On the surjectivity of the tmf-Hurewicz image of \boldsymbol{A}_{1}

Viet-Cuong Pham

Let A_{1} be any spectrum in the class of finite spectra whose mod 2 cohomology is isomorphic to $\mathcal{A}(1)$ as a module over the subalgebra $\mathcal{A}(1)$ of the Steenrod algebra; let tmf be the connective spectrum of topological modular forms. We prove that the tmf-Hurewicz image of A_{1} is surjective.

55Q10

Introduction

In [5], Davis and Mahowald constructed a class of connective finite spectra whose mod 2 cohomology is isomorphic to $\mathcal{A}(1)$ as a module over the subalgebra $\mathcal{A}(1)$ generated by Sq^{1} and Sq^{2} of the Steenrod algebra. This class of spectra has four different homotopy types, denoted by $A_{1}[i j]$ for $i, j \in\{0,1\}$; see the introduction of Bhattacharya, Egger and Mahowald [2] for an explanation of the notation. We write A_{1} to refer to any of the $A_{1}[i j]$, and call each of them a version of A_{1}. The spectrum A_{1} is constructed via three cofiber sequences, starting from the sphere spectrum S^{0}, as follows. Let $V(0)$ be the mod 2 Moore spectrum, ie the cofiber of multiplication by two on S^{0}. Next, let Y be the cofiber of multiplication by η, the first Hopf element, on $V(0)$. Davis and Mahowald show that Y admits v_{1}-self-maps $\Sigma^{2} Y \rightarrow Y$, that is maps which induce multiplication with v_{1}. The generic notation A_{1} denotes the cofiber of any of them. In fact, there are eight homotopy classes of v_{1}, giving rise to four different homotopy types of A_{1}. We note further that the spectra $A_{1}[00]$ and $A_{1}[11]$ are Spanier-Whitehead self-dual, and $A_{1}[10]$ and $A_{1}[01]$ are Spanier-Whitehead dual to each other.

Let tmf be the ring spectrum of connective topological modular forms. This spectrum is constructed using a certain sheaf in ring spectra on the étale site of the moduli stack of elliptic curves, hence the name; see Behrens [1] for the construction. The spectrum tmf plays an important role in investigating chromatic level two in chromatic homotopy theory. The tmf-Hurewicz map of $A_{1}, H: A_{1} \rightarrow \operatorname{tmf} \wedge A_{1}$, is given by smashing A_{1}

[^0]with the unit of tmf. Our goal is to study the induced map in homotopy of H :
\[

$$
\begin{equation*}
H_{*}: \pi_{*}\left(A_{1}\right) \rightarrow \pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right) \tag{1}
\end{equation*}
$$

\]

Closely related to the homomorphism (1) is the edge homomorphism of the topological duality spectral sequence aiming at analyzing the $K(2)$-localization of A_{1}, where $K(2)$ is the second Morava K-theory at the prime 2 . This is, in fact, our initial motivation for studying (1); see Section 2.3 for further discussion. From another perspective, the map (1) is the edge homomorphism of the tmf-based Adams spectral sequence for A_{1}. This is an upper half-plane spectral sequence converging to $\pi_{*}\left(A_{1}\right)$ starting with the E_{1}-term:

$$
\mathrm{E}_{1}^{n, t}=\pi_{t}\left(\operatorname{tmf}^{\wedge(n+1)} \wedge A_{1}\right) \Rightarrow \pi_{t-n}\left(A_{1}\right)
$$

We now state our main theorem, as well as a consequence:
Theorem A (Theorem 17) The tmf-Hurewicz homomorphism

$$
\pi_{*}\left(A_{1}\right) \rightarrow \pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right)
$$

is surjective for all versions of A_{1}.
Theorem B (Theorem 26) The edge homomorphism of the topological duality resolution

$$
\pi_{*}\left(E_{C}^{h \mathbb{S}_{2}^{1}} \wedge A_{1}\right) \rightarrow \pi_{*}\left(E_{C}^{h G_{24}} \wedge A_{1}\right)
$$

is surjective.
Remark 1 The target of the tmf-Hurewicz homomorphism is explicitly known. In fact, we explicitly computed the homotopy groups of $\pi_{*}\left(E_{C}^{h G_{24}} \wedge A_{1}\right)$ in [12] and showed, in [12, Theorem 5.3.20], that the natural homomorphism $\operatorname{tmf} \wedge A_{1} \rightarrow E_{C}^{h G_{24}} \wedge A_{1}$ is an isomorphism in nonnegative stem, up to an action of the Galois group of \mathbb{F}_{4} over \mathbb{F}_{2}. Furthermore, the spectrum $E_{C}^{h G_{24}}$ is homotopy equivalent to $L_{K(2)}$ tmf up to the Galois action. Thus, Theorem A asserts that all elements of $\pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right)$ lift to v_{2}-periodic elements of $\pi_{*}\left(A_{1}\right)$, elements which are not annihilated by v_{2}-self-maps of A_{1}. It is then interesting to be able to locate the corresponding v_{2}-periodic families in $\pi_{*}\left(S^{0}\right)$, as done by Hopkins and Mahowald in [9], using the generalized Moore spectra.

Here is the overview of the paper. The principal method for proving the main result is to analyze the map of the Adams spectral sequences

and then to show that permanent cycles in the lower spectral sequence lift to permanent cycles in the upper one. In the first section we recall the main tool - The DavisMahowald spectral sequence - used to study the Ext-group over subalgebras of the Steenrod algebra. The construction of the Davis-Mahowald spectral sequence is more general and is of independent interest. In the second section we prove the main theorems. First we prove the algebraic version of the theorem, that is, the surjectivity of the induced map at the E_{2}-term of the Adams spectral sequences, then we prove the topological statement based on a technical result, Proposition 13. The latter involves, to some extent, a refined analysis of the E_{2}-term of the Adams spectral sequence for A_{1}, on which the action of $g \in \operatorname{Ext}_{\mathcal{A}}^{4,24}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ as well as the notion of g-weak divisibility (see Definition 12) play a key role.

Conventions Unless otherwise stated, all spectra are completed at the prime 2. $\mathrm{H}^{*}(X)$ and $\mathrm{H}_{*}(X)$ denote the mod 2 (co)homology of the spectrum X. Given a graded Hopf algebra A over a field k and M a graded A-comodule, $\mathrm{Ext}_{A}^{s, t}(M)$ denotes $\operatorname{Ext}_{A}^{s, t}(k, M)=\operatorname{Ext}_{A}^{s}\left(k, \Sigma^{t} M\right)$. The difference $t-s$ is referred to as the stem of the classes in $\mathrm{Ext}_{A}^{s, t}(M)$.

Acknowledgements This work is part of the author's PhD thesis carried out at the Université de Strasbourg. The author would like to thank his advisor Hans-Werner Henn for many helpful discussions, for carefully reading an earlier draft of this paper and for suggesting improvements. This work was partially supported by the ANR project ChroK, ANR-16-CE40-0003.

1 Background and tools

1.1 The dual of the Steenrod algebra

Recall that the Steenrod algebra \mathcal{A} is a cocommutative graded Hopf algebra over \mathbb{F}_{2}, generated by the Steenrod squares Sq^{i} in degree i for $i \geq 0$, which are subject to the Adem relations

$$
\mathrm{Sq}^{a} \mathrm{Sq}^{b}=\sum_{i=0}^{\lfloor a / 2\rfloor}\binom{b-i-1}{a-2 i} \mathrm{Sq}^{a+b-i} \mathrm{Sq}^{i}
$$

for all $a, b>0$ and $a<2 b$. In [11], Milnor determines the dual \mathcal{A}_{*} of the Steenrod algebra, which is a commutative Hopf algebra over \mathbb{F}_{2}. As an algebra, \mathcal{A}_{*} is a polynomial algebra generated by the elements ξ_{i} for $i \geq 0$ in degree $2^{i}-1$ with $\xi_{0}=1$:

$$
\mathcal{A}_{*}=\mathbb{F}_{2}\left[\xi_{1}, \xi_{2}, \ldots\right] .
$$

The coproduct or the diagonal is given by

$$
\Delta\left(\xi_{k}\right)=\sum_{i=0}^{k} \xi_{i}^{2^{k-i}} \otimes \xi_{k-i}
$$

Subalgebras of \mathcal{A} For $n \geq 1$, denote by $\mathcal{A}(n)$ the subalgebra of \mathcal{A} generated by Sq^{i} for $0 \leq i \leq n$. The dual $\mathcal{A}(n)_{*}$ of $\mathcal{A}(n)$ is the quotient of \mathcal{A}_{*} by the ideal $\left(\xi_{1}^{2^{n+1}}, \xi_{2}^{2^{n}}, \ldots, \xi_{n}^{4}, \xi_{n+1}^{2}, \xi_{n+2}, \ldots\right)$:

$$
\mathcal{A}(n)_{*}=\mathbb{F}_{2}\left[\xi_{1}, \xi_{2}, \ldots, \xi_{n+1}\right] /\left(\xi_{1}^{2^{n+1}}, \xi_{2}^{2^{n}}, \ldots, \xi_{n}^{4}, \xi_{n+1}^{2}\right)
$$

Notation If $A \rightarrow B$ is a map of Hopf algebras, then $A \square_{B} k$ denotes the group of primitives of A viewed as a B-comodule via the given map.

The main tool we use to prove Theorem A is the Adams spectral sequence, which will be abbreviated to ASS in the sequel. More precisely, one has the following theorem, due to Hopkins and Mahowald, whose proof can be found in [10].

Theorem 2 There is an isomorphism of \mathcal{A}_{*}-comodule algebras:

$$
\mathrm{H}_{*} \operatorname{tmf} \cong \mathcal{A}_{*} \square_{\mathcal{A}(2)_{*}} \mathbb{F}_{2}
$$

As a consequence, if X is a connective spectrum, then the Adams spectral sequence for $\operatorname{tmf} \wedge X$ reads as

$$
\mathrm{E}_{2}^{s, t} \cong \mathrm{Ext}_{\mathcal{A}_{*}}^{s, t}\left(\mathbb{F}_{2},\left(\mathcal{A}_{*} \square_{\mathcal{A}(2)_{*}} \mathbb{F}_{2}\right) \otimes \mathrm{H}_{*} X\right) \Rightarrow \pi_{t-s}(\operatorname{tmf} \wedge X)
$$

By the change-of-rings isomorphism the E_{2}-term of this spectral sequence is isomorphic to Ext ${ }_{\mathcal{A}(2)_{*}}^{s, t}\left(\mathrm{H}_{*} X\right)$. Furthermore, the tmf-Hurewicz map of A_{1} induces a map of Adams spectral sequences

where the map in the E_{2}-terms is induced the natural projection of Hopf algebras $\mathcal{A}_{*} \rightarrow \mathcal{A}(2)_{*}$. To analyze $\operatorname{Ext}_{\mathcal{A}_{*}}^{s, t}\left(\mathbb{F}_{2}, \mathrm{H}_{*}\left(A_{1}\right)\right)$ as well as $\operatorname{Ext}_{\mathcal{A}(2)_{*}}^{s, t}\left(\mathbb{F}_{2}, \mathrm{H}_{*}\left(A_{1}\right)\right)$, we use the Davis-Mahowald spectral sequence, which is reviewed in the next section.

