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On the surjectivity of the tmf–Hurewicz image of A1

VIET-CUONG PHAM

Let A1 be any spectrum in the class of finite spectra whose mod 2 cohomology is
isomorphic to A.1/ as a module over the subalgebra A.1/ of the Steenrod algebra;
let tmf be the connective spectrum of topological modular forms. We prove that the
tmf–Hurewicz image of A1 is surjective.
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Introduction

In [5], Davis and Mahowald constructed a class of connective finite spectra whose mod 2

cohomology is isomorphic to A.1/ as a module over the subalgebra A.1/ generated by
Sq1 and Sq2 of the Steenrod algebra. This class of spectra has four different homotopy
types, denoted by A1Œij � for i; j 2 f0; 1g; see the introduction of Bhattacharya, Egger
and Mahowald [2] for an explanation of the notation. We write A1 to refer to any of
the A1Œij �, and call each of them a version of A1. The spectrum A1 is constructed via
three cofiber sequences, starting from the sphere spectrum S0, as follows. Let V .0/

be the mod 2 Moore spectrum, ie the cofiber of multiplication by two on S0. Next,
let Y be the cofiber of multiplication by �, the first Hopf element, on V .0/. Davis and
Mahowald show that Y admits v1–self-maps †2Y ! Y , that is maps which induce
multiplication with v1. The generic notation A1 denotes the cofiber of any of them.
In fact, there are eight homotopy classes of v1, giving rise to four different homotopy
types of A1. We note further that the spectra A1Œ00� and A1Œ11� are Spanier–Whitehead
self-dual, and A1Œ10� and A1Œ01� are Spanier–Whitehead dual to each other.

Let tmf be the ring spectrum of connective topological modular forms. This spectrum
is constructed using a certain sheaf in ring spectra on the étale site of the moduli stack
of elliptic curves, hence the name; see Behrens [1] for the construction. The spectrum
tmf plays an important role in investigating chromatic level two in chromatic homotopy
theory. The tmf–Hurewicz map of A1, H WA1! tmf^A1, is given by smashing A1
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with the unit of tmf. Our goal is to study the induced map in homotopy of H :

(1) H� W ��.A1/! ��.tmf^A1/:

Closely related to the homomorphism (1) is the edge homomorphism of the topological
duality spectral sequence aiming at analyzing the K.2/–localization of A1, where K.2/

is the second Morava K–theory at the prime 2. This is, in fact, our initial motivation
for studying (1); see Section 2.3 for further discussion. From another perspective, the
map (1) is the edge homomorphism of the tmf–based Adams spectral sequence for A1.
This is an upper half-plane spectral sequence converging to ��.A1/ starting with the
E1–term:

En;t
1
D �t .tmf^.nC1/

^A1/) �t�n.A1/:

We now state our main theorem, as well as a consequence:

Theorem A (Theorem 17) The tmf–Hurewicz homomorphism

��.A1/! ��.tmf^A1/

is surjective for all versions of A1.

Theorem B (Theorem 26) The edge homomorphism of the topological duality
resolution

��.E
hS1

2

C
^A1/! ��.E

hG24

C
^A1/

is surjective.

Remark 1 The target of the tmf–Hurewicz homomorphism is explicitly known. In fact,
we explicitly computed the homotopy groups of ��.E

hG24

C
^A1/ in [12] and showed,

in [12, Theorem 5.3.20], that the natural homomorphism tmf^A1!E
hG24

C
^A1 is

an isomorphism in nonnegative stem, up to an action of the Galois group of F4 over F2.
Furthermore, the spectrum E

hG24

C
is homotopy equivalent to LK.2/tmf up to the Galois

action. Thus, Theorem A asserts that all elements of ��.tmf^A1/ lift to v2–periodic
elements of ��.A1/, elements which are not annihilated by v2–self-maps of A1. It is
then interesting to be able to locate the corresponding v2–periodic families in ��.S0/,
as done by Hopkins and Mahowald in [9], using the generalized Moore spectra.

Here is the overview of the paper. The principal method for proving the main result is
to analyze the map of the Adams spectral sequences

Exts;tA .F2;H�.A1//

��

+3 �t�s.A1/

H�
��

Exts;tA.2/.F2;H�.A1// +3 �t�s.tmf^A1/
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and then to show that permanent cycles in the lower spectral sequence lift to permanent
cycles in the upper one. In the first section we recall the main tool — The Davis–
Mahowald spectral sequence — used to study the Ext–group over subalgebras of the
Steenrod algebra. The construction of the Davis–Mahowald spectral sequence is more
general and is of independent interest. In the second section we prove the main
theorems. First we prove the algebraic version of the theorem, that is, the surjectivity
of the induced map at the E2–term of the Adams spectral sequences, then we prove the
topological statement based on a technical result, Proposition 13. The latter involves, to
some extent, a refined analysis of the E2–term of the Adams spectral sequence for A1,
on which the action of g 2 Ext4;24

A .F2;F2/ as well as the notion of g–weak divisibility
(see Definition 12) play a key role.

Conventions Unless otherwise stated, all spectra are completed at the prime 2. H�.X /
and H�.X / denote the mod 2 (co)homology of the spectrum X . Given a graded
Hopf algebra A over a field k and M a graded A–comodule, Exts;t

A
.M / denotes

Exts;t
A
.k;M /D ExtsA.k; †

tM /. The difference t � s is referred to as the stem of the
classes in Exts;t

A
.M /.
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Henn for many helpful discussions, for carefully reading an earlier draft of this paper
and for suggesting improvements. This work was partially supported by the ANR
project ChroK, ANR-16-CE40-0003.

1 Background and tools

1.1 The dual of the Steenrod algebra

Recall that the Steenrod algebra A is a cocommutative graded Hopf algebra over F2,
generated by the Steenrod squares Sqi in degree i for i � 0, which are subject to the
Adem relations

SqaSqb
D

ba=2cX
iD0

�
b� i � 1

a� 2i

�
SqaCb�iSqi

for all a; b> 0 and a< 2b. In [11], Milnor determines the dual A� of the Steenrod alge-
bra, which is a commutative Hopf algebra over F2. As an algebra, A� is a polynomial
algebra generated by the elements �i for i � 0 in degree 2i � 1 with �0 D 1:

A� D F2Œ�1; �2; : : : �:
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The coproduct or the diagonal is given by

�.�k/D

kX
iD0

�2k�i

i ˝ �k�i :

Subalgebras of A For n � 1, denote by A.n/ the subalgebra of A generated by
Sqi for 0 � i � n. The dual A.n/� of A.n/ is the quotient of A� by the ideal
.�2nC1

1
; �2n

2
; : : : ; �4

n ; �
2
nC1

; �nC2; : : : /:

A.n/� D F2Œ�1; �2; : : : ; �nC1�=.�
2nC1

1 ; �2n

2 ; : : : ; �4
n ; �

2
nC1/:

Notation If A! B is a map of Hopf algebras, then A�B k denotes the group of
primitives of A viewed as a B–comodule via the given map.

The main tool we use to prove Theorem A is the Adams spectral sequence, which will
be abbreviated to ASS in the sequel. More precisely, one has the following theorem,
due to Hopkins and Mahowald, whose proof can be found in [10].

