expected
order for smaller worldtube radii, likely indicating that the error still
has contributions from higher-order terms in this regime.

a decreasing worldtube radius 𝑅 as is expected.
To quantify the convergence with respect to 𝑅 we com-

pute the norm Eq. (55) integrated along the co-moving x-axis,
‖Ψ(𝑥) − Ψref (𝑥)‖. This difference, normalized, is plotted in
Fig. 9, where each marker represents an individual simula-
tion. The straight lines show power law fits ∝ 𝑅𝛼. In the
bottom panel we show the local convergence order 𝛼loc as de-
fined in Eq. (48). The convergence rates in worldtube radius
𝑅 are close to the expectation from Eq. (45), 𝛼 = 𝑛 + 2, with
global convergence order 𝛼 equal to 2.25, 3.18, 4.29 for or-
ders 0, 1 and 2, respectively. For 𝑛 = 0, the local convergence
order 𝛼loc is steadily decreasing with the worldtube radius 𝑅
towards the expected value of 𝛼 = 2, which suggests it is just
entering the convergent regime here. The local convergence
rate of the 𝑛 = 2 simulations appears to jump slightly at the
smallest worldtube radius sampled, which we attribute to nu-
merical error.

VI. CONCLUSIONS

In this paper we continue the work of [34] and explore
a novel approach to simulating high mass-ratio binary black
holes. A large region (worldtube) is excised from the numer-
ical domain around the smaller black hole, to alleviate the
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Figure 10. Time steps Δ𝑡 of the worldtube simulations presented
here.

limiting CFL condition due to small grid spacing in this re-
gion. The solution inside the worldtube is represented by a
perturbative approximation that is determined by the numer-
ical solution on the boundary and in turn provides boundary
conditions to the numerical evolution.

We test this method using the toy problem of a scalar charge
in circular orbit around a central black hole. The simulations
are carried out in 3+1D using SpECTRE, the new discontinu-
ous Galerkin code developed by the SXS collaboration. In or-
der to develop algorithms that generalize to the full GR prob-
lem, we do not decompose our solution into spherical har-
monics as is the usual approach. We split the solution near the
scalar charge into a puncture field, which is fully determined
as a local expansion in Sec. III, and a regular field, which is
a smooth Taylor series with undetermined coefficients. The
expansion coefficients in the regular field are determined by
(i) the numerical solution on the worldtube boundary and (ii)
the scalar wave equation as described in Sec. IV. Our punc-
ture is constructed from the Detweiler-Whiting singular field,
allowing us to calculate the scalar self-force from our regular
field.

We implement the described matching scheme for orders
𝑛 = 0, 1 and 2 and perform numerical simulations for a circu-
lar orbit of radius 𝑟𝑝 = 5𝑀 for a variety of worldtube radii.
In Sec. IV E we make a theoretical argument for how the error
introduced by the excision should converge with the excision
radius in- and outside the worldtube. We confirm these results
in Sec. V and show that the scheme solves the scalar wave
equation with high accuracy even at relatively large worldtube
radii. We further validate our method by comparing against
known values of the Detweiler-Whiting regular field and its
first derivatives on the particle’s worldline.

The ultimate goal of the worldtube algorithm is to speed up
BBH simulations at large mass-ratios by alleviating the CFL
condition. Figure 10 considers the time steps sizes Δ𝑡 taken
by our primary simulations. Plotted is Δ𝑡/𝑅 vs the worldtube
radius 𝑅. Note that the resolutions of our simulations were ad-
justed such that for each simulation, numerical truncation er-
ror is subdominant compared to the worldtube error, resulting
in differences in Δ𝑡 for simulations with different expansion
orders at the same worldtube radius. Nevertheless, it is appar-
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ent that for fixed order, the time step is roughly proportional
to the worldtube radius. Therefore, the promise that larger
worldtube radii allow larger time steps ∝ 𝑅 indeed holds. Ide-
ally, the worldtube error should be comparable to or some-
what smaller than the NR error. Our results show that this can
be achieved by either decreasing the worldtube radius or by
increasing the expansion order. The former, of course, would
lead to a smaller grid-spacing and a more significant CFL con-
dition, whereas the latter has no noticeable performance cost.