1.2 The Davis-Mahowald spectral sequence

Initially, the Davis-Mahowald spectral sequence was used by Davis and Mahowald in [6] to calculate Ext-groups over the subalgebra $\mathcal{A}(2)$. In [12, Section 2.1], we established a slight generalization of this spectral sequence. Let us recall this construction.

Let A be a commutative Hopf algebra over a field k of characteristic 2. Let E and P be the graded exterior algebra and the polynomial algebra on a k-vector space V such that V lives in degree 1, respectively. Let E_{i} and P_{i} denote the subspaces of elements of homogeneous degree i of E and P, respectively. Suppose that E has the structure of an A-comodule algebra such that $k \oplus V$ is a sub- A-comodule of E. Since P_{1} sits in a short exact sequence

$$
\begin{equation*}
0 \rightarrow k \rightarrow k \oplus E_{1} \xrightarrow{p} P_{1}, \tag{2}
\end{equation*}
$$

P_{1} admits a unique structure of an A-comodule, making p a map of A-comodules. Then P admits the structure of an A-comodule algebra:

Lemma 3 If $P_{1}^{\otimes n}$ is equipped with the usual structure of an A-comodule of a tensor product, then P_{n} admits a unique structure of an A-comodule making the multiplication $P_{1}^{\otimes n} \rightarrow P_{n}$ a map of A-comodules.

Proof The canonical map $P_{1}^{\otimes n} \rightarrow P_{n}$ is surjective and its kernel is spanned by elements of the form $y_{1} \otimes y_{2} \otimes \cdots \otimes y_{n}-y_{\sigma_{1}} \otimes y_{\sigma(2)} \otimes \cdots \otimes y_{\sigma(n)}$, where σ is a permutation of the set $\{1,2, \ldots, n\}$. Then, since A is commutative, we see that the kernel is stable under the coaction of A. The lemma follows.

We define the cochain complex $(E \otimes P, d)$:
(i) $(E \otimes P)_{-1}=k$.
(ii) $(E \otimes P)_{m}=E \otimes P_{m}$, for $m \geq 0$.
(iii) $d: k=(E \otimes P)_{-1} \rightarrow E=(E \otimes P)_{0}$ is the unit of E.
(iv) $d\left(\prod_{j=1}^{n} x_{i_{j}} \otimes z\right)=\sum_{t=1}^{n} \prod_{j \neq t} x_{i_{j}} \otimes p\left(x_{i_{t}}\right) z$, where $x_{i_{j}} \in E_{1}, z \in P_{m}$ and p is the projection of (2).

Proposition 2.1.5 of [12] shows that $(E \otimes P, d)$ is a differential graded algebra which is an exact sequence of A-comodules. As a consequence, there is a spectral sequence of algebras

$$
\begin{equation*}
\operatorname{Ext}_{A}^{s}\left(k, E \otimes P_{n}\right) \Rightarrow \operatorname{Exx}_{A}^{s+n}(k, k) \tag{3}
\end{equation*}
$$

Furthermore, if M is an A-comodule, there is a spectral sequence of modules over (3):

$$
\begin{equation*}
\operatorname{Ext}_{A}^{s}\left(k, E \otimes P_{n} \otimes M\right) \Rightarrow \operatorname{Ext}_{A}^{s+n}(k, M) \tag{4}
\end{equation*}
$$

The Davis-Mahowald spectral sequence, or DMSS for short, appears in this paper in the following form. Let A and B be commutative graded Hopf algebras over \mathbb{F}_{2} together with a map of Hopf algebras $A \rightarrow B$. Then A can be considered as a left B-comodule algebra. The group of primitives $A \square_{B} k$ inherits the structure of an A-comodule algebra from A, ie the inclusion of the subgroup $A \square_{B} k \rightarrow A$ is a map of A-comodule algebras. If it turns out that $E:=A \square_{B} k$ is an exterior algebra, then we are often in a situation to construct the Davis-Mahowald spectral sequence. Precisely, it can be constructed when E is generated by the k-vector space V, as an exterior algebra, and $k \oplus V$ is a sub- A-comodule of E. In this situation, by the change-of-rings theorem, the E_{1}-term of the latter is isomorphic to

$$
\mathrm{E}_{1}^{s, t, n}=\mathrm{Ext}_{A}^{s, t}\left(k, E \otimes P_{n}\right) \cong \operatorname{Ext}_{B}^{s, t}\left(k, P_{n}\right)
$$

This allows us to reduce the problem of computing Ext-groups over A to Ext-groups over B, which is often simpler.

Example 4 Consider the natural projection of commutative Hopf algebras

$$
\mathcal{A}(n)_{*} \rightarrow \mathcal{A}(n-1)_{*} .
$$

Let ζ_{i} denote the conjugate of ξ_{i}. Then

$$
\begin{equation*}
\Delta\left(\zeta_{k}\right)=\sum_{i=0}^{k} \zeta_{i} \otimes \zeta_{k-i}^{2^{i}} \tag{5}
\end{equation*}
$$

The subalgebra $\mathcal{A}(n)_{*}$ is then isomorphic to

$$
\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n+1}\right] /\left(\zeta_{1}^{2^{n+1}}, \zeta_{2}^{2^{n}}, \ldots, \zeta_{n}^{4}, \zeta_{n+1}^{2}\right)
$$

It is straightforward to show that

$$
\mathcal{A}(n)_{*} \square_{\mathcal{A}(n-1)_{*}} \mathbb{F}_{2} \cong E\left(\zeta_{1}^{2^{n}}, \zeta_{2}^{2^{n-1}}, \ldots, \zeta_{n+1}\right)
$$

the exterior algebra on $\mathbb{F}_{2}\left\{\zeta_{1}^{2^{n}}, \zeta_{2}^{2^{n-1}}, \ldots, \zeta_{n+1}\right\}$. Let x_{k} denote $\zeta_{k}^{2^{n+1-k}}$. Using (5), we see that the $\mathcal{A}(n)_{*}$-comodule structure of $\mathcal{A}(n)_{*} \square_{\mathcal{A}(n-1)_{*}} \mathbb{F}_{2}$ is given by

$$
\Delta\left(x_{k}\right)=\sum_{i=0}^{i=k} \zeta_{i}^{2^{n+1-k}} \otimes x_{k-i}
$$

where $x_{0}=1$ by convention. Thus, the Davis-Mahowald spectral sequence reads as

$$
\mathrm{E}_{1}^{s, t, n}=\mathrm{Ext}_{\mathcal{A}(n-1)_{*}}^{s, t}\left(P_{n}\right) \Rightarrow \mathrm{Ext}_{\mathcal{A}(n)_{*}}^{s+n, t}\left(\mathbb{F}_{2}\right)
$$

Remark 5 This example is an important tool used to perform the calculation of $\operatorname{Ext}_{\mathcal{A}(2)_{*}}^{*, *}\left(\mathrm{H}_{*}\left(A_{1}\right)\right)$ in [12, Section 3]. We will apply the DMSS for other examples appearing in the proof of Proposition 14.

2 The tmf-Hurewicz image of \boldsymbol{A}_{1}

The Hurewicz map $A_{1} \rightarrow \operatorname{tmf} \wedge A_{1}$ is a map of modules over the ring spectrum $A_{1} \wedge D A_{1}$, hence $H_{*}: \pi_{*}\left(A_{1}\right) \rightarrow \pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right)$ is a map of modules over $\pi_{*}\left(A_{1} \wedge D A_{1}\right)$. We recollect some elements of the latter, important to this work. Let us fix an element of $\pi_{20}\left(S^{0}\right)$, denoted by $\bar{\kappa}$, which is detected by $g \in \operatorname{Ext}_{\mathcal{A}}^{4,24}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ in the ASS. It generates a subgroup of order 8 in $\pi_{20}\left(S^{0}\right)$. Next, let $v \in \pi_{3}\left(S^{0}\right)$ be the third Hopf element. The induced map in homotopy of the unit $S^{0} \rightarrow A_{1} \wedge D A_{1}$ sends $v \in \pi_{3} S^{0}$ and $\bar{\kappa} \in \pi_{20} S^{0}$ to nontrivial elements, denoted by the same names. This is due to the fact that ν and $\bar{\kappa}$ are sent nontrivially to $\pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right)$ via the composite

$$
S^{0} \rightarrow A_{1} \wedge D A_{1} \rightarrow A_{1} \xrightarrow{H} \operatorname{tmf} \wedge A_{1},
$$

where the middle map is induced by the projection $D A_{1} \rightarrow S^{0}$ on the top cell of $D A_{1}$. According to [2], A_{1} has a v_{2}^{32}-self-map $v_{2}^{32}: \Sigma^{192} A_{1} \rightarrow A_{1}$. Its adjoint $S^{192} \rightarrow A_{1} \wedge D A_{1}$ represents an element of $\pi_{192}\left(A_{1} \wedge D A_{1}\right)$, also denoted by v_{2}^{32}.
Let $(\bar{\kappa}, v)$ be the ideal of $\pi_{*}\left(S^{0}\right)$ generated by $\bar{\kappa}$ and ν. Consider the commutative diagram

We see that the upper horizontal map is surjective if and only if the lower is surjective. In fact, this is an easy consequence of $\pi_{*}\left(A_{1}\right)$ being bounded below. To prove that the lower map is surjective we can proceed as follows. For any $\bar{x} \in \pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right) /(\bar{\kappa}, v)$, first, lift \bar{x} to an element $x \in \pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right)$, then, find a class that detects x in the ASS for $\operatorname{tmf} \wedge A_{1}$ and finally, show that class lifts to a permanent cycle in the ASS for A_{1}. The first and the second steps follow from the analysis of the ASS for $\operatorname{tmf} \wedge A_{1}$ in [12, Section 3]. We recall here relevant information. Let $\mathbb{F}_{2}\left[\nu, g, w_{2}\right] /\left(v^{3}, g \nu\right)$ be the subalgebra of $\operatorname{Ext}_{\mathcal{A}(2)_{*}}^{*, *}\left(\mathbb{F}_{2}\right)$ generated by ν, g and w_{2}, with $|\nu|=(1,4),|g|=(4,24)$ and $\left|w_{2}\right|=(8,56)$. The classes v and g lift to classes of the same name in Ext ${ }_{\mathcal{A}_{*}}^{4,24}\left(\mathbb{F}_{2}\right)$ and converge to ν and $\bar{\kappa}$, respectively, in the ASS for S^{0}.

Proposition 6 [12, Theorem 3.2.5] $\operatorname{Ext}_{\mathcal{A}(2)_{*}}\left(\mathrm{H}_{*}\left(A_{1}\right)\right)$ is a direct sum of cyclic modules as a module over $\mathbb{F}_{2}\left[v, g, w_{2}\right] /\left(v^{3}, g v\right)$, and is generated by the following classes with respective annihilator ideals:

$e_{0,0}$	$e_{1,5}$	$e_{1,6}$	$e_{2,11}$	$e_{3,15}$	$e_{3,17}$	$e_{4,21}$	$e_{4,23}$
(0)	$\left(v^{2}\right)$	(0)	$\left(v^{2}\right)$	$\left(v^{2}\right)$	(0)	$\left(v^{2}\right)$	(0)
$e_{6,30}$	$e_{6,32}$	$e_{7,36}$	$e_{7,38}$	$e_{8,42}$	$e_{9,47}$	$e_{9,48}$	$e_{10,53}$
(v)							

Here $e_{s, t}$ is the unique nontrivial class of $\operatorname{Ext}_{\mathcal{A}(2)_{*}}^{s, t+s}\left(\mathrm{H}_{*}\left(A_{1}\right)\right)$.
According to [12, Theorem 5.3.20], $\pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right)$ is Δ^{8}-periodic. More precisely, multiplication by $\Delta^{8} \in \pi_{192}(\mathrm{tmf})$ induces an isomorphism

$$
\pi_{k}\left(\operatorname{tmf} \wedge A_{1}\right) \rightarrow \pi_{k+192}\left(\operatorname{tmf} \wedge A_{1}\right)
$$

for $k \geq 0$. The same property holds for multiplication by v_{2}^{32}.
Proposition 7 Multiplication by $v_{2}^{32} \in \pi_{192}\left(A_{1} \wedge D A_{1}\right)$ induces an isomorphism $\pi_{k}\left(\operatorname{tmf} \wedge A_{1}\right) \rightarrow \pi_{k+192}\left(\operatorname{tmf} \wedge A_{1}\right)$ for $k \geq 0$.

