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Abstract The hippocampal- dependent memory system and striatal- dependent memory system 
modulate reinforcement learning depending on feedback timing in adults, but their contributions 
during development remain unclear. In a 2- year longitudinal study, 6- to- 7- year- old children performed 
a reinforcement learning task in which they received feedback immediately or with a short delay 
following their response. Children’s learning was found to be sensitive to feedback timing modu-
lations in their reaction time and inverse temperature parameter, which quantifies value- guided 
decision- making. They showed longitudinal improvements towards more optimal value- based 
learning, and their hippocampal volume showed protracted maturation. Better delayed model- 
derived learning covaried with larger hippocampal volume longitudinally, in line with the adult liter-
ature. In contrast, a larger striatal volume in children was associated with both better immediate and 
delayed model- derived learning longitudinally. These findings show, for the first time, an early hippo-
campal contribution to the dynamic development of reinforcement learning in middle childhood, with 
neurally less differentiated and more cooperative memory systems than in adults.

eLife assessment
In this work, the authors make a valuable contribution based on convincing evidence that children 
6- to- 7- years- old improve in 2 years of development towards utilising more optimal value- based 
decision- making strategies while performing a reinforcement learning task. They found that delayed 
feedback learning was associated with volume in the hippocampus while immediate feedback 
learning was not. Striatal volume was associated with both forms of learning, in contrast to prior 
research funding in adults. Brain- behaviour correlations were stable across the 2- year period, despite 
the hippocampus increasing in volume and striatal volume remaining stable.
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Introduction
As children enter school during middle childhood, they must learn to act appropriately in new situa-
tions through feedback. For example, children must learn to raise their hand before speaking during 
class. The teacher may reinforce this behavior immediately or with a delay, which raises the question 
whether feedback timing modulates their learning. Here, reinforcement learning (RL; Sutton and 
Barto, 2018) provides a useful mechanistic framework to describe such feedback- driven value- based 
learning and decision- making. RL models allow to explicitely test for the influence of separate compo-
nents during value- based learning, such as model- free and model- based learning (Gläscher et al., 
2010), social and non- social learning (Bolenz et al., 2017; Zhang and Gläscher, 2020), or the contri-
bution of different memory systems (Foerde and Shohamy, 2011; Packard and Goodman, 2013; 
Goodman and Packard, 2016).

The role of feedback timing has previously been studied in relation to memory sytems. The 
memory systems account is a theoretical framework that proposes that different types of memory 
are supported by distinct neural systems in the brain. Specifically, this account suggests that there 
are two memory systems: a hippocampal- dependent system and a striatal- dependent system. These 
systems modulate memory and value- based learning, and their interactive development has been of 
particular interest to developmental research (Davidow et al., 2016; Hartley et al., 2021). In adults, 
the hippocampal- dependent memory system has been shown to contribute to episodic memory 
during reinforcement learning and is more engaged during feedback that is presented with a delay 
(Packard and Goodman, 2013; Packard et al., 2018; Schwabe and Wolf, 2013), as opposed to the 
striatal- dependent memory system, which is more engaged after immediate feedback and supports 
habitual memory (Foerde and Shohamy, 2011; Foerde et al., 2013; Höltje and Mecklinger, 2020; 
Lighthall et al., 2018). Specifically, hippocampal activation was greater during delayed feedback than 
during immediate feedback, whereas striatal activation was greater during immediate feedback than 
during delayed feedback (Foerde and Shohamy, 2011). The engagement of the hippocampus during 
delayed feedback was further supported by enhanced episodic memory for incidentally presented 
objects compared to objects presented with immediate feedback. Taken together, findings from adult 
studies suggest that feedback timing modulates the engagement of the hippocampal and striatal 
memory systems during value- based learning. Given the differential developmental trajectories of 
these systems and the impact the systems have on reinforcement learning and memory, it is important 
to understand whether children would show similar feedback timing modulations as previously shown 
in adults. In addition, whether such feedback timing modulation changes over time remains largely 
unexplored. To this end, in this study, we examined the contributions of hippocampal and striatal 
structural volumes during the longitudinal development of reinforcement learning across two years 
in 6- to- 7- year- old children. We will introduce the key parameters in reinforcement learning and then 
we review the existing literature on developmental trajectories in reinforcement learning as well as on 
hippocampus and striatum, our two brain regions of interest.

Reinforcement learning behavior modulated by feedback timing can be modeled computation-
ally using at least three parameters that reflect feedback- based learning and decision- making. For 
feedback- based learning, a learning rate parameter determines the extent to which the reward 
prediction error, defined as the difference between the received reward and the expected reward, 
influences the update of the future choice values. A higher learning rate emphasizes recent outcomes, 
whereas a lower learning rate reflects learning integrated over a longer outcome history (Zhang et al., 
2020). Value updates may further depend on an outcome sensitivity parameter that scales the indi-
vidual magnitude of received rewards. Finally, in decision- making, the inverse temperature parameter 
plays a key role in determining the tendency to select the more valuable choice and quantifies choice 
stochasticity. A higher inverse temperature reflects more value- guided, deterministic choice behavior 
compared to a lower inverse temperature reflecting more random choices. Learning rates and inverse 
temperature have been studied extensively across development, mainly with cross- sectional studies 
showing mixed findings regarding their age gradients (Nussenbaum and Hartley, 2019). One study 
reported lower learning rates in children compared to adolescents (Decker et al., 2015), while other 
studies found no differences (Javadi et al., 2014; Palminteri et al., 2016) or even higher learning 
rates in children (Davidow et al., 2016; Master et al., 2020). Developmental differences regarding 
the inverse temperature parameter are slightly more consistent, with studies reporting no differences 
(Davidow et al., 2016; Hauser et al., 2015; Moutoussis et al., 2018; van den Bos et al., 2012) or 
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higher inverse temperature with age that suggests that behavior is increasingly value- guided and less 
explorative (Decker et al., 2015; Javadi et al., 2014; Palminteri et al., 2016; Rodriguez Buritica 
et al., 2019). To the best of our knowledge, outcome sensitivity has not been modeled computa-
tionally across development. However, studies that linked striatal reward activation to self- reported 
reward sensitivity showed increasing sensitivity from childhood to adolescence (Galván, 2013; van 
Duijvenvoorde et al., 2014).

In general, the inconsistencies regarding developmental differences in parameters may be due to 
their dependency on model and task properties (Eckstein et al., 2021), which could be reconciled 
by comparing developmental changes to simulation- based optimal learning (Zhang et  al., 2020). 
Such comparisons acknowledge that optimal parameter values vary depending on the context, and 
it has been suggested that humans develop towards more optimal parameter values from childhood 
into adulthood (Nussenbaum and Hartley, 2019). Importantly, to our knowledge previous reinforce-
ment learning studies with children were cross- sectional, and only two studies investigated children 
under 8 years of age (Decker et al., 2015; Cohen et al., 2020). Cross- sectional studies, in which 
developmental change is inferred as a between- subject factor, do not capture the dynamics in middle 
childhood if individual differences are large, whereas longitudinal studies test development as a 
within- subject factor, which is crucial for uncovering change across time. Thus, longitudinal changes in 
reinforcement learning in middle childhood as well as their putative striatal and hippocampal associ-
ations remain unknown. To this end, learning rates, outcome sensitivity, and inverse temperature are 
relevant computational parameters to study longitudinal changes in striatal and hippocampal systems 
during value- based learning.

Striatal and hippocampal contributions to reinforcement learning during middle childhood may 
differ as these brain regions undergo major developmental changes. Although earlier structural studies 
with relatively small sample sizes showed large developmental variability and a tendency for an earlier 
volume peak in the striatum than in the hippocampus (Raznahan et al., 2014; Wierenga et al., 2014; 
Giedd, 2004; Uematsu et al., 2012; Giedd et al., 2015; Goodman et al., 2014; Goddings et al., 
2014), a recent cross- sectional large- scale study was able to contrast striatal and hippocampal trajec-
tories with greater granularity (Dima et al., 2022). These data showed striatal volume peaks in the first 
decade which then declined throughout later developmental periods, whereas hippocampal volume 

Figure 1. Reinforcement learning task. (A) Depiction of two example trials of immediate and delayed feedback conditions presented at wave 1. For 
immediate feedback (top panel), between choice response and feedback, cue and choice were presented for 1 s. At feedback, a green frame around 
the incidentally encoded object indicated a positive outcome, which appeared in 87.5% of the trials when selecting the squard- shaped lolli for this 
example cue. For delayed feedback (bottom panel), the delay phase between choice response and feedback lasted for 5 s. The red frame around the 
object indicated a negative outcome and appeared in 87.5% of the trials when selecting the squard- shaped lolli for this example cue. (B) For each 
feedback condition, two action- outcome contingencies were learned to balance a potential choice bias. With the four task versions, the cues and 
outcome contingencies were counterbalanced across participants.
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showed a more protracted inverted- U- shaped trajectory that peaked in adolescence. Based on these 
structural findings, striatal and hippocampal systems are expected to develop functionally at different 
rates (Lavenex and Banta Lavenex, 2013), with habit memory depending on the earlier developing 
striatum and episodic memory depending on the later developing hippocampus (Mandolesi et al., 
2009). A direct investigation of the longitudinal development of both memory systems in childhood 
would shed light on whether the memory systems show a differential engagement similar to that of 
adults (Foerde and Shohamy, 2011). Such knowledge could be useful to structure learning processes 
according to the developmental status. For example, children’s ability to learn from delayed feedback 
may depend on how well their hippocampus has developed. In the same study sample, we previously 
reported that children’s hippocampal volume was related to their family’s income level (Raffington 
et al., 2019). Additionally, previous research has shown that stress can reduce the effectiveness of 
the hippocampal- dependent memory system (Schwabe and Wolf, 2013). This suggests that envi-
ronmental factors such as income and stress may play a role in shaping how well children learn from 
delayed feedback, particularly through their impact on hippocampal development. By identifying the 
specific environmental factors that impact children’s learning and brain development, we can identify 
risk groups and tailor interventions to ameliorate adverse effects.

This study aimed to explore the development of value- based learning in children and its rela-
tionship with structural brain development over time. We hypothesized that the timing of feedback 
would modulate children’s learning in a commonly used reinforcement learning task (see Figure 1), 
and that such modulation can be captured by reinforcement learning (RL) model parameters. Addi-
tionally, we predicted that children’s value- based longitudinal development would shift towards more 
optimal learning behavior. Regarding structural brain development, we expected the striatum to be 
relatively mature by middle childhood compared to the protracted hippocampal maturation. Our 
second objective was to investigate the relationship between value- based learning and structural 
brain development using longitudinal structural equation modeling. We anticipated that there would 
be differentiated brain- cognition links between brain volume and value- based learning. Specifically, 
we predicted that immediate feedback learning would be more strongly associated with striatal 
volume, whereas hippocampal volume would be more closely linked to delayed feedback and the 
facilitation of episodic memory encoding. Finally, we examined how these brain- cognition dynamics 
would change over time by analyzing their longitudinal changes.

Results
Behavioral results
First, we were interested in whether children showed behavioral differences between waves and feed-
back timing. A descriptive overview is provided in Table 1 and Figure 2. The details of the reported 
GLMM models, including the random effects structure and the effects of age and sex, are described 
in the Appendix 2. Since some children were poor learners who failed to reach 50% average accuracy 
in their last 20 trials (13 children at wave 1 and 6 children at wave 2), we also performed behavioral 
analyses with a reduced dataset in which results remained unchanged (Appendix 6).

