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1S0-3P2 magnetic quadrupole transition in neutral strontium
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We present a detailed investigation of the ultranarrow magnetic-quadrupole 1S0-3P2 transition in neutral
strontium and show how it can be made accessible for quantum simulation and quantum computation. By
engineering the light shift in a one-dimensional optical lattice, we perform high-resolution spectroscopy and
observe the characteristic absorption patterns for a magnetic quadrupole transition. We measure an absolute
transition frequency of 446, 647, 242, 704(2) kHz in 88Sr and an 88Sr-87Sr isotope shift of +62.91(4) MHz. In
a proof-of-principle experiment, we use this transition to demonstrate local addressing in an optical lattice with
532 nm spacing with a Rayleigh-criterion resolution of 494(45) nm. Our results pave the way for applications of
the magnetic quadrupole transition as an optical qubit and for single-site addressing in optical lattices.
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I. INTRODUCTION

Ultracold neutral two-electron atoms have emerged as a
promising platform for metrology [1–5], quantum simulation
[6–9], and quantum computation [10–13]. One pillar of their
success are their ultranarrow optical transitions between the
singlet 1S0 ground state and the long-lived metastable triplet
3PJ states, as shown in Fig. 1 for 88Sr.

The majority of the research in metrology, quantum sim-
ulation, and quantum computation with two-electron atoms
relies on the 1S0-3P0 clock transition, which is insensitive
to most environmental effects. This transition is forbidden
by spin and angular momentum selection rules. However, an
electric dipole (E1) transition can be enabled by hyperfine
mixing [15] in fermionic isotopes with nuclear spin or by
magnetic-field-induced mixing [16] in bosonic isotopes with-
out nuclear spin. On the clock transition, coherence times
of tens of seconds have been experimentally demonstrated
[23,24]. This transition forms the basis of state-of-the-art op-
tical lattice clocks [3], and it is a promising qubit candidate
for quantum computation schemes [10,11]. Accordingly, the
clock transition has been thoroughly investigated in strontium
[1,2,4,5,20,22,24–27], ytterbium [20,28–30], and mercury
[20,31,32].

In contrast to the clock transition, the 1S0-3P2 transition in
bosonic isotopes without nuclear spin can be driven even at
zero magnetic field, because it is magnetic-quadrupole (M2)
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allowed [17,33,34]. This transition offers several attractive
features for quantum science and technology.

Because the 1S0 ground state has zero angular momen-
tum, it has no internal structure in bosonic isotopes with
zero nuclear spin and the Clebsch-Gordan coefficients of the
transitions out of 1S0 to all Zeeman sublevels of any ex-
cited state are equal. Compared to atoms with more complex
ground-state structure, this allows for simpler interpretation
of spectroscopic measurements, because of the absence of
dark states. This property makes such isotopes ideal for
polarization-insensitive, high-quality spectroscopy and the
study of fundamental light-matter interactions, such as col-
lective emission phenomena [35].

In addition, the nonvanishing electronic angular momen-
tum of 3P2 allows high flexibility in engineering the atomic
polarizability [36–38]. The 3P2 state also possesses a large
magnetic moment, allowing control over the excited state’s
energy with external magnetic fields. In combination with a
natural lifetime of hundreds of seconds [39] this tunability
provides new opportunities for quantum computing and quan-
tum simulation [40,41].

For example, the 1S0 state and the 3P2 Zeeman sublevels
with mJ �= 0 support magnetically-sensitive transitions that
can be used for single-site addressing in an optical lattice
within a magnetic-field gradient [40–44]. Single-site address-
ing allows the manipulation and readout of quantum states on
the level of single atoms and the preparation of a single lattice
layer for a quantum gas microscope [44–46].

So far, the 1S0-3P2 transition has been studied and used
in quantum simulation experiments with Yb [42–44,47–49].
Only very recently, a pioneering experiment measured the
transition frequency in fermionic 87Sr with an uncertainty of
30 MHz [50].

In this article, we demonstrate the advantages of the
ultranarrow 1S0-3P2 M2 transition for quantum simulation
and quantum computing with 88Sr. First, we present a
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FIG. 1. Level diagram of 88Sr including the important optical
transitions from the 1S0 ground state. The broad transition to 1P1

is electric-dipole (E1) allowed and is used for Doppler cooling and
imaging. The intercombination transitions to the lowest 3PJ states
should be electric-dipole forbidden. However, LS coupling [14] is
violated, which leads to a narrow E1 transition to 3P1 [15], used
for narrow-line laser cooling. The ultranarrow clock transition to
the 3P0 state is doubly forbidden, and only becomes E1 allowed by
perturbatively mixing 3P0 with 3P1 via a bias magnetic field [16]. In
contrast, the 1S0-3P2 transition is magnetic-quadrupole (M2) allowed
even at zero bias field [17]. The values for the transitions from the
1S0 ground state to the 1P1, 3P0, and 3P1 states were obtained from
Refs. [18–22], respectively.

theoretical framework of the selection rules and the transition
amplitude’s dependence on the light polarization and propa-
gation direction for M2 transitions and compare these results
to the well-known E1 transitions. We experimentally demon-
strate this dependence for the 1S0-3P2 transition in 88Sr.
Second, we study the specific properties and applications
of the 1S0-3P2 transition in 88Sr. By engineering the polar-
izability of the 3P2 state via the trap polarization and the
bias magnetic field, we perform Doppler- and Stark-shift-free
spectroscopy for magnetic-field-insensitive and magnetic-
field-sensitive transitions. We measure the absolute frequency
of the 1S0-3P2 transition in 88Sr and 87Sr, allowing us to
extract the 87Sr-88Sr isotope shift. In a final proof-of-principle
experiment, we demonstrate local addressing in an optical
lattice with single-site resolution.

II. MULTIPOLE TRANSITIONS

We are interested in describing the transition amplitude
for a general multipole transition between an atomic ground
state |J, mJ〉 and an excited state |J ′, m′

J〉. For the well-known
E1 transitions, several characteristics allow for a simplified
description. Assuming a plane wave, only the photon’s spin—
its polarization—determines the change in the atom’s orbital
angular momentum. For example, when driving a transition
that does not change the atom’s magnetic sublevel (�mJ ≡
m′

J − mJ = 0), only the π -polarization component will de-
termine the transition amplitude. In addition, the amplitude
of an E1 transition does not depend on the driving field’s
propagation direction k̂, beyond the constraints that it imposes
on the polarization vector ε̂.

These simplifications do not generally hold for higher-
order multipole transitions, which also allow the transfer of
additional orbital angular momentum besides the photon spin,

even for a plane wave. Hence, all three polarization compo-
nents can contribute to driving a certain transition, while the
orbital angular momentum transfer satisfies the conservation
of total angular momentum. Since the orbital angular mo-
mentum depends on the propagation direction, this direction
now explicitly affects the transition amplitude resulting in an
angular dependence [51] of the amplitude.

While the theory of atomic multipole transitions is well
understood [52], the nuances of the contribution of the differ-
ent polarization components and of the transition amplitude’s
angular dependence are rarely discussed. In this section, we
present an overview of these dependencies to provide a con-
venient framework for our experimental work on the 1S0-3P2

M2 transition.
We begin by reviewing the main results obtained from

expanding the light-matter interaction Hamiltonian into multi-
pole orders under simplifying assumptions, described in detail
in Appendix A. Based on these results, we discuss the effects
of the polarization and the angular dependence for a general
multipole transition. Next, we focus on two specific multipole
orders: the electric dipole, where we show that the transfer
of orbital angular momentum and the angular dependence
disappear as expected; and the magnetic quadrupole, the sce-
nario of interest for the 1S0-3P2 transition in two-electron
atoms.

A. General theory of multipole transitions

Optical atomic transitions result from the coupling of the
electromagnetic vector potential A with the atom’s valence
electrons and can be described by the minimal-coupling in-
teraction Hamiltonian

Hint =
N∑

i=1

e

me
pi · A(ri ) + egs

2me
si · [∇i × A(ri )], (1)

in the Coulomb gauge [14,33,53,54], where N is the number
of valence electrons. Here, e is the elementary charge, me

is the electron mass, and gs � +2.002 is the electron spin g
factor. The operators pi, si, ri, and ∇i× are the momentum,
spin, position, and curl with respect to the position of the ith
valence electron, respectively. Further notes on Eq. (1) are
summarized in Appendix A.

The vector potential at the position of the atom can be
expanded in different multipole orders K [52], where K =
1 corresponds to the dipole terms, K = 2 corresponds to
the quadrupole terms, and so forth. In the multipole expan-
sion, the interaction Hamiltonian separates into electric and
magnetic parts H (el)

K,q and H (mg)
K,q , respectively. These terms

contain spherical tensor operators [55,56] of rank K with
components q = −K, . . . ,+K . The natural frame to describe
these tensors is in the basis consisting of the vectors ê0 =
ẑ and ê± = ∓(x̂ ± iŷ)/

√
2, corresponding to the atomic-

frame polarization components of π and σ± polarization,
respectively.