Proof Let $F_{\mathrm{tmf}}(-,-)$ denote the function spectrum in the category of tmf-modules, so that $\operatorname{Id}_{\mathrm{tmf}} \wedge v_{2}^{32}$ and $\Delta^{8} \wedge \operatorname{Id}_{A_{1}}$ represent elements of $\pi_{192}\left(F_{\mathrm{tmf}}\left(\operatorname{tmf} \wedge A_{1}, \operatorname{tmf} \wedge A_{1}\right)\right)$. Via the natural equivalence

$$
F_{\mathrm{tmf}}\left(\operatorname{tmf} \wedge A_{1}, \operatorname{tmf} \wedge A_{1}\right) \simeq \operatorname{tmf} \wedge A_{1} \wedge D A_{1}
$$

denote by v_{2}^{32} and Δ^{8} the images of $\operatorname{Id}_{\mathrm{tmf}} \wedge v_{2}^{32}$ and $\Delta^{8} \wedge \operatorname{Id}_{A_{1}}$, respectively, by the induced homomorphism on homotopy groups. Since $\Delta^{8} \wedge \operatorname{Id}_{A_{1}}$ induces an isomorphism on homotopy groups of nonnegative stems and $\pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right)$ is finite in each stem, it suffices to show that there is a positive integer n such that

$$
\left(\Delta^{8}\right)^{n}=\left(v_{2}^{32}\right)^{n} \in \pi_{192 n}\left(\operatorname{tmf} \wedge A_{1} \wedge D A_{1}\right)
$$

Since Δ^{8} induces an isomorphism $\pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right) \rightarrow \pi_{*+192}\left(\operatorname{tmf} \wedge A_{1}\right)$ for $* \geq 0$, by the five lemma, multiplication by Δ^{8} induces an isomorphism

$$
\begin{equation*}
\pi_{*}\left(\operatorname{tmf} \wedge A_{1} \wedge D A_{1}\right) \rightarrow \pi_{*+192}\left(\operatorname{tmf} \wedge A_{1} \wedge D A_{1}\right) \quad \text { for } * \geq 0 \tag{6}
\end{equation*}
$$

By the construction in [2], a v_{2}^{32}-self-map of A_{1} is detected, in the E_{2}-term of the ASS for $A_{1} \wedge D A_{1}$, by a class that is sent to a class detecting Δ^{8} in the ASS for $\operatorname{tmf} \wedge A_{1} \wedge D A_{1}$. This means that the difference $\Delta^{8}-v_{2}^{32}$ is detected in an Adams filtration greater than 32 , which is the Adams filtration of Δ^{8} and of v_{2}^{32}. Together

$(0,0)$	$(5,1)$	$(6,1)$	$(11,2)$	$(15,3)$	$(17,3)$	$(21,4)$	$(23,4)$
$e_{0,0}$	$e_{1,5}$	$e_{1,6}$	$e_{2,11}$	$e_{3,15}$	$e_{3,17}$	$e_{4,21}$	$e_{4,23}$
$(30,6)$	$(32,6)$	$(36,7)$	$(38,7)$	$(42,8)$	$(47,9)$	$(48,9)$	$(53,10)$
$e_{6,30}$	$e_{6,32}$	$e_{7,36}$	$e_{7,38}$	$e_{8,42}$	$e_{9,47}$	$e_{49,8}$	$e_{10,53}$
$(48,8)$	$(53,9)$	$(54,9)$	$(59,10)$	$(63,11)$	$(65,11)$	$(69,12)$	$(71,12)$
$w_{2} e_{0,0}$	$w_{2} e_{1,5}$	$w_{2} e_{1,6}$	$w_{2} e_{2,11}$	$w_{2} e_{3,15}$	$w_{2} e_{3,17}$	$w_{2} e_{4,21}$	$w_{2} e_{4,23}$
$(78,14)$	$(80,14)$	$(84,15)$	$(86,15)$	$(90,16)$	$(95,17)$	$(96,17)$	$(101,18)$
$w_{2} e_{6,30}$	$w_{2} e_{6,32}$	$w_{2} e_{7,36}$	$w_{2} e_{7,38}$	$w_{2} e_{8,42}$	$w_{2} e_{9,47}$	$w_{2} e_{9,48}$	$w_{2} e_{10,53}$

Table 1: List M, generators of $\pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right) /(\bar{\kappa}, v)$ as an $\mathbb{F}_{2}\left[\Delta^{8}\right]$-module for the non-self-dual versions $A_{1}[00]$ and $A_{1}[11]$.
with the isomorphism (6), the difference $\Delta^{8}-v_{2}^{32}$ is equal to $\Delta^{8} x$ for some element $x \in \pi_{0}\left(\operatorname{tmf} \wedge A_{1} \wedge D A_{1}\right)$, which must be detected in a positive filtration of the ASS, because the only nonzero class of $\operatorname{Ext}_{\mathcal{A}(2)}^{0,0}\left(\mathrm{H}_{*}\left(A_{1} \wedge D A_{1}\right)\right)$ is the unit. As a consequence, x is nilpotent, as the ASS for $\operatorname{tmf} \wedge A_{1} \wedge D A_{1}$ has a vanishing line parallel to that of the ASS for $\operatorname{tmf} \wedge A_{1}$; see Proposition 8. Furthermore, $\Delta^{8}-v_{2}^{32}$ has finite order and Δ^{8} is in the center of $\pi_{*}\left(\operatorname{tmf} \wedge A_{1} \wedge D A_{1}\right)$. Therefore, by using the binomial formula, we see that $\left(\Delta^{8}+v_{2}^{32}-\Delta^{8}\right)^{2^{k}}$ is equal to $\left(\Delta^{8}\right)^{2^{k}}$ for k large enough.

As an immediate consequence of the above proposition, multiplication by v_{2}^{32} induces an isomorphism $\pi_{k}\left(\operatorname{tmf} \wedge A_{1}\right) /(\nu, \bar{\kappa}) \rightarrow \pi_{k+192}\left(\operatorname{tmf} \wedge A_{1}\right) /(\nu, \bar{\kappa})$ for $k \geq 0$. Moreover, it follows from the proof of [12, Theorem 5.3.20] that we can identify a set of generators of $\pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right) /(\bar{\kappa}, \nu)$ for $0 \leq *<192$ as $\mathbb{Z}_{2}-$ modules. Therefore, this set generates $\pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right) /(\bar{\kappa}, \nu)$ as a $\mathbb{Z}_{2}\left[v_{2}^{32}\right]$-module. We give in Tables 1 and 2 a list of generators

$(99,17)$	$(104,18)$	$(105,18)$	$(110,19)$	$(114,20)$	$(116,20)$
$v w_{2}^{2} e_{0,0}$	$v w_{2}^{2} e_{1,5}$	$v w_{2}^{2} e_{1,6}$	$v w_{2}^{2} e_{2,11}$	$v w_{2}^{2} e_{3,15}$	$v w_{2}^{2} e_{3,17}$
$(120,21)$	$(122,21)$	$(147,25)$	$(152,26)$	$(153,26)$	
$v w_{2}^{2} e_{4,21}$	$v w_{2}^{2} e_{4,23}$	$v w_{2}^{3} e_{0,0}$	$v w_{2}^{3} e_{1,5}$	$v w_{2}^{3} e_{1,6}$	
$(158,27)$	$(162,28)$	$(164,28)$	$(168,29)$	$(170,29)$	
$v w_{2}^{3} e_{2,11}$	$v w_{2}^{3} e_{3,15}$	$v w_{2}^{3} e_{3,17}$	$v w_{2}^{3} e_{4,21}$	$v w_{2}^{3} e_{4,23}$	

Table 2: List N, generators of $\pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right) /(\bar{\kappa}, \nu)$ as an $\mathbb{F}_{2}\left[\Delta^{8}\right]$-module for the non-self-dual versions $A_{1}[00]$ and $A_{1}[11]$.

$(0,0)$	$(5,1)$	$(6,1)$	$(11,2)$	$(15,3)$	$(17,3)$	$(21,4)$	$(23,4)$
$e_{0,0}$	$e_{1,5}$	$e_{1,6}$	$e_{2,11}$	$e_{3,15}$	$e_{3,17}$	$e_{4,21}$	$e_{4,23}$
$(30,6)$	$(32,6)$	$(36,7)$	$(38,7)$	$(42,8)$	$(47,9)$	$(48,9)$	$(53,10)$
$e_{6,30}$	$e_{6,32}$	$e_{7,36}$	$e_{7,38}$	$e_{8,42}$	$e_{9,47}$	$e_{49,8}$	$e_{10,53}$
$(48,8)$	$(53,9)$	$(54,9)$	$(59,10)$	$(63,11)$	$(65,11)$	$(69,12)$	
$w_{2} e_{0,0}$	$w_{2} e_{1,5}$	$w_{2} e_{1,6}$	$w_{2} e_{2,11}$	$w_{2} e_{3,15}$	$w_{2} e_{3,17}$	$w_{2} e_{4,21}$	
$(74,13)$	$(78,14)$	$(80,14)$	$(84,15)$	$(90,16)$	$(95,17)$		
$\nu w_{2} e_{4,23}$	$w_{2} e_{6,30}$	$w_{2} e_{6,32}$	$w_{2} e_{7,36}$	$w_{2} e_{8,42}$	$w_{2} e_{9,47}$		

Table 3: List P, generators of $\pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right) /(\bar{\kappa}, \nu)$ as an $\mathbb{F}_{2}\left[\Delta^{8}\right]$-module for the self-dual versions $A_{1}[01]$ and $A_{1}[10]$.
of the non-self-dual versions $A_{1}[00]$ and $A_{1}[11]$, and in Tables 3 and 4 a list of generators of the self-dual versions $A_{1}[01]$ and $A_{1}[10]$. This distinction is because the proof that they lift to permanent cycles in the ASS for A_{1} is different for different versions; see Propositions 19, 22 and 23 . We denote by M, N, P and Q the sets of generators listed in Tables 1, 2, 3, and 4, respectively. In these tables, the pairs of integers indicate the bidegree (t, s) of the corresponding generators living in $\mathrm{Ext}^{s, t+s}$.