Theorem 2 There is an isomorphism of A�–comodule algebras:

H�tmfŠA��A.2/� F2:

As a consequence, if X is a connective spectrum, then the Adams spectral sequence
for tmf^X reads as

Es;t
2
Š Exts;tA�.F2; .A��A.2/� F2/˝H�X /) �t�s.tmf^X /:

By the change-of-rings isomorphism the E2–term of this spectral sequence is isomorphic
to Exts;tA.2/�

.H�X /. Furthermore, the tmf–Hurewicz map of A1 induces a map of Adams
spectral sequences

Exts;tA�.F2;H�.A1//
H�
//

��

Exts;tA.2/�
.F2;H�.A1//

��
�t�s.A1/

H�
// �t�s.tmf^A1/

where the map in the E2–terms is induced the natural projection of Hopf algebras
A� ! A.2/�. To analyze Exts;tA�.F2;H�.A1// as well as Exts;tA.2/�

.F2;H�.A1//, we
use the Davis–Mahowald spectral sequence, which is reviewed in the next section.
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1.2 The Davis–Mahowald spectral sequence

Initially, the Davis–Mahowald spectral sequence was used by Davis and Mahowald in [6]
to calculate Ext–groups over the subalgebra A.2/. In [12, Section 2.1], we established
a slight generalization of this spectral sequence. Let us recall this construction.

Let A be a commutative Hopf algebra over a field k of characteristic 2. Let E and P

be the graded exterior algebra and the polynomial algebra on a k–vector space V such
that V lives in degree 1, respectively. Let Ei and Pi denote the subspaces of elements
of homogeneous degree i of E and P , respectively. Suppose that E has the structure
of an A–comodule algebra such that k˚V is a sub-A–comodule of E. Since P1 sits
in a short exact sequence

(2) 0! k! k˚E1
p
�! P1;

P1 admits a unique structure of an A–comodule, making p a map of A–comodules.
Then P admits the structure of an A–comodule algebra:

Lemma 3 If P˝n
1

is equipped with the usual structure of an A–comodule of a tensor
product , then Pn admits a unique structure of an A–comodule making the multiplication
P˝n

1
! Pn a map of A–comodules.

Proof The canonical map P˝n
1
!Pn is surjective and its kernel is spanned by elements

of the form y1˝y2˝ � � �˝yn�y�1
˝y�.2/˝ � � �˝y�.n/, where � is a permutation

of the set f1; 2; : : : ; ng. Then, since A is commutative, we see that the kernel is stable
under the coaction of A. The lemma follows.

We define the cochain complex .E˝P; d/:

(i) .E˝P /�1 D k.

(ii) .E˝P /m DE˝Pm, for m� 0.

(iii) d W k D .E˝P /�1!E D .E˝P /0 is the unit of E.

(iv) d
�Qn

jD1 xij ˝ z
�
D
Pn

tD1

Q
j¤t xij ˝p.xit

/z, where xij 2E1, z 2Pm and p

is the projection of (2).

Proposition 2.1.5 of [12] shows that .E˝P; d/ is a differential graded algebra which
is an exact sequence of A–comodules. As a consequence, there is a spectral sequence
of algebras

(3) ExtsA.k;E˝Pn/) ExtsCn
A

.k; k/:
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Furthermore, if M is an A–comodule, there is a spectral sequence of modules over (3):

(4) ExtsA.k;E˝Pn˝M /) ExtsCn
A

.k;M /:

The Davis–Mahowald spectral sequence, or DMSS for short, appears in this paper
in the following form. Let A and B be commutative graded Hopf algebras over F2

together with a map of Hopf algebras A! B. Then A can be considered as a left
B–comodule algebra. The group of primitives A�B k inherits the structure of an
A–comodule algebra from A, ie the inclusion of the subgroup A�B k!A is a map of
A–comodule algebras. If it turns out that E WDA�B k is an exterior algebra, then we
are often in a situation to construct the Davis–Mahowald spectral sequence. Precisely,
it can be constructed when E is generated by the k–vector space V , as an exterior
algebra, and k˚V is a sub-A–comodule of E. In this situation, by the change-of-rings
theorem, the E1–term of the latter is isomorphic to

Es;t;n
1
D Exts;t

A
.k;E˝Pn/Š Exts;t

B
.k;Pn/:

This allows us to reduce the problem of computing Ext–groups over A to Ext–groups
over B, which is often simpler.

Example 4 Consider the natural projection of commutative Hopf algebras

A.n/�!A.n� 1/�:

Let �i denote the conjugate of �i . Then

(5) �.�k/D

kX
iD0

�i ˝ �
2i

k�i :

The subalgebra A.n/� is then isomorphic to

F2Œ�1; �2; : : : ; �nC1�=.�
2nC1

1 ; �2n

2 ; : : : ; �4
n ; �

2
nC1/:

It is straightforward to show that

A.n/��A.n�1/� F2 ŠE.�2n

1 ; �2n�1

2 ; : : : ; �nC1/;

the exterior algebra on F2f�
2n

1
; �2n�1

2
; : : : ; �nC1g. Let xk denote �2nC1�k

k
. Using (5),

we see that the A.n/�–comodule structure of A.n/��A.n�1/� F2 is given by

�.xk/D

iDkX
iD0

�2nC1�k

i ˝xk�i ;

where x0 D 1 by convention. Thus, the Davis–Mahowald spectral sequence reads as

Es;t;n
1
D Exts;tA.n�1/�

.Pn/) ExtsCn;t
A.n/�

.F2/:
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Remark 5 This example is an important tool used to perform the calculation of
Ext�;�A.2/�

.H�.A1// in [12, Section 3]. We will apply the DMSS for other examples
appearing in the proof of Proposition 14.

2 The tmf–Hurewicz image of A1

The Hurewicz map A1! tmf^A1 is a map of modules over the ring spectrum A1^DA1,
hence H� W ��.A1/! ��.tmf^A1/ is a map of modules over ��.A1 ^DA1/. We
recollect some elements of the latter, important to this work. Let us fix an element
of �20.S

0/, denoted by N�, which is detected by g 2 Ext4;24
A .F2;F2/ in the ASS. It

generates a subgroup of order 8 in �20.S
0/. Next, let � 2 �3.S

0/ be the third Hopf
element. The induced map in homotopy of the unit S0!A1 ^DA1 sends � 2 �3S0

and N� 2 �20S0 to nontrivial elements, denoted by the same names. This is due to the
fact that � and N� are sent nontrivially to ��.tmf^A1/ via the composite

S0
!A1 ^DA1!A1

H
�! tmf^A1;

where the middle map is induced by the projection DA1 ! S0 on the top cell
of DA1. According to [2], A1 has a v32

2
–self-map v32

2
W †192A1 ! A1. Its adjoint

S192!A1 ^DA1 represents an element of �192.A1 ^DA1/, also denoted by v32
2

.