To obtain the specific form of the interaction Hamiltonian
relevant for the experiments described in this paper, we as-
sume that the vector potential can be approximated by a plane
wave with wave vector k and polarization ε̂, such that k · ε̂ =
0. As shown in Appendix A, the multipole decomposition of
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a plane wave leads to the decomposition of the interaction
Hamiltonian

Hint = 4π

∞∑
K=1

K∑
q=−K

iK
[−i

(
Y(el)

K,q(k̂) · ε̂
)
H (el)

K,q

+ (
Y(mg)

K,q (k̂) · ε̂
)
H (mg)

K,q

]
, (2)

into the multipole terms

H (λ)
K,q =

N∑
i=1

e

me
pi · a(λ)

K,q(k, ri ) + egs

2me
si · [∇i × a(λ)

K,q(k, ri )
]
,

(3)

corresponding to the electric (λ → el) and magnetic (λ →
mg) interactions, respectively. Here, a(λ)

K,q is the coefficient
corresponding to component q of the order-K multipole ex-
pansion of A, as described in Appendix A.

The multipole operator H (λ)
K,q describes the light-atom

interaction of a multipole transition, including all atomic
selection rules and Clebsch-Gordan coefficients. The Clebsch-
Gordan coefficients for a transition between two atomic states
|J, mJ〉 and |J ′, m′

J〉 can be derived from the matrix ele-
ments 〈J ′, m′

J |H (λ)
K,q|J, mJ〉. Since the multipole operators are

irreducible tensor operators [34,57], the matrix element can
be calculated using the Wigner-Eckart theorem [14,51,55],
leading to the selection rules |J ′ − J| � K � J ′ + J , and
q = �mJ .

The term Y(λ)
K,q(k̂) · ε̂ describes the transition amplitude’s

dependence on the light field propagation direction and its
polarization, where Y(λ)

K,q(k̂) are the vector spherical harmon-
ics (see Appendix A) [52,55,56]. For the remainder of this
section, we will focus on this dependence.

By decomposing the term describing the angular depen-
dence into the atomic polarization basis ês, we find

Y(el)
K,q(k̂) · ε̂ =

1∑
s=−1

[
c(−1)

K,q,sY
q−s

K−1(k̂) + c(+1)
K,q,sY

q−s
K+1(k̂)

]
(ês · ε̂),

(4)

Y(mg)
K,q (k̂) · ε̂ =

1∑
s=−1

c(0)
K,q,sY

q−s
K (k̂)(ês · ε̂), (5)

where Y q
K (k̂) are the scalar spherical harmonics as a function

of the unit vector k̂. The explicit values of the c( j)
K,q,s coeffi-

cients for the dipole and quadrupole transitions are given in
Appendix A.

From Eqs. (4) and (5), we observe that, in general, all three
polarization components can contribute to the amplitude of a
given transition, even if their polarization-determined spin s is
different from the change in the electronic angular momentum
q. To conserve angular momentum in such cases, the light field
transfers q − s quanta of orbital angular momentum along
the quantization axis. We further note the dependence of the
transition strength on the direction of k̂ of the light field given
by Y q−s

K (k̂).

B. Angular dependence of E1 and M2 transitions

In the following, we specialize the general formalism to
two scenarios of interest, the well-known E1 transition and

the M2 transition relevant for our experimental studies. For
an E1 transition, we show in Appendix A that the angular
dependence in Eq. (4) simplifies to

Y(el)
1,q (k̂) · ε̂ =

√
3

8π
(êq · ε̂). (6)

The contributions of the polarization components with s �= q
vanish, such that, e.g., for q = 0 only the π polarization
component contributes to the transition amplitude. The ex-
plicit dependence on k̂ also disappears. Hence, we recover the
expected results from the standard dipole interaction Hamil-
tonian, visualized in Fig. 2(a) for a J = 0 to J ′ = 1 transition.

Next, we discuss in detail the M2 transition, the scenario of
interest for the 1S0-3P2 transition in 88Sr. For the relevant case
of J = 0 to J ′ = 2, all Clebsch-Gordan coefficients are equal,
and only the angular dependence determines the relative tran-
sition strengths.

First, we can consider the limiting cases of the light field
propagating parallel to the quantization axis or perpendicular
to the quantization axis. For parallel propagation, the allowed
transitions in Fig. 2(b) are similar to the ones of an E1
transition. However, the allowed transitions for perpendicular
propagation shown in Fig. 2(c) are very different. In this
case, π polarization only drives the �mJ = ±2 transitions,
while the �mJ = ±1 transitions are each driven by both σ±-
polarization components.

The case of an arbitrary propagation direction is visualized
in Fig. 2(d). For a given �mJ , the transition amplitude will
generally have contributions from all polarization components
such that |s − �mJ | � 2. This is as expected from a magnetic
transition with K = 2, which can deliver up to 2 quanta
of angular momentum. A notable exception is the �m = 0
transition, which cannot be driven with π -polarized light
at all, despite not being forbidden by angular momentum
considerations.

The relative magnitude of each polarization component’s
contribution to the transition amplitude into a specific Zeeman
sublevel as a function of the propagation direction is plotted
in Fig. 2(e). This visualization is meant to be used as follows.
First, decompose the polarization vector into the spherical
tensor basis êq [56]. Next, weight each row of Fig. 2(e) accord-
ingly, and finally coherently sum over the rows. The angular
dependencies apply to all M2 transitions, regardless of the
values of J and J ′. For J �= 0, the calculation of the relative
transition amplitudes only needs to be extended by taking into
account the different Clebsch-Gordan coefficients. A detailed
analysis is presented in Appendix A.

Note that the above derivations are based on plane waves
under the assumption of transverse fields (k · ε̂ = 0). Our
derivations can be extended to more general scenarios, such
as strongly focused laser beams [58] and laser beams carrying
orbital angular momentum [59–61].

III. EXPERIMENTAL SETUP

High-resolution spectroscopy of an ultranarrow optical
transition requires a long interrogation time and the suppres-
sion of systematic effects that lead to frequency shifts and line
broadening, most notably the Doppler and ac Stark effects.
For this reason, we perform the 1S0-3P2 spectroscopy using

013219-3



J. TRAUTMANN et al. PHYSICAL REVIEW RESEARCH 5, 013219 (2023)

FIG. 2. The contributions of the atomic-frame light polarization
components of the driving beam to the different �mJ transitions,
where the magnetic field B defines the quantization axis. The
full transition amplitude is obtained by decomposing the physical
polarization and coherently summing the contributions from all com-
ponents (phase information not depicted in figure). (a) The case of an
E1 transition for J = 0 and J ′ = 1. The π and σ± polarizations drive
only the �mJ = 0 and ±1 transitions, respectively. The transition
amplitude does not depend on the propagation direction beyond
the constraints it imposes on the polarization. (b) An M2 transition
driven by a probe beam propagating along the quantization axis for
J = 0 and J ′ = 2. As for the E1 transition, σ± polarizations drive
only �mJ = ±1, respectively. (c) As in panel (b), but for propagation
perpendicular to the quantization axis. Here both σ± contribute to
each of the �mJ = ±1 transitions, while the π polarization drives
only the �mJ = ±2 transitions. (d) As in panel (c), but for an
arbitrary relative angle θ between propagation and quantization axis.
Nearly all polarization components can contribute to all �mJ transi-
tions, with the transition amplitudes depending on θ . (e) The angular
dependence of the amplitudes of M2 transitions for each polarization
and �mJ as a function of θ , as defined in panel (d).

a sample of ultracold strontium atoms trapped in an optical
lattice.

For the measurements presented in this paper, we prepare a
sample of strontium 88Sr in a fast and dense magneto-optical
trap [62] and then optically transport it into the interroga-
tion region [63] using a moving optical lattice [64]. In the

FIG. 3. Magnetic quadrupole transition in 88Sr. (a) Schematic of
the experimental setup, including lattice (probe) wave vector k̂l (k̂)
and magnetic field B tilted at an angle θ . The probe polarization ε̂

is linear with the major component in the plane spanned by k̂l and
B; the lattice polarization ε̂l is also linear. (b) Calculated angular
dependence of the transition amplitude as a function of θ for the
probe polarization ε̂ discussed in the main text. (c) Experimental
study of the 1S0-3P2 transition for all mJ states as a function of θ . The
line strengths of the measured spectra follow the calculated patterns
of panel (b), but the spectra are broadened due to the differential ac
Stark shift of the 1S0 and the 3P2 mJ states. The markers represent an
average of three measurements, the error bars represent the standard
error of the mean, and the solid lines are a guide to the eye.

interrogation region, we adiabatically load the atoms into a
vertical, retroreflected, one-dimensional (1D) optical lattice at
1064 nm, sketched in Fig. 3(a). We operate at sufficient lattice
depth to suppress Doppler broadening in the Lamb-Dicke
and resolved-sideband regimes [65]. The lattice polarization
ε̂l can be dynamically controlled by motorized waveplates,
allowing control over the excited-state polarizability, as will
be explained in detail in the following sections. After loading,
we cool the atoms to the axial vibrational ground state using
direct sideband cooling on the 1S0-3P1 �mJ = ±1 transitions
[63]. Typically, we achieve axial temperatures of ∼1.5 µK,
measured with time-of-flight expansion.

To probe the 1S0-3P2 transition, we interrogate the atoms
with the spectroscopy laser beam. The beam is derived from
a diode laser stabilized to a reference cavity with a finesse of
∼25 000, resulting in a laser linewidth on the order of 1 kHz.
The spectroscopy beam propagation direction k̂ is collinear
with the vertical lattice k̂l and is focused to a 1/e2 waist of
∼450 µm at the position of the atoms. The spectroscopy beam
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polarization ε̂ is linear and fixed throughout all the measure-
ments reported in this paper. Typically, the spectroscopy is
performed with a beam power of 25.8 mW, and interrogation
times range from tens to hundreds of milliseconds.