We now proceed to prove that all classes in these tables lift to permanent cycles in the ASS for A_{1}. There are two main steps. First, we show that the induced map on the E_{2}-terms of the Hurewicz map

$$
H_{*}: \operatorname{Ext}_{\mathcal{A}_{*}}^{*, *}\left(\mathrm{H}_{*} A_{1}\right) \rightarrow \operatorname{Ext}_{\mathcal{A}(2)_{*}}^{*, *}\left(\mathrm{H}_{*} A_{1}\right)
$$

is surjective. This implies, in particular, that the classes in $M \cup N$ and $P \cup Q$ lift to the E_{2}-term of the ASS for A_{1}. Second, we show that $\mathrm{Ext}_{\mathcal{A}_{*}}^{*, *}\left(\mathrm{H}_{*} A_{1}\right)$ has a certain

$(96,16)$	$(101,17)$	$(105,18)$	$(110,19)$	$(111,19)$	$(116,20)$
$w_{2}^{2} e_{0,0}$	$w_{2}^{2} e_{1,5}$	$v w_{2}^{2} e_{1,6}$	$v w_{2}^{2} e_{2,11}$	$w_{2}^{2} e_{3,15}$	$v w_{2}^{2} e_{3,17}$
$(120,21)$	$(122,21)$	$(126,22)$	$(147,25)$	$(152,26)$	$(153,26)$
$v w_{2}^{2} e_{4,21}$	$v w_{2}^{2} e_{4,23}$	$w_{2}^{2} e_{6,30}$	$v w_{2}^{3} e_{0,0}$	$\nu w_{2}^{3} e_{1,5}$	$v w_{2}^{3} e_{1,6}$
$(158,27)$	$(162,28)$	$(164,28)$	$(168,29)$	$(170,29)$	
$\nu w_{2}^{3} e_{2,11}$	$v w_{2}^{3} e_{3,15}$	$v w_{2}^{3} e_{3,17}$	$v w_{2}^{3} e_{4,21}$	$v w_{2}^{3} e_{4,23}$	

Table 4: List Q, generators of $\pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right) /(\bar{\kappa}, \nu)$ as an $\mathbb{F}_{2}\left[\Delta^{8}\right]$-module for the self-dual versions $A_{1}[01]$ and $A_{1}[10]$.
structure (see Proposition 13) that allows us to rule out nontrivial differentials on lifts of the classes in $M \cup N$ and $P \cup Q$ in the ASS for A_{1}.

2.1 The algebraic tmf-Hurewicz homomorphism

Proposition 8 (vanishing line) For $n \geq 0$ or $n=\infty$, Ext $_{\mathcal{A}(n)_{*}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right)$ has vanishing line $t-s<f(s)$, where $f(s)=5 s-4$ if $s \leq 6$ and $f(s)=5 s$ if $s>6$, ie

$$
\operatorname{Ext}_{\mathcal{A}(n)_{*}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right)=0 \quad \text { if } t-s<f(s)
$$

Proof The statement for $n=0,1$ follows from the fact that $\mathrm{H}_{*} A_{1}$ is $\mathcal{A}(0)_{*-}$ and $\mathcal{A}(1)_{*}-$ cofree. The statement for $n=2$ follows from the explicit structure of Ext $_{\mathcal{A}(2) *}^{s, t}\left(\mathrm{H}_{*} A_{1}\right)$. Now suppose $n \geq 3$. Set $\Gamma=\mathcal{A}(n)_{*} \square_{\mathcal{A}(2)_{*}} \mathbb{F}_{2}$ and note that Γ is an $\mathcal{A}(n)_{*}$-comodule algebra. The unit $\mathbb{F}_{2} \rightarrow \mathcal{A}(n)_{*} \square_{\mathcal{A}(2) *} \mathbb{F}_{2}$ is a map of Γ-comodules. Denote by $\bar{\Gamma}$ the quotient of Γ, so that we have the short exact sequence of $\mathcal{A}(n)_{*}$-comodules

$$
0 \rightarrow \bar{\Gamma}^{\otimes r} \rightarrow \Gamma \otimes \bar{\Gamma}^{\otimes r} \rightarrow \bar{\Gamma}^{\otimes r+1} \rightarrow 0
$$

for $r \geq 0$. Splicing these together, we get a long exact sequence of $\mathcal{A}(n)_{*}$-comodules

$$
0 \rightarrow \mathbb{F}_{2} \rightarrow \Gamma \rightarrow \Gamma \otimes \bar{\Gamma} \rightarrow \cdots \rightarrow \Gamma \otimes \bar{\Gamma}^{\otimes r} \rightarrow \cdots
$$

which gives rise to a spectral sequence converging to $\operatorname{Ext}_{\mathcal{A}(n)_{*}}^{*, *}\left(\mathrm{H}_{*} A_{1}\right)$ with E_{1}-term isomorphic to $\mathrm{Ext}_{\mathcal{A}(n)_{*}}^{*, *}\left(\Gamma \otimes \bar{\Gamma}^{\otimes r} \otimes \mathrm{H}_{*} A_{1}\right)$:

$$
\begin{equation*}
\mathrm{E}_{1}^{s, t, r}=\mathrm{Ext}_{\mathcal{A}(n)_{*}}^{s, t}\left(\Gamma \otimes \bar{\Gamma}^{\otimes r} \otimes \mathrm{H}_{*} A_{1}\right) \Rightarrow \mathrm{Ext}_{\mathcal{A}(n)_{*}}^{s+r, t}\left(\mathbb{F}_{2}, \mathrm{H}_{*} A_{1}\right) . \tag{7}
\end{equation*}
$$

By the change-of-rings isomorphism,

$$
\mathrm{Ext}_{\mathcal{A}(n)_{*}}^{s, t}\left(\Gamma \otimes \bar{\Gamma}^{\otimes r} \otimes \mathrm{H}_{*} A_{1}\right) \cong \mathrm{Ext}_{\mathcal{A}(2)_{*}}^{s, t}\left(\bar{\Gamma}^{\otimes r} \otimes \mathrm{H}_{*} A_{1}\right)
$$

We see that $\bar{\Gamma}^{\otimes r}$ is ($8 r-1$)-connected because $\bar{\Gamma}$ is 7 -connected. Together with the fact that

$$
\mathrm{Ext}_{\mathcal{A}(2)_{*}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right)=0 \quad \text { if } t-s<f(s)
$$

we obtain that

$$
\mathrm{Ext}_{\mathcal{A}(2)_{*}}^{s, t}\left(\bar{\Gamma}^{\otimes r} \otimes \mathrm{H}_{*} A_{1}\right)=0
$$

if $t-s<f(s)+8 r$ or equivalently if $t-(s+r)<f(s+r)+2 r$. We can now conclude by using the spectral sequence (7).

Proposition 9 (approximation lemma) Let $m \geq n$ be two nonnegative integers, or $m=\infty$. The restriction homomorphism

$$
\mathrm{Ext}_{\mathcal{A}(m)_{*}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right) \rightarrow \mathrm{Ext}_{\mathcal{A}(n)_{*}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right),
$$

where $\mathcal{A}(\infty)_{*}:=\mathcal{A}_{*}$, is an isomorphism if $t-s<f(s-1)+2^{n+1}-1$ and is an epimorphism if $t-s<f(s)+2^{n+1}$, where $f(s)$ is as in Proposition 8.

This is a well-known consequence of the vanishing line property and is discussed in [13, Lemma 3.4.9]. We give a proof here for completeness.

Proof Let $\Gamma=\mathcal{A}(m)_{*} \square_{\mathcal{A}(n) *} \mathbb{F}_{2}$ and $\bar{\Gamma}=\operatorname{coker}\left(\mathbb{F}_{2} \rightarrow \Gamma\right)$. The restriction homomorphism is the composite

$$
\operatorname{Ext}_{\mathcal{A}(m)_{*}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right) \rightarrow \operatorname{Ext}_{\mathcal{A}(m)_{*}}^{s, t}\left(\Gamma \otimes \mathrm{H}_{*} A_{1}\right) \cong \operatorname{Ext}_{\mathcal{A}(n)_{*}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right),
$$

where the first map is induced by the unit $\mathbb{F}_{2} \rightarrow \Gamma$ and the second is the change-of-rings isomorphism. The short exact sequence of $\mathcal{A}(m)_{*}$-comodules $\mathbb{F}_{2} \rightarrow \Gamma \rightarrow \bar{\Gamma}$ gives rise to a long exact sequence
$\operatorname{Ext}_{\mathcal{A}(m)_{*}}^{s-1, t}\left(\bar{\Gamma} \otimes \mathrm{H}_{*} A_{1}\right) \rightarrow \mathrm{Ext}_{\mathcal{A}(m)_{*}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right) \rightarrow \mathrm{Ext}_{\mathcal{A}(n)_{*}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right) \rightarrow \mathrm{Ext}_{\mathcal{A}(m)_{*}}^{s, t}\left(\bar{\Gamma} \otimes \mathrm{H}_{*} A_{1}\right)$. Since $\bar{\Gamma}$ is 2^{n+1}-connected and $\operatorname{Ext}_{\mathcal{A}(m)_{*}}^{s, t}\left(\mathbb{F}_{2}, \mathrm{H}_{*} A_{1}\right)$ has the vanishing line $t-s<f(s)$,

$$
\mathrm{Ext}_{\mathcal{A}(m)_{*}}^{s, t}\left(\bar{\Gamma} \otimes \mathrm{H}_{*} A_{1}\right)=0
$$

if $t-s<f(s)+2^{n+1}$, hence the surjectivity of the respective restriction homomorphism, and

$$
\mathrm{Ext}_{\mathcal{A}(m)_{*}}^{s-1, t}\left(\bar{\Gamma} \otimes \mathrm{H}_{*} A_{1}\right)=\operatorname{Ext}_{\mathcal{A}(m)_{*}}^{s, t}\left(\bar{\Gamma} \otimes \mathrm{H}_{*} A_{1}\right)=0
$$

if $t-s<f(s-1)+2^{n+1}-1$, hence the bijectivity of the respective restriction homomorphism.

Corollary 10 The restriction map $\mathrm{Ext}_{\mathcal{A}_{*}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right) \rightarrow \mathrm{Ext}_{\mathcal{A}(2)_{*}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right)$ is an epimorphism if $t-s<5 s+8$ and is an isomorphism if $t-s<5 s+2$.

Proposition 11 The restriction map $\operatorname{Ext}_{\mathcal{A}_{*}}^{*, *}\left(\mathrm{H}_{*}\left(A_{1}\right)\right) \rightarrow \operatorname{Ext}_{\mathcal{A}(2)_{*}}^{*, *}\left(\mathrm{H}_{*}\left(A_{1}\right)\right)$ is an epimorphism.