Before tackling the full BBH problem, our next step will
be to include the back-reaction of the scalar field onto the
charged particle. In the present work we have computed the
first derivatives of the Detweiler-Whiting regular field, from
which we can construct the scalar self-force, but we have so
far ignored the effect of that force. Once it is accounted for,
the equations of motion for the scalar charge 𝑞 of bare mass
𝜇0 are given by [73]

𝑢𝛽∇𝛽 (𝜇𝑢𝛼) = 𝑞𝜕𝛼ΨR , (56)

𝜇 = −𝑞ΨR + 𝜇0. (57)

Allowing the particle’s trajectory to evolve dynamically in this
way will be an important step toward the full gravity problem.
SpECTRE uses a series of control systems which adjust cer-
tain time-dependent parameters of smooth coordinate maps to
deform the grid [58]. While they usually ensure that excision
spheres stay inside a black hole’s apparent horizon, we will
use these control systems to enable the worldtube to track the
inspiraling scalar charge. The control systems are needed for
the binary black hole case and such a scalar evolution will
ensure they work as expected.
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Appendix A: Constraint-preserving boundary conditions

The domain features two boundaries which require bound-
ary conditions on the characteristic fields flowing into the do-
main: the worldtube boundary and the outer boundary. For the
fields 𝑍1 and 𝑍2

𝑖
(arising from reduction to first-order form),

we use constraint-preserving boundary conditions which are

formulated analogously to [56] and applied using the Bjorhus
condition. We begin by rewriting Eq. (6) in terms of the char-
acteristic fields with respect to a boundary with normal vector
𝑛̂𝑖 ,

𝐶𝑖 = 𝜕𝑖Ψ −Φ𝑖 (A1)

= 𝜕𝑖𝑍
1 − 1

2
(𝑈+ −𝑈−)𝑛̂𝑖 − 𝑍2

𝑖 . (A2)

The normal component of this constraint is given by

𝑛̂𝑖𝐶𝑖 = 𝑛̂
𝑖𝜕𝑖𝑍

1 − 1
2
(𝑈+ −𝑈−) − 𝑛̂𝑖𝑍2

𝑖 . (A3)

Vanishing of the constraints implies in particular that the nor-
mal component vanishes, 𝑛̂𝑖𝐶𝑖 = 0, we interpret as a boundary
condition on 𝑍 𝑖:

(𝑛̂𝑖𝜕𝑖𝑍1)𝐵𝐶 =
1
2
(𝑈+ −𝑈−) + 𝑛̂𝑖𝑍2

𝑖 . (A4)

Applying the same procedure to Eq. (7) yields

𝑛̂𝑖𝐶𝑖 𝑗 = 𝑛̂
𝑖𝜕𝑖𝑍

2
𝑗 +

1
2
𝑛̂𝑖𝑛𝑗 𝜕𝑖 (𝑈+−𝑈−) − 1

2
𝜕𝑗 (𝑈+−𝑈−) − 𝑛̂𝑖𝜕 𝑗𝑍2

𝑖

(A5)
and

(𝑛̂𝑖𝜕𝑖 𝑍2
𝑗 )𝐵𝐶 = −1

2
𝑛̂𝑖𝑛𝑗 𝜕𝑖 (𝑈+−𝑈−) + 1

2
𝜕𝑗 (𝑈++𝑈−) + 𝑛̂𝑖𝜕 𝑗𝑍2

𝑖 .

(A6)
In order to implement Eqs. (A4) and (A6), we return to the

evolution equations in first order form,

𝜕𝑡𝜓
𝛼 + 𝐴𝑖𝛼𝛽 𝜕𝑖𝜓𝛽 = 𝐹𝛼 . (A7)

Projecting onto the characteristic fields, one finds

𝑒𝑎̂𝑎 (𝜕𝑡𝜓𝑎 + 𝐴𝑖𝑎𝑏 𝜕𝑖𝜓
𝑏) = 𝑒𝑎̂𝑎𝐹𝑎, (A8)

𝜕𝑡𝜓
𝑎̂ + 𝑒𝑎̂𝑎𝐴𝑖𝑎𝑏 (𝑃𝑘𝑖 + 𝑛𝑘 𝑛̂𝑖)𝜕𝑘𝜓𝑏 = 𝑒𝑎̂𝑎𝐹

𝑎, (A9)

𝜕𝑡𝜓
𝑎̂ + 𝑣 (𝑎̂)𝑛𝑘𝜕𝑘𝜓 𝑎̂ + 𝑒𝑎̂𝑎𝐴𝑖𝑎𝑏 𝑃

𝑘
𝑖 𝜕𝑘𝜓

𝑏 = 𝑒𝑎̂𝑎𝐹
𝑎 . (A10)

Boundary conditions are now applied by modifying the
term 𝑣 (𝑎̂)𝑛

𝑘𝜕𝑘𝜓
𝑎̂: Iff 𝑣 (𝑎̂) < 0 at a grid-point on the bound-

ary, then the following modified evolution equation is used at
that grid-point:

𝑑𝑡𝜓
𝑎̂ = 𝐷𝑡𝜓

𝑎̂ + 𝑣 (𝑎̂)
(
𝑛̂𝑖𝜕𝑖𝜓

𝑎̂ − (𝑛̂𝑖𝜕𝑖𝜓 𝑎̂)𝐵𝐶
)
. (A11)

Here

𝐷𝑡𝜓
𝑎̂ ≡ −𝑒𝑎̂𝑎𝐴𝑖𝑎𝑏 𝜕𝑖𝜓

𝑏 + 𝑒𝑎̂𝑎𝐹𝑎 (A12)

represents the volume time-derivative of the characteristic
fields. In other words, the time-derivative arising from the
volume equations is corrected with a term that ensures the
desired boundary condition. Summing Eqs. (A3) and (A4)
yields

𝑛̂𝑖𝜕𝑖𝑍
1 − (𝑛̂𝑖𝜕𝑖𝑍1)𝐵𝐶 = 𝑛̂𝑖𝐶𝑖 . (A13)
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Analogously, combining Eqs. (A5) and (A6) results in

𝑛̂𝑖𝜕𝑖𝑍
2
𝑗 − (𝑛̂𝑖𝜕𝑖𝑍2

𝑗 )𝐵𝐶 = 𝑛̂𝑖𝐶𝑖 𝑗 . (A14)

Finally, we insert this into the Bjorhus condition (A11) to ob-
tain

𝑑𝑡𝑍
1 = 𝐷𝑡𝑍

1 + 𝑣𝑍 1 𝑛̂𝑖𝐶𝑖 , (A15)

𝑑𝑡𝑍
2
𝑖 = 𝐷𝑡𝑍

2
𝑖 + 𝑣𝑍 2 𝑛̂𝑖𝐶𝑖 𝑗 , (A16)

where boundary corrections are only imposed when the corre-
sponding characteristic speeds are negative.

Appendix B: Matching method at arbitrary order

The main text in Sec. IV develops our matching scheme up
to order 𝑛 = 2. Here we show how this can be generalized to
arbitrary order 𝑛.

First, we introduce some notation and useful identities. We
make use of multi-index notation according to [74] where a
capital index 𝐿 stands for a collection of 𝑙 indices,

𝐴𝐿 = 𝐴𝑘1𝑘2 · · ·𝑘𝑙 . (B1)

The tensor product of 𝑙 coordinate vectors or 𝑙 normal vectors
is abbreviated as

𝑥𝐿 = 𝑥𝑘1𝑥𝑘2 · · · 𝑛𝑘𝑙 , (B2)

𝑛𝐿 = 𝑛𝑘1𝑛𝑘2 · · · 𝑛𝑘𝑙 , (B3)

and the tensor product of 𝑙 Kronecker symbols is written as

𝛿2𝐿 = 𝛿𝑘1𝑘2𝛿𝑘3𝑘4 · · · 𝛿𝑘𝑙−1𝑘𝑙 . (B4)

Symmetric, trace-free (STF) tensors are written with angu-
lar brackets around the indices. The combination of 𝑙 STF
normal vectors is defined as [75]

𝑛 〈𝐿〉 = 𝑛 〈𝑘1 · · · 𝑛𝑘𝑙 〉 =
b𝑙/2c∑︁
𝑘=0

𝑐 𝑙𝑘𝛿
(2𝐾 𝑛𝐿−2𝐾 ) , (B5)

where

𝑐 𝑙𝑘 = (−1)𝑘 𝑙!(2𝑙 − 2𝑘 − 1)!!
(2𝑙 − 1)!!(𝑙 − 2𝑘)!(2𝑘)!! . (B6)

The parentheses in Eq. (B5) indicate indices to be sym-
metrized and b𝑙/2c is the largest integer less than or equal
to 𝑙/2. The inverse expression is given by [76]

𝑛𝐿 = 𝑛𝑘1 · · · 𝑛𝑘𝑙 =
b𝑙/2c∑︁
𝑘=0

𝑐𝑙𝑘𝛿
(2𝐾 𝑛 〈𝐿−2𝐾 〉) (B7)

with

𝑐𝑙𝑘 =
𝑙!(2𝑙 − 4𝑘 + 1)!!