After applying the spectroscopy pulse, we measure the
number Ng of 1S0 ground-state atoms with absorption imag-
ing. Since the 3P2 state has a long natural lifetime [39], atoms
excited to 3P2 do not spontaneously decay back to the ground
state over the duration of the experiment. Hence, the spectro-
scopic signal manifests as a reduction of the 1S0 atom number.
The excited atoms are lost from the trap through inelastic col-
lisions between metastable triplet atoms [26,48,63,66,67]. To
compensate for possible drifts in atom number, we interleave
identical experiments, but with an off-resonant spectroscopy
pulse. The atom number N0 measured in these reference mea-
surements is used to normalize the baseline of the measured
spectra.

Further details about the experimental setup and sequence
can be found in Appendix B.

IV. QUADRUPOLE TRANSITION ANGULAR
DEPENDENCE

We experimentally investigate the angular dependence of
the 1S0-3P2 M2 transition by varying the angle θ between the
quantization axis, defined by a bias magnetic field B, and the
probe beam propagation direction k̂.

In practice, we vary θ by changing the direction of B, while
keeping all beam propagation directions and polarizations
fixed, as sketched in Fig. 3(a). We use a bias field magnitude
of 1 G, which splits the transition to each magnetic sublevel
of the 3P2 state by 2.1 MHz, and use a linear lattice polar-
ization ε̂l. The bias field magnitude is a compromise between
having a well-defined quantization axis and the requirement to
minimize contributions of possible E1 transitions due to state
mixing [16].

We label the plane in which we vary B in this measurement
as the xz plane, where the z is vertical. In this coordinate
system, the probe polarization is oriented 5◦ from the x axis in
the xy plane. For this configuration, the �mJ = 0 transition
is expected to be much weaker than the other transitions,
since only the small out-of-plane y component contributes to
driving the transition (see Appendix A). To ensure that even
weak spectral features, such as the �mJ = 0 transition for
all angles and the �mJ = ±1 transition for θ = π/2, will be
made visible, we choose a long interrogation time of 500 ms.
We note that for an E1 transition, such a geometry would
result in a significant transition amplitude for �mJ = 0 as θ

approaches π/2, since in the atomic frame the probe beam
becomes predominantly π polarized. Therefore, this choice
of orientations allows us to discern the existence of possible
residual E1 contributions to the transition amplitude.

In Fig. 3(b), we plot the expected absorption patterns as
a function of θ . The transition amplitude depends on θ for
each polarization, both explicitly as described by Eq. (5) and
visualized in Fig. 2(e), and implicitly through the change
of the probe beam’s polarization decomposition into the
atomic frame. The experimental spectra of the individual
1S0-3P2 �mJ transitions are shown in Fig. 3(c).

We observe spectra that are consistent with the expecta-
tions based on Fig. 3(b). First, for θ = 0, we can only drive
the transitions to the �mJ = ±1 states, as for an E1 transi-
tion with the same polarization. Next, for 0 < θ < π/2, we
observe transitions to all excited states, including �mJ = ±2,
which are forbidden for an E1 transition. Finally, for θ = π/2,
we once again see a complete suppression of the �mJ = 0
transition, while still being able to drive �mJ = ±1 and
�mJ = ±2.

We also observe that each of the lines is broadened and
shifted by the differential ac Stark shift of the 1S0 and 3P2

states from the trapping lattice, which depends on the 3P2

Zeeman sublevel and θ . These light shifts complicate a quan-
titative analysis of the transition strengths in the general case.
Nonetheless, the observed transition strengths qualitatively
agree with the calculated angular dependence of the M2
transition amplitude, allowing us to clearly see the unique
properties of the M2 transition and how it differs from an E1
transition.

Considering the strong suppression of the �mJ = 0 tran-
sition at θ = π/2, we conclude that at a magnetic field of
1 G, the transition is entirely due to M2 coupling, with a
negligible E1 contribution (e.g., via state mixing). In separate
measurements, we tested the amplitude of the �mJ = 1 as
a function of magnetic field magnitude up to 200 G at fixed
θ = 0, and observed no visible effect. From these experiments
we conclude that the contribution of the E1 coupling due to
state mixing is negligible compared to the M2 coupling, for a
magnetic field of up to 200 G.

In addition, we verified that a magnetic field magnitude
of 1 G defined the quantization axis sufficiently well for
this measurement. Comparing measurements at fields of 1 G
and 5 G under otherwise identical conditions, we observe no
change to the spectral line’s properties.

Finally, we note that the spectrum of the �mJ = 0 tran-
sition for θ = 3π/8, marked with a star, is significantly less
broadened than the other spectra presented in Fig. 3(c). It
is sufficiently narrow to observe motional side bands at the
trap frequency. Based on this observation, we engineer in
the following sections Stark-shift-free trapping conditions for
specific applications.

V. MAGNETIC-FIELD-INSENSITIVE TRANSITION

As demonstrated in the previous section, high-precision
spectroscopy in optical lattices requires understanding and
control of the differential ac Stark shift due to the optical
trap. These differential Stark shifts can be suppressed by
engineering the response of the atomic states involved in the
transition. For the 1S0-3P0 clock transition in Sr, this is typ-
ically done by working at the so-called “magic wavelength”
around 813.4 nm [68,69]. As we have observed in Fig. 3, such
a magic condition can also be found for the magnetically in-
sensitive 1S0-3P2 �mJ = 0 transition by tilting the magnetic
field angle θ .

In this section, we experimentally determine the magic
field angle, which allows us to measure the absolute frequency
of the 1S0-3P2 transition in bosonic 88Sr. In a complemen-
tary measurement, we also find the absolute frequency of the
1S0-3P2 in fermionic 87Sr and extract the isotope shift.

013219-5



J. TRAUTMANN et al. PHYSICAL REVIEW RESEARCH 5, 013219 (2023)

A. Tensor polarizability tuning

Stark shifts in high-resolution Doppler-free spectroscopy
are well-understood [18,69,70]. Here, we briefly summarize
the relevant information.

The Stark shift of an atomic level |i〉 is proportional to
the light intensity and the dynamic dipole polarizability αi.
The polarizability can be decomposed into scalar, vector, and
tensor components [18,37,70], with different contributions
depending on the Zeeman sublevel and the optical lattice
polarization

αi(λl, β, γ ) = αs
i (λl ) + αv

i (λl ) sin(2γ )
mJ

2J

+ αt
i (λl )

3 cos2 β − 1

2

3m2
J − J (J + 1)

J (2J − 1)
. (7)

The coefficients αs
i , αv

i , and αt
i of the scalar, vector, and ten-

sor terms, respectively, depend only on the atomic state and
the wavelength λl = 2π/kl of the optical lattice. The lattice
polarization ε̂l is characterized by the angles β and γ , where
cos2 β = |ε̂l · B̂|2, and γ is the ellipticity angle [37,71]. We
can write any elliptical lattice polarization as ε̂l = cos γ êl,1 +
i sin γ êl,2, where êl,1 and êl,2 are orthogonal basis vectors of
the lattice polarization plane perpendicular to kl. For a linear
lattice polarization, β is the angle between the polarization
vector and the quantization axis, and γ = 0. A more detailed
discussion can be found in Appendix D.

The vector and tensor polarizabilities of the 1S0 ground
state vanish because J = 0 and mJ = 0, and hence the ground-
state polarizability is independent of β and γ .

The results presented in Sec. IV serve as a good demonstra-
tion of tuning the tensor polarizability. In that measurement,
we used a linearly polarized lattice, which resulted in a van-
ishing vector component also for the 3P2 state. The tensor
polarizability of the 3P2 state does depend on θ , as the rotation
of the magnetic field also changes β, leading to different light
shifts for each value of θ and each mJ state.

This variation is most strongly apparent when consider-
ing the spectra for the �mJ = 0 transition in Fig. 3(d). As
previously discussed, the width of this transition changes
dramatically as we vary θ , reaching a narrow linewidth at
θ = 3π/8 (marked with a star).

Varying θ more finely around this value allows one to
find the angle for which the differential ac Stark shift van-
ishes. Taking into account the precise orientation of the
lattice polarization ε̂l, we find that the “magic angle” for the
1S0-3P2 �mJ = 0 transition is β0 = 0.09(1) π , in excellent
agreement with the theoretically expected value of 0.089 π

(see Appendix D).

B. Spectroscopy of the �mJ = 0 transition

To find the absolute transition frequency, we probe the
magnetic-field-insensitive 1S0-3P2 �mJ = 0 transition in a
Stark-shift-free lattice. We enhance the transition amplitude
compared to the measurement performed in Sec. IV by choos-
ing a different orientation for the magnetic field. We use a
lattice polarization ε̂l = (ε̂l = ŷ), and rotate the magnetic field
in the yz plane. In these measurements, we use a bias magnetic
field of 5 G.

FIG. 4. Carrier (circles) and motional sideband (squares) spec-
trum of the 1S0-3P2 �mJ = 0 transition in a Stark-shift-free 1D
optical lattice. The sidebands are probed for ten times longer than
the carrier. The markers represent an average of 10 measurements,
and the error bars are the standard error of the mean. The solid lines
are fits, with the carrier fitted to a Gaussian and the sidebands to the
sideband lineshape discussed in Appendix C.

At β0, we probe the transition with an interrogation
time of 35 ms and find the spectrum shown in Fig. 4. By
fitting the carrier to a Gaussian lineshape, we extract a full-
width-at-half-maximum (FWHM) linewidth of 2.12(5) kHz,
confirming that our spectroscopy laser allows resolving spec-
tral features on the kHz scale.