Proof The restriction map Res: $\operatorname{Ext}_{\mathcal{A}_{*}}^{*, *}\left(\mathrm{H}_{*}\left(A_{1}\right)\right) \rightarrow \operatorname{Ext}_{\mathcal{A}(2)_{*}}^{*, *}\left(\mathrm{H}^{*}\left(A_{1}\right)\right)$ is a map of modules over $\operatorname{Ext}_{\mathcal{A}_{*}}^{*, *}\left(\mathrm{H}_{*}\left(A_{1} \wedge D A_{1}\right)\right)$. This module structure comes from the fact that A_{1} is a module over the ring spectrum $A_{1} \wedge D A_{1}$. It is proved in [2, Lemma 3.6] that the class $w_{2} \in \operatorname{Ext}_{\mathcal{A}(2)_{*}}^{8,56}\left(\mathrm{H}_{*}\left(A_{1} \wedge D A_{1}\right)\right)$ lifts to $\operatorname{Ext}_{\mathcal{A}_{*}}^{8,56}\left(\mathrm{H}_{*}\left(A_{1} \wedge D A_{1}\right)\right)$ - the
notation in that article for w_{2} is $b_{3,0}^{4}$. In particular, the restriction map Res is a map of modules over the subalgebra R generated by g, v and w_{2}. By Proposition 6, the classes $e_{s, t}$ where
$(s, t) \in\{(0,0),(1,5),(1,6),(2,11),(3,15),(3,17),(4,21),(4,23),(6,30)$,

$$
(6,32),(7,36),(7,38),(8,42),(9,47),(9,48),(10,53)\}
$$

generate $\operatorname{Ext}_{\mathcal{A}(2)_{*}}^{*, *}\left(\mathrm{H}^{*}\left(A_{1}\right)\right.$ as a module over R. These classes live in the region $\{t-s<5 s+8\}$, hence lift to $\operatorname{Ext}_{\mathcal{A}_{*}}^{*, *}\left(\mathrm{H}^{*}\left(A_{1}\right)\right.$ by Proposition 9 .

This theorem shows that all the classes of $M \cup N$ and $P \cup Q$ lift to $\operatorname{Ext}_{\mathcal{A}_{*}}^{*, *}\left(\mathrm{H}_{*}\left(A_{1}\right)\right)$. In the following part, we prove that the latter lift to permanent cycles.

2.2 The topological tmf-Hurewicz homomorphism

The key step is to understand the action of $g \in \operatorname{Ext}_{\mathcal{A}_{*}}^{4,24}\left(\mathbb{F}_{2}\right)$ on $\operatorname{Ext}_{\mathcal{A}_{*}}^{*, *}\left(\mathrm{H}_{*}\left(A_{1}\right)\right)$. To this end, we introduce the notion of weak divisibility, which plays an important role in the proof by induction of Proposition 14.

Definition 12 Let M be an A-module and $g \in A$ be a nonnilpotent element. An element $x \in M$ is said to be weakly g-divisible if and only if there exists an $n \in \mathbb{N}$ and $y \in M$ such that $g^{n+1} y=g^{n} x$. Otherwise stated, x is weakly g-divisible if and only if there exists a g-torsion element δ such that $x+\delta$ is g-divisible.

Proposition 13 The group $\operatorname{Ext}_{\mathcal{A}_{*}}^{*, *}\left(\mathrm{H}^{*}\left(A_{1}\right)\right)$ has the following properties:
(i) All classes of $\mathrm{Ext}_{\mathcal{A}_{*}}^{s, t}\left(\mathrm{H}^{*} A_{1}\right)$ in the region

$$
F=\{s \geq 18,5 s \leq t-s \leq 5 s+6\} \cup\{s \geq 27,5 s \leq t-s \leq 5 s+14\}
$$

are g-free and are divisible by g.
(ii) Any class x of $\mathrm{Ext}_{\mathcal{A}_{*}}^{s, t}\left(\mathrm{H}^{*} A_{1}\right)$ in the region

$$
D=\{s \geq 21,5 s \leq t-s \leq 5 s+12\} \cup\{s \geq 30,5 s \leq t-s \leq 5 s+20\}
$$

is weakly g-divisible, ie there is a class y and a nonnegative integer n such that $g^{n+1} y=g^{n} x$.

Let us explain what we need this proposition for. We want to show that the classes of $M \cup N$ and $P \cup Q$ lift to permanent cycles in the ASS for A_{1}. While it is straightforward to show it for the classes of M and P by sparseness and the approximation lemma, the classes of N and Q might support more differentials. Proposition 13 describes the structure of $\operatorname{Ext}_{\mathcal{A}_{*}}^{*, *}\left(\mathrm{H}^{*}\left(A_{1}\right)\right)$ exactly in the zone where the differentials on the classes

Figure 1: The dark region is associated to S_{1} or R_{1}, and the light to S_{2} or R_{2}.
of N and P arrive. In particular, we will see that the targets of these differentials are g-free, a fact which is established in Lemmas 20 and 21. This, together with the g-linearity of the differentials, allows us to rule out potential differentials. Because the classes involved in the statement of this proposition live in the region where there is an isomorphism $\operatorname{Ext}_{\mathcal{A}_{*}}^{s, t}\left(\mathrm{H}^{*}\left(A_{1}\right)\right) \cong \mathrm{Ext}_{\mathcal{A}(4)_{*}}^{s, t}\left(\mathrm{H}^{*}\left(A_{1}\right)\right)$ by Proposition 9, it suffices to prove that $\operatorname{Ext}_{\mathcal{A}(4)_{*}}^{*, *}\left(\mathrm{H}^{*} A_{1}\right)$ has the required properties. We prove a stronger statement:

Proposition 14 The group $\operatorname{Ext}_{\mathcal{A}(4) *}^{*, *}\left(\mathrm{H}^{*}\left(A_{1}\right)\right)$ has the following properties:
(i) All classes in the region

$$
S_{1}=\{20 \leq s \leq 27,5 s \leq t-s \leq 7 s-40\} \cup\{s \geq 27,5 s \leq t-s \leq 5 s+14\}
$$

are g-free and are divisible by g. All classes in the region

$$
S_{2}=\{27 \leq s \leq 30,5 s+14 \leq t-s \leq 7 s-40\}
$$

$$
\cup\{s \geq 30,5 s+14 \leq t-s \leq 5 s+20\}
$$

are weakly divisible by g.
(ii) All classes in the region

$$
T_{1}=\{15 \leq s \leq 18,5 s \leq t-s \leq 7 s-30\} \cup\{s \geq 18,5 s \leq t-s \leq 5 s+6\}
$$

are g-free and are divisible by g. All classes in the region $T_{2}=\{18 \leq s \leq 21,5 s+6 \leq t-s \leq 7 s-30\} \cup\{s \geq 21,5 s+6 \leq t-s \leq 5 s+12\}$ are weakly divisible by g.

Before proving this theorem, let us explain the strategy of the proof. Observe that there is a sequence of extensions of commutative Hopf algebras

$$
B_{i+1} \square_{B_{i}} \mathbb{F}_{2} \rightarrow B_{i+1} \rightarrow B_{i} \quad \text { for } 0 \leq i \leq 8
$$

in which each $B_{i+1} \square_{B_{i}} \mathbb{F}_{2}$ is isomorphic to an exterior algebra $\Lambda\left(h_{i}\right)$ on one generator h_{i} of degree at least $8, B_{0}=\mathcal{A}(2)_{*}$ and $B_{9}=\mathcal{A}(4)_{*}$. We can then deduce information on $\operatorname{Ext}_{\mathcal{A}(4)_{*}}^{*, *}\left(\mathrm{H}_{*} A_{1}\right)$ from $\mathrm{Ext}_{\mathcal{A}(2)_{*}}^{*, *}\left(\mathrm{H}_{*} A_{1}\right)$ by a sequence of Davis-Mahowald spectral sequences

$$
\mathrm{E}_{1}^{s, t, \sigma}=\bigoplus_{\sigma \geq 0} \operatorname{Ext}_{B_{i}}^{s, t-\left|h_{i}\right| \sigma}\left(\mathrm{H}_{*} A_{1} \otimes \mathbb{F}_{2}\left\{h_{i}^{\sigma}\right\}\right) \Rightarrow \operatorname{Ext}_{B_{i+1}}^{s+\sigma, t}\left(\mathrm{H}_{*} A_{1}\right)
$$

By the calculation of $\mathrm{Ext}_{\mathcal{A}(2)_{*}}^{*, *}\left(\mathrm{H}_{*} A_{1}\right)$, we see that the classes of $E_{1}^{s, t, \sigma}$ in the regions S_{1} and S_{2} have the desired properties. Using this as the base case, we prove by induction that each $\operatorname{Ext}_{B_{i+1}}^{s+\sigma, t}\left(\mathrm{H}_{*} A_{1}\right)$ has the desired properties. To this end, we first prove, by induction on r, that the E_{r}-term of the Davis-Mahowald spectral sequence has similar properties in the appropriate regions and then make sure that extensions cannot prevent the target of the spectral sequence from having the desired properties, where the fact that the degree of each h_{i} is at least 8 becomes crucial.

Proof We have that

$$
\begin{aligned}
& \mathcal{A}(4)_{*}=\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}, \zeta_{5}\right] /\left(\zeta_{1}^{32}, \zeta_{2}^{16}, \zeta_{3}^{8}, \zeta_{4}^{4}, \zeta_{5}^{2}\right) \\
& \mathcal{A}(2)_{*}=\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \zeta_{3}\right] /\left(\zeta_{1}^{8}, \zeta_{2}^{4}, \zeta_{3}^{2}\right)
\end{aligned}
$$

From this, we can construct a sequence of maps of commutative Hopf algebras $\left(B_{i+1} \rightarrow B_{i}\right)$ with $0 \leq i \leq 9, B_{0}=A(2)_{*}$ and $B_{9}=A(4)_{*}$ such that for each i, $B_{i+1} \square_{B_{i}} \mathbb{F}_{2}=\Lambda\left(h_{i}\right)$ is an exterior algebra on one generator h_{i} of degree at least 8 . Informally, we start with $B_{0}=A(2)_{*}$ and successively join $\zeta_{4}, \zeta_{3}^{2}, \zeta_{2}^{4}, \zeta_{1}^{8}, \zeta_{5}, \zeta_{4}^{2}, \zeta_{3}^{4}$, $\zeta_{2}^{8} \mathrm{~s}$ and ζ_{1}^{16}. Namely,

$$
\begin{gathered}
B_{1}=\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right] /\left(\zeta_{1}^{8}, \zeta_{2}^{4}, \zeta_{3}^{2}, \zeta_{4}^{2}\right), \quad B_{2}=\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right] /\left(\zeta_{1}^{8}, \zeta_{2}^{4}, \zeta_{3}^{4}, \zeta_{4}^{2}\right) \\
B_{3}=\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right] /\left(\zeta_{1}^{8}, \zeta_{2}^{8}, \zeta_{3}^{4}, \zeta_{4}^{2}\right), \quad B_{4}=\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right] /\left(\zeta_{1}^{16}, \zeta_{2}^{8}, \zeta_{3}^{4}, \zeta_{4}^{2}\right) \\
B_{5}=\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}, \zeta_{5}\right] /\left(\zeta_{1}^{16}, \zeta_{2}^{8}, \zeta_{3}^{4}, \zeta_{4}^{2}, \zeta_{5}^{2}\right) \\
B_{6}=\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}, \zeta_{5}\right] /\left(\zeta_{1}^{16}, \zeta_{2}^{8}, \zeta_{3}^{4}, \zeta_{4}^{4}, \zeta_{5}^{2}\right) \\
B_{7}=\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}, \zeta_{5}\right] /\left(\zeta_{1}^{16}, \zeta_{2}^{8}, \zeta_{3}^{8}, \zeta_{4}^{4}, \zeta_{5}^{2}\right) \\
B_{8}=\mathbb{F}_{2}\left[\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}, \zeta_{5}\right] /\left(\zeta_{1}^{16}, \zeta_{2}^{16}, \zeta_{3}^{8}, \zeta_{4}^{4}, \zeta_{5}^{2}\right)
\end{gathered}
$$

