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Emergent organization and polarization due to active fluctuations
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We introduce and study a model of active Brownian motion with multiplicative noise describing fluctuations
in the self-propulsion or activity. We find that the standard picture of density accumulation in slow regions is
qualitatively modified by active fluctuations, as stationary density profiles are generally not determined only
by the mean self-propulsion speed landscape. As a result, activity gradients generically correlate the particle
self-propulsion speed and orientation, leading to emergent polarization at interfaces pointing either towards
dense or dilute regions depending on the amount of noise in the system. We discuss how active noise affects the
emergence of motility-induced phase separation. Our work provides a foundation for systematic studies of active
matter self-organization in the presence of activity landscapes and active fluctuations.
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Introduction. Active matter refers to a broad class of sys-
tems driven out of thermal equilibrium at the level of their
microscopic constituents. Although detailed balance can be
broken locally in various ways, including the generation of
local stresses [1,2], local production and consumption of
chemicals [3], nonreciprocity in the interactions [4–9], or
growth [10–12], systems composed of self-propelled particles
play a central role in active matter studies [13–17]. An inter-
esting feature of the latter case is that activity trivially couples
to the particles’ motion so that it can be used as a way to
control the spatial dynamics of active systems with promising
practical applications [18,19]. Spatial segregation of active
particles can be achieved at the individual particle level, e.g.,
by imposing spatially varying self-propulsion speed [20–23],
or at the collective level, by engineering quorum-sensing-type
interactions triggering motility inhibition in single [24,25] and
multicomponent [26] suspensions.

The physical principles leading to such controls apply to
a wide class of systems and can thus be understood from
minimal models, which most often deal with active Brow-
nian particles (ABPs) [13]. ABPs are generally studied in
the overdamped regime under the assumption that their self-
propulsion speed relaxes on infinitesimal timescales so that it
can be considered constant, and the stochastic dynamics of the
self-propulsion velocity reduces to rotational diffusion. Actual
active particles, on the other hand, self-propel as a result of
intricate processes involving nontrivial timescales [27,28] and
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usually evolve inside complex and noisy environments [29].
Moreover, individual measurements of active self-propulsion
velocity often show it to be a dynamical fluctuating quan-
tity [30–39], which is not a surprise given what we expect
from mechanistic descriptions of self-propulsion. Phoretic
colloids, for instance, are typically driven at their surface
by a chemical reaction whose product density is a fluctu-
ating quantity [28,40]. Low Reynolds swimmers, in turn,
must self-propel by performing nonreciprocal cycles that
may be described as stochastic transitions between internal
states [41]. In both cases, fluctuations of the motility mech-
anism naturally lead to fluctuations in the self-propulsion
speed. When the source of activity is inhomogeneous, e.g.,
in the presence of chemical product density or swimming
medium viscosity gradients, such fluctuations can moreover
vary in space.

Fluctuations of the active velocity, which hereafter we
refer to as active fluctuations, must, by symmetry, carry
independent contributions along the directions parallel and
perpendicular to the self-propulsion direction. Unlike thermal
noise, active noise is therefore multiplicative by design. De-
spite a few studies characterizing the statistical properties of
active fluctuations [13,42–46], little is known about how the
latter can in turn affect the spatial organization of the particles.

Here, we propose a formulation of fluctuating active Brow-
nian motion for which the particle self-propulsion is selected
by a generalized velocity potential and fluctuates both in norm
and direction. Considering the Fokker-Planck equation de-
scribing this fluctuating active dynamics, our analysis reveals
that the expression of the nonequilibrium current in the hy-
drodynamic regime markedly depends on the details of the
self-propulsion mechanism, while it satisfies the same sym-
metries as for constant-speed ABPs. Focusing on the case
where the self-propulsion velocity derives from a quadratic
potential, we moreover characterize the steady-state proper-
ties of the model in the presence of spatially varying activity.
We find that density profiles created by activity landscapes
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are not only set by the mean particle self-propulsion speed,
but also by its higher-order moments. We find that activity
gradients generically correlate the particles’ self-propulsion
speed and orientation, and lead to an emergent polarization
whose direction can point up or down the gradient depending
on the model parameters. We discuss the consequences of the
above features on the emergence of motility-induced phase
separation [15]. Our work demonstrates that active fluctua-
tions can be used as a way to control the spatial organization
of active matter, and leads to conclusions in sharp contrast
with the existing results obtained in the limit of constant-speed
ABPs.