Due to the narrow transition linewidth, we can spectro-
scopically resolve the motional sidebands. At a detuning
corresponding to the blue (red) sideband, atoms are trans-
ferred to higher (lower) vibrational states of the lattice. The
sidebands are asymmetrically broadened toward the carrier
due to the radial variation of the trap frequency over the spatial
extent of the cloud [65]. To compensate for the suppressed
sideband amplitude in the Lamb-Dicke regime [36,65,72], we
probe the sidebands for 350 ms. We further enhance the red
sideband by working with a hot atomic sample. The sideband
spectrum for a cold sample is shown in Fig. 8 in Appendix C.

Finally, we use an optical frequency comb to obtain the
absolute frequency of the spectroscopy laser at the carrier res-
onance conditions. We find the absolute transition frequency
of the 1S0-3P2 transition in 88Sr to be 446, 647, 242, 704 ±
0.04stat ± 2sys kHz.

We additionally measure the absolute transition frequency
for 87Sr. While the presented light-shift-engineering tech-
niques also enable the realization of a Stark-shift-free lattice
for the various states of 87Sr, we leave the determination
of suitable magic conditions for future work. Nonetheless,
we find the frequency of the 1S0-3P2 (F = 9/2) transition
in 87Sr to be 446, 647, 798, 443 ± 5stat ± 40sys kHz. Taking
into account the known hyperfine structure of 87Sr [73], our
measurements lead to an isotope shift ν(88Sr) − ν(87Sr) =
+62.91(4) MHz.

A detailed discussion of the spectroscopy and its uncertain-
ties can be found in Appendix C.

VI. MAGNETIC-FIELD-SENSITIVE TRANSITION

Atoms trapped in optical lattices can be addressed and
controlled by laser beams in combination with a magnetic
field gradient that locally modifies the atomic resonance fre-
quency [42,44,74]. This so-called local addressing enables
controlling individual atomic qubits in quantum computing
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schemes [41,75]. The achievable spatial resolution is only
limited by the strength of the gradient and the effective tran-
sition linewidth—taking into account all possible broadening
mechanisms—and thus can allow super-resolution addressing
beyond the diffraction limit.

Here, we use this technique to demonstrate how to isolate
a single layer of a 1D optical lattice in the focus of a quan-
tum gas microscope [43,44,76]. We aim to address only the
atoms in a single lattice site using the magnetic-field-sensitive
1S0-3P2 �mJ = 1 transition and a magnetic field gradient.
The gradient splits the resonance frequencies of neighboring
lattice layers by tens of kHz, much larger than the several kHz
of broadening caused by mG-scale temporal and spatial vari-
ations in the magnetic field. To make the magnetic gradient
uniform across the transverse extent of the optical lattice, we
combine the gradient with a ∼100 G bias field pointing along
the lattice.

For this technique to work, we need to engineer the
differential ac Stark shift for this transition such that the
linewidth becomes smaller than the frequency splitting be-
tween neighboring layers. However, since the bias magnetic
field must point along the lattice, we cannot use it to tune
the tensor polarizability as in Sec. V. Instead, here we
use the vector light shift and adjust the ellipticity angle
γ of the lattice polarization in Eq. (7), until we find a
“magic ellipticity” γ0 where the differential ac Stark shift
vanishes.

A. Vector polarizability tuning

As a first step, we investigate the differential light shift as
a function of γ . We define the quantization axis by applying
a static magnetic field of 20 G pointing along the −z axis as
indicated in Fig. 5(a). The wave vectors of the lattice and the
probe beam are aligned parallel to the quantization axis. The
lattice has an elliptical polarization described by γ in the xy
plane.

For a fixed ellipticity, we probe the spectrum of the
1S0-3P2 �mJ = 1 transition for several lattice powers, as
shown in Fig. 5(b). We observe a shift of the carrier fre-
quency as a function of the lattice power and an asymmetric
broadening of the line. Spectra with an ellipticity close to the
Stark-shift-free condition at γ0 are shown in Fig. 5(c). The
residual linewidth is determined by magnetic field fluctuations
on the 10−5 level.

To study the differential light shift, we extract the
carrier frequencies by fitting the spectra with lineshapes
discussed in Appendix C. For each value of γ , we find
that the ac Stark shift changes linearly with the lat-
tice power, with some examples plotted in the inset of
Fig. 5(d). We plot the linear Stark shift coefficient as a
function of the ellipticity angle γ in Fig. 5(d). By fit-
ting these Stark-shift coefficients, we obtain the magic
ellipticity angle γ0 = 0.106(3)π . This value is in excellent
agreement with the theoretical expectation of 0.108π . In
Appendix D, we show the corresponding polarizability calcu-
lations and provide further details on the experiments and their
analysis.

FIG. 5. Characterization of the vector ac Stark shift of the
1S0-3P2 �mJ = 1 transition. (a) Simplified schematic of the exper-
imental setup, emphasizing the differences compared to Fig. 3(a).
Here, the magnetic field is oriented vertically, and the lattice polariza-
tion is elliptical. (b) Spectra in a lattice of elliptical polarization with
an ellipticity angle of γ = 0.17π for a lattice power of 2.5 W (dots)
and 7.5 W (squares). The sidebands (open markers) are excluded
from the fit. The markers represent an average of three measure-
ments, and the error bars are the standard error of the mean. The
solid lines are fits to the expected ac-Stark-shift-broadened lineshape
as discussed in Appendix C. (c) As in panel (b), but for γ = 0.09π .
The solid lines are Gaussian fits. (d) Differential ac Stark shift as a
function of the ellipticity angle. To extract the magic ellipticity angle
γ0, we fit the data with the function a0[sin(2γ ) − sin(2γ0)] (solid
line), see Appendix D. The inset shows an example ac Stark shift
measurements for three different elliptical lattice polarizations. We
fit the data with a linear function, where the slope is the linear Stark
shift coefficient. Vertical error bars represent 1-σ uncertainty on the
plotted parameter. Horizontal error bars represent the experimental
uncertainty on the lattice polarization, discussed in Appendix D.

B. Local addressing

Finally, in a proof-of-principle experiment, we demonstrate
local addressing on the 1S0-3P2 �mJ = 1 transition in a
Stark-shift-free optical lattice at γ0 within a magnetic field
gradient.

To reduce the number of initially populated lattice layers
and thereby enhance the signal-to-noise ratio of the spectro-
scopic data, we compress the atomic cloud vertically using
a light sheet before loading the atoms into the vertical lattice
(see Appendix B). After this procedure, we obtain a significant
atomic population over ∼8 lattice sites. Then, we apply a mag-
netic field gradient of 215 G/cm together with a bias magnetic
field of 80 G along the −z axis as shown in Fig. 6(a). This
gradient splits the 1S0-3P2 �mJ = 1 resonance frequencies of
neighboring layers by 24 kHz.

Then, we perform a “spectral hole burning” measurement.
We address the atoms with a preparation pulse on the 1S0-3P2

transition, followed by the spectroscopy sequence as in the
previous sections. The atoms that are excited to the 3P2 state
by the preparation pulse are quickly lost from the trap due
to inelastic collisions, as discussed in Sec. III. Therefore,
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FIG. 6. (a) Simplified schematic of the experimental setup, em-
phasizing the differences compared to Fig. 3(a). We compress the
atomic cloud using a light sheet such that the atoms populate only a
few lattice sites (left). With a magnetic field gradient of 215 G/cm
we create a spatially-dependent Zeeman shift (right) that splits neigh-
boring lattice sites by 24 kHz on the 1S0-3P2 �mJ = 1 transition.
(b) Local addressing in an 1D optical lattice using the 1S0-3P2

transition in a magnetic field gradient. The spectrum is broadened
according to the spatial extent of the atomic cloud and the magnetic
field gradient. Atoms in the layer that is resonant with the detuning
of preparation pulse (red) are depleted prior to the spectroscopy,
resulting in a dip in the spectrum at the appropriate detuning. The
markers represent an average of 10 measurements, and the error bars
are the standard error of the mean. The data is fitted to a broad
Gaussian with a narrow Gaussian dip, with the solid (dashed) line
representing the fitted curve with (without) the contribution of the
narrow dip.

when setting the spectroscopy pulse to the same frequency, we
expect not to find any remaining ground-state atoms to excite.
We use 300 ms-long and 200 ms-long pulses for preparation
and spectroscopy, respectively.

Scanning the spectroscopy pulse detuning, we obtain the
spectrum shown in Fig. 6(b). It is inhomogeneously broad-
ened by the magnetic field gradient across the atomic sample
to a FWHM >100 kHz. Around the detuning used for the
preparation pulse, we observe a dip in the depletion curve.
From this dip we infer that the preparation pulse indeed ad-
dressed and depleted the atoms only in a specific layer, while
atoms in other layers were not influenced.

We characterize the spatial resolution corresponding to the
narrow depletion dip of the cloud with the one-dimensional
Rayleigh criterion, which requires the dip between the peaks
of two Gaussians drop to 81% of the maximum [77]. If
we apply this criterion to the observed depletion dip, we
obtain a spatial resolution of 494(45) nm for the address-
ing pulse. This resolution should be sufficient to clearly
resolve single lattice layers in the future, for which a more
stable mechanical mounting of the lattice retroreflector is
needed. Our results pave the way to the preparation of
a single lattice layer and to local addressing of qubits
in quantum computing applications with neutral strontium
atoms.