We will prove by induction on i that $\operatorname{Ext}_{B_{i}}^{*, *}\left(\mathrm{H}_{*} A_{1}\right)$ has the property (i). The proof of (ii) works similarly; see Remark 15. First, we can directly check that

$$
\operatorname{Ext}_{B_{0}}^{*, *}\left(\mathrm{H}_{*} A_{1}\right)=\operatorname{Ext}_{\mathcal{A}(2)_{*}}^{*, *}\left(\mathrm{H}_{*} A_{1}\right)
$$

satisfies (i) by inspecting its structure, which is shown in Proposition 6. Suppose that $\operatorname{Ext}_{B_{i}}^{*, *}\left(\mathrm{H}_{*} A_{1}\right)$ satisfies (i). Consider the Davis-Mahowald spectral sequence

$$
\begin{equation*}
\mathrm{E}_{1}^{s, t, \sigma}=\bigoplus_{\sigma \geq 0} \operatorname{Ext}_{B_{i}}^{s, t}\left(\mathrm{H}_{*} A_{1} \otimes \mathbb{F}_{2}\left\{h_{i}^{\sigma}\right\}\right) \Rightarrow \mathrm{Ext}_{B_{i+1}}^{s+\sigma, t}\left(\mathrm{H}_{*} A_{1}\right) \tag{8}
\end{equation*}
$$

and let the differential d_{r} go from $\mathrm{E}_{r}^{s, t, \sigma}$ to $\mathrm{E}_{r}^{s-r+1, t, \sigma+r}$. Since h_{i} is a B_{i}-primitive, we have that

$$
\mathrm{E}_{1}^{s, t, \sigma}=\bigoplus_{\sigma \geq 0} \operatorname{Ext}_{B_{i}}^{s, t-d \sigma}\left(\mathrm{H}_{*} A_{1}\right) \otimes \mathbb{F}_{2}\left\{h_{i}^{\sigma}\right\}
$$

where $d=\left|h_{i}\right|$. We will prove by induction on $r \geq 1$ that each $\mathrm{E}_{r}^{s, t, \sigma}$-term of the DMSS (8) has:
(a) All classes in the region

$$
\left.\left.\begin{array}{rl}
R_{1}=\{20 \leq s+\sigma \leq 27, & 5(s+\sigma)
\end{array}\right) \leq t-s-\sigma \leq 7(s+\sigma)-40\right\}, ~ 子\{s+\sigma \geq 27,5(s+\sigma) \leq t-s-\sigma \leq 5(s+\sigma)+14\}
$$

are g-free and are divisible by g.
(b) All classes in the region

$$
\begin{aligned}
R_{2}=\{27 \leq s+\sigma & \leq 30,5(s+\sigma)+14 \leq t-s-\sigma \leq 7(s+\sigma)-40\} \\
& \cup\{s+\sigma \geq 30,5(s+\sigma)+14 \leq t-s-\sigma \leq 5(s+\sigma)+20\}
\end{aligned}
$$

are weakly divisible by g.
A similar proof to that of Proposition 8 shows that $\operatorname{Ext}_{B_{i}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right)$ has the same vanishing line, and so

$$
\begin{align*}
& \mathrm{E}_{1}^{s, t, \sigma}=0 \quad \text { if } s+\sigma>6, \quad t-(s+\sigma)<5(s+\sigma) \tag{9}\\
& \text { or if } s+\sigma \leq 6, \quad t-(s+\sigma)<5(s+\sigma)-4
\end{align*}
$$

The $\mathrm{E}_{1}^{s, t, \sigma}$-term is spanned by classes $x \otimes h_{i}^{\sigma}$ with $x \in \operatorname{Ext}_{B_{i}}^{s, t-d \sigma}\left(\mathrm{H}_{*} A_{1}\right)$. For degree reasons ($d=\left|h_{i}\right| \geq 8$) and by (9), classes $x \otimes h_{i}^{\sigma}$ living in R_{1} and R_{2} are nontrivial only if x lies in S_{1} and $S_{1} \cup S_{2}$, respectively. Then together with the induction hypothesis, it is straightforward to see that the E_{1}-term of the spectral sequence (8) has the properties (a) and (b). Suppose that the E_{r}-term of (8) has those properties. Let $x \in \mathrm{E}_{r}^{s, t, \sigma}$ represent a class $[x]$ of $\mathrm{E}_{r+1}^{s, t, \sigma}$.
Step 1 Suppose $[x]$ lives in R_{1} and $[x]$ is g-torsion. Because R_{1} is stable under multiplication by g, we can assume that $g[x]=0$. Then there exists $y \in \mathrm{E}_{r}^{s+4+r-1, t+24, \sigma-r}$
such that $d_{r}(y)=g x$. By an inspection on degrees, we see that y belongs to the region $R_{1} \cup R_{2}$. By the induction hypothesis, y is weakly divisible by g, so there is a z and an integer n such that $g^{n+1} z=g^{n} y$. It follows that

$$
g^{n+1} d_{r}(z)=d_{r}\left(g^{n+1} z\right)=d_{r}\left(g^{n} y\right)=g^{n} d_{r}(y)=g^{n} g x=g^{n+1} x
$$

However, $d_{r}(z)-x$ lies in R_{1}, which consists only of g-free classes, hence $d_{r}(z)=x$, and so $[x]=0$. Therefore, all classes in R_{1} of E_{r+1} are g-free.

Step 2 Suppose $[x]$ belongs to the region R_{1}. By the induction hypothesis, there exists $y \in \mathrm{E}_{r}^{s-4, t-24, \sigma}$ such that $g y=x$. We claim that y is a d_{r}-cycle. We have that

$$
g d_{r}(y)=d_{r}(g y)=d_{r}(x)=0
$$

Moreover, $d_{r}(y) \in E_{r}^{s-r-3, t-24, \sigma+r}$, which belongs to R_{1}, hence is g-free. We conclude that $d_{r}(y)=0$. Thus, $[x]$ is divisible by g.
Steps 1 and 2 show that the E_{r+1}-term has the property (a).
Step 3 Now suppose that $[x]$ belongs to the region R_{2}. Then x is weakly divisible by g, so there is a class $z \in \mathrm{E}_{r}^{s-4, t-24, \sigma}$ and an integer n such that $g^{n+1} z=g^{n} x$. We claim that z is a d_{r}-cycle. Since x is a d_{r}-cycle, we have

$$
g^{n+1} d_{r}(z)=d_{r}\left(g^{n+1} z\right)=d_{r}\left(g^{n} x\right)=g^{n} d_{r}(x)=0
$$

Moreover, $d_{r}(z) \in \mathrm{E}_{r}^{s-4-r+1, t-24, \sigma+r}$ which belongs to R_{1}, hence $d_{r}(z)$ is g-free, and so $d_{r}(z)=0$. Therefore, we obtain that $g^{n+1}[z]=g^{n}[x]$, hence the E_{r+1}-term has the property (b).

Step 4 It is now straightforward to see that the E_{∞}-term also has the properties (a) and (b). To finish the proof, we will show that the target of the spectral sequence (8) has the property (i). Let

$$
\cdots \subset F_{\sigma} \subset F_{\sigma-1} \subset \cdots \subset F_{1} \subset F_{0}=\operatorname{Ext}_{B_{i+1}}^{*, *}\left(\mathbb{F}_{2}, \mathrm{H}_{*} A_{1}\right)
$$

be the filtration of $\operatorname{Ext}_{B_{i+1}}^{*, *}\left(\mathrm{H}_{*} A_{1}\right)$ associated to the Davis-Mahowald spectral sequence. A class belongs to F_{σ} only if it is represented in the E_{1}-term by a class of the form $x \otimes h_{i}^{\sigma}$, where $x \in \operatorname{Ext}_{B_{i}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right)$ - here $t-s \geq 5 s-4$ because of (9). Such a class has bidegree $(s+\sigma, t+d \sigma)$, and so has the topological degree $t-s+(d-1) \sigma$. Because $d \geq 8$, the latter exceeds $5(s+\sigma)+20$ for σ sufficiently large. However, any class in $S_{1} \cup S_{2}$ has bidegree (t, s) satisfying $t-s \leq 5 s+20$. This means that there is an integer m such that all classes of $S_{1} \cup S_{2}$ belongs to $F_{0} \backslash F_{m} \cup\{0\}$. From this, it
is straightforward to verify that the properties (a) and (b) of the E_{∞}-term imply the property (i) of $\operatorname{Ext}_{B_{i+1}}^{*, *}\left(\mathbb{F}_{2}, \mathrm{H}_{*} A_{1}\right)$.

Remark 15 The proof of (i) uses a double induction. What makes both base cases work is the fact that $\operatorname{Ext}_{\mathcal{A}(2))_{*}}^{s, t}\left(\mathrm{H}_{*} A_{1}\right)$ has the required properties and that the slope of each h_{i} is lower than $\frac{1}{7}$, which is exactly the slope of the lower line limiting the region in question. What makes the inductive step work is self-explained by the choice of the regions: relevant classes lie in the relevant regions. What makes the target of the DMSS have the required properties is that the slope of h_{i} is lower then the slope of the vanishing line. The regions T_{1} and T_{2} are chosen to have all of these features, hence the proof of (ii) is similar to that of (i).

We need the following lemma on the E_{2}-term of the Adams spectral sequence for S^{0}, which necessitates a calculation of the Ext group up to stem 43; see [14, Theorem 4.42].

Lemma 16 The class v is annihilated by g^{2}, so is g-torsion in the E_{2}-term of the ASS for S^{0}.

Theorem 17 The induced map in homotopy of the Hurewicz map $A_{1} \rightarrow \operatorname{tmf} \wedge A_{1}$ is surjective.

Proof The map $H_{*}: \pi_{*}\left(A_{1}\right) \rightarrow \pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right)$ is a map of $\pi_{*}\left(A_{1} \wedge D A_{1}\right)$-modules. In particular, it is a map of modules over the subalgebra R of $\pi_{*}\left(A_{1} \wedge D A_{1}\right)$ generated by ν, $\bar{\kappa}$ and v_{2}^{32}. Therefore, we only need to prove that a set of generators of $\pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right)$ as an R-module belongs to the image of H. Because of Proposition 11, we can choose lifts of classes of $M \cup N$ and $P \cup Q$ to $\operatorname{Ext}_{\mathcal{A}_{*}}^{*, *}\left(\mathrm{H}_{*} A_{1}\right)$ such that classes which are divisible by v lift to classes which are divisible by ν. We fix such a choice of lifting and also call them M, N, P and Q. We will prove that all classes of $M \cup N$ and $P \cup Q$ are permanent cycles in the ASS for A_{1}; then they must survive to the E_{∞}-term because their images in the ASS for $\operatorname{tmf} \wedge A_{1}$ do. By comparing the bidegree of the classes of $M \cup N$ and $P \cup Q$ and the vanishing line of the E_{2}-term, we see that the differentials supported by the classes of $M \cup N$ and $P \cup Q$ of length greater than 4 are trivial. The theorem now follows from Propositions 19, 22, and 23 below.

Remark 18 We draw particular attention to the choices made for the lifts of the classes of $M \cup N$ and $P \cup Q$ because we will use them in an essential way in the proof of Propositions 22 and 23. The fact that the classes which are divisible by v are g-torsion follows from Lemma 16.

Proposition 19 All classes in M of $A_{1}[00]$ and $A_{1}[11]$ and in P of $A_{1}[01]$ and $A_{1}[10]$ are permanent cycles in the respective ASS.