ABPs with active fluctuations. Contrary to thermal noise,
the symmetries of active noise are dictated by that of the
particle’s self-propulsion velocity v. Fluctuations of the norm
v ≡ |v| and direction n̂ ≡ v/v of the self-propulsion are thus
generally decoupled. Therefore, we consider a model of over-
damped ABPs in dimension d � 2 described by the following
Langevin equations:

ṙ = v + 1
2∇Dt (r) +

√
2Dt (r)ξt (t ), (1a)

v̇ = −∂vW (r, v) +
√

2Dv (r)ξv (t ), (1b)

˙̂n =
√

2Dr (r)P⊥(n̂) · ξr (t ), (1c)

where all model parameters may depend on the particle po-
sition r while the unit variance, uncorrelated, Gaussian white
noises ξt , ξv , and ξr , are interpreted in the Stratonovich sense.
Equation (1a) describes the spatial dynamics of the particle
with translational diffusivity Dt (r). Moreover, it comprises
a term compensating for the noise-induced drift that arises
due to the multiplicative nature of the translational noise. The
right-hand side of Eq. (1b) gathers two contributions. The first
one corresponds to a deterministic active force that derives
from an effective potential W (r, v), while the second contribu-
tion results from active fluctuations which are parameterized
by the coefficient Dv (r). Finally, Eq. (1c) sets the orientational
dynamics of self-propulsion with associated diffusivity Dr (r),
where P⊥

i j (n̂) ≡ δi j − n̂in̂ j denotes the projector orthogonal
to n̂. Note that Eqs. (1b) and (1c) can equivalently be ex-
pressed in terms of the velocity v. Keeping the Stratonovich
interpretation of the noise, this leads to (see Supplemental
Material [47])

v̇ = −[∂vW + (d − 1)
√

DvDr]n̂ +
√

2�(v) · ξ(t ),

with �(v) ≡ √
Dvn̂n̂ + v

√
DrP⊥(n̂). Therefore, due to the

decoupling between the speed and orientational degrees of
freedom, the noise on the self-propulsion velocity is generally
multiplicative.

Denoting P (r, v, n̂, t ) as the single-particle distribution, it
is straightforward to show that its dynamics follows

∂tP = −∇ · Jr − v1−d∂v (vd−1Jv ) + Dr∇2
n̂P, (2)

where ∇2
n̂ ≡ P⊥

i j (n̂)∂2
n̂i n̂ j

− (d − 1)n̂i∂n̂i denotes the spherical
Laplacian (summation over repeated indices is assumed),
and the dependencies on r, v, and n̂ are now implicit. The
translational and speed currents are, respectively, given by
Jr ≡ (v − Dt∇ )P and Jv ≡ −∂vWeffP − Dv∂vP , where the
effective potential is defined as Weff ≡ W + (d − 1)Dv ln v.

When the diffusivities and W are independent of r, the
steady-state solutions of Eq. (2) can be factorized and the
speed distribution takes the Boltzmann-like form [44],

PH(v) = Z−1e−Weff (v)/Dv = Z−1v1−d e−W (v)/Dv , (3)

with Z ≡ ∫ ∞
0 dv e−W (v)/Dv ensuring normalization.

Moment expansion. If the coefficients of Eq. (2) are spa-
tially dependent, on the other hand, the active drift in Jr

coupling self-propulsion speed and orientation prevents any
factorization of P . However, the large-scale and long-time
dynamics of the system is generally well captured by means
of an expansion of Eq. (2) in the moments of v. Given
the symmetries of the problem, we shall not directly con-
sider moments associated with v, but rather those related
to the corresponding speed v and orientation n̂. For the
following discussion, we thus define the average: ρ〈·〉 ≡∫

vd−1dvdn̂ (·)P (r, v, n̂, t ), where ρ(r, t ) = ρ〈1〉 is the local
particle density normalized to unity. Deriving the equa-
tions for the moments (details in Appendix A), we find that
the nature and number of terms they involve closely depend
on the specific form of W . It is, moreover, clear that the unique
slow mode of the dynamics is the conserved particle den-
sity ρ, which satisfies ∂tρ = −∇ · J with J = ρ〈vn̂〉 − Dt∇ρ.
Therefore, in the long-time and large-scale limit, the dynamics
of all higher-order, i.e., in speed and orientations, moments
can be enslaved to ρ.