Table 1. Behavioral learning outcomes and mixed model fixed effects that predicted the outcomes.

Descriptive Results Mixed Model Effects

Wave 1 Wave 2 Wave Feedback

Immediate Delayed Immediate Delayed

ACC 0.69 (0.46) 0.70 (0.46) 0.79 (0.41) 0.80 (0.40) ↑ W2 –

WS 0.81 (0.39) 0.80 (0.40) 0.88 (0.32) 0.88 (0.32) ↑ W2 –

LS 0.47 (0.50) 0.50 (0.50) 0.42 (0.49) 0.42 (0.49) ↓ W2 –

RT 2.10 (1.31) 2.07 (1.29) 1.70 (1.02) 1.67 (1.00) ↓ W2 ↓ Delayed

Note. Mean (standard deviation of accuracy) (ACC, probability correct), win- stay probability (WS), lose- shift 
probability (LS), and reaction time (RT, in seconds), split by wave and feedback timing. Mixed model effects and 
their directionality of effect (increasing ↑ or decreasing ↓). W2 = Wave 2.
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Children’s learning improved between waves
With the complete dataset, we found that increased learning accuracy (i.e. the probability of 
choosing the more rewarding option) was predicted at wave 2 compared to wave 1, but there 
were no differences in accuracy by feedback timing ( βwave=2  = .550, SE = .061, z = 8.97, p < 
0.001,  βfeedback=delayed   = 0.013, SE = 0.024, z = 0.54, p = 0.590). Furthermore, win- stay probability 
increased and lose- shift probability decreased longitudinally, again without differences by feed-
back timing (WS:  βwave=2  = 0.586, SE = 0.071, z = 8.22, p < 0.001,  βfeedback=delayed   = 0.023, SE = 
0.033, z = 0.69, p = 0.489; LS:  βwave=2  = –0.252, SE = 0.037, z = –6.87, p < 0.001,  βfeedback=delayed   = 
0.030, SE = 0.022, z = 1.37, p = 0.169). Reaction times were faster at wave 2 compared to wave 
1, and they were faster for delayed compared to immediate feedback trials ( βwave=2  = –0.221, SE 
= 22.8, t(135) = –9.70, p < 0.001,  βfeedback=delayed   = –13.8, SE = 6.59, t(136) = –2.10, p = 0.038). 
To summarize, children’s average accuracy improved over 2 years, while their win- stay probability 
increased and their lose- shift probability decreased between waves. Children were able to respond 
faster to cues paired with delayed feedback compared to cues paired with immediate feedback, 
and they became faster in their decision- making across waves (see mixed model effects overview 
in Table 1). Of note, reaction times were largely uncorrelated with accuracy and switching behavior 
(win- stay, lose- shift), while accuracy and switching behavior showed significant correlations at both 
waves (Figure 2D).

Figure 2. Individual differences in the behavioral learning outcomes and their longitudinal change. (A) Accuracy did not differ by feedback timing and 
increased between waves. (B) Win- stay and lose- shift proportion did not differ by feedback timing, and win- stay increased and lose- shift proportion 
decreased between waves. (C) Reaction time (in ms) differed by feedback timing, in which decisions for cues learned with delayed feedback were faster, 
and reaction times were faster at wave 2 compared to wave 1. (D) Correlations between behavioral outcomes reveal that learning accuracy was primarily 
correlated with the win- stay and lose- shift probabilities both within and between waves, but was uncorrelated to reaction time. Significant correlations 
are circled, p- values were adjusted for multiple comparisons using bonferroni correction.
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Modeling results
Children’s behavior was best described by value-based learning
We conducted a 2- step sequential procedure for model development and model selection. Model 
comparison using leave- one- out cross validation showed evidence in favor of the value- based 
learning model, reflected in the highest expected log pointwise predictive density and highest 
model weights, confirming that children’s learning behavior in the longitudinal data can generally 
be better described by a value- based rather than by a heuristic strategy model ( elpdloo  = –15154.9, 
Pseudo- BMA+ = 1, Table 2). Children whose individual fit was better for a heuristic model ( wsls ) 
than for the value- based model ( vbm1 ), were at both waves more likely to be poor learners (defined 
as an accuracy below 50% in the last 20 trials). Taken together, children’s learning behavior was best 
described by a value- based model, and a heuristic strategy model captured more poor learners 
compared to a value- based model.

Table 2. Model comparison results.

Model Parameters  ∆elpdloo
[
SE

]
  Σelpdloo

[
mean

]
 Pseudo- BMA+

Step 1: heuristic strategy models and value- based learning model

 vbm1  1α ,  1τ  0 [0] –15154.9 [-0.45] 1

 ws  1τws –1327.7 [159.5] –16482.7 [-0.49] < 0.01

 wsls  1τwsls –4247.3 [284.8] –19402.3 [-0.58] 0

Step 2: value- based learning models

 vbm3  1α ,  2τ  0 [0] –15045.3 [-0.45] 0.73

 vbm7  1α ,  2ρ –2.93 [2.92] –15048.2 [-0.45] 0.24

 vbm6  2α ,  1ρ –24.34 [8.85] –15069.6 [-0.45] < 0.01

 vbm8  2α ,  2ρ –29.71 [15.95] –15075.0 [-0.45] 0.02

 vbm4  2α , 2τ  –43.34 [14.89] –15088.6 [-0.45] < 0.01

 vbm2  2α ,  1τ  –46.45 [13.97] –15091.7 [-0.45] < 0.01

 vbm5  1α ,  1ρ –59.01 [7.59] –15104.3 [-0.45] < 0.01

 vbm1  1α ,  1τ  –109.63 [11.98] –15154.9 [-0.45] < 0.01

Note. Model = heuristic ( ws ,  wsls ) and value- based models ( vbm1−8 ) that were compared against each other. 
Parameters = corresponding model parameters learning rate  α , inverse temperature  τ   and outcome sensitivity  ρ . 

 ∆elpdloo
[
SE

]
  = difference in the Bayesian leave- one- out cross- validation estimate of the expected log pointwise 

predictive density relative to the winning model and its standard errors.  Σelpdloo
[
mean

]
  = sum of expected log 

pointwise predictive density of all 33,460 trials, including all participants and waves, and trial mean. Pseudo- BMA+ 
= model weight for relative model evidence using Bayesian model averaging stabilized by Bayesian bootstrap 
with 100,000 iterations.

Table 3. Description of computational model parameters from the winning value- based model  vbm3  .

Wave 1 Wave 2

α τImmediate τDelayed lsImmediate lsDelayed α τImmediate τDelayed lsImmediate lsDelayed

Mean 0.02 14.6 14.8 0.73 0.73 0.05 16.2 16.5 0.82 0.82

SD 0.02 2.04 2.37 0.12 0.13 0.04 2.37 2.21 0.13 0.13

Min < 0.01 6.73 5.25 0.53 0.53 < 0.01 4.37 6.85 0.53 0.53

Max 0.09 17.5 17.9 0.94 0.94 0.22 18.6 18.7 0.96 0.96

Note.  α  = learning rate across feedback timing,  τ /ls  = inverse temperature and learning score separated by conditions of feedback timing.

https://doi.org/10.7554/eLife.89483
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Feedback timing modulated choice stochasticity
Model  vbm3  ( 1α2τ  ) showed the largest model evidence, reflected in the highest expected log 
pointwise predictive density and highest model weights and suggests that feedback timing affected 
the inverse temperature, but not the learning rate or outcome sensitivity ( elpdloo  = –15045.3, pseu-
do- BMA+ = 0.73, Table 2). Table 3 and Figure 3A provide a descriptive overview of the winning 
model parameters. Of note, there were only small differences in model fit ( elpdloo ) to the second- 
best model ( vbm7, 1α2ρ ,  ∆elpdloo  = –2.93,  elpd_SEloo  = 2.92, Pseudo- BMA+ = 0.24), which suggests 
a potential separable feedback timing effect on outcome sensitivity. We also performed the model 
comparison with a reduced dataset in which the winning model remained the same (Appendix 6). The 
average inverse temperature did not differ by feedback condition, but showed large within- person 
condition differences at both waves, indicating individual differences in feedback timing modulation 
(wave 1:  ∆τdel−ime  Mean = 0.22, SD = 3.80, Range = 21.74, wave 2:  ∆τdel−ime  Mean = 0.35, SD = 3.70, 
Range = 24.03). The correlations between the parameters are reported in Appendix 3.

Since reaction times were predicted by feedback timing behaviorally, and inverse temperature 
is assumed to reflect decision- making, we were interested in whether differences in reaction time 
were related to inverse temperature differences. Indeed, at both waves, children who responded 
faster during delayed compared to immediate feedback had a higher inverse temperature at delayed 
compared to immediate feedback (wave 1: r = –0.261, t(138) = –3.18, p = 0.002, wave 2: r = –0.345, 
t(124) = –4.10, p < 0.001, Figure 3B). Taken together, children’s learning behavior was best described 
by a value- based model, where feedback timing modulated individual differences in the choice rule 
during value- based learning. Interestingly, the differences in the choice rule and reaction time were 

Figure 3. Overview of the computational model parameters. (A) Individual differences in the learning rate and inverse temperature of the winning 
model and their longitudinal change. The inverse temperature  τ   but not learning rate  α  was separated by feedback timing, and both increased 
between waves in their values (top panel). The condition difference in the inverse temperature did not differ on average, but showed individual 
differences (bottom left panel). (B) The condition differences in the inverse temperature correlated with reaction time, that is higher delayed compared 
to immediate inverse temperature was related to faster delayed compared to immediate reaction time.

https://doi.org/10.7554/eLife.89483
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correlated. Specifically, more value- guided choice behavior (i.e. higher inverse temperature) was 
related to faster responses during delayed feedback relative to immediate feedback, suggesting a 
link between model parameter and behavior in relation to feedback timing.

Children’s value-based learning became more optimal
Next, we compared the parameter space according to model simulation (Figure 4A) with the empir-
ical posterior parameters fitted by the winning model (Table 3, Figure 4B) to determine whether 
children increased their value- based learning towards more optimal parameter combinations. Both 
fitted and simulated parameter combinations allowed us to derive a learning score that captured 
learning performance according to the winning value- based model. Note that the learning score was 
defined as the average choice probability for the more rewarded choice option. We refer to these 
model- derived choice probabilities as learning score, since they reflect value- based learning and 
combine information of learned values, that depend on the learning rate, and values translated into 
choice probabilities, that depend on the inverse temperature. Thus, a higher learning score reflects 
more optimal value- based learning. We simulated 10,000 parameter combinations and created a 
learning score map according to each parameter combination (Figure 4A). The optimal parameter 
combination was at a learning rate α = 0.29, and an inverse temperature τ = 19.8, and with an 
average learning score of 96.5% (Figure 4A). Children’s fitted learning rates ranged 0.01–0.22 and 

Figure 4. Model simulation/validation. (A) The model simulation depicts parameter combinations and simulation- based average learning scores. The 
cyan ‘X’ in the middle top depicts the optimal parameter combination where average learning scores were at 96.5%, and the cyan rectangle depicts the 
space of the fitted parameter combinations, (B) Enlarged view of the space of fitted parameter combinations. The colored arrows depict mean change 
(bold arrow) and individual change (transparent arrows) of the fitted parameters. The greyscale gradient- filled dots, that are connected by the arrows, 
depict the individual learning score, while the the greyscale gradient in the background depicts the simulated average learning score. The mean change 
reveals an overall change towards the higher, that is, more optimal, learning scores. (C) One- step- ahead posterior predictions of the winning model 
for each wave. The colored lines depict averaged trial- by- trial task behavior for each feedback condition, and a cyan ribbon indicates the 95% highest 
density interval of the one- step- ahead prediction using the entire posterior distribution, which included 6000 iterations for each of the 33,460 trials.

https://doi.org/10.7554/eLife.89483
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inverse temperature 6.73–18.70 and were outside the parameter space of a learning score above 96% 
(Table 3 and Figure 4A). The average longitudinal increases in learning rate and inverse temperature 
were mirrored by average increases in the learning scores, confirming our prediction that their param-
eters developed towards optimal value- based learning (arrow in Figure 4B). We further found that 
the average longitudinal change in win- stay and lose- shift proportion also developed towards more 
optimal value- based learning (Appendix 4).