VII. CONCLUSIONS

In this paper, we demonstrate that the 1S0-3P2 magnetic
quadrupole transition in neutral strontium can be used as
a precise tool for quantum simulation and quantum com-
putation experiments. We present the first Doppler- and
Stark-shift-free optical spectroscopy of this transition in

bosonic 88Sr with kilohertz precision. We suppress differ-
ential light shifts by tuning the polarizability of the 3P2

state either by tilting the angle of the magnetic field with
respect to the optical lattice or by adjusting the lattice po-
larization. We measure the absolute transition frequency to
an accuracy of better than 10 kHz for 88Sr and to better
than 100 kHz for 87Sr, orders-of-magnitude improvements
over previous results [50,78]. In addition, we present a the-
oretical framework and experimental demonstration of the
polarization and propagation-direction dependence of the
transition amplitude associated with a magnetic quadrupole
transition, and high-order multipole transitions in general.
Finally, in a proof-of-principle experiment, we locally address
atoms in an optical lattice with a magnetic field gradient
and demonstrate a spatial resolution at the half-micrometer
scale.

The tunability of the 3P2 state with external fields and its ul-
tranarrow transition linewidth offer advantages in controlling
and manipulating excited state atoms for quantum simulation.
In this paper, we took advantage of the tunability of this state’s
ac Stark shift to generate differential-Stark-shift-free lattices
for transitions between the ground state and different Zeeman
sublevels of the 3P2 state at a wavelength of 1064 nm, where
high laser powers are readily available. This tunability can be
taken advantage of also for additional wavelengths and states,
as discussed in detail in Appendix D. Notably, we predict trap-
ping conditions with the same ac Stark shift simultaneously
for the 1S0, 3P0, and 3P2 mJ = 0 states.

The magnetic field sensitivity of the 3P2 state also allows
single-site addressing in an optical lattice within a magnetic
field gradient, which is impractical with the insensitive 3P0

state. This addressing enables the isolation of a single layer
of an optical lattice required as a preparation step for quan-
tum gas microscope experiments [45,46,79]. Furthermore,
the scattering properties between 1S0 and 3P2 atoms can be
tuned with a magnetic field, enabling the search for magnetic
Feshbach resonances in strontium, similar to those already
observed in ytterbium [47].

The properties of the magnetically insensitive 1S0-3P2

�mJ = 0 transition create opportunities in quantum compu-
tation with alkaline earth atoms [40,41,49]. Our experiments
demonstrate the first steps towards the full control over this
transition, which can also serve as an optical qubit. One ad-
vantage of the M2 transition is that in bosonic isotopes the
transition can be driven without applying a large magnetic
field [16]. Recent theoretical proposals [80] to use the 3P0

and 3P2 mJ = 0 states as a fine-structure qubit for quantum
computing highlight the need to investigate the 3P2 state in
strontium experimentally. Being able to excite atoms from 1S0

to both 3P2 and 3P0 states without differential Stark shifts in
the same optical lattice paves the way to investigate this fine
structure qubit.
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APPENDIX A: MULTIPOLE TRANSITION AMPLITUDES

In this section, we present the derivation of the multipole
decomposition of the light-matter interaction Hamiltonian in
Eq. (1) that leads to Eqs. (2)–(5).

1. Light-matter interaction Hamiltonian

Since the relevant literature on multipole transitions in
two-electron atoms dates back to the 1960s, and is sometimes
inconsistent in the sign conventions for g factors, or sets
gs/2 ≈ 1 without mentioning the sign convention used, we
show explicitly the steps in deriving Eq. (1) in the main text.

We start with the interaction between an electromag-
netic field and a single electron with charge qe = −e and
mass me, bound in the potential V (r). The electromag-
netic field is described by a vector potential A and a
scalar potential �, and the interaction is modelled by the
Hamiltonian [81]

H = 1

2me
[p − qeA(r)]2 + qe�(r) + V (r), (A1)

in SI units. In the Coulomb gauge, the interaction part of
the Hamiltonian in Eq. (A1) can be written as the minimal-
coupling interaction Hamiltonian [54,82]

Hint = − qe

me
p · A(r) + q2

e

2me
A(r)2. (A2)

Here, we neglect the second-order term in A, but add the
Zeeman interaction between the magnetic moment μ of the
electron and the magnetic field B(r) created by the vector
potential [83]

HZ = −μ · B(r) = −μ · [∇ × A(r)], (A3)

where the negative sign ensures that it is energetically favor-
able for the magnetic moment to align parallel to the magnetic
field. The magnetic moment of the electron is antiparallel to its
spin s [83], which we write explicitly using a positive electron
spin g factor as

μ = −gs
μB

h̄
s = −gs

e

2me
s, (A4)

where μB = eh̄/2me is the Bohr magneton, and h = 2π h̄ is
Planck’s constant. Note that we are free to model the an-
tiparallel alignment of the spin with respect to the magnetic
moment by including the minus sign in the g factor or in
the sign of the charge, but not both at the same time. Here,
we choose to work with positive charges and g factors and
write the signs explicitly. Putting everything together, we

arrive at

Hint � + e

me
p · A(r) + gse

2me
s · [∇ × A(r)], (A5)

whose generalization to more than one valence electron is
presented in Eq. (1).

2. Full multipole Hamiltonian

We begin the discussion by taking a closer look at the
vector potential A. We approximate the potential as a plane
wave propagating along k, such that A(r) = A0ε̂ exp(ik · r),
where ε̂ is the polarization vector, the hat marks a unit vector,
and A0 is the amplitude of the vector potential.

A natural approach would be to take advantage of the fact
that the size of the atom is small compared to the wavelength
of the laser beam, and expand the plane wave in terms of
k · r � 1. However, this procedure turns out to be inconve-
nient for the separation of the individual electric and magnetic
higher-order multipole contributions [14]. Instead, we expand
the vector potential in vector spherical harmonics YKlq [52],

YKlq(θ, φ) = (−1)K−q
√

2K + 1

×
+1∑

p=−1

(
K 1 l
−q p q − p

)
Y q

l (θ, φ)êp, (A6)

where the term in parentheses represents a Wigner-3 j symbol.
Then, the vector potential is given by

A(r) =
∑
Klq

AKlqYKlq(r̂). (A7)

In the literature [52], the vector spherical harmonics are typi-
cally labeled with JLM. However, we choose the notation Klq
to avoid confusion about the labels with the angular momen-
tum of the relevant atomic states. To simplify the notation, we
use the unit vector r̂ as the argument of the vector spherical
harmonics to represent the polar angles θr and φr describing
the orientation of r. Similarly, we use k̂ to represent θ and φ

below as in the main text. The expansion coefficients are given
by

AKlq = A0

∫ π

0
dθ sin θ

∫ 2π

0
dφ YKlq(r̂) · ε̂ eik·r. (A8)

Inserting the expansion of a plane wave in spherical harmonics
Y q

l and spherical Bessel functions jl [84],

eik·r = 4π
∑
l,q

il jl (kr)Y q∗
l (k̂)Y q

l (r̂), (A9)

we solve the integral in Eqn. (A8) and obtain [52]

A(r) = 4πA0

∑
K,l,q

il (YKlq(k̂) · ε̂) jl (kr)YKlq(r̂). (A10)
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Before we continue, we define another, more convenient, set of vector spherical harmonics Y(λ)
Kq [52],

Y(−1)
Kq (r̂) =

√
K

2K + 1
YKK−1q(r̂) −

√
K + 1

2K + 1
YKK+1q(r̂) = r

r
Y q

K (r̂),

Y(0)
Kq(r̂) = YKKq(r̂) = 1√

K (K + 1)
(−ir × ∇)Y q

K (r̂),

Y(1)
Kq(r̂) =

√
K + 1

2K + 1
YKK−1q(r̂) +

√
K

2K + 1
YKK+1q(r̂) = r√

K (K + 1)
∇Y q

K (r̂). (A11)

Using Y(λ)
Kq , the expansion of A(r) becomes [52]

A(r) = 4π
∑
Kqλ

iK−λ
(
Y(λ)

Kq (k̂) · ε̂
)

a(λ)
Kq (r̂), (A12)

with

a(0)
Kq(r̂) = A0 jK (kr)Y(0)

Kq(r̂),

a(1)
Kq(r̂) = A0

[√
K + 1

2K + 1
jK−1(kr)YKK−1q(r̂)

−
√

K

2K + 1
jK+1(kr)YKK+1q(r̂)

]
. (A13)

We identify the terms with λ = 0 and λ = 1 as the magnetic
and electric multipole components, respectively [52]. This
allows us to write λ = 0 (1) or λ = mg (el), interchangeably.
The term Y(−1)

Kq is parallel to k, and thus its contribution van-
ishes under the assumption of k · ε̂ = 0. Using the expansion
of the vector potential, the light-matter interaction Hamilto-
nian in the Coulomb gauge becomes

Hint = 4π
∑

λ∈{0,1}

∞∑
K=1

K∑
q=−K

iK−λ
(
Y(λ)

Kq (k̂) · ε̂
)

×
N∑

i=1

{
e

me
pi · a(λ)

Kq (r̂i ) + egs

2me
si · [∇i × a(λ)

Kq (r̂i )
]}

≡ 4π
∑

λ∈{0,1}

∞∑
K=1

K∑
q=−K

iK−λ
(
Y(λ)

Kq (k̂) · ε̂
)
H (λ)

K,q, (A14)

as presented in the main text.