In order to keep the presentation simple while retaining rel-
evant features of active fluctuations, we consider the quadratic
form W (r, v) = μ(r)

2 [v − v0(r)]2, where μ and v0 are a func-
tion of space and assumed positive. With this choice of the
potential, the velocity dynamics has four parameters which
can all be experimentally evaluated from individual particle
tracking. τr ≡ [(d − 1)Dr]−1 sets the typical timescale of ro-
tational diffusion, while μ−1 controls the speed relaxation.
Assuming a homogeneous system, both can be measured from
the steady-state autocorrelation of the particle self-propulsion
direction and speed. Namely, 〈n̂(t ) · n̂(t + τ )〉 = e−τ/τr and
〈v(t )v(t + τ )〉 = 〈v2〉e−μτ . Moreover, v0 and Dv can be ob-
tained from the full speed distribution (3) or simply from its
first two moments:

〈v〉H = v0 + Dv

μ
γ , 〈v2〉H = Dv

μ
+ v0〈v〉H, (4)

where the subscript H refers to averages computed with
the distribution (3), while γ = √

2μ/(Dvπ ) f (μv2
0/Dv ) and

f (x) ≡ e−x/2/[1 + Erf(
√

x/2)]. We note that the limit of
constant-speed ABPs is recovered for μ → ∞, such that
〈v〉H instantly relaxes to v0. On the other hand, taking Dv

and μ finite with v0 = 0 amounts to a variant of the active
Ornstein-Uhlenbeck particles [48], where speed and orienta-
tion fluctuations are decoupled.

We show in Appendix A that for up to O(∇2) terms, the
self-propulsion speed moments are given by 〈vk〉 = 〈vk〉H,
where PH(r, v) now varies in space as a result of the spatial
dependencies of W and Dv . Similarly, we find that at this order
in gradients, the polarity moments can be expressed in terms
of ∇(ρ〈vk〉) with k � 1. Replacing the relevant expressions
into the particle density current, we finally obtain, in the
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hydrodynamic limit,

J = −Dt∇ρ − τr

d (1 + α)
[∇(ρ〈v2〉) + αv0∇(ρ〈v〉)], (5)

where α ≡ μτr . For a quadratic potential W , the density
dynamics is therefore uniquely determined by the first two
self-propulsion speed moments. For v0 > 0 and a fast active
speed dynamics (α 
 1), the dependency of J in 〈v2〉 also
drops out so that its expression reduces to that of constant-
speed ABPs [49]. Below, we discuss the consequences of
finite-α values on the steady-state density. We also present
parameter-free comparisons of our results with simulations
of the Langevin system (1) in three dimensions; see the Sup-
plemental Material [47] for more details about the numerical
methods.

Inhomogeneous steady states. For flux-free boundary con-
ditions, the stationary density profile ρs(r) is simply obtained
from the condition J = 0, leading to

∇ ln ρs = − ∇〈v2〉 + αv0∇〈v〉
v2

D(1 + α) + 〈v2〉 + αv0〈v〉 , (6)

where we have defined vD ≡ (dDtτ
−1
r )1/2 as the velocity scale

built from the translational and rotational diffusivities. Equa-
tion (6) predicts that spatially varying activity resulting in
nonvanishing gradients of the self-propulsion speed moments
leads to inhomogeneous density profiles. From the expres-
sions of the moments in Eq. (4), particle segregation can thus
be achieved independently by imposing gradients of v0, Dv ,
or μ. Conversely, the translational diffusion coefficient only
appears in Eq. (6) through vD, so that its spatial variations
will not qualitatively affect ρs. For simplicity, we thus neglect
its contribution for the remainder of this discussion.