Let . N�; �/ be the ideal of ��.S0/ generated by N� and �. Consider the commutative
diagram

��.A1/
H�

//

��

��.tmf^A1/

��

��.A1/=. N�; �/ // ��.tmf^A1/=. N�; �/

We see that the upper horizontal map is surjective if and only if the lower is surjective.
In fact, this is an easy consequence of ��.A1/ being bounded below. To prove that the
lower map is surjective we can proceed as follows. For any Nx 2 ��.tmf^A1/=. N�; �/,
first, lift Nx to an element x 2 ��.tmf^A1/, then, find a class that detects x in the ASS
for tmf^A1 and finally, show that class lifts to a permanent cycle in the ASS for A1.

The first and the second steps follow from the analysis of the ASS for tmf^A1 in
[12, Section 3]. We recall here relevant information. Let F2Œ�;g; w2�=.�

3;g�/ be the
subalgebra of Ext�;�A.2/�

.F2/ generated by �, g and w2, with j�j D .1; 4/, jgj D .4; 24/

and jw2j D .8; 56/. The classes � and g lift to classes of the same name in Ext4;24
A� .F2/

and converge to � and N�, respectively, in the ASS for S0.
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Proposition 6 [12, Theorem 3.2.5] Exts;tA.2/�
.H�.A1// is a direct sum of cyclic

modules as a module over F2Œ�;g; w2�=.�
3;g�/, and is generated by the following

classes with respective annihilator ideals:

e0;0 e1;5 e1;6 e2;11 e3;15 e3;17 e4;21 e4;23

(0/ (�2/ (0/ (�2/ (�2/ (0/ (�2/ (0/

e6;30 e6;32 e7;36 e7;38 e8;42 e9;47 e9;48 e10;53

(�/ (�/ (�/ (�/ (�/ (�/ (�/ (�/

Here es;t is the unique nontrivial class of Exts;tCs
A.2/�

.H�.A1//.

According to [12, Theorem 5.3.20], ��.tmf ^A1/ is �8–periodic. More precisely,
multiplication by �8 2 �192.tmf/ induces an isomorphism

�k.tmf^A1/! �kC192.tmf^A1/

for k � 0. The same property holds for multiplication by v32
2

.

Proposition 7 Multiplication by v32
2
2 �192.A1 ^DA1/ induces an isomorphism

�k.tmf^A1/! �kC192.tmf^A1/ for k � 0.

Proof Let Ftmf.� ;� / denote the function spectrum in the category of tmf–modules,
so that Idtmf^v

32
2

and�8^IdA1
represent elements of �192.Ftmf.tmf^A1; tmf^A1//.

Via the natural equivalence

Ftmf.tmf^A1; tmf^A1/' tmf^A1 ^DA1;

denote by v32
2

and �8 the images of Idtmf ^ v
32
2

and �8 ^ IdA1
, respectively, by the

induced homomorphism on homotopy groups. Since�8^IdA1
induces an isomorphism

on homotopy groups of nonnegative stems and ��.tmf^A1/ is finite in each stem, it
suffices to show that there is a positive integer n such that

.�8/n D .v32
2 /n 2 �192n.tmf^A1 ^DA1/:

Since �8 induces an isomorphism ��.tmf^A1/! ��C192.tmf^A1/ for � � 0, by
the five lemma, multiplication by �8 induces an isomorphism

(6) ��.tmf^A1 ^DA1/! ��C192.tmf^A1 ^DA1/ for � � 0:

By the construction in [2], a v32
2

–self-map of A1 is detected, in the E2–term of the
ASS for A1 ^DA1, by a class that is sent to a class detecting �8 in the ASS for
tmf^A1 ^DA1. This means that the difference �8 � v32

2
is detected in an Adams

filtration greater than 32, which is the Adams filtration of �8 and of v32
2

. Together
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.0; 0/ .5; 1/ .6; 1/ .11; 2/ .15; 3/ .17; 3/ .21; 4/ .23; 4/

e0;0 e1;5 e1;6 e2;11 e3;15 e3;17 e4;21 e4;23

.30; 6/ .32; 6/ .36; 7/ .38; 7/ .42; 8/ .47; 9/ .48; 9/ .53; 10/

e6;30 e6;32 e7;36 e7;38 e8;42 e9;47 e49;8 e10;53

.48; 8/ .53; 9/ .54; 9/ .59; 10/ .63; 11/ .65; 11/ .69; 12/ .71; 12/

w2e0;0 w2e1;5 w2e1;6 w2e2;11 w2e3;15 w2e3;17 w2e4;21 w2e4;23

.78; 14/ .80; 14/ .84; 15/ .86; 15/ .90; 16/ .95; 17/ .96; 17/ .101; 18/

w2e6;30 w2e6;32 w2e7;36 w2e7;38 w2e8;42 w2e9;47 w2e9;48 w2e10;53

Table 1: List M , generators of ��.tmf^A1/=. N�; �/ as an F2Œ�
8�–module

for the non-self-dual versions A1Œ00� and A1Œ11�.

with the isomorphism (6), the difference �8� v32
2

is equal to �8x for some element
x 2 �0.tmf^A1 ^DA1/, which must be detected in a positive filtration of the ASS,
because the only nonzero class of Ext0;0A.2/.H�.A1^DA1// is the unit. As a consequence,
x is nilpotent, as the ASS for tmf^A1 ^DA1 has a vanishing line parallel to that of
the ASS for tmf^A1; see Proposition 8. Furthermore, �8� v32

2
has finite order and

�8 is in the center of ��.tmf^A1 ^DA1/. Therefore, by using the binomial formula,
we see that .�8C v32

2
��8/2

k

is equal to .�8/2
k

for k large enough.

As an immediate consequence of the above proposition, multiplication by v32
2

induces
an isomorphism �k.tmf^A1/=.�; N�/!�kC192.tmf^A1/=.�; N�/ for k � 0. Moreover,
it follows from the proof of [12, Theorem 5.3.20] that we can identify a set of generators
of ��.tmf^A1/=. N�; �/ for 0� �< 192 as Z2–modules. Therefore, this set generates
��.tmf^A1/=. N�; �/ as a Z2Œv

32
2
�–module. We give in Tables 1 and 2 a list of generators

.99; 17/ .104; 18/ .105; 18/ .110; 19/ .114; 20/ .116; 20/

�w2
2
e0;0 �w2

2
e1;5 �w2

2
e1;6 �w2

2
e2;11 �w2

2
e3;15 �w2

2
e3;17

.120; 21/ .122; 21/ .147; 25/ .152; 26/ .153; 26/

�w2
2
e4;21 �w2

2
e4;23 �w3

2
e0;0 �w3

2
e1;5 �w3

2
e1;6

.158; 27/ .162; 28/ .164; 28/ .168; 29/ .170; 29/

�w3
2
e2;11 �w3

2
e3;15 �w3

2
e3;17 �w3

2
e4;21 �w3

2
e4;23

Table 2: List N , generators of ��.tmf^A1/=. N�; �/ as an F2Œ�
8�–module for

the non-self-dual versions A1Œ00� and A1Œ11�.
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.0; 0/ .5; 1/ .6; 1/ .11; 2/ .15; 3/ .17; 3/ .21; 4/ .23; 4/

e0;0 e1;5 e1;6 e2;11 e3;15 e3;17 e4;21 e4;23

.30; 6/ .32; 6/ .36; 7/ .38; 7/ .42; 8/ .47; 9/ .48; 9/ .53; 10/

e6;30 e6;32 e7;36 e7;38 e8;42 e9;47 e49;8 e10;53

.48; 8/ .53; 9/ .54; 9/ .59; 10/ .63; 11/ .65; 11/ .69; 12/

w2e0;0 w2e1;5 w2e1;6 w2e2;11 w2e3;15 w2e3;17 w2e4;21

.74; 13/ .78; 14/ .80; 14/ .84; 15/ .90; 16/ .95; 17/

�w2e4;23 w2e6;30 w2e6;32 w2e7;36 w2e8;42 w2e9;47

Table 3: List P , generators of ��.tmf^A1/=. N�; �/ as an F2Œ�
8�–module for

the self-dual versions A1Œ01� and A1Œ10�.