3. Atomic transition terms

General expression. We can write the explicit expressions
for the electric and magnetic contributions as [33]

H (el)
K,q = A0bK kK Q(el)

K,q(r1, . . . , rN ), (A15)

H (mg)
K,q = A0bK kK Q(mg)

K,q (r1, . . . , rN ), (A16)

where the proportionality factors are chosen to be consistent
with the literature on multipole transitions [33,34,53],

bK =
√

(2K + 1)(K + 1)

4πK

1

(2K + 1)!!
, (A17)

and we emphasize that the multipole transition operators
Q(λ)

K,q are functions of all valence electron positions ri. We

find

Q(el)
K,q =e

√
4π

(2K + 1)

N∑
i=1

rK
i Y q

K (r̂i ), (A18)

Q(mg)
K,q = e

me

√
4π

(2K + 1)

×
N∑

i=1

[
∇i

[
rK

i Y q
K (r̂i )

]( 1

K + 1
li + gs

2
si

)]
. (A19)

Here, li is the orbital angular momentum operator of the ith va-
lence electron. In contrast to older literature [85], we include
h̄ in both orbital angular momentum and spin operators.

Selection rules and Clebsch-Gordan coefficients. Let us
now consider an attempt to drive the atom from the state
|i〉 = |γ , J, mJ〉 to the state | f 〉 = |γ ′, J ′, m′

J〉. Here, γ rep-
resents the state’s radial wave function, J is its total angular
momentum, and mJ is the projection of this angular momen-
tum onto the quantization axis. Since Q(el)

K,q and Q(mg)
K,q are

irreducible tensor operators of rank K [34,57], we can use the
Wigner-Eckart theorem [14,51,55] to obtain

〈 f |Q(λ)
K,q|i〉 = (−1)J ′−m′

(
J ′ K J

−m′ q m

)

× 〈γ ′, J ′‖Q(λ)
K ‖γ , J〉, (A20)

where 〈γ ′, J ′‖Q(λ)
K ‖γ , J〉 is the reduced matrix element. This

procedure leads to the standard angular momentum selection
rules tying (K, q) to (J, J ′, mJ , m′

J ) as described in the main
text.

Taking into account the conservation of parity leads to
additional selection rules. Inverting the spatial coordinates of
all electrons (ri → −ri) in Eqs. (A18) and (A19), we find that
the electric multipole operator Q(el)

K,q has a parity of (−1)K ,

while the magnetic multipole operator Q(mg)
K,q has a parity of

(−1)K+1. In other words, states with identical parity can be
coupled by electric transitions with even K and magnetic tran-
sitions with odd K ; conversely, states with opposite parity can
be coupled by electric transitions with odd K and magnetic
transitions with even K .

Transitions in two-electron atoms. We now apply these
rules to understand the important transitions from the ground
state, shown in Fig. 1, in two-electron atoms without nuclear
spin, such as 88Sr.

We note that the 1S0 state has J = 0, and thus only the
terms with K = J ′ can contribute. Since K � 1, the 1S0-3P0

transition cannot be driven at all. For 1P1 and 3P1, we can
have only a dipole transition (K = 1). Because the parity of
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the ground and excited states is opposite, it has to be an E1
transition. This is indeed the case for the 1S0-1P1 transition,
which is a strong E1-allowed transition. In contrast, the
1S0-3P1 transition is forbidden by another selection rule
arising from Eq. (A18): The electric transition operators Q(el)

K,q
do not couple to the electronic spin and thus cannot change
the spin quantum number.

The 1S0-3P1 and 1S0-3P0 transitions are only allowed due to
state mixing in heavy atoms: The bare LS-coupling 3P◦

1 state
is mixed with the bare 1P◦

1 state through LS-coupling violation
[15], and the bare 3P◦

0 state can be mixed with the 3P1 state by
applying external magnetic fields [16] or via hyperfine cou-
pling in the fermionic isotope [15]. State-mixing effects relate
to the Hamiltonian of the unperturbed atom, rather than to the
interaction Hamiltonian, and thus they are outside the scope of
the derivations presented here. In summary, the 1S0-3P1 and
1S0-3P0 transitions are fundamentally related to the 1S0-1P1

transition, and thus have E1 characteristics.
Applying the same considerations to the 1S0-3P2 transition,

the transition must have a quadrupole character (K = 2), and
from parity considerations it must be a magnetic quadrupole
transition. Unlike the previous cases, this transition can be
driven directly, even without considering state mixing. How-
ever, as for the 1S0-3P0 transition, it is possible to induce an
E1 contribution by an external magnetic field. As discussed in
the main text, we find that for fields up to 200 G this effect is
negligible, and the transition can be considered to be entirely
M2.

4. Angular dependence terms

We now discuss the transition amplitude’s angular depen-
dence described by the terms Y(λ)

K,q(k̂) · ε̂. Substituting the
definitions of the vector spherical harmonics presented above
into this expression, we obtain the expressions presented in
Eqs. (4) and (5) in the main text.

In Table I, we present the explicit values of the decompo-
sition coefficients c( j)

K,q,s for the first two orders corresponding
to E1, M1, E2, and M2 transitions.

Coordinate system. Here, we define the natural coordinate
system used to calculate the transition amplitude’s angular
dependence. This coordinate system is illustrated in Fig. 7(a)
and begins with the z axis that is already set by our choice
of the quantization axis. We find that choosing the direction
of x such that k is contained in the xz plane is convenient,
since then the spherical harmonics Y q

K (θ, φ = 0) are real. This
choice results in the fact that explicitly complex terms only
occur in the polarization decomposition terms ês · ε̂. Next, we
decompose a linear polarization vector into the out-of-plane
ε̂1 component (along ŷ) and the in-plane component ε̂2 (in the
xz plane). The orientation of k in the xz plane is defined by θ ,
and the orientation of ε̂ in the plane spanned by ε̂1 and ε̂2 is
defined by ρ. Explicitly, we find

B = Bẑ,

k = k(cos θ ẑ + sin θ x̂),

ε̂1 = ŷ,

ε̂2 = sin θ ẑ − cos θ x̂,

ε̂ = sin ρε̂1 + cos ρε̂2. (A21)

TABLE I. Angular dependence coefficients c( j)
K,q,s in Eqs. (4)

and (5) for electric dipole (E1), magnetic dipole (M1), electric
quadrupole (E2), and magnetic quadrupole (M2) transitions.

s = −1 s = 0 s = +1
σ− π σ+

E1

Y q−s
0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q = −1 c(−1)
1,−1,s

√
20
30 0 0

q = 0 c(−1)
1,0,s 0

√
20
30 0

q = 1 c(−1)
1,1,s 0 0

√
20
30

Y q−s
2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q = −1 c(+1)
1,−1,s

√
1

30 −
√

3
30

√
6

30

q = 0 c(+1)
1,0,s −

√
3

30 −
√

4
30

√
3

30

q = 1 c(+1)
1,1,s

√
6

30 −
√

3
30

√
1

30

M1

Y q−s
1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q = −1 c(0)
1,−1,s

√
1
2 −

√
1
2 0

q = 0 c(0)
1,0,s

√
1
2 0 −

√
1
2

q = 1 c(0)
1,1,s 0

√
1
2 −

√
1
2

E2

Y q−s
1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q = −2 c(−1)
2,−2,s

√
3
5 0 0

q = −1 c(−1)
2,−1,s

√
3

10

√
3

10 0

q = 0 c(−1)
2,0,s

√
1

10

√
2
5

√
1

10

q = 1 c(−1)
2,1,s 0

√
3

10

√
3

10

q = 2 c(−1)
2,2,s 0 0

√
3
5

Y q−s
3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q = −2 c(+1)
2,−2,s

√
2

105 −
√

2
21

√
2
7

q = −1 c(+1)
2,−1,s

√
2
35 −

√
16
105

√
4
21

q = 0 c(+1)
2,0,s

√
4
35 −

√
6
35

√
4
35

q = 1 c(+1)
2,1,s

√
4
21 −

√
16
105

√
2
35

q = 2 c(+1)
2,2,s

√
2
7 −

√
2
21

√
2

105

M2

Y q−s
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q = −2 c(0)
2,−2,s

√
1
3 −

√
2
3 0

q = −1 c(0)
2,−1,s

√
3
6 −

√
1
6 −

√
2
6

q = 0 c(0)
2,0,s

√
1
2 0 −

√
1
2

q = 1 c(0)
2,1,s

√
2
6

√
1
6 −

√
3
6

q = 2 c(−1)
2,2,s 0

√
2
3 −

√
1
3

Simplification of E1 transition amplitude’s angular de-
pendence. Considering the results in Table I, it appears at
first glance as if the behavior of the E1 transition is more
complex than expected, with possible contributions from all
polarization components to each transition. However, we find
that we can simplify the expressions to obtain the well-known
picture presented in Fig. 2(a).
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FIG. 7. (a) The coordinate system defined in this section. B sets
the z axis, k and ε̂2 are in the xz plane, ε̂1 is along the y axis. The po-
larization vector ε̂ is found in the plane spanned by ε̂1 and ε̂2. (b) The
total angular dependence of an E1 transition for linear polarization
as a function of θ and ρ as defined in panel (a), for the different
possible |�mJ | values that this transition supports (since it is linear,
it is independent of the sign of �mJ ). The dependence we observe
is entirely due to the decomposition into the basis vectors. (c) As in
panel (b), but for an M2 transition. Here, the dependence is more
complicated and cannot be entirely attributed to the polarization
decomposition. The dots mark the (θ, ρ ) pairs corresponding to the
measurements in Sec. IV. The cross marks the values corresponding
to the measurement in Sec. V. The measurements in Sec. VI were
performed for θ = 0.