Setting vD = 0, the rotational diffusivity Dr appears in
the expression of ρs only through the parameter α. Spatial
variations of Dr alone are therefore unable to generate den-
sity gradients, in agreement with usual considerations [15]
and recent experimental results [50]. However, the value of
α sets the scaling of the steady-state density with the speed
moments. For fast speed dynamics (α 
 1), Eq. (6) leads to
the standard relation ρs ∼ 〈v〉−1 [49], while in the opposite
case of fast rotational diffusion (α � 1), we instead get ρs ∼
〈v2〉−1. Assuming α to be uniform, we moreover obtain from
Eq. (6) in the active force, or noise dominated, the regimes

ρs ∼ v
−(2+α)/(1+α)
0

(
Dv � μv2

0

)
, (7a)

ρs ∼ 〈v〉−2 ∼ (Dv/μ)−1
(
Dv 
 μv2

0

)
. (7b)

For low noises, the steady-state density therefore scales alge-
braically with the mean particle speed, with an exponent set by
the ratio between the rotational diffusion and speed relaxation
timescales, as shown in Fig. 1(a). On the contrary, when active
noise dominates, Fig. 1(b) shows that the effect of rotational
noise disappears, as ρs always scales as the inverse of Dv/μ.

From Eq. (6), for Dv and μv2
0 of similar order, the station-

ary density is no more enslaved to the mean particle speed, as
gradients of 〈v2〉 can compete with that of 〈v〉. This feature
allows for counterintuitive behavior, as we show by consider-
ing the following illustrative setup: we partition the space into
two distinct subregions 1 and 2 in which active particles ex-
perience different uniform values of v0 = v1,2 and Dv = Dv1,2

FIG. 1. Steady-state density with spatially varying activity.
(a) Mean stationary density as a function of v0 for μv2

0 
 Dv; the
colors, respectively, correspond to (μ, Dr ) = (1, 1) (green), (1,10)
(blue), (10,1) (red), and (10,10) (yellow). (b) Mean stationary density
as a function of Dv/μ for μv2

0 � Dv; the color code is the same as
(a). In (a) and (b), the data have been shifted vertically for clarity.
(c) Imposed one-dimensional v0 (black dash-dotted line) and Dv

(colored dashed lines) profiles splitting the space in two nearly homo-
geneous regions with different activities. (d),(e) The (d) mean density
and (e) particle speed profiles corresponding to (c). (f) The relation
ρ(〈v〉) corresponding to (d) and (e). In (d)–(f), μ = Dr = 1, the v0(x)
profile is unchanged, and the color codes the maximal value of Dv

in each case. In all panels except (c), open circles show the results
obtained from Langevin simulations, while dashed lines indicate the
corresponding theoretical predictions.

[see Fig. 1(c)]. We denote ṽ = v1 − v2 and D̃v = Dv1 − Dv2 ,
and consider the case ṽD̃v < 0. ṽ is kept fixed and we vary
D̃v . For sufficiently small |D̃v|, ρs is maximal in the region
with the smallest v0, as is generally the case for constant-speed
ABPs [15,49] [see blue lines in Figs. 1(c) and 1(d)]. Increasing
|D̃v| progressively leads to an inversion of the density profile,
such that for large |D̃v|, particles instead accumulate, on aver-
age, in the region where v0 is largest [green lines in Figs. 1(c)
and 1(d)]. The density inversion partly follows the behavior
of the mean speed 〈v〉, also affected by |D̃v| [see Eq. (4)
and Fig. 1(e)]. While ρs globally remains largest in small 〈v〉
regions, a direct inspection of the ρs(〈v〉) curves reveals that
when ∇v0 and ∇Dv are both nonzero, ρs can locally increase
with 〈v〉 [Fig. 1(f)], which is something that is impossible in
the absence of active fluctuations.

Orientation-speed correlations and emergent polarization.
The phase-space distribution solving Eq. (2) with spatially
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FIG. 2. Speed-order correlations and local polarization. (a) The
steady-state correlation function Cx (v, n̂x ) in the presence of spa-
tially varying activity v0(x) (gray dashed lines) as well as uniform
Dv = 0.1 and μ = Dr = 1 with Dt = 0.1 (blue) and 1 (red). (b) The
joint speed-orientation distribution associated with (a) for Dt = 0.1,
at the center of the domain (x = 50) and at the interface between the
two regions with different activities (x = 25). (c),(d) The local aver-
aged polarization profiles corresponding to (a) with the same color
code, while the dashed gray line shows the corresponding stationary
density profiles. In (a), (c), and (d), open circles show the simulations
data, while continuous lines indicate theoretical predictions.

varying coefficients cannot be factorized due to the coupling
between the particle motion and activity [Fig. 2(b)]. We now
discuss the consequences of such feature on the particles’
orientational dynamics in the presence of activity landscapes.
In order to avoid dealing with lengthy expressions, we focus
on the limiting case μv2

0 
 Dv , but the results presented be-
low hold in a more general context. General expressions are
presented in the Supplemental Material [47].