of the non-self-dual versions A1Œ00� and A1Œ11�, and in Tables 3 and 4 a list of generators
of the self-dual versions A1Œ01� and A1Œ10�. This distinction is because the proof that
they lift to permanent cycles in the ASS for A1 is different for different versions; see
Propositions 19, 22 and 23. We denote by M , N , P and Q the sets of generators listed
in Tables 1, 2, 3, and 4, respectively. In these tables, the pairs of integers indicate the
bidegree .t; s/ of the corresponding generators living in Exts;tCs .

We now proceed to prove that all classes in these tables lift to permanent cycles in the
ASS for A1. There are two main steps. First, we show that the induced map on the
E2–terms of the Hurewicz map

H� W Ext�;�A� .H�A1/! Ext�;�A.2/�
.H�A1/

is surjective. This implies, in particular, that the classes in M [N and P [Q lift to
the E2–term of the ASS for A1. Second, we show that Ext�;�A� .H�A1/ has a certain

.96; 16/ .101; 17/ .105; 18/ .110; 19/ .111; 19/ .116; 20/

w2
2
e0;0 w2

2
e1;5 �w2

2
e1;6 �w2

2
e2;11 w2

2
e3;15 �w2

2
e3;17

.120; 21/ .122; 21/ .126; 22/ .147; 25/ .152; 26/ .153; 26/

�w2
2
e4;21 �w2

2
e4;23 w2

2
e6;30 �w3

2
e0;0 �w3

2
e1;5 �w3

2
e1;6

.158; 27/ .162; 28/ .164; 28/ .168; 29/ .170; 29/

�w3
2
e2;11 �w3

2
e3;15 �w3

2
e3;17 �w3

2
e4;21 �w3

2
e4;23

Table 4: List Q, generators of ��.tmf^A1/=. N�; �/ as an F2Œ�
8�–module for

the self-dual versions A1Œ01� and A1Œ10�.

Algebraic & Geometric Topology, Volume 23 (2023)



On the surjectivity of the tmf–Hurewicz image of A1 227

structure (see Proposition 13) that allows us to rule out nontrivial differentials on lifts
of the classes in M [N and P [Q in the ASS for A1.

2.1 The algebraic tmf–Hurewicz homomorphism

Proposition 8 (vanishing line) For n� 0 or nD1, Exts;tA.n/�
.H�A1/ has vanishing

line t � s < f .s/, where f .s/D 5s� 4 if s � 6 and f .s/D 5s if s > 6, ie

Exts;tA.n/�
.H�A1/D 0 if t � s < f .s/:

Proof The statement for nD0; 1 follows from the fact that H�A1 is A.0/�– and A.1/�–
cofree. The statement for nD 2 follows from the explicit structure of Exts;tA.2/�

.H�A1/.
Now suppose n� 3. Set � DA.n/��A.2/� F2 and note that � is an A.n/�–comodule
algebra. The unit F2!A.n/��A.2/� F2 is a map of �–comodules. Denote by � the
quotient of � , so that we have the short exact sequence of A.n/�–comodules

0! �˝r
! �˝�˝r

! �˝rC1
! 0

for r � 0. Splicing these together, we get a long exact sequence of A.n/�–comodules

0! F2! �! �˝�! � � � ! �˝�˝r
! � � � ;

which gives rise to a spectral sequence converging to Ext�;�A.n/�
.H�A1/ with E1–term

isomorphic to Ext�;�A.n/�
.�˝�˝r ˝H�A1/:

(7) Es;t;r
1
D Exts;tA.n/�

.�˝�˝r
˝H�A1/) ExtsCr;t

A.n/�
.F2;H�A1/:

By the change-of-rings isomorphism,

Exts;tA.n/�
.�˝�˝r

˝H�A1/Š Exts;tA.2/�
.�˝r

˝H�A1/:

We see that �˝r is .8r�1/–connected because � is 7–connected. Together with the
fact that

Exts;tA.2/�
.H�A1/D 0 if t � s < f .s/;

we obtain that

Exts;tA.2/�
.�˝r

˝H�A1/D 0

if t�s<f .s/C8r or equivalently if t�.sCr/< f .sCr/C2r . We can now conclude
by using the spectral sequence (7).
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Proposition 9 (approximation lemma) Let m� n be two nonnegative integers , or
mD1. The restriction homomorphism

Exts;tA.m/�
.H�A1/! Exts;tA.n/�

.H�A1/;

where A.1/� WD A�, is an isomorphism if t � s < f .s � 1/C 2nC1 � 1 and is an
epimorphism if t � s < f .s/C 2nC1, where f .s/ is as in Proposition 8.

This is a well-known consequence of the vanishing line property and is discussed in
[13, Lemma 3.4.9]. We give a proof here for completeness.

Proof Let � DA.m/��A.n/� F2 and � D coker.F2! �/. The restriction homomor-
phism is the composite

Exts;tA.m/�
.H�A1/! Exts;tA.m/�

.�˝H�A1/Š Exts;tA.n/�
.H�A1/;

where the first map is induced by the unit F2!� and the second is the change-of-rings
isomorphism. The short exact sequence of A.m/�–comodules F2! �! � gives rise
to a long exact sequence

Exts�1;t
A.m/�

.�˝H�A1/!Exts;tA.m/�
.H�A1/!Exts;tA.n/�

.H�A1/!Exts;tA.m/�
.�˝H�A1/:

Since � is 2nC1–connected and Exts;tA.m/�
.F2;H�A1/ has the vanishing line t�s<f .s/,

Exts;tA.m/�
.�˝H�A1/D 0

if t�s<f .s/C2nC1, hence the surjectivity of the respective restriction homomorphism,
and

Exts�1;t
A.m/�

.�˝H�A1/D Exts;tA.m/�
.�˝H�A1/D 0

if t � s < f .s � 1/ C 2nC1 � 1, hence the bijectivity of the respective restriction
homomorphism.

Corollary 10 The restriction map Exts;tA�.H�A1/! Exts;tA.2/�
.H�A1/ is an epimor-

phism if t � s < 5sC 8 and is an isomorphism if t � s < 5sC 2.

Proposition 11 The restriction map Ext�;�A� .H�.A1//! Ext�;�A.2/�
.H�.A1// is an epi-

morphism.