Model validation
To validate our winning model  vbm3  , we estimated its predictive accuracy by comparing one- step- 
ahead model predictions with the choice data. The one- step ahead predictions of the winning model 
captured children’s choices overall well, with predictive accuracies of 65.3% at wave 1 and 75.7% at 
wave 2 (Figure 4C). Further, our winning model showed a good parameter recovery for learning rate 
(r = 0.85) and inverse temperature (r = 0.75–0.77). Our winning model showed excellent on the group 
level (100%) when comparing it to a set of models used during model comparison ( vbm1 ,  vbm7, wsls ). 
The individual model recovery was lower (58%), with 35% of the simulated winning model fitting best 
on our baseline model  vbm1  with a single inverse temperature, which likely reflects the noisy property 
of the inverse temperature (Appendix 1).

Longitudinal brain-cognition links
Significant longitudinal change in brain and cognition
We first performed univariate LCS model analyses to estimate a latent change score of immediate 
and delayed learning scores as well as striatal and hippocampal volumes (see descriptive changes in 
Figure 5B, C). All four variables of interest showed significant positive mean changes and variances, 
and all univariate models provided a good fit to the data (see Appendix 5). This allowed us to further 
relate the differences in structural brain changes to changes in learning.

Hippocampal volume exhibited more protracted development during 
middle childhood
We next fitted a bivariate LCS model to compare striatal and hippocampal change scores. We theo-
rized that by middle childhood, the striatum would be relatively mature, whereas the hippocampus 
continues to develop. We progressively constructed multiple LCS models to test this idea. First, the 
bivariate LCS model provided a good data fit (χ² (14) = 10.09, CFI = 1.00, RMSEA (CI) = 0 (0- 0.06), 
SRMR = 0.04). We then further fitted two constrained models, to see whether setting the mean striatal 
change or the mean hippocampal change to 0 would lead to a drop in the model fit. Compared to the 
unrestricted model, the constrained model that assumed no striatal change did not lead to a drop in 
model fit (Δχ² (1) = 2.74, p = 0.098), whereas the model that assumed hippocampal change dropped 
in model fit (Δχ² (1) = 12.69, p < 0.001). Finally, we tested a more stringent assumption of equal 
change for striatal and hippocampal volumes, in which the model dropped in model fit compared to 
the unrestricted model (Δχ² (1) = 18.04, p < 0.001) and suggests that striatal and hippocampal change 
differed. Together, these results support our postulation of separable maturational brain trajectories in 
our study sample, suggesting that the hippocampus continued to grow in middle childhood, whereas 
striatal volume increased less.

Hippocampal and striatal volume showed distinct associations to learning
We fitted a four- variate LCS model to test our prediction of selective brain- cognition links. Specifically, 
we assumed a larger contribution of striatal volume at immediate learning, and a larger contribution 
of hippocampal volume at delayed learning. The LCS model provided good data fit (χ² (27) = 15.4, CFI 
= 1.00, RMSEA (CI) = 0 (0 –0.010, SRMR = 0.045)), and all relevant paths are shown in Figure 5D (see 
Table 4 for a detailed model overview). For the striatal associations to cognition, we found that wave 
1 striatal volume covaried with both immediate learning score and delayed learning score ( ϕSTRw1,LSi,w1  
= 0.19, z = 2.52, SE = 0.07, p = 0.012,  ϕSTRw1,LSd,w1  = 0.18, z = 2.37, SE = 0.07, p = 0.018). Constraining 
the striatal association to immediate learning to 0 worsened the model fit relative to the unrestricted 
model (Δχ² (1) = 5.66, p = 0.017), which was the same when constraining the striatal association to 
delayed learning to 0 (Δχ² (df 1) = 5.14, p = 0.023). In summary, larger striatal volume was associated 
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with better learning scores for both immediate and better delayed feedback. This pattern remained 
the same in the results of the reduced dataset (Appendix 6).

Hippocampal volume, on the other hand, only covaried with delayed learning at wave 1 ( ϕHPCw1,LSd,w1  
= 0.14, z = 2.05, SE = 0.07, p = 0.041), not with immediate learning score ( ϕHPCw1,LSi,w1  = 0.12, z = 
1.68, SE = 0.07, p = 0.092). Fixing the path between hippocampal volume and delayed learning to 0 
worsened the model fit relative to the unrestricted model (Δχ² (1) = 4.19, p = 0.041), but not when its 
path to immediate learning was constrained to 0 (Δχ² (1) = 2.94, p = 0.086). This suggests that larger 

Figure 5. Cognitive and brain measures with cross- sectional and longitudinal links. (A) Recognition memory (corrected recognition = hits - false alarms) 
for objects presented during delayed feedback was only enhanced at trend. (B) Learning scores depicted here were used in the LCS analyses. Learning 
scores were the model- derived choice probability of the contingent choice using fitted posterior parameters. (C) Hippocampal and striatal volumes 
increased between waves, while hippocampal volume increased most. (D) A four- variate latent change score (LCS) model that included striatal and 
hippocampal volumes as well as immediate and delayed learning scores. Depicted are significant paths cross- domain (brain- cognition, dashed lines) 
and within- domain (brain or cognition, solid lines), other paths are omitted for visual clarity and are summarized in Table 4. Depicted brain- cognition 
links included  ϕSTRw1,LSime,w1  (covariance between striatal volume and immediate learning score at wave 1), as well as  ϕHPCw1,LSdel,w1  and  ϕSTRw1,LSdel,w1  
(covariances between hippocampal and striatal volumes and delayed learning score at wave 1). Brain links included  ϕSTRw1,HPCw1  and  ρ∆STR,∆HPC  
(wave 1 covariance and change- change covariance), and similarly, cognition links included  ϕLSime,w1,LSdel,w1  and  ρ∆LSime,∆LSdel  . Covariates included age, 
sex and estimated total intracranial volume. ** denotes significance at α < 0.001, * at α < 0.05.
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hippocampal volume was specifically associated with better delayed learning. In the results of the 
reduced dataset, the hippocampal association to the delayed learning score was no longer significant, 
suggesting a weakened pattern when excluding poor learners (Appendix 6). It is likely that the exclu-
sion reduced the group variance for hippocampal volume and delayed learning score in the model.

As a next step, the associations between striatum and hippocampus to immediate or delayed 
learning was directly compared against each other. A model equal- constraining striatal and hippo-
campal paths to immediate learning (Δχ² (1) = 0.41, p = 0.521) and another model equal- constraining 
these paths to delayed learning (Δχ² (1) = 0.14, p = 0.707) did not lead to a worse model fit compared 
to the unrestricted model, which suggests that the brain- cognition links have considerable overlap. 
This is in line with the high wave 1 covariance and change- change covariance within the brain and 
cognition domain (see Table  4). We found no longitudinal links between the brain and cognition 
domains, which suggests that the found brain- cognition links at wave 1 remained longitudinally stable 
(see Appendix 5 for an exploratory LCS model that related the model parameters to striatal and 
hippocampal volume).

Table 4. Parameter estimates of a four- variate latent change score model that includes brain (striatal and hippocampal volume) and 
cognition domains (immediate and delayed learning score).

 STR  LSime  HPC  LSdel 

Model fit: χ² = 15.4, df = 27, CFI = 1, RMSEA (CI) = 0 (0–0.01), SRMR = 0.045

Mean change Δ 0.06* (0.03) 0.76** (0.08) 0.38** (0.04) 0.75** (0.08)

wave 1 variance σ fixed to 1 fixed to 1 fixed to 1 fixed to 1

change variance σΔ 0.07** (0.01) 0.88** (0.10) 0.18* (0.07) 0.83** (0.10)

Intercept- change regression β –0.04 (0.04) –0.83* (0.29) –0.16* (0.06) –0.73* (0.27)

Wave 1 covariates

age onto Intercept  ϕ 0.19 (0.10) –0.05 (0.08) 0.29* (0.08) 0.08 (0.08)

sex onto Intercept  ϕ –0.42** (0.07) –0.14 (0.07) –0.47** (0.07) –0.11 (0.07)

eTIV onto Intercept  ϕ 0.68** (0.05) – 0.70** (0.05) –

Brain- cognition links (cross- domain)  STR − LSime  STR − LSdel  HPC − LSime  HPC − LSdel 

wave 1 covariation  ϕ 0.19* (0.07) 0.18* (0.07) 0.12 (0.07) 0.14* (0.07)

change- change covariance  ρ < 0.01 (0.03) < 0.01 (0.03) –0.06 (0.05) –0.07 (0.05)

wave 1 brain onto cognition change  γ  0.25 (0.13) 0.22 (0.12) 0.05 (0.11) 0.06 (0.10)

wave 1 cognition onto brain change  γ  –0.19 (0.13) 0.21 (0.13) 0.05 (0.10) < 0.01 (0.10)

Brain links (within- domain)  STR − HPC 

wave 1 covariation  ϕ 0.53** (0.07)

change- change covariance  ρ 0.03* (0.01)

wave 1 striatum onto hippocampal change  γ  0.06 (0.05)

wave 1 hippocampus onto striatal change  γ  0.02 (0.03)

Cognition links (within- domain)  LSime − LSdel 

wave 1 covariation  ϕ 0.95** (0.10)

change- change covariance  ρ 0.82** (0.10)

wave 1  LSime  onto  LSdel  change  γ  –0.07 (0.27)

wave 1  LSdel  onto  LSime  change  γ  0.06 (0.28)

Parameter estimates in bold are the paths of interest depicted in Figure 5D. Standard errors are shown in parentheses. eTIV = estimated total 
intracranial volume. ** denotes significance at α < 0.001, * at α < 0.05. sex coded as 1 = girls, –1 = boys.
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Taken together, the confirmatory LCS model results were in line with our predictions of a relatively 
larger involvement of the hippocampus during delayed feedback learning, but the findings on striatal 
volume disconfirmed a selective association with immediate feedback learning and suggest a more 
general role of the striatum in both learning conditions.

No evidence for enhanced episodic memory during delayed feedback
Finally, we investigated whether a hippocampal contribution at delayed feedback would selectively 
enhance episodic memory. Episodic memory, as measured by individual corrected object recogni-
tion memory (hits - false alarms) of confident (‘sure’) ratings, showed at trend better memory for 
items shown in the delayed feedback condition ( βfeedback=delayed  = 0.009, SE = 0.005, t(137) = 1.80, p 
= 0.074, see Figure 5A). Note that in the reduced dataset, delayed feedback predicted enhanced 
item memory significantly (Appendix 6). The inclusion of poor learners in the complete dataset may 
have weakend this effect because their hippocampal function was worse and was not involved in 
learning (nor encoding), regardless of feedback timing. To summarize, there was inconclusive support 
for enhanced episodic memory during delayed compared to immediate feedback, calling for future 
study to test the postulation of a selective association between hippocampal volume and delayed 
feedback learning.