(2𝑙 − 2𝑘 + 1)!!(𝑙 − 2𝑘)!(2𝑘)!! . (B8)

The 𝑛 〈𝐿〉 provide an orthogonal basis for functions on a
sphere, and each 𝑛 〈𝐿〉 is an eigenfunction of the Lapla-
cian ∇2 := 𝛿𝑎𝑏𝜕𝑎𝜕𝑏 , satisfying ∇2𝑛 〈𝐿〉 = − ℓ (ℓ+1)

𝜌2 𝑛 〈𝐿〉 .

For a fixed 𝑙, the STF tensors 𝑛 〈𝐿〉 span the same func-
tions as the set of spherical harmonics 𝑌𝑙𝑚 (𝜃, 𝜙) of rank 𝑙.
This can be seen by expressing the normal vector as 𝑛𝑖 =

(sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃), leading to [74]

𝑌𝑙𝑚 = Y∗〈𝐿〉
𝑙𝑚

𝑛 〈𝐿〉 , (B9a)

𝑛 〈𝐿〉 = 𝑁𝑙

𝑙∑︁
𝑚=−𝑙

Y 〈𝐿〉
𝑙𝑚

𝑌𝑙𝑚, (B9b)

where

Y 〈𝐿〉
𝑙𝑚
B

1
𝑁𝑙

∫
𝑆2
𝑛 〈𝐿〉𝑌 ∗

𝑙𝑚𝑑Ω, (B9c)

𝑁𝑙 B
4𝜋𝑙!

(2𝑙 + 1)!! . (B9d)

We start by expanding the regular scalar field ΨR (𝑡, 𝑥𝑖) and
its time derivative in a power series around the charge’s posi-
tion to arbitrary order 𝑛 as shown in Eq. (B10). We will show
that all free components of the expansion can be uniquely de-
termined at each time step from (i) numerical data from the
worldtube boundary and (ii) the Klein-Gordon equation (3).

1. Worldtube boundary data

We carry the Taylor expansion of the regular field given in
Eq. (25) to 𝑛th order and give an analogous expansion for the
time derivative

ΨR (𝑡, 𝑥𝚤) =
𝑛∑︁
𝑙=0

ΨR
𝑘̄1 · · ·𝑘̄𝑛

(𝑡)𝑥 𝑘̄1 · · · 𝑥 𝑘̄𝑛 + O(𝜌𝑛+1), (B10a)

𝜕𝑡Ψ
R (𝑡, 𝑥𝚤) =

𝑛∑︁
𝑙=0

¤ΨR
𝑘̄1 · · ·𝑘̄𝑛

(𝑡)𝑥 𝑘̄1 · · · 𝑥 𝑘̄𝑛 + O(𝜌𝑛+1), (B10b)

which has 1
2
∑𝑛
𝑖=0 (𝑖 + 2) (𝑖 + 1) = 1

6 (𝑛 + 3) (𝑛 + 2) (𝑛 + 1) com-
ponents.

The continuity condition at the worldtube boundary is given
by Eq. (28). Both sides of this equation can be expressed in a
basis of STF normal vectors. The regular field ΨR (𝑡𝑠 , 𝑥𝚤) on
the left is transformed using Eq. (B7) to give

ΨR (𝑡𝑠 , 𝑥𝑖) =
𝑛∑︁
𝑙=0

𝜌𝑙ΨR
𝐿̄
(𝑡𝑠)

b𝑙/2c∑︁
𝑘=0

𝑐𝑙𝑘𝛿
(2𝐾̄ 𝑛 〈𝐿̄−2𝐾̄ 〉) (B11)

=

𝑛∑︁
𝑙=0

b𝑙/2c∑︁
𝑘=0

𝜌𝑙𝑐𝑙𝑘Ψ
R
𝐿̄−2𝐾̄ 𝚤1𝚤1 · · ·𝚤𝑘 𝚤𝑘

(𝑡𝑠)𝑛 〈𝐿̄−2𝐾̄ 〉 .

(B12)

As in Sec. IV, the right-hand side of Eq. (28) is calculated
by projecting the numerical, regular field onto spherical har-
monics up to order 𝑛 to obtain the coefficients 𝑎N,R

𝑙𝑚
. This
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expansion is then transformed to STF normal vectors using
Eq. (B9a),

𝑛∑︁
𝑙=0

Ψ
N,R
〈𝐿̄〉 (𝑡𝑠)𝑛

〈𝐿̄〉 =
𝑛∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑎𝑙𝑚 (𝑡𝑠)𝑌𝑙𝑚 (𝑥𝚤). (B13)

The orthogonality of the STF normal vectors allows us to
match Eqs. (B12) and (B13) order by order, yielding a sys-
tem of algebraic equations:

Ψ
N,R
〈𝐿̄〉 (𝑡𝑠) =

b 𝑛−𝑙2 c∑︁
𝑘=0

𝜌𝑙+2𝑘𝑐𝑙+2𝑘
𝑘 ΨR

𝐿̄𝚤1𝚤1 · · ·𝚤𝑘 𝚤𝑘
(𝑡𝑠), 0 ≤ 𝑙 ≤ 𝑛.