Let us consider the scenario for a general polarization
vector ε̂ = αε̂1 + β ε̂2, such that α and β are complex coeffi-
cients satisfying |α|2 + |β|2 = 1 (the Jones vector). Then, the
angular dependence is given by

|Y1,0 · ε̂|2 = 3

8π
ββ∗ sin2 θ, (A22)

|Y1,±1 · ε̂|2 = 3

16π
(α ± iβ cos θ )(α∗ ∓ iβ∗ cos θ ). (A23)

However, we notice that

|ê0 · ε̂|2 = ββ∗ sin2 θ, (A24)

|ê±1 · ε̂|2 = 1
2 (α ± iβ cos θ )(α∗ ∓ iβ∗ cos θ ). (A25)

Hence, we can substitute the full expression for Y1,0 · ε̂ with√
3/(8π )êq · ε̂, and thus are justified to consider the E1 transi-

tion amplitude’s angular dependence as presented in Fig. 2(a).
Complete transition amplitude’s angular dependence. In

Fig. 7, we plot the complete transition amplitude’s angular
dependence, assuming a linear polarization, for E1 and M2
transitions in panels (b) and (c), respectively. The complete
angular dependence includes, on top of the explicit angular
dependence discussed above, also the trivial dependence due
to the decomposition into the polarization basis. In this sense,
the dependence is different from the information plotted in
Fig. 2, and similar to Fig. 3(b).

The coordinate system is defined such that ρ = 0 means
that the polarization is always in-plane relative to B and
k. For this value of ρ and for changing θ from 0 to

π/2, the polarization starts from the sum of σ± with equal
phases and ends with π . Conversely, ρ = π/2 means that
the polarization is fixed at a sum of σ± with opposite
phases.

For an E1 transition, we once again can see the expected
behavior as a function of the two angles. For out-of-plane po-
larization, we drive only the �mJ = ±1 transition with a fixed
amplitude. For in-plane polarization, we change from driving
the �mJ = ±1 transition to driving the �mJ = 0 transition,
corresponding exactly to the change of polarization from the
sum of σ± to π . The sum of the σ± polarizations drives the
�mJ = ±1 transitions with equal amplitude, regardless of the
relative phase between them.

For the M2 transition, the pattern cannot be simplified by
only considering the polarization projections. We can once
again identify the properties we understood from Fig. 2 in the
main text. Additionally, we observe a strong dependence on
the relative phases between the contributions of the different
polarization components. For example, for �mJ = 0, we see
that the in-plane polarization cannot drive the transition for
any value of θ . We already knew that the π polarization cannot
drive this transition at all. For the sum of σ±, we attribute the
vanishing transition amplitude to the destructive interference
between the contributions of the individual σ± components.

We mark in Fig. 7(c) the conditions of the measurements
reported in Secs. IV and V.

Finally, we note that the complete angular dependence for
electric and magnetic multipole transitions of the same order
is identical, up to a shift of ρ by π/2. This can be intuitively
understood by considering that the magnetic field orientation
is simply perpendicular to the electric field within the polar-
ization plane.

APPENDIX B: EXPERIMENTAL SETUP

Optical transport. We transport the atoms from the
magneto-optical trap (MOT) region into a second vacuum
chamber. For this purpose, we combine a traveling-wave op-
tical lattice [64] with a focus-tunable optical dipole trap [86],
so that we move the lattice nodes and the focal position syn-
chronously [87]. The moving lattice allows for fast transport
due to its deep longitudinal confinement, while the dipole trap
supports the atoms against gravity. With this setup, we can
transport the atoms within 600 ms over a distance of about
55 cm.

Vertical lattice. After the transport, we adiabatically load
the atomic sample into the vertical 1D optical lattice. We
derive the vertical lattice beam from a high-power fiber am-
plifier and focus the beam to an estimated 1/e2 waist of
140 µm at the position of the atoms. With a typical power
of 5 W, the lattice has an estimated trap depth of 33 µK
and a measured axial trap frequency of 72 kHz correspond-
ing to a Lamb-Dicke parameter η � 0.21 [36]. Motorized
half-wave and quarter-wave plates allow us to dynamically
adjust the lattice polarization, even during an experimental
sequence.

Since the trap frequency is much larger than the 1S0-3P1

linewidth, we can perform direct sideband cooling along
the axial direction of the lattice. The cooling beam is
aligned collinearly with the lattice beam. We apply a bias

013219-12



1S0-3P2 MAGNETIC QUADRUPOLE TRANSITION … PHYSICAL REVIEW RESEARCH 5, 013219 (2023)

magnetic field of 1 G pointing along the −z axis to define
the quantization axis. To optimize the cooling efficiency, we
set the lattice polarization to an ellipticity angle of 0.17π ,
making it magic for one mJ state of the 1S0-3P1 transition.
With this method, we typically reach a vertical temperature
of ∼1.5 µK.

We typically load about 106 88Sr atoms in the lattice,
corresponding to up to 40 000 atoms per lattice layer.

Spectroscopy laser. For the 1S0-3P2 spectroscopy, we use
a home-built diode laser operating at 671 nm. The laser
is stabilized to a reference cavity with a finesse of 25 000
using the Pound-Drever-Hall technique. The cavity is kept
under vacuum of 10−8 mbar and is temperature stabilized at
the zero-crossing temperature of the ultralow-expansion glass
cavity spacer. The polarization of the beam is fixed for all
experiments reported here. It is to a good approximation linear
(ellipticity of 0.06π ), and oriented 5◦ with respect to the x
axis.

Absolute frequency measurements. We use a few mW of
the spectroscopy laser power to beat it with a commercial
frequency comb, which is referenced to a hydrogen maser.
The resulting beat frequency is measured with a counter. By
averaging about 1000 counts, we obtain the beat frequency
with an uncertainty of a few tens of Hz, given by the standard
error of the mean.

Compression in light sheet. To improve the signal-to-noise
ratio (SNR) in the local addressing measurement, we decrease
the number of vertical lattice sites populated by atoms. For
this purpose, we spatially compress the atomic sample after
the transport using a tightly focused optical dipole trap. We
adiabatically load the atoms from the transport lattice into the
dipole trap propagating along the y axis. The dipole trap is
formed by a 1070 nm beam focused to an elliptical light sheet.
The light sheet has a 1/e2 waist of ∼15 µm (∼300 µm) along
the z axis (x axis) and a power of 40 W, resulting in a vertical
trap frequency of 2.2 kHz. We cool the atoms via Doppler
cooling on the 1S0-3P1 transition. We reach near-magic condi-
tion for the cooling transition by setting the bias magnetic field
of 1 G along the y axis and using circularly polarized light for
the dipole trap. After cooling, we typically obtain a vertical
temperature of ∼0.6 µK. Then, we adiabatically transfer the
atoms from the sheet to the vertical lattice. The compression
stage results in about eight lattice layers being significantly
populated.

APPENDIX C: SPECTROSCOPY

Spectral lineshapes. At a finite atomic temperature, a dif-
ferential light shift between two atomic states leads to an
asymmetric broadening of the spectral line, as some atoms
experience lower trapping intensity than others. Similarly,
motional sidebands are asymmetrically broadened toward the
carrier—even in a magic lattice—due to some atoms experi-
encing lower trap frequency.

In both cases, at the limit of low temperatures the resulting
lineshape can be written as [65,88]

y(δ) = y0 − α(δ − δ0)e−β(δ−δ0 )�(δ − δ0), (C1)

where y0 is the baseline of the spectrum, δ is the detuning,
δ0 is the resonance frequency without the effect of the light

shift, and � is the Heaviside function. The parameters α and
β determine the width and amplitude, according to

δpeak = 1/β + δ0, (C2)

a = αβe1, (C3)

fitting where a is the line amplitude and δpeak is the detuning
at the peak of the line. This expression is valid for spectral
lines broadened towards higher frequencies, that is, for the red
sideband and for negative differential Stark shift. By replacing
δ − δ0 → δ0 − δ one can describe lines broadened to lower
frequencies (blue sideband, positive differential Stark shift).

The fit parameters are y0, α, β, and δ0 (they can also be,
equivalently, y0, a, δ0, and δpeak). While in principle the width
of the line is related to the axial and transverse temperatures of
the atoms [65,88], we do not use this information to constrain
the fit.

This lineshape is used to describe both motional sidebands
in Fig. 4 and Fig. 8(a), as well as the carrier in a strongly
nonmagic lattice in Fig. 5(b) and Fig. 8(c).

For lines where the dominant broadening mechanism is
not the differential ac Stark shift—that is, for carrier transi-
tions close to magic conditions—we instead use a symmetric
function, taking the center as the resonance frequency. For our
experimental conditions, we find that these lines are best de-
scribed by a Gaussian, as in the carrier in Fig. 4 and Fig. 8(a),
as well as Fig. 5(c).

Sideband spectra. We characterize the optical lattice by
measuring the frequencies of the motional sidebands relative
to the carrier under magic conditions, as described in the
main text. By fitting the sidebands to Eq. (C1), we extract
the sideband frequencies for various lattice powers. Under the
assumption of a full lattice contrast (that is, the full optical
power contributes to the trap frequency), we can estimate the
1/e2 waist of the optical lattice to be ∼140 µm. This waist
is an upper bound since the lattice contrast is expected to be
reduced by experimental imperfections, such as finite mirror
reflectivities. This value is in reasonable agreement with an
estimate of the waist based on measuring the beam profile on
a camera.