Discussion
In this study, we examined the longitudinal development of value- based learning in middle childhood 
and its associations with striatal and hippocampal volumes that were predicted to differ by feed-
back timing. Children improved their learning in the 2- year study period. Behaviorally, learning was 
improved by an increase in accuracy and a reduction in reaction time (i.e. faster responses). Further, 
children’s switching behavior improved by an increase in win- stay and a decrease in lose- shift behavior. 
Computationally, learning was enhanced by an increase in learning rate and inverse temperature, 
which together constituted more optimal value- based learning. Further, feedback timing modulated 
specifically the inverse temperature. In terms of brain structures, we found that longitudinal changes 
in hippocampal volume were larger compared to striatal volume, which suggests more protracted 
hippocampal maturation. The brain- cognition links were longitudinally stable and partially confirmed 
our hypotheses. In line with previous adult literature and our assumption, hippocampal volume was 
more strongly associated with delayed feedback learning. Contrary to our expectations, episodic 
memory performance was not enhanced under delayed feedback compared to immediate feed-
back. Furthermore, striatal volume unexpectedly was associated with both immediate and delayed 
feedback learning, suggesting a common involvement of the striatum during value- based learning in 
middle childhood across timescales.

Children’s learning improvement between waves was described behaviorally by increased win- stay 
and decreased lose- shift behavior. Our finding is in line with cross- sectional studies in the develop-
mental literature that reported increased learning accuracy and win- stay behavior (Chierchia et al., 
2023; Habicht et al., 2022). Our longitudinal dataset with younger children further suggests that 
learning change is not only accompanied by increased win- stay, but also decreased lose- shift behavior. 
We found lower learning performance and less optimal switching behavior in girls compared to boys, 
which could point to sex differences for reinforcement learning during middle childhood (Appendix 2). 
Previous studies have found both male and female advantages depending on their age and the type 
of learning task (Mandolesi et al., 2009; Overman, 2004; Evans and Hampson, 2015). Alternatively, 
sex differences may have been driven by confounding variables not included in the analysis.

Computationally, we found longitudinally increased and more optimal learning rate and inverse 
temperature, as shown by simulation data, that add to the growing literature of developmental rein-
forcement learning (Nussenbaum and Hartley, 2019). Adult studies that examined feedback timing 
during reinforcement learning reported average learning rates range from 0.12 to 0.34 (Foerde and 
Shohamy, 2011; Höltje and Mecklinger, 2020; Lighthall et al., 2018), which are much closer to the 
simulated optimal learning rates of 0.29 than children’s average learning rates of 0.02 and 0.05 at wave 
1 and 2 in our study. Therefore, it is likely that individuals approach adult- like optimal learning rates 
later during adolescence. However, the differences in learning rate across studies have to be inter-
preted with caution. The differences in the task and the analysis approach may limit their comparability 
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(Zhang et al., 2020; Eckstein et al., 2021). Task proporties such as the trial number per condition 
differed across studies. Our study included 32 trials per cue in each condition, while in adult studies, 
the trials per condition ranged from 28 to 100 (Foerde and Shohamy, 2011; Höltje and Mecklinger, 
2020; Lighthall et al., 2018). Optimal learning rates in a stable learning environment were at around 
0.25 for 10–30 trials (Zhang et al., 2020), another study reported a lower optimal learning rate of 
around 0.08 for 120 trials (Behrens et al., 2007). This may partly explain why in our case of 32 trials 
per condition and cue, optimal learning rates called for a relatively high optimal learning rate of 0.29, 
while in other studies, optimal learning rates may be lower. Regarding differences in the analysis 
approach, the hierarchical bayesian estimation approach used in our study produces more reliable 
results in comparison to maximum likelihood estimation (Brown et al., 2020), which had been used in 
some of the previous adult studies and may have led to biased results towards extreme values. Taken 
together, our study underscores the importance of using longitudinal data to examine developmental 
change as well as the importance of simulation- based optimal parameters to interpret the direction 
of developmental change.

Despite a relatively immature hippocampal structure in middle childhood, our results confirmed 
a longitudinally stable association between hippocampal volume and delayed feedback learning. 
However, episodic memory in this learning condition was not enhanced. This suggests a developmen-
tally early hippocampal contribution to value- based learning during delayed feedback, which does not 
modulate episodic memory as much as compared to adults. Therefore, our study partially extends the 
findings from the adult literature to middle childhood (Foerde and Shohamy, 2011; Foerde et al., 
2013; Höltje and Mecklinger, 2020; Lighthall et al., 2018). The reduced effect of delayed feedback 
on episodic memory may be due to the protracted development of hippocampal maturation. In an 
aging study with a similar task, older adults failed to exhibit enhanced episodic memory for objects 
presented during delayed feedback trials, and they showed no enhanced hippocampal activation 
during delayed feedback and (Lighthall et al., 2018). Therefore, the findings converge nicely at both 
childhood and older adulthood, during which the structural and functional integrity of hippocampus 
are known to be less optimal than at younger adulthood (Shing et al., 2010; Keresztes et al., 2017; 
Ghetti and Bunge, 2012).

Our brain- cognition links were only partially confirmed, as striatal volumes exhibited associations 
with not just immediate learning scores, as we predicted, but also with delayed learning scores. This 
result suggests that the striatum may be important for value- based learning in general rather than 
exhibiting a selective association with immediate feedback learning. This is also what we found in 
an explorative analysis that related the striatum to learning rate in general and further predicted 
longitudinal change in learning rate (Appendix 5). This overall reduced brain- behavior specificity 
could reflect less differentiated memory systems during development, similar to findings from aging 
research. Here, older adults exhibited stronger striatal and hippocampal co- activation during both 
implicit and explicit learning, compared to more dissociable brain- behavior relationships in younger 
adults (Dennis and Cabeza, 2011). Interestingly, even in young adults, clear dissociations between 
memory systems such as in non- human lesion studies are uncommon, and factors like stress modulate 
their cooperative interaction (Packard and Goodman, 2013; Packard et al., 2018; Schwabe and 
Wolf, 2013; Ferbinteanu, 2016; White and McDonald, 2002). Further, there are methodological 
differences to previous studies that could explain why striatal volumes were not uniquely associated 
with immediate learning in our study. For example, previous studies related reward prediction errors 
to striatal and hippocampal activation (Foerde and Shohamy, 2011; Höltje and Mecklinger, 2020; 
Lighthall et al., 2018), whereas we examined individual differences in brain structure and the model- 
derived learning scores. Future functional neuroimaging studies with children could further clarify 
whether children’s memory systems are indeed less differentiated and explain the attenuated modu-
lation by feedback timing. Taken together, compared to the adult literature, our results with children 
showed that the hippocampal structure was associated with delayed feedback learning, but did not 
enhance episodic memory encoding, while the striatum generally supported value- based learning. 
These findings point towards a developmental effect of less differentiated and more cooperative 
memory systems in middle childhood.

Our computational modeling results revealed a separable effect of feedback timing on inverse 
temperature, which suggests that the memory systems modulated learning during decision- making. 
The reported behavioral differences in reaction time and their correlation to the inverse temperature 
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further support the idea of a decision- related mechanism, as we found children to respond faster 
during delayed feedback trials and faster responding children also exhibited more value- guided 
choice behavior (i.e. higher inverse temperature) during delayed compared to immediate feedback. 
The hippocampus may contribute to a decision- related effect in the delayed feedback condition by 
facilitating the encoding and retrieval of learned values (Shadlen and Shohamy, 2016). This is in 
contrast to previous event- related fMRI and EEG studies reporting feedback timing modulations at 
value update (Foerde and Shohamy, 2011; Höltje and Mecklinger, 2020; Lighthall et al., 2018), 
which may be due to at least two reasons. First, we did not include a functional brain measure to 
examine its differential engagement during the choice and feedback phases. Second, in such a rein-
forcement learning task, disentangling model parameters from the choice and feedback phases can 
be challenging, such as for the inverse temperature and outcome sensitivity (Browning et al., 2023). 
Taken together, hippocampal engagement at delayed feedback may enhance outcome sensitivity as 
well as facilitate choice behavior through improved retrieval of action- outcome associations. A mecha-
nism facilitating retrieval seems especially relevant in our paradigm, where multiple cues were learned 
and presented in a mixed order, thus creating a high memory load. To summarize, our study results 
suggest that feedback timing could modulate decision- making in addition to or as alternative to a 
mechanism at value update. However, disentangling the effects of inverse temperature and outcome 
sensitivity is challenging and warrants careful interpretation. Future studies might shed new light by 
examining neural activations at both task phases, by additionally modeling reaction times using a 
drift- diffusion approach, or by choosing a task design that allows independent manipulations of these 
phases and associated model parameters, for example, by using different reward magnitudes during 
reinforcement learning, or by studying outcome sensitivity without decision- making.

One aim of developmental investigations is to identify the emergence of brain and cognition 
dynamics, such as the hippocampal- dependent and striatal- dependent memory systems, which have 
been shown to engage during reinforcement learning depending on the delay in feedback delivery. 
Our longitudinal study partially confirmed these brain- cognition links in middle childhood but with less 
specificity as previously found in adults.

An early existing memory system dynamic, similar to that of adults, is relevant for applying rein-
forcement learning principles at different timescales. In scenarios such as in the classroom, a teacher 
may comment on a child’s behavior immediately after the action or some moments later, in par 
with our experimental manipulation of 1 s versus 5 s. Within such short range of delay in teachers’ 
feedback, children’s learning ability during the first years of schooling may function equally well 
and depend on the striatal- dependent memory system. However, we anticipate that the reliance on 
the hippocampus will become even more pronounced when feedback is further delayed for longer 
time. Children’s capacity for learning over longer timescales relies on the hippocampal- dependent 
memory system, which is still under development. This knowledge could help to better structure 
learning according to their development. Furthermore, probabilistic learning from delayed feed-
back may be a potential diagnostic tool to examine the hippocampal- dependent memory system 
during learning in children at risk. Environmental factors such as stress (Schwabe and Wolf, 2013) 
and socioeconomic status (Raffington et  al., 2019; Hackman et  al., 2010) have been shown to 
affect hippocampal structure and function and may contribute to a heightened risk for psychopa-
thology in the long term (Frodl et al., 2010; Lucassen et al., 2017; Rahman et al., 2016). Deficits 
in hippocampal- dependent learning may be particularly relevant to psychopathology since dysfunc-
tional behavior may arise from a tendency to prioritize short- term consequences over long- term ones 
(Levin et al., 2018; Von Siebenthal et al., 2017) and from the maladaptive application of previously 
learned behavior in inappropriate contexts (Maren et al., 2013). Interestingly, poor learners showed 
relatively less value- based learning in favor of stronger simple heuristic strategies, and excluding 
them modulated the hippocampal- dependent associations to learning and memory in our results. 
More studies are needed to further clarify the relationship between hippocampus and psychopa-
thology during cognitive and brain development.