Proof Inspection of bidegrees together with the vanishing line Proposition 8 show that there can only be nontrivial differentials d_{2} on classes of M and P, and moreover these differentials hit the region where there is an isomorphism between $\operatorname{Ext}_{\mathcal{A}_{*}}^{*, *}\left(\mathrm{H}_{*}\left(A_{1}\right)\right)$ and $\mathrm{Ext}_{\mathcal{A}(2)_{*}}^{*, *}\left(\mathrm{H}_{*}\left(A_{1}\right)\right)$. However, all classes of M and P are permanent cycles in the ASS for $\operatorname{tmf} \wedge A_{1}$. Therefore, the differentials d_{2} on the classes in M and P in the ASS for A_{1} are trivial.

Lemma 20 (a) The target groups for d_{3} on classes in N are g-free. More precisely, $\mathrm{E}_{3}^{s, t}$ is g-free if

$$
(s, t) \in F_{3}:=\{s \geq 23,5 s \leq t-s \leq 5 s+1\} \cup\{s \geq 28,5 s \leq t-s \leq 5 s+9\}
$$

(b) Suppose $s \geq 30$ and $t-s \leq 5 s+20$, and let $s \in \mathrm{E}_{3}^{s, t}$. Then x is weakly divisible by g, ie there exists an integer n and a class $y \in E_{3}^{s-4, t-24}$ such that $g^{n+1} y=g^{n} x$.

Proof (a) The differential d_{2}-arriving in $g \mathrm{E}_{2}^{s, t}$ with $(s, t) \in F_{3}$ starts in $\mathrm{E}_{2}^{s^{\prime}, t^{\prime}}$ with

$$
\left(s^{\prime}, t^{\prime}\right)=(s+2, t+23), \quad \text { and so } \quad\left(t^{\prime}-s^{\prime}\right)=t-s+21
$$

Then we have

$$
s^{\prime} \geq 25, \quad 5 s^{\prime}=5 s+10 \leq t-s+10 \leq 5 s+11=5 s^{\prime}+1
$$

and

$$
s^{\prime} \geq 30, \quad 5 s^{\prime}=5 s+10 \leq t-s+10 \leq 5 s+19=5 s^{\prime}+9
$$

So (s^{\prime}, t^{\prime}) belongs to

$$
\left\{s^{\prime} \geq 25,5 s^{\prime}+11 \leq t^{\prime}-s^{\prime} \leq 5 s^{\prime}+12\right\} \cup\left\{s^{\prime} \geq 30,5 s^{\prime}+11 \leq t^{\prime}-s^{\prime} \leq 5 s^{\prime}+20\right\}
$$

In this region, Proposition 13 guarantees that all classes are weakly divisible by g and this implies that $\mathrm{E}_{3}^{s, t}$ is g-free if $(s, t) \in F_{3}$. In fact, suppose x is a class which lies in F_{3} and which is g-torsion. The region F_{3} is stable under multiplication by g, so we can assume that $g x=0$. Let a be a representative of x. Then there exists $b \in \mathrm{E}_{2}$ such that $d_{2}(b)=g a$. By the argument above, we know that a is weakly divisible by g, so there exists an integer $n \geq 0$ and a class c at the E_{2}-term such that $g^{n} a=g^{n+1} c$. Then we have

$$
g^{n+1} d_{2}(c)=d_{2}\left(g^{n+1} c\right)=d_{2}\left(g^{n} b\right)=g^{n} d_{2}(b)=g^{n} g a=g^{n+1} a
$$

However, F_{3} belongs to the region which is g-free at the E_{2}-term, hence $d_{2}(c)=a$, which means that $x=0$ at the E_{3}-term.
(b) We represent x by a d_{2}-cycle a. By part (ii) of Proposition 13, there exists $b \in \mathrm{E}_{2}^{s-4, t-24}$ and an integer n such that $g^{n} a=g^{n+1} b$. It is enough to show that b is a d_{2}-cycle. We first note that, since a is a d_{2}-cycle, we have

$$
g^{n+1} d_{2}(b)=d_{2}\left(g^{n+1} b\right)=d_{2}\left(g^{n} a\right)=0
$$

Therefore it is enough to show that $d_{2}(b)$ is g-free. In fact, $d_{2}(b)$ is a class in $\mathrm{E}_{2}^{s^{\prime}, t^{\prime}}$ with $s^{\prime}=s-2$ and

$$
t^{\prime}-s^{\prime}=t-s-19 \leq 5 s+20-19=5(s-2)+11=5 s^{\prime}+11
$$

so it is g-free by Proposition 13(ii)

Lemma 21 The target groups for the differential d_{4} on classes in N are g-free. More precisely, $\mathrm{E}_{4}^{s, t}$ is g-free if

$$
(s, t) \in F_{4}:=\{s \geq 29,5 s \leq t-s \leq 5 s+4\}
$$

Proof The differential d_{3} arriving in $g \mathrm{E}_{3}^{s, t}$ with $(s, t) \in F_{4}$ starts in $E_{3}^{s^{\prime}, t^{\prime}}$ with

$$
s^{\prime}=s+1, \quad t^{\prime}-s^{\prime}=t-s+21
$$

Then we have

$$
s^{\prime} \geq 30, \quad 5 s^{\prime}+16 \leq t^{\prime}-s^{\prime} \leq 5 s^{\prime}+20
$$

By Lemma 20, all classes in such bidegrees are weakly divisible by g and this implies that $\mathrm{E}_{4}^{s, t}$ is g-free if $(s, t) \in F_{4}$. In fact, suppose x is a class which lies in F_{4} and which is g-torsion. Because F_{4} is stable under multiplication by g, we can assume that $g x=0$. Let $a \in \mathrm{E}_{3}^{s, t}$ be a representative of x. Then there exists $b \in \mathrm{E}_{3}$ such that $d_{3}(b)=g a$. By the argument above, b is weakly divisible by g, so there is a nonnegative integer n and a class $c \in \mathrm{E}_{3}$ such that $g^{n+1} c=g^{n} b$. Then we have

$$
g^{n+1} d_{3}(c)=d_{3}\left(g^{n+1} c\right)=d_{3}\left(g^{n} b\right)=g^{n} d_{3}(b)=g^{n} g a=g^{n+1} a
$$

However, F_{4} belongs to the region where g acts freely at the E_{3}-term by Lemma 20(i), hence $d_{3}(c)=a$ and so $x=0$ at the E_{4}-term.

Proposition 22 The differentials d_{2}, d_{3} and d_{4} on the classes in N for $A_{1}[00]$ and $A_{1}[11]$ are trivial.

Proof All classes of N are divisible by v, so are g-torsion in the E_{2}-term, hence are g-torsion at all terms. It is then enough to show that the target groups of differentials d_{2}, d_{3} and d_{4} on the classes in N are g-free at the $\mathrm{E}_{2}, \mathrm{E}_{3}$ and E_{4}-terms, respectively. In fact, the target groups for the differential d_{2} on the classes in N lie in the region

$$
\{s \geq 19,5 s \leq t-s \leq 5 s+6\} \cup\{s \geq 27,5 s \leq t-s \leq 5 s+14\},
$$

consisting only of g-free classes, by Proposition 13(i). Next, a potential nontrivial differential d_{3} or d_{4} on the classes in N has its target in the region F_{3} or F_{4}, respectively, which is g-free by Lemma 20 or Lemma 21, respectively.

Proposition 23 The differentials d_{2}, d_{3} and d_{4} on the classes in Q for $A_{1}[10]$ and $A_{1}[01]$ are trivial.

Proof In this proof, A_{1} denotes the self-dual versions $A_{1}[10]$ and $A_{1}[01]$. The same argument as in the proof of Proposition 22 shows that the differentials d_{2}, d_{3} and d_{4} on the classes in N which are divisible by ν are trivial. Consider the four other classes in N,

$$
\begin{equation*}
w_{2}^{2} e_{0,0}, \quad w_{2}^{2} e_{1,5}, \quad w_{2}^{2} e_{3,15}, \quad w_{2}^{2} e_{6,30} \tag{10}
\end{equation*}
$$

These classes are g-free at the E_{2}-term. We now show that their g-multiple towers are truncated by differentials d_{2} in the ASS for A_{1}. In fact, by [12, Theorem 4.0.3], the following differentials d_{2} happen in the ASS for $\operatorname{tmf} \wedge A_{1}$:

$$
\begin{aligned}
& d_{2}\left(w_{2} e_{10,53}\right)=g^{5} e_{0,0}, \quad d_{2}\left(w_{2} e_{7,38}\right)=g^{4} e_{1,5}, \\
& d_{2}\left(w_{2} e_{9,48}\right)=g^{4} e_{3,15}, \quad d_{2}\left(w_{2} e_{4,23}\right)=g^{2} e_{6,30} .
\end{aligned}
$$

Since the targets of these differentials live on the line $t-s=5 s$, where the E_{2}-term of the ASS for A_{1} and that for $\operatorname{tmf} \wedge A_{1}$ are isomorphic, the same differentials happen in the ASS for A_{1}. Moreover, the class w_{2}^{2} is a cycle for the differential d_{2} in the ASS for $A_{1} \wedge D A_{1}$ as shown the proof of [2, Lemma 3.10]; see the remark below. Therefore, by the Leibniz rule, the following differentials d_{2} happen in the ASS for A_{1} :

$$
\begin{aligned}
d_{2}\left(w_{2}^{3} e_{10,53}\right) & =g^{5} w_{2}^{2} e_{0,0}, & d_{2}\left(w_{2}^{3} e_{7,38}\right) & =g^{4} w_{2}^{2} e_{1,5} \\
d_{2}\left(w_{2}^{3} e_{8,48}\right) & =g^{4} w_{2}^{2} e_{3,15}, & d_{2}\left(w_{2}^{3} e_{4,23}\right) & =g^{2} w_{2}^{2} e_{6,30}
\end{aligned}
$$

It follows that the targets of the differentials d_{2} on the classes of (10) are g-torsion. Moreover, the differentials d_{2} arrive in $\mathrm{E}_{2}^{s, t}$ with $s \geq 18$ and $5 s \leq t-s \leq 5 s+6$, which consists only of g-free classes by Proposition 13. Thus, the classes of (10) are d_{2}-cycles and become g-torsions in the E_{3}-term.

The differentials d_{3} on the classes of (10) arrive in $\mathrm{E}_{3}^{s, t}$ with $s \geq 19$ and $t-s=5 s$. For these bidegrees, there is an isomorphism at the E_{2}-term of the ASS for A_{1} and that for $\operatorname{tmf} \wedge A_{1}$; in particular, the related Ext-groups are isomorphic to \mathbb{F}_{2} and are generated by $g^{4} e_{15}, g^{5} e_{0}, g^{4} e_{30}$ and $g^{5} e_{5}$. However, in the ASS for $\operatorname{tmf} \wedge A_{1}$, by [12, Theorem 4.0.3], these are hit by differentials d_{2} :

$$
\begin{aligned}
d_{2}\left(w_{2} e_{10,53}\right) & =g^{5} e_{0}, & d_{2}\left(g w_{2} e_{7,38}\right) & =g^{5} e_{1,5} \\
d_{2}\left(w_{2} e_{9,48}\right) & =g^{4} e_{15}, & d_{2}\left(g^{2} w_{2} e_{4,23}\right) & =g^{4} e_{6,30}
\end{aligned}
$$

Because of Proposition 11 and the naturality of the ASS, $\mathrm{E}_{3}^{s, t}=0$ for $s \geq 19$ and $t-s=5 s$ in the ASS for A_{1}. Thus, the differentials d_{3} on the classes of (10) are trivial.