Proof The restriction map Res W Ext�;�A� .H�.A1//! Ext�;�A.2/�
.H�.A1// is a map of

modules over Ext�;�A� .H�.A1 ^DA1//. This module structure comes from the fact that
A1 is a module over the ring spectrum A1 ^DA1. It is proved in [2, Lemma 3.6]
that the class w2 2 Ext8;56

A.2/�
.H�.A1 ^DA1// lifts to Ext8;56

A� .H�.A1 ^DA1//— the
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notation in that article for w2 is b4
3;0

. In particular, the restriction map Res is a map
of modules over the subalgebra R generated by g, � and w2. By Proposition 6, the
classes es;t where

.s; t/ 2
˚
.0; 0/; .1; 5/; .1; 6/; .2; 11/; .3; 15/; .3; 17/; .4; 21/; .4; 23/; .6; 30/;

.6; 32/; .7; 36/; .7; 38/; .8; 42/; .9; 47/; .9; 48/; .10; 53/
	

generate Ext�;�A.2/�
.H�.A1/ as a module over R. These classes live in the region

ft � s < 5sC 8g, hence lift to Ext�;�A� .H
�.A1/ by Proposition 9.

This theorem shows that all the classes of M [N and P [Q lift to Ext�;�A� .H�.A1//.
In the following part, we prove that the latter lift to permanent cycles.

2.2 The topological tmf–Hurewicz homomorphism

The key step is to understand the action of g 2 Ext4;24
A� .F2/ on Ext�;�A� .H�.A1//. To

this end, we introduce the notion of weak divisibility, which plays an important role in
the proof by induction of Proposition 14.

Definition 12 Let M be an A–module and g 2 A be a nonnilpotent element. An
element x 2M is said to be weakly g–divisible if and only if there exists an n 2N

and y 2M such that gnC1y D gnx. Otherwise stated, x is weakly g–divisible if and
only if there exists a g–torsion element ı such that xC ı is g–divisible.

Proposition 13 The group Ext�;�A� .H
�.A1// has the following properties:

(i) All classes of Exts;tA�.H
�A1/ in the region

F D fs � 18; 5s � t � s � 5sC 6g[ fs � 27; 5s � t � s � 5sC 14g

are g–free and are divisible by g.

(ii) Any class x of Exts;tA�.H
�A1/ in the region

D D fs � 21; 5s � t � s � 5sC 12g[ fs � 30; 5s � t � s � 5sC 20g

is weakly g–divisible , ie there is a class y and a nonnegative integer n such that
gnC1y D gnx.

Let us explain what we need this proposition for. We want to show that the classes of
M[N and P[Q lift to permanent cycles in the ASS for A1. While it is straightforward
to show it for the classes of M and P by sparseness and the approximation lemma,
the classes of N and Q might support more differentials. Proposition 13 describes the
structure of Ext�;�A� .H

�.A1// exactly in the zone where the differentials on the classes
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s D 20

s D 30

s D 27

t �
s D

5s

t � s D
7s� 40

Figure 1: The dark region is associated to S1 or R1, and the light to S2 or R2.

of N and P arrive. In particular, we will see that the targets of these differentials
are g–free, a fact which is established in Lemmas 20 and 21. This, together with the
g–linearity of the differentials, allows us to rule out potential differentials. Because the
classes involved in the statement of this proposition live in the region where there is
an isomorphism Exts;tA�.H

�.A1//Š Exts;tA.4/�
.H�.A1// by Proposition 9, it suffices to

prove that Ext�;�A.4/�
.H�A1/ has the required properties. We prove a stronger statement:

Proposition 14 The group Ext�;�A.4/�
.H�.A1// has the following properties:

(i) All classes in the region

S1 D f20� s � 27; 5s � t � s � 7s� 40g[ fs � 27; 5s � t � s � 5sC 14g

are g–free and are divisible by g. All classes in the region

S2 D f27� s � 30; 5sC 14� t � s � 7s� 40g

[ fs � 30; 5sC 14� t � s � 5sC 20g

are weakly divisible by g.

(ii) All classes in the region

T1 D f15� s � 18; 5s � t � s � 7s� 30g[ fs � 18; 5s � t � s � 5sC 6g

are g–free and are divisible by g. All classes in the region

T2Df18� s� 21; 5sC6� t�s� 7s�30g[fs� 21; 5sC6� t�s� 5sC12g

are weakly divisible by g.

Before proving this theorem, let us explain the strategy of the proof. Observe that there
is a sequence of extensions of commutative Hopf algebras

BiC1�Bi
F2! BiC1! Bi for 0� i � 8
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in which each BiC1�Bi
F2 is isomorphic to an exterior algebraƒ.hi/ on one generator

hi of degree at least 8, B0DA.2/� and B9DA.4/�. We can then deduce information
on Ext�;�A.4/�

.H�A1/ from Ext�;�A.2/�
.H�A1/ by a sequence of Davis–Mahowald spectral

sequences

Es;t;�
1
D

M
��0

Exts;t�jhi j�
Bi

.H�A1˝F2fh
�
i g/) ExtsC�;t

BiC1
.H�A1/:

By the calculation of Ext�;�A.2/�
.H�A1/, we see that the classes of E

s;t;�
1

in the regions
S1 and S2 have the desired properties. Using this as the base case, we prove by
induction that each ExtsC�;t

BiC1
.H�A1/ has the desired properties. To this end, we first

prove, by induction on r , that the Er –term of the Davis–Mahowald spectral sequence
has similar properties in the appropriate regions and then make sure that extensions
cannot prevent the target of the spectral sequence from having the desired properties,
where the fact that the degree of each hi is at least 8 becomes crucial.

Proof We have that

A.4/� D F2Œ�1; �2; �3; �4; �5�=.�
32
1 ; �16

2 ; �8
3 ; �

4
4 ; �

2
5/;

A.2/� D F2Œ�1; �2; �3�=.�
8
1 ; �

4
2 ; �

2
3/:

From this, we can construct a sequence of maps of commutative Hopf algebras
.BiC1 ! Bi/ with 0 � i � 9, B0 D A.2/� and B9 D A.4/� such that for each i ,
BiC1�Bi

F2 Dƒ.hi/ is an exterior algebra on one generator hi of degree at least 8.
Informally, we start with B0 DA.2/� and successively join �4, �2

3
, �4

2
, �8

1
, �5, �2

4
, �4

3
,

�8
2

s and �16
1

. Namely,

B1 D F2Œ�1; �2; �3; �4�=.�
8
1 ; �

4
2 ; �

2
3 ; �

2
4/; B2 D F2Œ�1; �2; �3; �4�=.�

8
1 ; �

4
2 ; �

4
3 ; �

2
4/;

B3 D F2Œ�1; �2; �3; �4�=.�
8
1 ; �

8
2 ; �

4
3 ; �

2
4/; B4 D F2Œ�1; �2; �3; �4�=.�

16
1 ; �8

2 ; �
4
3 ; �

2
4/;

B5 D F2Œ�1; �2; �3; �4; �5�=.�
16
1 ; �8

2 ; �
4
3 ; �

2
4 ; �

2
5/;

B6 D F2Œ�1; �2; �3; �4; �5�=.�
16
1 ; �8

2 ; �
4
3 ; �

4
4 ; �

2
5/;

B7 D F2Œ�1; �2; �3; �4; �5�=.�
16
1 ; �8

2 ; �
8
3 ; �

4
4 ; �

2
5/;