Another key question is whether developmental trajectories observed cross- sectionally are also 
confirmed by longitudinal results, such as for the learning rate and inverse temperature. Our results 
show developmental improvements in these learning parameters in only 2 years. This suggests that 
the initial 2 years of schooling constitute a dynamic period for feedback- based learning, in which 
contingent feedback is important in shaping behavior and development.
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Materials and methods
Participants
Children and their parents took part in 2 waves of data collection with an interval of about 2 years 
(Mean = 2.07, SD = 0.17, Range = 1.69–2.68). The inclusion criteria for wave 1 were children attending 
first or second grade, no psychiatric or physical health disorders, at least one parent speaking fluent 
German, and born full- term (≥37 weeks of gestation). At wave 1, 142 children (46% female, age Mean 
= 7.19, SD = 0.46, Range = 6.07–7.98) and their parents or caregivers participated in the study. 140 
children were included in the analysis (one child did not complete the probabilistic learning task, and 
another child was later excluded due to technical problems during the task). A subgroup of 90 chil-
dren (49% female, 100% right- handed), who was randomly selected, completed magnetic resonance 
imaging (MRI) scanning at wave 1, and 82 of them contributed to structural data after removing scans 
with excessive movement. At wave 2, 127 children (46% female, age Mean = 9.25, SD = 0.45, Range 
= 8.30–10.2) continued taking part in the study, while families of the remaining children were unable 
to be contacted or decided not to return to the study. A total of 126 children at wave 2 completed 
the reinforcement learning task and were included in the analysis. All children at wave 2 were invited 
for MRI scanning, and 104 of them completed scanning (45% female, 92% right- handed). Ninety- nine 
children contributed to structural data, after removing scans with excessive movement. In total, 73 
children contributed to the longitudinal MRI data and 126 children contributed to the longitudinal 
learning data. As previously reported for this study sample, we found no systematic bias due to wave 
2 dropout (Raffington et al., 2019).

Procedure
The study consisted of a series of cognitive tasks tested during two behavioral sessions, including 
a reinforcement learning task, and one MRI session at wave 1 (Raffington et al., 2019; Raffington 
et al., 2020). Two years later, the children underwent one behavioral and one MRI session. MRI scan-
ning was performed within 3 weeks of the behavioral task session. Each session lasted between 150 
and 180 min and was scheduled either on weekdays between 2 p.m. and 6 p.m. or during weekends. 
Before participation, the parents provided written informed consent and children’s verbal assent at 
both waves. All children were compensated with an honorarium of 8 euro per hour.

Measures
Reinforcement learning task
Children completed an adapted reinforcement learning task (Foerde and Shohamy, 2011) in which 
they learned the preferred associations between four cues (cartoon characters) and two choices 
(round- shaped or square- shaped lolli) through probabilistic feedback (87.5% contingent and 12.5% 
non- contingent reward probability). In each trial, after an initial inter- trial interval of 0.5 s, a cue and 
its choice options were presented for up to 7 s until the child made a choice (Figure 1, choice phase). 
In the delay phase, we manipulated feedback timing. For two cues, the selected choice remained 
visible for 1 s (immediate feedback condition), whereas for the other two cue characters, it remained 
visible for 5 s before feedback was given (delayed feedback condition). A final feedback phase of 2 s 
indicated a reward by a green frame, and a punishment by a red frame. Inside each frame, a unique 
object picture was shown, which was incidentally encoded and irrelevant to the task. The child was 
instructed to pay attention to the feedback indicated by the frame color. In an initial practice phase 
of 32 trials, the child practiced the task with a fifth cartoon character not included in the actual task to 
avoid practice effects. The experimenter instructed the child to select the choice that was most likely 
to result in a reward. The Experimenter checked whether the child learned the more rewarded choice 
during practice and let it repeat the practice task otherwise to ensure understanding of the task. In 
the actual task, 128 trials were presented in four blocks and with small breaks in between. Cues were 
presented in a mixed, pseudo- randomized order. A total of 64 unique objects were shown in the 
feedback phase, each one twice within the same feedback condition. In both delay phases, contingent 
choice and choice location remained the same for each cue within the task, but were balanced across 
participants by using four different task versions. At wave 2, four new cues replaced the previous ones 
to rule out memory effects.
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Object recognition test
At wave 1, children were additionally tested for recognition memory on the object pictures that were 
incidentally encoded during reinforcement learning. A total of 80 objects (48 old objects and 32 new 
objects) were presented in randomized order. The 48 old objects (24 for each feedback condition) 
were selected from the 64 old objects shown during learning based on two lists to balance the shown 
and omitted old objects across task versions. Each old object was shown twice during learning, but 
if the child failed to respond during learning, no feedback or object was shown in the trial, so some 
objects only appeared once. These objects were excluded at the individual level (individually missing 
object Mean = 2.71). At recognition, children had 4 response options (‘old sure’, ‘old unsure’, ‘new 
unsure’, ‘new sure’) with up to 7 s to respond. The children answered verbally, and the experimenter 
entered their response. At wave 2, this test was excluded due to time constraints.

Brain volume
We extracted the bilateral brain volumes for our regions of interest, which were striatum and hippo-
campus. The striatum regions included nucleus accumbens, caudate and putamen. For our imaging 
data, structural MRI images were acquired on a Siemens Magnetom TrioTim syngo 3 Tesla scanner 
with a 12- channel head coil (Siemens Medical AG, Erlangen, Germany) using a 3D T1–weighted 
Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence, with the following parameters: 
192 slices; field of view = 256 mm, voxel size = 1 mm3, TR = 2500ms; TE = 3.69ms, flip angle = 7°, TI 
= 1100ms. Volumetric segmentation was performed using the Freesurfer 6.0.0 image analysis suite 
(Fischl, 2012). Previous studies suggested that software tools based on adult brain templates provide 
inaccurate segmentation for pediatric samples, which can be improved through the use of study- 
specific template brains (Phan et al., 2018; Schoemaker et al., 2016). Thus, we created two study- 
specific template brains (one for each wave) using Freesurfer’s ‘make_average_subject’ command. 
This pipeline utilized the default adult template brain registrations of the ‘recon–all–all’ command to 
average surfaces, curvatures, and volumes from all subjects into a study–specific template brain. All 
subjects were then re- registered to this study- specific template brain to improve segmentation accu-
racy. Segmented images were manually inspected for accuracy and 8 cases at wave 1 and 5 cases at 
wave 2 were excluded for inaccurate or failed registration due to excessive motion.

Data analysis
Behavioral learning performance
As a first step, we calculated learning outcomes diretly from the raw data, which where learning accu-
racy, win- stay and lose- shift behavior as well as reaction time. Learning accuracy was defined as the 
proportion to choose the more rewarding option, while win- stay and lose- shift refer to the proportion 
of staying with the previously chosen option after a reward and switching to the alternative choice 
after receiving a punishment, respectively. We used these outcomes as our dependent variables to 
examine the effect of the predictors feedback timing (immediate, delayed), wave (1, 2), wave 1 age, 
and sex (girls, boys), utilizing generalized linear mixed models (GLMM) with the R package lme4 
(Bates et al., 2015). All reported models included random slopes for within- subject factors feedback 
timing and wave (see Appendix 2 for the model structure). We systematically tested main effects and 
interactions between the predictors and their interaction had to statistically improve the predictive 
ability of the model to be included in the final reported model. All predictor variables were grand- 
mean- centered to interpret the interaction effects independent from other predictors.

Reinforcement learning models
As a next step, we used computational modeling to compare the learning models of basic heuristic 
strategies and value- based learning and to determine the model that could best capture children’s 
trial- by- trial learning behavior. For heuristic strategies, we considered models that reflected a Win- 
stay- lose- shift (wsls) or a Win- stay (ws) strategy. Win- stay is a heuristic strategy in which the same 
action is repeated if it leads to a positive outcome in the previous trial, and Win- stay- lose- shift addi-
tionally switches to a different action if the previous outcome is negative. Note that these model- 
based outcomes are not identical to the win- stay and lose- shift behavior that were calculated from 
the raw data. The use of such model- based measure offers the advantage in discerning the underlying 
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hidden cognitive process with greather nuance, in contrast to classical approaches that directly use 
raw behavioral data. The models quantified the learning behavior for each individual I for each cue c 
and trial t. The heuristic models consisted of a weight w that reflected its degree in strategy use. In the 
case of reward r = 1, w was equal to 1 for the chosen option (e.g. choice A), and 0 for the unchosen 
option (e.g. choice B), thus maximizing win- stay, i.e., choosing A at the subsquent trial  t + 1 :

 wi,c,t+1,A|r=1 = 1 and wi,c,t+1,B|r=1 = 0  (1)

For trials r = 0 (applicable only to the wsls model), model weights were the opposite, maximizing 
lose- shift:

 wi,c,t+1,A|r=0 = 0 and wi,c,t+1,B|r=0 = 1  (2)

The initial weights for both choices were set to   wi,c,t=1  = 0.5. The weight w then scaled the param-
eter  τ_wsls  or  τ_ws  to estimate the individual strategy use during decision- making. The choice proba-
bilities were calculated using the softmax function, for example., for the chosen option A:

 
p
(
A
)

= expwi,c,t,A∗τ_wslsi

expwi,c,t,A∗τ_wslsi + expwi,c,t,B∗τ_wslsi   
(3)

Thus, a higher probability of strategy use was reflected by a larger value of  τ_wsls  or  τ_ws .
For value- based learning, we considered a Rescorla- Wagner model and several variants based on 

our theoretical conceptions. The baseline value- based model  vbm1  updated the value v of the selected 
choice (A or B) for the next trial t. This value update was determined by calculating the difference 
between the received reward r and the expected value v of the selected choice, which was the reward 
prediction error. The value update was further scaled by a learning rate  α

(
0 < α < 1

)
 :

 vi,c,t+1,A = vi,c,t,A + αi
(
ri,c,t − vi,c,t,A

)
  (4)

When the outcome sensitivity parameter  ρ
(
0 < ρ < 20

)
  was included, the reward was additionally 

scaled at the value update:

 vi,c,t+1,A = vi,c,t,A + αi
(
ρi ∗ ri,c,t − vi,c,t,A

)
  (5)

The inverse temperature parameter  τ
(
0 < τ < 20

)
  was included in the softmax function to compute 

choice probabilities:

 
p
(
A
)

= expvi,c,t,A∗τi

expvi,c,t,A∗τi + expvi,c,t,B∗τi   
(6)

Note, however, that outcome sensitivity and inverse temperature are difficult to fit simultane-
ously due to non- identifiability issues (Brown et al., 2021). Therefore, models including the inverse 
temperature fixed outcome sensitivity at 1 (inverse temperature model family), assuming no individual 
differences in outcome sensitivity. For the outcome sensitivity model family, outcome sensitivity was 
freely estimated, and the inverse temperature was fixed at 1, asssuming the same degree of value- 
based decision behavior across individuals. Even though outcome sensitivity is usually restricted to an 
upper bound of 2 to not inflate outcomes at value update, this configuration led to ceiling effects in 
outcome sensitivity and non- converging model results. Further, this issue was not resolved when we 
fixed the inverse temperature at the group mean of 15.47 of the winning inverse temperature family 
model. It may be that in children, individual differences in outcome sensitivity are more pronounced, 
leading to more extreme values. Therefore, we decided to extend the upper bound to 20, parallel to 
the inverse temperature, and all our models converged with Rhat < 1.1. Each model family consisted 
of 4 model variants  vbm1−4  ( 1α1τ  ,  2α1τ , 1α2τ , 2α2τ  ) and  vbm5−8  ( 1α1ρ ,  2α1ρ, 1α2ρ, 2α2ρ ), in which 
each parameter was either separated by feedback timing or kept as a single parameter across feed-
back conditions. Our baseline value- based model  vbm1  included a single learning rate and a single 
inverse temperature ( 1α1τ  ).
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Parameter estimation
All choice data were fitted in a hierarchical Bayesian analysis using the Stan language in R (Stan Devel-
opment Team, 2021; R Development Core Team, 2021) adopted from the hBayesDM package 
(Ahn et al., 2017). Posterior parameter distributions were estimated using Markov chain Monte Carlo 
(MCMC) sampling running four chains each with 3000 iterations, using the first half of the chain as 
warmup, and group- level parameters and individual- level parameters were estimated simoultane-
ously. The hierarchical Bayesian approach provides more stable and reliable parameter estimates as 
opposed to point- estimation approaches like maximum likelihood estimation (Brown et al., 2020). 
Each model fit both wave 1 and wave 2 data at once, considering the correlation structure of the 
same parameter across waves, to account for within- subject dependency using the Cholesky decom-
position. The Cholesky decomposition used a Lewandowski- Kurowicka- Joe prior of 2, and all other 
group- level parameters had a prior normal distribution, Normal (0, 0.5). Non- response trials (wave 1 = 
2.41%, wave 2 = 0.97% on average) were excluded in advance.