Correlations between the speed and the orientation of the
active particles are quantified considering the connected mo-
ment C(v, n̂) ≡ 〈vn̂〉 − 〈v〉〈n̂〉, for which we find

C(v, n̂) = − τrv0∇v0

d (1 + α)

(
μv2

0 
 Dv

)
, (8)

showing that C is nonzero in regions of nonvanishing
activity gradients, as illustrated in Fig. 2(a). Naturally, speed-
orientation correlations are also suppressed in the cases of fast
rotational and speed relaxation, respectively, for τr → 0 and
α 
 1.

Moreover, spatially varying activity spontaneously gener-
ates local orientational order. Namely, using the zero flux
solution (6) and the expression of the polarization given in
Appendix A, we find, in the stationary state,

〈n̂〉s = τr

d

v2
0 − v2

D(1 + α)

(1 + α)
(
v2

D + v2
0

)∇v0
(
μv2

0 
 Dv

)
. (9)

Equation (9) highlights two mechanisms at the origin
of the polar order in regions of nonzero activity gradi-
ents. For fast speed relaxation (α 
 1), the steady-state
active flux 〈vn̂〉s ∼ v0〈n̂〉s must compensate the diffusive
flux −Dt∇ρs so that 〈n̂〉s points towards slow (or dense)

regions [see Fig. 2(d)] [23,51,52]. This gradient alignment
mechanism is consistent with the polarization generally ob-
served at interfaces of repelling ABPs in the phase-separated
regime [53–55], where, in this case, the mean-field spatial
diffusion results from particle collisions [56]. On the other
hand, for self-propulsion speeds v0 such that v2

0 > v2
D(1 + α),

Eq. (9) predicts a reversal of the mean polarization direction
towards fast (or dilute) regions [see Fig. 2(c)]. Indeed, ne-
glecting the effect of positional diffusion particles crossing an
interface separating two regions with different activities will
be, on average, slower—and thus stay longer at the interface—
if they come from the slower (or denser) region. Consequently,
the local polarization will, in this case, be oriented towards the
most dilute region.

Motility-induced phase separation (MIPS). The origin of
MIPS can be understood at the mean-field level from a map-
ping to a dynamics with quorum-sensing interactions, where
the particles’ motility effectively depends on their local den-
sity [15,56]. In the case where active particles slow down
sufficiently fast as they reach denser regions, homogeneous
systems may indeed undergo an instability which marks the
onset of phase separation. As the above derivation consid-
ers general spatial dependencies of the model parameters,
it allows us to study how active fluctuations can trigger or
influence the onset of MIPS. Here, we assume ρ to be suf-
ficiently large such that its fluctuations can be neglected [57].
Consequently, we consider Eq. (5) with all coefficients be-
ing functions of 
 ≡ ∫

dd r′ K (|r − r′|)ρ(r′), where K is a
(normalized) short-range interaction kernel. Expanding 
 in
the gradients of ρ, the active noise dynamics with quorum-
sensing interactions maps to active model B (AMB) [58],
such that the current in (5) can be formally written as J =
−ρM(
)∇ψ (ρ), where the generalized chemical potential is
given by ψ (ρ) = f ′(ρ) − κ (ρ)∇2ρ. The expressions of the
coefficients f (ρ) and κ (ρ), as well as details on the derivation,
are given in Appendix B.