B8 D F2Œ�1; �2; �3; �4; �5�=.�
16
1 ; �16

2 ; �8
3 ; �

4
4 ; �

2
5/:

We will prove by induction on i that Ext�;�
Bi
.H�A1/ has the property (i). The proof of

(ii) works similarly; see Remark 15. First, we can directly check that

Ext�;�
B0
.H�A1/D Ext�;�A.2/�

.H�A1/
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satisfies (i) by inspecting its structure, which is shown in Proposition 6. Suppose that
Ext�;�

Bi
.H�A1/ satisfies (i). Consider the Davis–Mahowald spectral sequence

(8) Es;t;�
1
D

M
��0

Exts;t
Bi
.H�A1˝F2fh

�
i g/) ExtsC�;t

BiC1
.H�A1/;

and let the differential dr go from Es;t;�
r to Es�rC1;t;�Cr

r . Since hi is a Bi–primitive,
we have that

Es;t;�
1
D

M
��0

Exts;t�d�
Bi

.H�A1/˝F2fh
�
i g;

where d D jhi j. We will prove by induction on r � 1 that each Es;t;�
r –term of the

DMSS (8) has:

(a) All classes in the region

R1 D f20� sC � � 27; 5.sC �/� t � s� � � 7.sC �/� 40g

[ fsC � � 27; 5.sC �/� t � s� � � 5.sC �/C 14g

are g–free and are divisible by g.

(b) All classes in the region

R2 D f27� sC � � 30; 5.sC �/C 14� t � s� � � 7.sC �/� 40g

[ fsC � � 30; 5.sC �/C 14� t � s� � � 5.sC �/C 20g

are weakly divisible by g.

A similar proof to that of Proposition 8 shows that Exts;t
Bi
.H�A1/ has the same vanishing

line, and so

Es;t;�
1
D 0 if sC � > 6; t � .sC �/ < 5.sC �/;(9)

or if sC � � 6; t � .sC �/ < 5.sC �/� 4:

The Es;t;�
1

–term is spanned by classes x˝h�i with x 2 Exts;t�d�
Bi

.H�A1/. For degree
reasons (d Djhi j� 8) and by (9), classes x˝h�i living in R1 and R2 are nontrivial only
if x lies in S1 and S1[S2, respectively. Then together with the induction hypothesis, it
is straightforward to see that the E1–term of the spectral sequence (8) has the properties
(a) and (b). Suppose that the Er –term of (8) has those properties. Let x 2 Es;t;�

r

represent a class Œx� of Es;t;�
rC1

.

Step 1 Suppose Œx� lives in R1 and Œx� is g–torsion. Because R1 is stable under multi-
plication by g, we can assume that gŒx�D 0. Then there exists y 2EsC4Cr�1;tC24;��r

r
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such that dr .y/D gx. By an inspection on degrees, we see that y belongs to the region
R1[R2. By the induction hypothesis, y is weakly divisible by g, so there is a z and
an integer n such that gnC1z D gny. It follows that

gnC1dr .z/D dr .g
nC1z/D dr .g

ny/D gndr .y/D gngx D gnC1x:

However, dr .z/�x lies in R1, which consists only of g–free classes, hence dr .z/D x,
and so Œx�D 0. Therefore, all classes in R1 of ErC1 are g–free.

Step 2 Suppose Œx� belongs to the region R1. By the induction hypothesis, there exists
y 2 Es�4;t�24;�

r such that gy D x. We claim that y is a dr –cycle. We have that

gdr .y/D dr .gy/D dr .x/D 0:

Moreover, dr .y/ 2 E
s�r�3;t�24;�Cr
r , which belongs to R1, hence is g–free. We

conclude that dr .y/D 0. Thus, Œx� is divisible by g.

Steps 1 and 2 show that the ErC1–term has the property (a).

Step 3 Now suppose that Œx� belongs to the region R2. Then x is weakly divisible
by g, so there is a class z 2 Es�4;t�24;�

r and an integer n such that gnC1z D gnx. We
claim that z is a dr –cycle. Since x is a dr –cycle, we have

gnC1dr .z/D dr .g
nC1z/D dr .g

nx/D gndr .x/D 0:

Moreover, dr .z/ 2 Es�4�rC1;t�24;�Cr
r which belongs to R1, hence dr .z/ is g–free,

and so dr .z/D 0. Therefore, we obtain that gnC1Œz�D gnŒx�, hence the ErC1–term
has the property (b).

Step 4 It is now straightforward to see that the E1–term also has the properties (a)
and (b). To finish the proof, we will show that the target of the spectral sequence (8)
has the property (i). Let

� � � � F� � F��1 � � � � � F1 � F0 D Ext�;�
BiC1

.F2;H�A1/

be the filtration of Ext�;�
BiC1

.H�A1/ associated to the Davis–Mahowald spectral sequence.
A class belongs to F� only if it is represented in the E1–term by a class of the form
x˝h�i , where x 2 Exts;t

Bi
.H�A1/— here t�s � 5s�4 because of (9). Such a class has

bidegree .sC �; t C d�/, and so has the topological degree t � sC .d � 1/� . Because
d � 8, the latter exceeds 5.sC �/C 20 for � sufficiently large. However, any class
in S1 [ S2 has bidegree .t; s/ satisfying t � s � 5s C 20. This means that there is
an integer m such that all classes of S1 [S2 belongs to F0nFm [ f0g. From this, it
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is straightforward to verify that the properties (a) and (b) of the E1–term imply the
property (i) of Ext�;�

BiC1
.F2;H�A1/.

Remark 15 The proof of (i) uses a double induction. What makes both base cases
work is the fact that Exts;tA.2/�

.H�A1/ has the required properties and that the slope of
each hi is lower than 1

7
, which is exactly the slope of the lower line limiting the region

in question. What makes the inductive step work is self-explained by the choice of
the regions: relevant classes lie in the relevant regions. What makes the target of the
DMSS have the required properties is that the slope of hi is lower then the slope of the
vanishing line. The regions T1 and T2 are chosen to have all of these features, hence
the proof of (ii) is similar to that of (i).

We need the following lemma on the E2–term of the Adams spectral sequence for S0,
which necessitates a calculation of the Ext group up to stem 43; see [14, Theorem 4.42].

Lemma 16 The class � is annihilated by g2, so is g–torsion in the E2–term of the
ASS for S0.

Theorem 17 The induced map in homotopy of the Hurewicz map A1! tmf^A1 is
surjective.

Proof The map H� W��.A1/!��.tmf^A1/ is a map of ��.A1^DA1/–modules. In
particular, it is a map of modules over the subalgebra R of ��.A1^DA1/ generated by �,
N� and v32

2
. Therefore, we only need to prove that a set of generators of ��.tmf^A1/

as an R–module belongs to the image of H . Because of Proposition 11, we can choose
lifts of classes of M [N and P [Q to Ext�;�A� .H�A1/ such that classes which are
divisible by � lift to classes which are divisible by �. We fix such a choice of lifting
and also call them M , N , P and Q. We will prove that all classes of M [N and
P [Q are permanent cycles in the ASS for A1; then they must survive to the E1–term
because their images in the ASS for tmf^A1 do. By comparing the bidegree of the
classes of M [N and P [Q and the vanishing line of the E2–term, we see that the
differentials supported by the classes of M [N and P [Q of length greater than 4

are trivial. The theorem now follows from Propositions 19, 22, and 23 below.