Model simulation and model-derived learning score
To appropriately interpret the parameter results with respect to the optimal parameter combination 
of the winning model, we simulated 5,000,000 individual datasets using 10,000 different parameter 
value combinations (covering the whole range of each parameter) to identify the optimal parameter 
combination of the winning model that was selected by model comparison. In addition, we computed 
the model- derived mean choice probability of the contingent, that is, the more rewarded option, and 
we referred to it as the model- derived learning score. This model- derived choice probability differs 
from the observed empirical choice probability (i.e. the accuracy of selecting the more rewarded 
option), because the model- derived learning score combines the model with the data by incorpo-
rating latent information carried out by key learning parameters. Thus, the learning score captures 
observed behavior based on trial- by- trial latent processes predicted by value- based models. We used 
this as metric to interpret the fitted posterior parameters in relation to the optimal parameter combi-
nation of our probabilistic learning task.

Model selection and validation
We conducted a two- step sequential procedure for the model development and model selection. As 
a first step, we compared model evidence for the baseline value- based model that does not sepa-
rate learning rate and inverse temperature by feedback timing ( vbm1 : 1α, 1τ  ) to the non- value- based, 
heuristic strategy models that reflect Win- stay or Win- stay- lose- shift strategy behavior ( ws ,  wsls ). As a 
second step, we compared model evidence for 8 value- based model variants, 4 of the model family 
with learning rate and inverse temperature ( 1α1τ  ,  2α1τ , 1α2τ , 2α2τ  ) and 4 of the model family with 
learning rate and outcome sensitivity ( 1α1ρ ,  2α1ρ, 1α2ρ, 2α2ρ ). This allowed us to compare whether 
children showed separable effects of feedback timing on one of the model parameters. We compared 
the model fit using Bayesian leave- one- out cross- validation and obtained the expected log pointwise 
predictive density ( elpdloo ) using the R package loo (Vehtari et al., 2017). We further computed the 
model weights (Pseudo- BMA+) using Pseudo Bayesian model averaging stabilized by Bayesian boot-
strap with 100,000 iterations (Yao et  al., 2018). To validate our models, we estimated predictive 
accuracy by comparing one- step- ahead model predictions with the choice data (Zhang et al., 2020; 
Crawley et al., 2020). We performed parameter recovery for the winning model and model recovery 
by comparing it to a set of models used during model comparison (Appendix 1; Wilson and Collins, 
2019).

Episodic memory at wave 1
We predicted the individual corrected recognition memory (hits- false alarms) by feedback condition 
in a linear mixed effects model using the R package lme4 (Bates et al., 2015). Only confident (‘sure’) 
ratings were included in the analysis, which were 98.1% of all given responses. A total of 140 chil-
dren completed the recognition memory test and 138 were included in the analysis, with two being 
excluded due to negative corrected recognition memory value (i.e. poor recognition memory). Age 
and sex were controlled for as covariates.
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Longitudinal brain-cognition links
We used latent change score (LCS) models to examine the longitudinal relationships between brain 
and learning score measures. LCS models are longitudinal structural equation models that have been 
widely applied to estimate developmental changes and coupling effects across domains such as the 
brain and cognition (Kievit et al., 2018; Ferrer and McArdle, 2010). LCS models allow the definition 
of specific paths between multiple variables to test explicit hypotheses and estimate latent change 
from the observed variables that account for measurement error and increase testing power (van der 
Sluis et al., 2010). We compiled univariate LCS models for each variable separately (learning scores 
and brain volumes) to examine whether there was significant individual variance and change, which 
could be related within a multivariate LCS model as a next step. Model fit had to be at least acceptable, 
with a comparative fit index (CFI) >0.95, standardized root mean square residual (SRMR) < 0.08 and 
root mean square error of approximation (RMSEA) < 0.08 (Little, 2013). Age and sex were included 
as covariates at wave 1, as well as the estimated total intracranial volume (eTIV) when brain volume 
was included in the model. Multivariate LCS models allow to estimate meaningful brain- cognition rela-
tionships: a wave 1 covariance between brain and cognition, brain predicting change onto cognition, 
or vice versa, and a covariance in both brain and cognition change scores (wave 1 to wave 2). Before 
compiling the variables into an LCS model, they were checked for outliers ± 4 SD around the mean. 
We identified one outlier for the learning rate at wave 2, which was removed for the explorative LCS 
model that included model parameters. There were no further outliers in other cognitive variables or 
brain volumes. Continuous variables were standardized to the wave 1 measure so that wave 2 values 
represent the change from wave 1, sex was contrast- coded (girls = 1, boys = –1).
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Appendix 1
Parameter and model recovery
We simulated 1000 datasets (50 groups, 20 datasets each) using a wide distribution within the 
boundaries for learning rate (boundaries = [0,1], Mean = 0.5, SD = 0.25) and inverse temperature 
(boundaries = [0,20], Mean = 10, SD = 5). We first performed a parameter recovery to see how 
well the winning model recovers the simulated parameters (Appendix 1—figure 1). Both inverse 
temperature and learning rate were recovered overall well, with correlations of 0.75–0.77 for the 
inverse temperature, their condition differences correlating 0.78–0.79, and the learning rates 
correlating at 0.85. Inverse temperature values were slightly overestimated until a value of 12 
and clearly underestimated above 12. The underestimation was less pronounced for the inverse 
temperature condition differences. Learning rate was also less biased – here, values below 0.5 slightly 
overestimates and underestimated with values above 0.5. This means that more extreme values, i.e. 
those closer to the boundaries, were recovered closer towards the group mean. We next performed 
model recovery to see how well the model evidence is recovered compared to other models that 
were used during model comparison. Of all 10 models that were used, we performed model recovery 
on the two best models (winning model  vbm3, 1α ,  2τ   and second- best model  vbm7, 1α ,  2ρ ), our 
value- based baseline model ( vbm1, 1α ,  1τ  ) and our heuristic strategy model (Appendix 1—figure 
2). We examined recovery on the group and individual level. On the group level, we used the model 
weight Pseudo- BMA +model for relative model evidence using Bayesian model averaging. On the 
individual level, we used model fit  elpdloo  , which is the individual summed expected log pointwise 
predictive density of all trials. On the group level, model recovery was excellent, as all models were 
recovered with model weights of 0.99–1.00. On the individual level, model recovery was lower for 
the value- based models, with model weights of 0.58–0.83. Specifically, the models  vbm1  and  vbm3 , 
which only differed in whether inverse temperature was estimated separate by learning condition 
(immediate and delayed feedback) or across learning condition, were affected. Here, 35% of the 
datasets that were simulated using separate inverse temperature fitted best on the model with 
one inverse temperature (and 30% vice versa), and likely reflects the noisy property of the inverse 
temperature.

https://doi.org/10.7554/eLife.89483
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Appendix 1—figure 1. Parameter recovery of the winning model, the black line represents the identity line, 
whereas the blue line is loess regression line, Correlations are calculated by Pearson’s r.

https://doi.org/10.7554/eLife.89483
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Appendix 1—figure 2. Model recovery on the group (left) and individual level (right). Group- level recovery 
values are the average model weights (across 20 groups, 50 datasets each) Pseudo- BMA+using Bayesian 
model averaging stabilized by Bayesian bootstrap using 100,000 iterations. Individual- level recovery values are 
the average model fits (across 1000 datasets),  elpdloo  which is the individual summed expected log pointwise 
predictive density of all trials.

https://doi.org/10.7554/eLife.89483
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Appendix 2

Model structure and detailed results of generalized linear mixed 
models (GLMM)
GLMM Random effects model structure
We ran four GLMMs with the dependent variables accuracy (1 = correct, 0 = incorrect), win- stay 
behavior (1 = win stay, 0 = win- shift), lose- shift behavior (1 = lose- shift, 0 = lose stay) and reaction 
time (in milliseconds) as the dependent variable (Appendix 2—table 1). As fixed effects, we included 
within- subject factors wave (1 = wave 1, 2 = wave 2) and feedback type (1 = immediate, 2 = delayed) 
as well as the covariate sex (1 = girl, 2 = boy). The contrasts of the categorical variables were set 
using the  contr. sum function to keep the mean intercept at the global mean. We first tested whether 
including the main effects of wave, feedback type and sex improved the model fit. We then tested 
whether including interaction terms between these three variables, and the model had to improve 
the overall model fit to be reported as the winning model. As random effects, data were clustered 
at the participant and learning block level, allowing fixed intercept for each of the 4 blocks (32 trials 
each) of each individual. As random slopes, we included within- subject factors wave and feedback 
type.

Appendix 2—table 1. Mixed effects model structure and fixed effects results for the models using 
the dependent variables Accuracy (ACC), win- stay (WS), lose- shift (LS) and Reaction time (RT).

Fixed effects GLMMACC GLMMWS GLMMLS GLMMRT

Feedback = Delayed 0.013 0.023 –0.030 14.0*

Wave = 2 0.550** 0.586** –0.252** –218**

Sex = Girls –0.172* –0.177* 0.062 23.5

Wave 1 Age 0.142* 0.163* –0.100* –24.5

Wave = 1*Sex = Girls not included not included 0.068* not included

Random slopes

Feedback Type X X X X

Wave X X X X

Random intercepts

Participant ID X X X X

Block X X X X

Model fit

ICC 0.44 0.45 0.12 0.23

Observations 33,460 22,013 10,383 33,460

Marginal R2 0.056 0.063 0.021 0.036

Conditional R2 0.472 0.482 0.138 0.258

Note. ** denotes significance at α < 0.001, * at α < 0.05. X indicates which random effects were included in the 
final model. ICC = intraclass correlation. Marginal R2 = variance explained by fixed effects, Conditional R2 = 
variance explained by fixed and random effects.

Detailed GLMM results
With the complete dataset, we found that increased learning accuracy was predicted at wave 2 
compared to wave 1 ( βwave=2  = 0.550, SE = 0.061, z = 8.97, p < 0.001) and with higher age at wave 
1 ( βwave 1 age  = 0.142, SE = 0.070, z = 2.03, p = 0.043), but there were no differences in accuracy by 
feedback timing ( βfeedback=delayed  = 0.013, SE = 0.024, z = 0.54, p = 0.590). Girls were overall less 
accurate than boys ( βsex=girls  = –0.172, SE = 0.070, z = 2.45, p = 0.014). Win- stay probability was 
predicted to be higher at wave 2 ( βwave=2  = 0.586, SE = 0.071, z = 8.22, p < 0.001) and with higher 
age at wave 1 ( βwave 1 age  = 0.177, SE = 0.078, z = 2.27, p = 0.024), again without differences by 
feedback timing ( βfeedback=delayed  = –0.023, SE = 0.032, z = –0.69, p = 0.489). Win- stay probability was 
lower for girls compared to boys ( βsex=girls  = –0.177, SE = 0.078, z = –2.27, p = 0.024). The predicted 
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Lose- shift probability was lower at wave 2 compared to wave 1 ( βwave=2  = –0.586, SE = 0.071, z = 
–8.22, p < 0.001) and with higher age at wave 1 ( βwave 1 age  = –0.177, SE = 0.078, z = 2.27, p = 0.024), 
but did not differ by feedback type ( βfeedback=delayed  = 0.036, SE = 0.020, z = 1.74, p = 0.081) and sex 
( βsex=girls  = 0.063, SE = 0.036, z = 1.76, p = 0.079). Taken together, children on average improved their 
accuracy, while win- stay probability increased and lose- shift probability decreased between waves. 
Girls were on average less accurate, showed reduced win- stay behavior and a smaller decrease in 
lose- shift probability between waves (Appendix 2—table 1 and Appendix 2—figure 1).