We deduce that a homogeneous system at density ρ̄ is
linearly unstable to small wave-number perturbations when-
ever f ′′(ρ̄) < 0. In the limiting cases of large active force and
noise, we find that this condition translates to

v′
0(2 + α)

v0(1 + α)

ρ̄

1 + v2
D

v2
0

< −1
(
Dv � μv2

0

)
, (10a)

(Dv/μ)′

Dv/μ

ρ̄

1 + (1 + α) v2
Dμ

Dv

< −1
(
Dv 
 μv2

0

)
, (10b)

where dependencies of the coefficients in ρ are implicit to
lighten the notation, and prime denotes differentiation with
respect to ρ. We observe from Eq. (10b) that in addition to
the standard route, MIPS may also be caused by active fluctu-
ations, as well as cases where the speed-relaxation timescale
μ−1 depends on the local density. Moreover, since the insta-
bility condition can be fulfilled only if 〈v〉 or 〈v2〉 depend on
ρ (see Appendix B), Dr (ρ) by itself cannot lead to MIPS, but
will affect the determination of the spinodals in a nontrivial
way through the coefficient α. Indeed, taking Eq. (10a) with
vD = 0, the instability condition becomes ρ̄v′

0/v0 < −(1 +
α)/(2 + α). For α 
 1, this condition reduces to that of
constant-speed ABPs [15,57], but smaller values of α, in turn,
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lead to a less strict condition such that spinodal decomposition
may be observed even if ρ̄v′

0/v0 > −1. Finally, when the full
dependency of the model parameters on the local particle den-
sity is known, the MIPS binodals can be computed from ψ (ρ)
using the mapping to generalized thermodynamic variables
outlined in Ref. [54].

We have introduced a general model of active noise and
studied its consequences on the free motion of ABPs. Our
analysis reveals a number of quantitative differences with
respect to the widely used constant-speed ABPs model, such
as the breakdown of the ρs ∼ 〈v〉−1 law for comparable
self-propulsion speed and orientational relaxation timescales,
leading under these conditions to possibly counterintuitive
stationary density profiles in activity landscapes. Moreover,
our results illustrate how the interplay of active noise and ac-
tivity gradients leads to correlations between particles speeds
and orientation, as well as emergent polar order in the absence
of explicit aligning interactions. Considering a system with
quorum-sensing interactions, we have shown how active noise
modifies the MIPS phase diagram. In particular, our results
suggest that active fluctuations could constitute a mechanistic
explanation of the motility-induced clustering phenomena ob-
served in systems for which the MIPS instability condition for
constant-speed ABPs does not hold [39]. Considering more
complex expressions of the potential W or other types of
particle interactions [59,60], it thus appears clear that further
consequences of active noise on the dynamics of active matter
are expected.
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APPENDIX A: THE DERIVATION OF EQ. (5)

Here, we provide technical details on the moment ex-
pansion and closure procedure leading to the hydrodynamic
current (5) for the density field ρ.

Using the definition ρ〈·〉 = ∫
vd−1dvdn̂ (·)P (r, v, n̂, t ) of

the velocity moments, after some algebra we obtain, from
Eq. (2) and for k � 0,

∂t (ρ〈vk〉) = −∇ · [ρ〈n̂vk+1〉 − Dt∇(ρ〈vk〉)]

+ ρ〈Gk〉 + bk, (A1a)

∂t (ρ〈n̂vk〉) = −∇ ·
[
ρ〈qvk+1〉 + I

d
ρ〈vk+1〉

−Dt∇(ρ〈n̂vk〉)

]
− (d − 1)Drρ〈n̂vk〉

+ ρ〈n̂Gk〉 + ∇φk, (A1b)

where q ≡ n̂n̂ − I/d measures nematic order, and Gk ≡
k[(k − 1)vk−2Dv − vk−1∂vW ]. The boundary terms bk and
∇φk on the right-hand side of Eqs. (A1) are obtained after
integrating by parts the speed current in Eq. (2); their presence
results from the singular behavior of P at v = 0 [see Eq. (3)].

Namely, they are given by

bk = lim
v→0

∫
dn̂ vk+d−1

[
kDv

v
− ∂vWeff − Dv∂v

]
P,

∇φk = lim
v→0

∫
dn̂ n̂vk+d−1

[
kDv

v
− ∂vWeff − Dv∂v

]
P .

To evaluate them, we show in the Supplemental Material [47]
that the distribution P (r, v, n̂, t ) can be written perturbatively
as

P (r, v, n̂, t ) � ρ(r, t )
PH(r, v)

Sd
[1 + Y (r, v, n̂)],

where Sd denotes the surface of the unit (d − 1)-sphere, PH

is given by (3) with space-dependent W and Dv , while the
O(n̂ · ∇) function Y is unknown but satisfies in the regime
Dv 
 W relevant for the boundary terms:

Y (r, v, n̂) �
Dv
W

−vτr (n̂ · ∇) ln [PH(r, v)].