Finally, the differential d_{4} on the classes of (10) land above the vanishing line, hence are trivial.

Remark 24 In the proof of [2, Lemma 3.10], it is implicit that w_{2}^{2} — which is $b_{3,0}^{8}$ in their notation - is a d_{2}-cycle. This amounts to showing that w_{2} commutes with the class R in the statement of their Lemma 3.10. This class R is detected in a positive tmffiltration of the algebraic tmf spectral sequence converging to $\operatorname{Ext}_{\mathcal{A}}^{*, *}\left(\mathrm{H}_{*}\left(A_{1} \wedge D A_{1}\right)\right)$. More precisely, R is detected in the group

$$
\bigoplus_{\substack{n \geq 1 \\ i_{1}, \ldots, i_{n} \geq 1}} \operatorname{Ext}_{\mathcal{A}(2)}^{10-n, 57-8\left(i_{1}+i_{2}+\cdots+i_{n}\right)}\left(\mathrm{H}_{*}\left(A_{1} \wedge D A_{1}\right) \wedge b o_{i_{1}} \wedge b o_{i_{2}} \wedge \cdots \wedge b o_{i_{n}}\right)
$$

see [2] for the notation. By considering the vanishing line of $\operatorname{Ext}_{\mathcal{A}(2)}^{*, *}\left(\mathrm{H}_{*}\left(A_{1}\right)\right)$, the only potential nontrivial summand is $\operatorname{Ext}_{\mathcal{A}(2)}^{9,57-8 i_{1}}\left(\mathrm{H}_{*}\left(A_{1} \wedge D A_{1}\right) \wedge b o_{i_{1}}\right)$ with $i_{1} \geq 1$. Then by using Robert Bruner's ext software [4] one can check that this group is trivial. This means that R is in fact trivial.

Remark 25 To illustrate the proof of Proposition 23, we give some examples and more details.
(a) First, a differential d_{3} or d_{4} on the first five classes in N listed in Table 2 has target living above the vanishing line, so it is trivial.
(b) The other classes in N might support nontrivial differentials d_{3}. For example, a differential d_{3} on the class $v w_{2}^{2} e_{17}$ arrives in $\mathrm{E}_{3}^{s, t}$ with $s=23$ and $t-s=115=5 s$; $\mathrm{E}_{3}^{s, t}$ is g-free by Lemma 20. The worst case is the class $\nu w_{2}^{3} e_{23}$ on which a differential d_{3} lives in $\mathrm{E}_{3}^{s, t}$ with $s=32$ and $t-s=169=5 s+9$, which is g-free by Lemma 20.
(c) Only the last eight classes in N as listed in Table 2 might support nontrivial differentials d_{4}. These classes lie in $\mathrm{E}_{4}^{s, t}$ with $s \geq 25$ and $5 s \leq t-s \leq 5 s+25$. Then d_{4} on these arrives in $\mathrm{E}_{4}^{s^{\prime}, t^{\prime}}$ with $s^{\prime}=s+4$ and $t^{\prime}=t+3$, and so

$$
s^{\prime} \geq 29 \quad \text { and } \quad 5 s^{\prime} \leq t^{\prime}-s^{\prime} \leq 5 s^{\prime}+4
$$

This region consists only of g-free classes by Lemma 21

2.3 The edge homomorphism of the topological duality spectral sequence

In this last section, we prove Theorem B. Let us restate it here.
Theorem 26 The edge homomorphism of the topological duality spectral sequence

$$
\pi_{*}\left(E_{C}^{h \mathbb{S}_{C}^{1}} \wedge A_{1}\right) \rightarrow \pi_{*}\left(E_{C}^{h G_{24}} \wedge A_{1}\right)
$$

is surjective. Therefore, all differentials starting from the 0 -line of the topological duality spectral sequence are trivial.

Here, E_{C} is the Lubin-Tate spectrum associated to the formal completion F_{C} of the supersingular elliptic curve C given by $y^{2}+y=x^{3}$ defined over \mathbb{F}_{4}. Let \mathbb{S}_{C} be the automorphism group of \mathbb{S}_{C}. The group \mathbb{S}_{C}^{1} is defined to be the kernel of the reduced determinant map $\mathbb{S}_{C} \rightarrow \mathbb{Z}_{2}$. The automorphism group of C is isomorphic to $G_{24}:=Q_{8} \rtimes C_{3}$, where Q_{8} is the quaternion group and C_{3} is the cyclic group of order 3, and G_{24} naturally embeds into \mathbb{S}_{C}^{1}. We refer the reader to [3] for the construction of the topological duality resolution and to [12] for more motivations on the study of this spectral sequence for A_{1}.

Proof The duality spectral sequence has four lines and converges to $\pi_{*}\left(E_{C}^{h \mathbb{S}_{C}^{1}} \wedge A_{1}\right)$. Its edge homomorphism $E_{C}^{h \mathbb{S}_{C}^{1}} \rightarrow E_{C}^{h G_{24}}$ is induced by the inclusion of subgroup $G_{24} \rightarrow \mathbb{S}_{C}^{1}$. It suffices to prove that the map

$$
\pi_{*}\left(E_{C}^{h \mathbb{S}_{C}} \wedge A_{1}\right) \rightarrow \pi_{*}\left(E_{C}^{h G_{24}} \wedge A_{1}\right)
$$

induced by the inclusion of the subgroup $G_{24} \rightarrow \mathbb{S}_{C}$ is surjective. Let Gal denote the Galois group of \mathbb{F}_{4} over \mathbb{F}_{2}. It acts on \mathbb{S}_{C} and G_{24}, because C is already defined over \mathbb{F}_{2}. By [3, Lemma 1.37], there are homotopy equivalences

$$
\mathrm{Gal}_{+} \wedge E_{C}^{h\left(\mathbb{S}_{C} \rtimes \mathrm{Gal}\right)} \simeq E_{C}^{h \mathbb{S}_{C}}
$$

and

$$
\mathrm{Gal}_{+} \wedge E_{C}^{h\left(G_{24} \rtimes \mathrm{Gal}\right)} \simeq E_{C}^{h G_{24}}
$$

that fit into a commutative diagram

where horizontal maps are induced by respective inclusions of subgroups. By Devinatz and Hopkins [7],

$$
L_{K(2)} S^{0} \simeq E_{C}^{h\left(\mathbb{S}_{C} \rtimes \mathrm{Gal}\right)}
$$

and so the map $E_{C}^{h\left(\mathbb{S}_{C} \rtimes \mathrm{Gal}\right)} \rightarrow E_{C}^{h\left(G_{24} \rtimes \mathrm{Gal}\right)}$ is identified with $L_{K(2)} S^{0} \rightarrow E_{C}^{h\left(G_{24} \rtimes \mathrm{Gal}\right)}$, the unit map. By [8], the latter factorizes through the homotopy equivalence

$$
L_{K(2)} \mathrm{tmf} \simeq E_{C}^{h\left(G_{24} \rtimes \mathrm{Gal}\right)}
$$

Therefore, it is enough to show that the map $L_{K(2)} A_{1} \rightarrow L_{K(2)}\left(\operatorname{tmf} \wedge A_{1}\right)$ induces a surjection on homotopy. In fact, it fits in the commutative diagram:

By [12, Theorem 5.1.1], the natural map $\left[\left(\Delta^{8}\right)^{-1}\right]\left(\operatorname{tmf} \wedge A_{1}\right) \rightarrow L_{K(2)}\left(\operatorname{tmf} \wedge A_{1}\right)$ is a homotopy equivalence. In addition, by the proof of Proposition $7, v_{2}^{32}$ is equal to Δ^{8} up to some power. Therefore, the map $\left[\left(v_{2}^{32}\right)^{-1}\right]\left(\operatorname{tmf} \wedge A_{1}\right) \rightarrow L_{K(2)}\left(\operatorname{tmf} \wedge A_{1}\right)$ in (11) is a homotopy equivalence. On the other hand, the induced map in homotopy of the middle map of (11) is identified with a direct limit of (1):

$$
\left(v_{2}^{32}\right)^{-1} \pi_{*}\left(A_{1}\right) \rightarrow\left(v_{2}^{32}\right)^{-1} \pi_{*}\left(\operatorname{tmf} \wedge A_{1}\right) .
$$

Hence it is a surjection, because (1) is. Therefore, the composite

$$
\left[\left(v_{2}^{32}\right)^{-1}\right] A_{1} \rightarrow\left[\left(v_{2}^{32}\right)^{-1}\right]\left(\operatorname{tmf} \wedge A_{1}\right) \rightarrow L_{K(2)}\left(\operatorname{tmf} \wedge A_{1}\right)
$$

induces a surjection in homotopy, hence so does the map

$$
L_{K(2)} A_{1} \rightarrow L_{K(2)}\left(\operatorname{tmf} \wedge A_{1}\right),
$$

because of (11).

References

[1] M Behrens, The construction of tmf, from "Topological modular forms" (C L Douglas, J Francis, A G Henriques, M A Hill, editors), Math. Surv. Monogr. 201, Amer. Math. Soc., Providence, RI (2014) 131-188 Zbl
[2] P Bhattacharya, P Egger, M Mahowald, On the periodic v_{2}-self-map of A_{1}, Algebr. Geom. Topol. 17 (2017) 657-692 MR Zbl
 prime 2, J. Topol. 11 (2018) 918-957 MR Zbl
[4] R Bruner, ext, software Available at http://www.rrb.wayne.edu/papers/ index.html
[5] D M Davis, M Mahowald, v_{1} - and v_{2}-periodicity in stable homotopy theory, Amer. J. Math. 103 (1981) 615-659 MR Zbl
[6] D M Davis, M Mahowald, Ext over the subalgebra A_{2} of the Steenrod algebra for stunted projective spaces, from "Current trends in algebraic topology, I" (R M Kane, S O Kochman, P S Selick, V P Snaith, editors), CMS Conf. Proc. 2, Amer. Math. Soc., Providence, RI (1982) 297-342 MR Zbl
[7] E S Devinatz, M J Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004) 1-47 MR Zbl
[8] CL Douglas, J Francis, A G Henriques, MA Hill (editors), Topological modular forms, Math. Surv. and Monogr. 201, Amer. Math. Soc., Providence, RI (2014) MR Zbl
[9] M J Hopkins, M Mahowald, From elliptic curves to homotopy theory, from "Topological modular forms" (CL Douglas, J Francis, A G Henriques, M A Hill, editors), Math. Surv. Monogr. 201, Amer. Math. Soc., Providence, RI (2014) 261-285 MR Zbl
[10] A Mathew, The homology of tmf, Homology Homotopy Appl. 18 (2016) 1-29 MR Zbl
[11] J Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958) 150-171 MR Zbl
[12] V-C Pham, On homotopy groups of $E_{C}^{h G_{24}} \wedge A_{1}$, Algebr. Geom. Topol. 22 (2022) 3855-3938 MR
[13] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121, Academic, Orlando, FL (1986) MR Zbl
[14] M C Tangora, On the cohomology of the Steenrod algebra, Math. Z. 116 (1970) 18-64 MR Zbl

Max Planck Institute for Mathematics
Bonn, Germany
vcpham@math.unistra.fr
Received: 17 December 2020 Revised: 12 August 2021

[^0]: © 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