Reaction times were predicted to be faster at wave 2 compared to wave 1 ( βwave=2  = –218, SE 
= 22.7, t(126) = –9.61, p < 0.001), but did not differ by wave 1 age ( βage wave 1  = –42.5, SE = 25.7, 
t = –1.66, p = 0.100), and they were faster for delayed compared to immediate feedback trials 
( βfeedback=delayed  = –14.0, SE = 6.61, t = –2.12, p = 0.036). Girls were not different compared to boys 
( βsex=girls  = 23.5, SE = 25.7, t = 0.91, p = 0.362). To summarize the reaction time results, children 
were able to respond faster to cues paired with delayed feedback, compared to cues paired with 
immediate feedback, and they became faster in their decision making across waves.

https://doi.org/10.7554/eLife.89483
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Appendix 2—figure 1. Fixed effects plots of significant predictors across behavioral variables accuracy (ACC), 
win- stay (WS), lose- shift (LS) and reaction time (RT). See Appendix 2—table 1 for the statistical results.
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Appendix 3
Winning model parameter correlations
Parameter correlations of the winning model
Correlations between the model parameters learning rate and inverse temperature were only small 
(r = 0.19–0.25), which suggests relative independence of these parameters (Appendix 3—figure 
1). Negative correlations between feedback conditions (r = –0.31 to –0.48), captured by the inverse 
temperature, suggest individual differences feedback timing modulation. Positive correlations of the 
parameters across waves (r = 0.39–0.52) were moderate to large which suggest temporal stability 
and showed the appropriateness of our modeling endeavour to incorperate the within- subject data 
structure. Only inverse temperature for delayed feedback learning was not correlated across waves, 
which suggests greater temporal instability. Taken together, children’s learning behavior was best 
described by a value- based model, where feedback timing modulated individual differences in the 
choice rule during value- based learning. Interestingly, differences in the choice rule and reaction times 
were correlated. Specifically, more value- guided choice behavior (i.e. higher inverse temperature) 
was related to faster responses during delayed feedback relative to immediate feedback, suggesting 
a link between model parameter and behavior in relation to feedback timing.

Appendix 3—figure 1. Parameter correlations of the winning model. Significant correlations are circled, p- values 
were adjusted for multiple comparisons using bonferroni correction.
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Appendix 4
Longitudinal change in Win-Stay and Lose-Shift proportion
Children’s switching behavior became more optimal
In addition to our finding that the change in children’s learning rate and inverse temperature became 
more optimal according to the value- based learning model, we explored whether their change 
towards optimality is also reflected in children’s switching behavior.

We simulated 10,000 parameter combinations and created a learning score map according 
to each combination of win- stay and lose- shift proportions (Appendix 4—figure 1). The optimal 
proportion for win- stay and lose- shift were at 100% and 24%, respectively. Therefore, both the 
average longitudinal increase in win- stay proportion (wave 1: 80%, wave 2: 88%) and the average 
decrease in lose- shift proportion (wave 1: 48%, wave 2: 42%) reflect a change towards more optimal 
value- based learning.

Appendix 4—figure 1. Switching behavior and optimal learning derived from model simulation. (A) The arrows 
depict mean change (bold white) and individual change (transparent black) of the empirical win- stay and lose- shift 
proportions. The greyscale gradient- filled dots, that are connected by the arrows, depict the individual learning 
score, while the the greyscale gradient in the background depicts the simulated average learning score. The mean 
change reveals an overall change towards the higher, that is more optimal, learning scores, with higher win- stay 
and lower lose- shift behavior. (B, C) Win- stay and lose- shift behavior plotted against the learning score depict their 
separate effects on learning optimality. While win- stay showed a positive linear relationship with the learning score, 
lose- shift showed a negative nonlinear relationship with a larger optimal range.

https://doi.org/10.7554/eLife.89483


 Research article Neuroscience

Falck et al. eLife 2023;12:RP89483. DOI: https://doi.org/10.7554/eLife.89483  33 of 37

Appendix 5
Confirmatory and exploratory brain-cognition links
This section provides further details on the latent change score (LCS) models from the analysis and 
provides further LCS models to explore brain- cognition links in the second- best fitting model and to 
explore the associations with the model parameters learning rate and inverse temperature.

Univariate LCS models
The model fit and model parameters of the univariate LCS models of our variables of interest (striatal 
volume, hippocampal volume, immediate learning score, delayed learning score) are summarized 
in Appendix  5—table 1. Of note, learning scores were negatively covaried with sex at wave 1, 
suggesting reduced immediate learning scores ( ϕsex=girls,LSi,w1  = –0.20, z = –2.39, SE = 0.08, p = 
0.017) and reduced delayed learning scores in girls ( ϕsex=girls,LSd,w1  = –0.17, z = –2.01, SE = 0.08, p = 
0.044).

Appendix 5—table 1. Model fit and parameter estimates of the univariate LCS models for 
immediate and delayed feedback learning score as well as for striatal (STR) and hippocampal (HPC) 
brain volumes.

 LSimmediate  LSdelayed STR HPC

χ² (df) 1.75 (4) 1.25 (4) 1.61 (6) 1.77 (6)

RMSEA (CI) 0.08 (0–0.08) 0 (0–0.07) 0 (0–0) 0 (0–0.02)

SRMR 0.03 0.03 0.03 0.03

CFI 1.00 1.00 1.00 1.00

Mean change μΔ 0.74** (0.09) 0.73** (0.08) 0.06* (0.03) 0.37** (0.05)

w1 variance σβ 0.99** (0.08) 0.99** (0.07) 0.51** (0.07) 0.46** (0.06)

Change variance σΔ 0.94** (0.10) 0.89** (0.10) 0.07** (0.02) 0.18* (0.08)

Intercept- change regression δ –0.69** (0.08) –0.73** (0.08) –0.04 (0.04) –0.12* (0.04)

Age onto Intercept –0.07 (0.08) 0.11 (0.08) 0.02 (0.09) 0.15 (0.08)

Sex onto Intercept –0.20* (0.08) –0.17* (0.08) –0.05 (0.09) –0.09 (0.09)

eTIV onto Intercept – – 0.67** (0.09) 0.62** (0.10)

Standard errors in parentheses. ** denotes significance at α < .001, * at α < .05. sex coded as 1 = girls, –1 = boys.

Confirmatory brain-cognition links with learning scores using the second 
best fitting model
We fitted a fourvariate LCS model using the second best fitting model to check whether separating 
outcome sensitivity by feedback timing would show results comparable to those of the winning 
model that separated inverse temperature by immediate and delayed feedback condition. Using the 
model- derived learning scores from the second best fitting model, our LCS model again provided a 
good data fit (χ² (27) = 10.1, CFI = 1.00, RMSEA (CI) = 0 (0–0, SRMR = 0.042)). However, the brain- 
cognition links at baseline were not significant for both striatal volume ( ϕSTRw1,LSi,w1  = 0.14, z = 1.66, 
SE = 0.09, p = 0.098 and  ϕSTRw1,LSd,w1  = 0.14, z = 1.55, SE = 0.09, p = 0.121) and hippocampal volume 
( ϕHPCw1,LSi,w1  = 0.09, z = 1.04, SE = 0.09, p = 0.297 and  ϕHPCw1,LSd,w1  = 0.11, z = 1.22, SE = 0.09, p 
= 0.222), suggesting no brain- cognition links at wave 1. Longitudinally, striatal volumes predicted 
larger gains in immediate learning scores ( βSTRw1,∆lsi  = 0.17, z = 1.97, SE = 0.08, p = 0.049), but this 
effect diminished when excluding poor learners ( βSTRw1,∆lsi  = 0.11, z = 1.35, SE = 0.08, p = 0.177). 
The failure to capture brain- cognition links and the relatively lower model evidence compared to 
the winning model during model comparison overall suggests that modulations by feedback timing 
could be captured better by the decision- related parameter inverse temperature rather than by the 
valuation- related parameter outcome sensitivity.
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Exploratory brain-cognition links with model parameters
The model parameters all showed significant mean change and variance (learning rate:  µ∆α  = 1.29, 
z = 7.41, SE = 0.17, p < 0.001,  σ∆α  = 3.73, z = 6.77, SE = 0.55, p < 0.001; immediate inverse 
temperature:  µ∆τi  = 0.82, z = 9.65, SE = 0.09, p < 0.001,  σ∆τi  = 0.97, z = 4.12, SE = 0.24, p < 0.001; 
delayed inverse temperature:  µ∆τd  = 0.84, z = 3.91, SE = 0.08, p < 0.001,  σ∆τd  = 0.84, z = 3.91, SE = 
0.22, p < 0.001). To further understand how the found links between striatal volumes and immediate 
learning and between hippocampal volumes and delayed learning could be understood as effects 
of the model parameters, we compiled a five- variate model including brain volumes, learning rates 
( α ) and inverse temperature ( τ  ) for immediate and delayed learning. The LCS again provided a good 
data fit (χ² (25) = 15.8, CFI = 1.00, RMSEA (CI) = 0 (0 –0.023, SRMR = 0.040)).

For hippocampal volume, we found a positive covariance with delayed inverse temperature at 
wave 1( ϕHCw1,τdel,w1  = 0.13, z = 2.30, SE = 0.06, p = 0.021), whereas striatal volume positively covaried 
with learning rate at ( ϕSTRw1,αw1  = 0.15, z = 2.05, SE = 0.08, p = 0.041). The striatal link to learning 
rate however was diminished when excluding children below the learning criterion. Longitudinally, 
striatal volume at wave 1 further predicted positive gains in learning rate ( βSTRw1,∆α  = 0.44, z = 
2.25, SE = 0.20, p = 0.024). Changes in learning rate covaried positively with changes in immediate 
inverse temperature ( ϕ∆STR,∆τi  = 0.35, z = 2.46, SE = 0.14, p = 0.014), while changes in immediate 
inverse temperature covaried negatively with changes in delayed inverse temperature ( ϕ∆τi,∆τd  = 
–0.28, z = –3.60, SE = 0.08, p < 0.001). Immediate inverse temperature at wave 1 predicted negative 
striatal volume change ( βτi,w1,∆STR  = –0.09, z = –2.38, SE = 0.04, p = 0.017), while delayed inverse 
temperature at wave 1 predicted negative change in hippocampal volume ( βτd,w1,∆HPC  = –0.08, z = 
–2.06, SE = 0.04, p = 0.039) in the reduced sample, but not in the full sample. Taken together, while 
hippocampal volume was only linked to delayed inverse temperature at wave 1, striatal volume 
was linked to learning rate at wave 1 and was predictive of learning rate development. Further, 
there was evidence that inverse temperature was predictive of brain volume change in line with 
the hypothesized brain- cognition links. The inverse temperature between delayed and immediate 
feedback showed diverging changes, in which the change in immediate inverse temperate was 
similar to that of learning rate, but dissimilar to that of delayed inverse temperature. This suggests 
that the hippocampus might be uniquely associated with inverse temperature during delayed 
learning, whereas the striatum was linked to learning rates, inverse temperature and suggest a 
stronger contribution to the longitudinal change of learning function in general.
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Appendix 6
Results when using the reduced dataset
To validate our results, we examined whether the poor learning performance of some of the children 
in the reinforcement learning task influenced our findings. Therefore, we repeated the analyses with 
a reduced dataset that excluded children performing below 50% accuracy in their last 20 trials. 13 
out of 140 children at wave 1 (54% girls), as well as 6 out of 126 at wave 2 (67% girls) did not reach 
the learning criterion (above 50% learning accuracy during the last 20 trials of the task) and were 
excluded in the reduced dataset. In this section, the results are structured into behavioral results, 
computational modeling results and latent change score modeling results at the end. Whenever 
there were differences between using the complete and reduced dataset, they were mentioned in 
the main text and referred to this section for further details.