Using these expressions, we therefore obtain

bk = Dvργ δk,1, ∇φk = Dvτrδk,0

d
∇(ργ ), (A2)

where γ (r) ≡ PH(r, 0) = e−W (r,0)/Dv (r)Z−1(r) and δi, j is the
Kronecker delta symbol.

Considering now W (r, v) = μ(r)
2 [v − v0(r)]2, we express

from Eq. (A1b) the first two polarity moments as

ρ〈n̂〉 = −τr

d
∇(ρ〈v〉) + Dvτ

2
r

d
∇(ργ ), (A3a)

ρ〈vn̂〉 = − τr

d (1 + α)
∇(ρ〈v2〉) + αv0

1 + α
ρ〈n̂〉, (A3b)

where α ≡ μτr and we have kept only contributions up to
O(∇). In particular, the contribution from the nematic order
parameter q was discarded as it is O(∇2) (see Supplemental
Material [47]). At first order in gradients, the self-propulsion
speed moments moreover solve 〈Gk〉 + bk = 0, such that
〈vk〉 = 〈vk〉H, where the H subscript indicates that the average
is taken with respect to the distribution PH(r, v). Noting that
the density satisfies, from (A1a) with k = 0,

∂tρ = −∇ · [ρ〈vn̂〉 − Dt∇ρ],

and combining Eqs. (4) and (A3), finally gives the hy-
drodynamic current (5). Note that the boundary term
∼τ 2

r Dvv0∇(ργ ) coming from (A3a) has been discarded as its
contribution is generally subleading.

APPENDIX B: THE MAPPING TO AMB

Here, we present the derivation of the nonlocal currents
arising when the interactions between the particles can be
treated as effective quorum-sensing interactions, leading to a
dependence in the particle density of the hydrodynamic equa-
tion coefficients. Let us therefore consider the hydrodynamic
current (5) and assume that all coefficients take a functional
dependency in the local density field such that

〈v2〉(
), 〈v〉(
), v0(
), τr (
), α(
), Dt (
), (B1)

where 
 ≡ ∫
dd r′ K (|r′ − r|)ρ(r′) and K is a short-range in-

teraction kernel normalized such that
∫

dd r′ K (r′) = 1. We
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now define

M(
) ≡ Dt (
) + τr (
)

d[1 + α(
)]
[〈v2〉(
) + α(
)v0(
)〈v〉(
)]

(B2)
as an effective mobility for the dynamics. Note that this choice
is arbitrary as long as M(
) > 0. The current in Eq. (5) is then
written as

J = − ρM(
)

[
∇ ln(ρ)

+ ∇[〈v2〉(
)] + α(
)v0(
)∇[〈v〉(
)]

[1 + α(
)]v2
D(
) + 〈v2〉(
) + α(
)v0(
)〈v〉(
)

]
,

where v2
D ≡ dDtτ

−1
r . Assuming that ρ does not vary much

over the scale of the quorum-sensing interaction, we expand
for any function φ(
) up to second order in gradient:

φ(
) � φ(ρ + �2∇2ρ) � φ(ρ) + �2φ′(ρ)∇2ρ,

where �2 ≡ 1
2d

∫
dd r K (r)r2 and prime denotes the derivative

with respect to ρ. Expanding all coefficients in the fraction
on the right-hand side of (B3), we find after some alge-
bra that the current can be recast into the compact form
J = −ρM(
)∇ψ (ρ), where the effective chemical potential
ψ (ρ) ≡ f ′(ρ) − κ (ρ)∇2ρ, while the generalized free energy
and surface tension are defined as

f ′(ρ) ≡ ln(ρ) +
∫ ρ

dy
〈v2〉′ + αv0〈v〉′

(1 + α)v2
D + 〈v2〉 + αv0〈v〉 ,

κ (ρ) ≡ −�2 〈v2〉′ + αv0〈v〉′
(1 + α)v2

D + 〈v2〉 + αv0〈v〉 ,

where the ρ dependency of the coefficients is kept implicit to
lighten notations.
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