Remark 18 We draw particular attention to the choices made for the lifts of the classes
of M [N and P [Q because we will use them in an essential way in the proof of
Propositions 22 and 23. The fact that the classes which are divisible by � are g–torsion
follows from Lemma 16.
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Proposition 19 All classes in M of A1Œ00� and A1Œ11� and in P of A1Œ01� and
A1Œ10� are permanent cycles in the respective ASS.

Proof Inspection of bidegrees together with the vanishing line Proposition 8 show that
there can only be nontrivial differentials d2 on classes of M and P , and moreover these
differentials hit the region where there is an isomorphism between Ext�;�A� .H�.A1//

and Ext�;�A.2/�
.H�.A1//. However, all classes of M and P are permanent cycles in the

ASS for tmf^A1. Therefore, the differentials d2 on the classes in M and P in the
ASS for A1 are trivial.

Lemma 20 (a) The target groups for d3 on classes in N are g–free. More precisely,
Es;t

3
is g–free if

.s; t/ 2 F3 WD fs � 23; 5s � t � s � 5sC 1g[ fs � 28; 5s � t � s � 5sC 9g:

(b) Suppose s � 30 and t � s � 5s C 20, and let s 2 Es;t
3

. Then x is weakly
divisible by g, ie there exists an integer n and a class y 2E

s�4;t�24
3

such that
gnC1y D gnx.

Proof (a) The differential d2–arriving in gEs;t
2

with .s; t/ 2 F3 starts in Es0;t 0

2
with

.s0; t 0/D .sC 2; t C 23/; and so .t 0� s0/D t � sC 21:

Then we have

s0 � 25; 5s0 D 5sC 10� t � sC 10� 5sC 11D 5s0C 1;

and
s0 � 30; 5s0 D 5sC 10� t � sC 10� 5sC 19D 5s0C 9:

So .s0; t 0/ belongs to

fs0 � 25; 5s0C 11� t 0� s0 � 5s0C 12g[ fs0 � 30; 5s0C 11� t 0� s0 � 5s0C 20g:

In this region, Proposition 13 guarantees that all classes are weakly divisible by g and
this implies that Es;t

3
is g–free if .s; t/ 2 F3. In fact, suppose x is a class which lies in

F3 and which is g–torsion. The region F3 is stable under multiplication by g, so we
can assume that gx D 0. Let a be a representative of x. Then there exists b 2 E2 such
that d2.b/ D ga. By the argument above, we know that a is weakly divisible by g,
so there exists an integer n� 0 and a class c at the E2–term such that gnaD gnC1c.
Then we have

gnC1d2.c/D d2.g
nC1c/D d2.g

nb/D gnd2.b/D gngaD gnC1a:
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However, F3 belongs to the region which is g–free at the E2–term, hence d2.c/D a,
which means that x D 0 at the E3–term.

(b) We represent x by a d2–cycle a. By part (ii) of Proposition 13, there exists
b 2 Es�4;t�24

2
and an integer n such that gnaD gnC1b. It is enough to show that b is

a d2–cycle. We first note that, since a is a d2–cycle, we have

gnC1d2.b/D d2.g
nC1b/D d2.g

na/D 0:

Therefore it is enough to show that d2.b/ is g–free. In fact, d2.b/ is a class in Es0;t 0

2

with s0 D s� 2 and

t 0� s0 D t � s� 19� 5sC 20� 19D 5.s� 2/C 11D 5s0C 11;

so it is g–free by Proposition 13(ii)

Lemma 21 The target groups for the differential d4 on classes in N are g–free. More
precisely, Es;t

4
is g–free if

.s; t/ 2 F4 WD fs � 29; 5s � t � s � 5sC 4g:

Proof The differential d3 arriving in gEs;t
3

with .s; t/ 2 F4 starts in E
s0;t 0

3
with

s0 D sC 1; t 0� s0 D t � sC 21:

Then we have
s0 � 30; 5s0C 16� t 0� s0 � 5s0C 20:

By Lemma 20, all classes in such bidegrees are weakly divisible by g and this implies
that Es;t

4
is g–free if .s; t/ 2 F4. In fact, suppose x is a class which lies in F4 and

which is g–torsion. Because F4 is stable under multiplication by g, we can assume
that gx D 0. Let a 2 Es;t

3
be a representative of x. Then there exists b 2 E3 such

that d3.b/ D ga. By the argument above, b is weakly divisible by g, so there is a
nonnegative integer n and a class c 2 E3 such that gnC1c D gnb. Then we have

gnC1d3.c/D d3.g
nC1c/D d3.g

nb/D gnd3.b/D gngaD gnC1a:

However, F4 belongs to the region where g acts freely at the E3–term by Lemma 20(i),
hence d3.c/D a and so x D 0 at the E4–term.

Proposition 22 The differentials d2, d3 and d4 on the classes in N for A1Œ00� and
A1Œ11� are trivial.

Algebraic & Geometric Topology, Volume 23 (2023)



On the surjectivity of the tmf–Hurewicz image of A1 237

Proof All classes of N are divisible by �, so are g–torsion in the E2–term, hence are
g–torsion at all terms. It is then enough to show that the target groups of differentials d2,
d3 and d4 on the classes in N are g–free at the E2, E3 and E4–terms, respectively. In
fact, the target groups for the differential d2 on the classes in N lie in the region

fs � 19; 5s � t � s � 5sC 6g[ fs � 27; 5s � t � s � 5sC 14g;

consisting only of g–free classes, by Proposition 13(i). Next, a potential nontrivial
differential d3 or d4 on the classes in N has its target in the region F3 or F4, respectively,
which is g–free by Lemma 20 or Lemma 21, respectively.

Proposition 23 The differentials d2, d3 and d4 on the classes in Q for A1Œ10� and
A1Œ01� are trivial.

Proof In this proof, A1 denotes the self-dual versions A1Œ10� and A1Œ01�. The same
argument as in the proof of Proposition 22 shows that the differentials d2, d3 and d4

on the classes in N which are divisible by � are trivial. Consider the four other classes
in N ,

(10) w2
2e0;0; w2

2e1;5; w2
2e3;15; w2

2e6;30:

These classes are g–free at the E2–term. We now show that their g–multiple towers
are truncated by differentials d2 in the ASS for A1. In fact, by [12, Theorem 4.0.3],
the following differentials d2 happen in the ASS for tmf^A1:

d2.w2e10;53/D g5e0;0; d2.w2e7;38/D g4e1;5;

d2.w2e9;48/D g4e3;15; d2.w2e4;23/D g2e6;30:

Since the targets of these differentials live on the line t � s D 5s, where the E2–term of
the ASS for A1 and that for tmf^A1 are isomorphic, the same differentials happen in
the ASS for A1. Moreover, the class w2