Behavioral results
We kept the same model structure to directly compare the results. The fixed effects remained 
unchanged in all models. All model results remained consistent when using the reduced dataset, with 
no differences compared to the results obtained using the complete dataset. An overview of the fixed 
effects and their comparison to the results of the complete dataset are shown in Appendix 6—table 
1. Using the reduced dataset, the learning accuracy model did not differ in the results, accuracy was 
predicted by wave ( βwave=2  = 0.492, SE = 0.062, z = 7.88, p < 0.001) and by wave 1 age ( βage wave 1  = 
0.174, SE = 0.071, z = 2.48, p = 0.013), there were no differences by feedback timing ( βfeedback=delayed  
= 0.009, SE = 0.025, z = 0.35, p = 0.727), and girls were less accurate ( βsex=girls  = –0.157, SE = 0.071, 
z = –2.18, p = 0.027). The win- stay model also did not differ in the results using the reduced dataset. 
Win- stay probability was again predicted to be higher at wave 2 ( βwave=2  = 0.534, SE = 0.073, z = 
7.27, p < 0.001) and by higher wave 1 age ( βage wave 1  = 0.186, SE = 0.079, z = 2.36, p = 0.018), there 
were no differences by feedback timing ( βfeedback=delayed  = 0.022, SE = 0.035, z = 0.63, p = 0.531), 
and girls had a lower win- stay probability ( βsex=girls  = –0.161, SE = 0.080, z = –2.02, p = 0.043). The 
lose- shift model did not differ using the reduced dataset, lose- shift probability was lower at wave 2 
( βwave=2  = –0.252, SE = 0.037, z =–6.87, p < 0.001), did not differ by feedback type ( βfeedback=delayed  = 
0.030, SE = 0.022, z = 1.38, p = 0.169) and sex ( βgender=girls  = 0.062, SE = 0.038, z = 1.63, p = 0.102), 
but the decrease in lose- shift behavior between waves again was smaller for girls ( βsex=girls X wave=2  = 
0.068, SE = 0.034, z = 2.02, p = 0.044). The reaction times were faster at wave 2 compared to wave 
1 ( βwave=2  = –221, SE = 23.5, t = –9.42, p < 0.001), they were not predicted by wave 1 age ( βage wave 1  
= –38.0, SE = 26.5, t = –1.43, p = 0.154), and they were faster at delayed compared to immediate 
feedback ( βfeedback=delayed  = –16.8, SE = 6.72, t = –2.50, p = 0.014). Girls were not different compared 
to boys ( βsex=girls  = 20.6, SE = 26.3, t = 0.78, p = 0.436). The magnitude of the fixed effects were 
overall comparable, only in the accuracy and win- stay model, marginal R2 and fixed effects were 
slightly weaker, which is to be expected when excluding poor learners. To conclude, the behavioral 
effects remained the same when using the reduced dataset.

Appendix 6—table 1. Comparison of the fixed effects results for the models with the reduced and 
with the complete dataset, each with the dependent variables accuracy (ACC), win- stay (WS), lose- 
shift (LS) and reaction time (RT).

Fixed effects GLMMACC GLMMWS GLMMLS GLMMRT

Reduced dataset (complete dataset)

Feedback = Delayed 0.009 (0.013) 0.022 (0.023) –0.030 (–0.030) –16.8* (–13.8*)

Wave = 2 0.492** (0.550**) 0.534** (0.586**) –0.252** (–0.252**) –221** (–221**)

Sex = Girls –0.157* (–0.172*) –0.161* (–0.177*) 0.062 (0.062) 20.6 (20.5)

Wave 1 Age 0.174** (0.142*) 0.186* (0.163*) –0.100* (–0.100*) –38.0 (- 37.8)

Wave = 1*Sex = Girls not included not included 0.068* (0.068*) not included

Model fit

ICC 0.45 (0.44) 0.45 (0.45) 0.12 (0.12) 0.24 (0.23)

Observations 31857 (33460) 21212 (22013) 10383 (10383) 31857 (33460)

Appendix 6—table 1 Continued on next page
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Fixed effects GLMMACC GLMMWS GLMMLS GLMMRT

Marginal R2 0.047 (0.056) 0.054 (0.063) 0.024 (0.024) 0.038 (0.036)

Conditional R2 0.473 (0.472) 0.483 (0.482) 0.138 (0.138) 0.266 (0.260)

Note. ** denotes significance at α < 0.001, * at α < 0.05. X indicates which random effects were included in the 
final model. ICC = intraclass correlation. Marginal R2 = variance explained by fixed effects, Conditional R2 = 
variance explained by both fixed and random effects.

Model results
We repeated model comparison with the reduced dataset by excluding the  elpdloo  (expected log 
pointwise predictive density) of the poor learners (Appendix 6—table 2). One may argue that this 
procedure is suboptimal, as the model parameters were fitted using the complete dataset so that 
poor learners impacted the parameters of the remaining participants in hierarchical model estimation. 
However, fitting the reduced dataset only would have required a different model structure, as the 
amount of longitudinal datasets had been much smaller, and some participants would only have 
wave 2 data. Since we used a wide prior for model estimation, the impact of poor learners on the 
group level is reduced.

Appendix 6—table 2. Model comparison results obtained with the reduced dataset and the 
complete dataset.

Model Parameters Δ𝑒𝑙𝑝𝑑𝑙𝑜𝑜 mean 𝑒𝑙𝑝𝑑𝑙𝑜𝑜 Pseudo- BMA+

Reduced dataset (complete dataset)

step 1: heuristic strategy vs value- based learning model

 vbm1  1α ,  1τ  0 (0) –0.47 (- 0.45) 1 (1)

 ws  1τws –1296.2 (- 1327.7) –0.51 (- 0.49) 0 (< 0.01)

 wsls  1τwsls –4164.3 (- 4247.3) –0.61 (- 0.58) 0 (0)

step 2: value- based learning model variants

 vbm3  1α ,  2τ  0 (0) –0.47 (- 0.45) 0.78 (0.73)

 vbm7  1α ,  2ρ –3.71 (- 2.93) –0.47 (- 0.45) 0.19 (0.24)

 vbm6  2α ,  1ρ –24.34 (- 24.34) –0.47 (- 0.45) < 0.01 (< 0.01)

 vbm8  2α ,  2ρ –29.20 (- 29.71) –0.47 (- 0.45) 0.02 (0.02)

 vbm4  2α , 2τ  –43.86 (- 43.34) –0.47 (- 0.45) < 0.01 (< 0.01)

 vbm2  2α ,  1τ  –45.08 (- 46.45) –0.47 (- 0.45) < 0.01 (< 0.01)

 vbm5  1α ,  1ρ –57.65 (- 59.01) –0.47 (- 0.45) < 0.01 (< 0.01)

 vbm1  1α ,  1τ  –107.8 (- 109.63) –0.47 (- 0.45) < 0.01 (< 0.01)

Note. Model = Heuristic ( ws ,  wsls ) and value- based models ( vbm1−8 ) that were compared against 
each other. Parameters = corresponding model parameters learning rate ( α ), inverse temperature ( τ  ) 
and outcome sensitivity ( ρ ).  ∆elpdloo  = differences in Bayesian leave- one- out cross- validation estimate 
of the expected log pointwise predictive density relative to the winning model and its standard errors. 
 mean elpdloo  = mean of expected log pointwise predictive density across all trials. Pseudo- BMA+ = 
model weight for relative model evidence using Bayesian model averaging stabilized by Bayesian bootstrap 
using 100,000 iterations.

The model comparison of the reduced dataset did not differ from the results of the complete 
dataset. At the first step, children’s learning behavior in the longitudinal data again can be better 
described by a value- based rather than by a heuristic strategy model. At the second step, comparison 
different value- based models, the winning model again suggests that feedback timing affected the 
inverse temperature, but not the learning rate or outcome sensitivity. We did not find any deviations 
from the findings of the winning model when using the reduced dataset. The mean model fit (mean 

 elpdloo ) was slightly worse in the reduced dataset, which suggests that the additional poor learners 

Appendix 6—table 1 Continued
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in the complete dataset did not fit worse to the model than the other children, despite their low 
accuracy. The correlations between condition differences of inverse temperature and reaction times 
remained (r = –0.288, t(125) = –3.36, p = 0.001 at wave 1 and r = –0.352, t(118) = –4.09, p < 0.001 
at wave 2). To conclude, the same winning model from the computational analysis remained and was 
therefore used for further analyses.

Confirmatory brain-cognition links with learning scores and episodic 
memory
We fitted a fourvariate LCS model using the reduced dataset to check whether the reported results 
remained the same. The LCS again provided a good data fit (χ² (27) = 18.7, CFI = 1.00, RMSEA (CI) 
= 0 (0 –0.030, SRMR = 0.053)). Striatal volume at wave 1 again covaried with both immediate and 
delayed learning score ( ϕSTRw1,LSi,w1  = 0.17, z = 2.19, SE = 0.08, p = 0.029 and  ϕSTRw1,LSd,w1  = 0.16, z = 
2.04, SE = 0.08, p = 0.041). Constraining the striatal association to immediate learning to 0 worsened 
model fit relative to the unrestricted model (Δχ² (1) = 3.96, p = 0.047), but not when constraining 
the striatal association to delayed learning to 0 (Δχ² (1) = 3.58, p = 0.058). Hippocampal volume did 
not covary with any learning scores in the reduced dataset ( ϕHPCw1,LSi,w1  = 0.11, z = 1.52, SE = 0.08, 
p = 0.130 and  ϕHPCw1,LSd,w1  = 0.14, z = 1.93, SE = 0.07, p = 0.054). We further examined whether in 
the reduced dataset the hippocampal contribution at delayed feedback would selectively enhance 
episodic memory. Episodic memory, as measured by individual corrected object recognition memory 
(hits – false alarms) of confident (‘sure’) ratings was indeed significantly enhanced for delayed 
feedback ( βfeedback=delayed  = 0.011, SE = 0.005, t(124) = 2.23, p = 0.027), which was not the case in 
the results when using the complete dataset.

The results obtained from the reduced dataset suggest that the striatal associations to learning 
remained unchanged, while the results for the hippocampus differed. The hippocampal volume was 
no longer associated with the delayed learning condition. Furthermore, the hippocampal- dependent 
episodic recognition memory was enhanced for items encoded during delayed compared to 
immediate feedback, which was not the case in the results obtained from the complete dataset.

https://doi.org/10.7554/eLife.89483
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