(B14)

Each tensor component in the set
{
Ψ

N,R
〈𝐿̄〉

}
𝑙

with 0 ≤ 𝑙 ≤ 𝑛

fixes one degree of freedom of the Taylor coefficients
{
ΨR
𝐿̄

}
𝑙

for a total of (𝑛 + 1)2 equations. The matching equations for
the time derivative coefficients

{
¤ΨR
𝐿̄

}
𝑙

are derived completely
analogously.

2. Klein-Gordon equation

The remaining components of
{
ΨR
𝐿̃

}
𝑙

are fixed by the
Klein-Gordon equation (35). The metric quantities 𝑔𝜇𝜈 and
Γ𝜇 are expanded to the same order 𝑛 as the regular field in the
grid frame 𝑥𝚤 ,

𝑔 𝜇̄𝜈̄ (𝑡𝑠 , 𝑥𝚤) =
𝑛∑︁
𝑙=0

𝑔
𝜇̄𝜈̄

𝐿̄
𝑥 𝐿̄ + O(𝜌𝑛+1), (B15)

Γ𝜇̄ (𝑡𝑠 , 𝑥𝚤) =
𝑛∑︁
𝑙=0

Γ
𝜇̄

𝐿̄
𝑥 𝐿̄ + O(𝜌𝑛+1), (B16)

where the expansion coefficients are given by

𝑔
𝜇̄𝜈̄

𝐿̄
B

1
𝑙!
𝜕𝐿̄𝑔

𝜇̄𝜈̄ (𝑡𝑠 , 𝑥𝚤𝑝), (B17)

Γ
𝜇̄

𝐿̄
B

1
𝑙!
𝜕𝐿̄Γ

𝜇̄ (𝑡𝑠 , 𝑥𝚤𝑝). (B18)

Here, recall, 𝑥𝚤𝑝 = (𝑟𝑝 , 0, 0). Substituting these expansions
into the Klein-Gordon equation, we obtain

0 =

(
𝑛∑︁
𝑙=0

𝑔
𝜇̄𝜈̄

𝐿̄
𝑥 𝐿̄

)
𝜕𝜇̄𝜕𝜈̄

(
𝑛∑︁
𝑙=0

ΨR
𝐿̄
𝑥 𝐿̄

)
+

(
𝑛∑︁
𝑙=0

Γ
𝜇̄

𝐿̄
𝑥 𝐿̄

)
𝜕𝜇̄

(
𝑛∑︁
𝑙=0

ΨR
𝐿̄
𝑥 𝐿̄

)
. (B19)

We now split the partial derivative into its time part 𝜕𝑡 and
spatial part 𝜕𝚤 and solve order by order in 𝜌. The 𝑘th-order
equation reads

0 =

𝑘∑︁
𝑙=0

(
𝑔𝑡𝑡
𝐾̄−𝐿̄

¥ΨR
𝐿̄
+ 2(𝑙 + 1)𝑔𝑡𝚤

𝐾̄−𝐿̄
¤ΨR
𝐿̄𝚤

+ (𝑙 + 2) (𝑙 + 1)𝑔𝚤 𝚥
𝐾̄−𝐿̄Ψ

R
𝐿̄𝚤 𝚥

− Γ𝑡
𝐾̄−𝐿̄

¤ΨR
𝐿̄

−(𝑙 + 1)Γ𝚤
𝐾̄−𝐿̄Ψ

R
𝐿̄𝚤

)
0 ≤ 𝑘 ≤ 𝑛 − 2,

(B20)

where we have made use of the identity 𝜕𝚤𝑎 𝐿̄ (𝑡)𝑥 𝐿̄ =

𝑙𝑎 𝐿̄−1𝚤 (𝑡)𝑥 𝐿̄−1 for 𝑎 𝐿̄ completely symmetric 𝑎 ( 𝐿̄) = 𝑎 𝐿̄ . The
set of equations (B20) fixes 1

6 (𝑛 + 1)𝑛(𝑛 − 1) components of
ΨR which, when combined with equations Eq. (B14), fixes all
components of the expansion (B10).
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