2
is a cycle for the differential d2 in the ASS for

A1 ^DA1 as shown the proof of [2, Lemma 3.10]; see the remark below. Therefore,
by the Leibniz rule, the following differentials d2 happen in the ASS for A1:

d2.w
3
2e10;53/D g5w2

2e0;0; d2.w
3
2e7;38/D g4w2

2e1;5;

d2.w
3
2e8;48/D g4w2

2e3;15; d2.w
3
2e4;23/D g2w2

2e6;30:

It follows that the targets of the differentials d2 on the classes of (10) are g–torsion.
Moreover, the differentials d2 arrive in Es;t

2
with s � 18 and 5s � t � s � 5s C 6,

which consists only of g–free classes by Proposition 13. Thus, the classes of (10) are
d2–cycles and become g–torsions in the E3–term.
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The differentials d3 on the classes of (10) arrive in Es;t
3

with s � 19 and t � s D 5s.
For these bidegrees, there is an isomorphism at the E2–term of the ASS for A1 and
that for tmf^A1; in particular, the related Ext–groups are isomorphic to F2 and are
generated by g4e15, g5e0, g4e30 and g5e5. However, in the ASS for tmf^A1, by
[12, Theorem 4.0.3], these are hit by differentials d2:

d2.w2e10;53/D g5e0; d2.gw2e7;38/D g5e1;5;

d2.w2e9;48/D g4e15; d2.g
2w2e4;23/D g4e6;30:

Because of Proposition 11 and the naturality of the ASS, Es;t
3
D 0 for s � 19 and

t � s D 5s in the ASS for A1. Thus, the differentials d3 on the classes of (10) are
trivial.

Finally, the differential d4 on the classes of (10) land above the vanishing line, hence
are trivial.

Remark 24 In the proof of [2, Lemma 3.10], it is implicit that w2
2

— which is b8
3;0

in
their notation — is a d2–cycle. This amounts to showing that w2 commutes with the
class R in the statement of their Lemma 3.10. This class R is detected in a positive tmf–
filtration of the algebraic tmf spectral sequence converging to Ext�;�A .H�.A1 ^DA1//.
More precisely, R is detected in the groupM

n�1
i1;:::;in�1

Ext10�n;57�8.i1Ci2C���Cin/

A.2/ .H�.A1 ^DA1/^ boi1
^ boi2

^ � � � ^ boin
/I

see [2] for the notation. By considering the vanishing line of Ext�;�A.2/.H�.A1//, the
only potential nontrivial summand is Ext9;57�8i1

A.2/ .H�.A1 ^DA1/^ boi1
/ with i1 � 1.

Then by using Robert Bruner’s ext software [4] one can check that this group is trivial.
This means that R is in fact trivial.

Remark 25 To illustrate the proof of Proposition 23, we give some examples and
more details.

(a) First, a differential d3 or d4 on the first five classes in N listed in Table 2 has target
living above the vanishing line, so it is trivial.

(b) The other classes in N might support nontrivial differentials d3. For example, a
differential d3 on the class �w2

2
e17 arrives in Es;t

3
with s D 23 and t � s D 115D 5s;

Es;t
3

is g–free by Lemma 20. The worst case is the class �w3
2
e23 on which a differential

d3 lives in Es;t
3

with s D 32 and t � s D 169D 5sC 9, which is g–free by Lemma 20.
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(c) Only the last eight classes in N as listed in Table 2 might support nontrivial
differentials d4. These classes lie in Es;t

4
with s � 25 and 5s � t � s � 5sC 25. Then

d4 on these arrives in Es0;t 0

4
with s0 D sC 4 and t 0 D t C 3, and so

s0 � 29 and 5s0 � t 0� s0 � 5s0C 4:

This region consists only of g–free classes by Lemma 21

2.3 The edge homomorphism of the topological duality spectral sequence

In this last section, we prove Theorem B. Let us restate it here.

Theorem 26 The edge homomorphism of the topological duality spectral sequence

��.E
hS1

C

C
^A1/! ��.E

hG24

C
^A1/

is surjective. Therefore , all differentials starting from the 0–line of the topological
duality spectral sequence are trivial.

Here, EC is the Lubin–Tate spectrum associated to the formal completion FC of the
supersingular elliptic curve C given by y2 C y D x3 defined over F4. Let SC be
the automorphism group of SC . The group S1

C
is defined to be the kernel of the

reduced determinant map SC ! Z2. The automorphism group of C is isomorphic
to G24 WD Q8 Ì C3, where Q8 is the quaternion group and C3 is the cyclic group
of order 3, and G24 naturally embeds into S1

C
. We refer the reader to [3] for the

construction of the topological duality resolution and to [12] for more motivations on
the study of this spectral sequence for A1.

Proof The duality spectral sequence has four lines and converges to ��.E
hS1

C

C
^A1/.

Its edge homomorphism E
hS1

C

C
! E

hG24

C
is induced by the inclusion of subgroup

G24! S1
C

. It suffices to prove that the map

��.E
hSC

C
^A1/! ��.E

hG24

C
^A1/

induced by the inclusion of the subgroup G24 ! SC is surjective. Let Gal denote
the Galois group of F4 over F2. It acts on SC and G24, because C is already defined
over F2. By [3, Lemma 1.37], there are homotopy equivalences

GalC ^E
h.SC ÌGal/
C

'E
hSC

C

and
GalC ^E

h.G24ÌGal/
C

'E
hG24

C
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that fit into a commutative diagram

GalC ^E
h.SC ÌGal/
C

��

// GalC ^E
h.G24ÌGal/
C

��

E
hSC

C
// E

hG24

C

where horizontal maps are induced by respective inclusions of subgroups. By Devinatz
and Hopkins [7],

LK.2/S
0
'E

h.SC ÌGal/
C

;

and so the map E
h.SC ÌGal/
C

!E
h.G24ÌGal/
C

is identified with LK.2/S
0!E

h.G24ÌGal/
C

,
the unit map. By [8], the latter factorizes through the homotopy equivalence

LK.2/tmf'E
h.G24ÌGal/
C

:

Therefore, it is enough to show that the map LK.2/A1!LK.2/.tmf^A1/ induces a
surjection on homotopy. In fact, it fits in the commutative diagram:

(11)

A1
//

��

tmf^A1

��

Œ.v32
2
/�1�A1

//

��

Œ.v32
2
/�1�.tmf^A1/

��

LK.2/A1
// LK.2/.tmf^A1/

By [12, Theorem 5.1.1], the natural map Œ.�8/�1�.tmf^A1/! LK.2/.tmf^A1/ is
a homotopy equivalence. In addition, by the proof of Proposition 7, v32

2
is equal to

�8 up to some power. Therefore, the map Œ.v32
2
/�1�.tmf^A1/! LK.2/.tmf^A1/

in (11) is a homotopy equivalence. On the other hand, the induced map in homotopy
of the middle map of (11) is identified with a direct limit of (1):

.v32
2 /�1��.A1/! .v32

2 /�1��.tmf^A1/:

Hence it is a surjection, because (1) is. Therefore, the composite

Œ.v32
2 /�1�A1! Œ.v32

2 /�1�.tmf^A1/!LK.2/.tmf^A1/

induces a surjection in homotopy, hence so does the map

LK.2/A1!LK.2/.tmf^A1/;

because of (11).
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