An example of a sideband spectrum is shown in Fig. 4
for the 1S0-3P2 mJ = 0 transition. In addition, we present in
Fig. 8(a) a typical spectrum for the 1S0-3P2 mJ = 1 transition
in a magic 5 W lattice. Here, we achieve the magic condition
as described in Sec. VI. In this spectrum, the red sideband
is strongly suppressed compared to the blue sideband, show-
ing that the atomic sample is cooled close to the vibrational
ground state of the optical lattice. From the relative amplitudes
of the two sidebands, we extract a ground-state fraction of
84%, consistent with a temperature of 1.8 µK [65,88].

88Sr absolute frequency determination and error budget.
We extract the absolute transition frequency in 88Sr from
spectroscopy of the mJ = 0 transition at the magic condition,
as presented in Fig. 4. We beat the spectroscopy laser, set
to the carrier resonance condition, with a frequency comb to
acquire an absolute frequency measurement. The statistical
uncertainties from the estimation of the spectral line center
and from the beat note with the comb are 27 Hz and 22 Hz,
respectively, resulting in an overall statistical uncertainty of
δνstat = 35 Hz.

013219-13



J. TRAUTMANN et al. PHYSICAL REVIEW RESEARCH 5, 013219 (2023)

FIG. 8. (a) Motional sideband spectrum of the 1S0-3P2 (mJ =
1) transition in 88Sr in a magic 1D optical lattice. The sidebands
(squares) are probed with a factor of ten longer interrogation time
than the carrier (dots). From the relative amplitude of the blue side-
band to the red sideband, we extract a ground-state fraction of 84%.
Markers, error bars, and solid lines are as in Fig. 4. (b) Spectrum
of the 1S0-3P2 F = 9/2 transition in 87Sr in a bias magnetic field of
3 G along the −z axis. The markers represent an average of three
measurements, and the error bars are the standard error of the mean.
The solid lines serve as a guide to the eye. (c) Example of spectro-
scopic measurements for the determination of the 1S0-3P2 transition
frequency in 87Sr. Here, we excite the atoms to the mF = ±9/2 states
in an optical lattice with a power of 5 W, and a bias magnetic field
of 1.5 G. Both magnetic field and the linear lattice polarization are
along (x̂ + ŷ)/

√
2, creating close-to-magic conditions for these two

transitions. The markers represent an average of 5 measurements,
and the error bars are the standard error of the mean. The solid lines
are fits to the expected ac-Stark-shift-broadened lineshape. (d) Av-
erage detuning of the 1S0-3P2, F = 9/2, mF = ±9/2 transitions as a
function of lattice power. The solid line is a linear fit, from which we
extract the zero-crossing to obtain the absolute transition frequency.

We estimate the potential systematic shifts due to the
atomic density with a set of additional measurements with the
atom number reduced by an order of magnitude. The system-
atic shift due to the quadratic Zeeman shift can be estimated
using the known coefficient for the 3P0 state [19]. Both density
and quadratic Zeeman shifts are smaller than 200 Hz and thus
we neglect them and do not apply any additional correction to
the absolute frequency measured by the frequency comb.

As the measurements were performed under our best es-
timate for the magic conditions, the expectation value for
the light shift is zero. Nevertheless, we estimate the major

source of systematic uncertainty to be due to the light shift,
that is, from operating at imperfect magic conditions. Based
on typical day-to-day variations in the light shift that we
have observed, we take an uncertainty of 2 kHz (1-σ ) on the
residual light shift as a conservative estimate. We attribute
this variation to the finite precision of the magic condition
calibration, and to possible drifts in magnetic field and lattice
light polarization over time.

In summary, we obtain an absolute transition frequency of
(446, 647, 242, 704 ± 0.04stat ± 2sys) kHz for 88Sr.

87Sr absolute frequency determination and error budget.
Measuring the absolute frequency for 87Sr is more involved
than for 88Sr, due to the more complicated internal structure
and the large number of transitions, as shown in the spectrum
in Fig. 8(b). To eliminate the influence of the magnetic field,
we probe two mF states with opposite signs. Finding magic
conditions for two states simultaneously was beyond the scope
of the present paper, but we reached a condition close to magic
for both states and performed a sequence of measurements
with multiple lattice powers. Taking the average of the two
frequencies for each lattice power, and extrapolating it to zero
lattice power allows us to extrapolate to zero light shift. As for
88Sr, we obtain the absolute transition frequency by beating
the laser with a frequency comb.

Taking measurements of the mF = ±9/2 states in the F =
9/2 manifold with the magnetic field parallel to the lattice
polarization, shown in Fig. 8(c), we observe the expected
linear behavior as a function of the lattice power, as shown in
Fig. 8(d). From the extrapolation to zero power, we estimate
a statistical uncertainty of 5 kHz on the intercept. The un-
certainty on the intercept already includes the fluctuations of
Zeeman and light shifts. The contribution from the beat note
with the comb is once again <100 Hz and can be neglected.

We estimate the density correction by performing a set of
measurements with a reduced number of atoms. Unlike for
88Sr, here we could observe effects on the scale of a few
tens of kHz. The existence of density shifts in 87Sr and not
88Sr is consistent with the density shift arising from collisions
between ground-state atoms, as they are significantly stronger
in 87Sr compared to 88Sr [89]. From these measurements,
our estimate for the density shift is +20 kHz with a 1-σ
uncertainty of 40 kHz. The large uncertainty is the result of
a significant scatter in the density correction measurements,
and it is the dominant major systematic uncertainty.

After applying the density correction, we obtain for
87Sr a transition frequency to the F = 9/2 state of
(446, 647, 798, 443 ± 5stat ± 40sys) kHz. Our measurement is
consistent with the value reported in Ref. [50], while improv-
ing the uncertainty by nearly three orders of magnitude.

The hyperfine structure of the 3P2 state in 87Sr was mea-
sured to better than 10 kHz in Ref. [73]. Using this data, we
can estimate the transition frequencies to all other F states,
as well as the center of gravity of the lines. We performed
measurements of the transitions to the other hyperfine states
with similar or larger uncertainties, and the frequencies agree
with Ref. [73] within the error bars.

Isotope shift. We can estimate the frequency difference be-
tween the transitions in the two isotopes simply by subtracting
the frequency measurements performed with the frequency
comb. Additionally, we can directly compare the different
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frequency shifts we applied to the probe beam between sub-
sequent measurements for the two isotopes. Both estimates
agree within a few kHz.

The F = 9/2 state is 618.65 MHz blue detuned from the
line’s center of gravity [73]. Therefore, the isotope shift is
ν(88Sr) − ν(87Sr) = +62.91(4) MHz.

We can compare this value to isotope shifts measured for
the other transitions from the ground state to the triplet man-
ifold, that is, for 1S0-3P0 and 1S0-3P1. They were measured
to be +62.188(10) MHz [19] and +62.187(12) MHz [90],
respectively. Given that these two isotope shifts are almost
identical, one naively might expect that the value for the
1S0-3P2 transition should also be the same, rather than being
about 700 kHz larger, as we found. However, the equality of
those two specific isotope shifts appears to be a coincidence.
Generally, differences between isotope shifts on fine-structure
states in the same manifold on the MHz scale are typical, as
seen in, e.g., Refs. [90,91].

Additionally, we note that the literature contains iso-
tope shift measurements for the 3P1-3D2 transition of
+30.2(6) MHz [92], and for the 3P2-3D2 transition of
+17(2) MHz [91]. Combining these values with the isotope
shift for the 1S0-3P1 transition, we expect an isotope shift for
3P2 of +75(2) MHz. Our measurement therefore uncovers
a possible discrepancy in the literature data for strontium
transition frequencies.

APPENDIX D: POLARIZABILITY

General expression. Here, we theoretically investigate the
polarizability of the 3P2 state. The dynamic dipole polariz-
ability αi of an atomic state |i〉 can be decomposed into a
scalar polarizability αs

i , a vector polarizability αv
i , and a tensor

polarizability αt
i [18,37,70],

αi = αs
i + αv

i sin(2γ )
mi

2Ji

+ αt
i

3 cos2(β ) − 1

2

3m2
Ji

− Ji(Ji + 1)

Ji(2Ji − 1)
, (D1)

where γ is the ellipticity angle of the polarization [37,71]
and cos β is the projection of the polarization vector onto the
quantization axis. The ellipticity angle γ is defined as [37,71]

ε̂l = ε̂l,1 cos(γ ) + iε̂l,2 sin(γ ), (D2)

where ε̂l,1, ε̂l,2 are orthogonal vectors spanning the plane
perpendicular to lattice propagation direction kl. We note that
rotating the polarization ellipse within this plane does not
affect the ellipticity angle γ , and thus does not affect the
polarizability. Hence, we are not sensitive to the exact choice
of ε̂l,1, ε̂l,2. The quantization axis is assumed to be defined by
a strong external magnetic field pointing along the z axis.

The scalar polarizability of the state |i〉 with angular mo-
mentum Ji at the light frequency ω can be calculated with
[69,70]

αs
i = 1

3(2Ji + 1)

∑
k

2

h̄

|〈k|D|i〉|2ωki

ω2
ki − ω2

+ αc
i . (D3)

We sum over the dipole-allowed transitions to states |k〉 with
the corresponding dipole matrix element 〈k|D|i〉, and the tran-

TABLE II. The required information for calculating the polariz-
ability of 5s2 1S0 state and 5s5p 3P2 state of 88Sr. The energies and
matrix elements of the different transitions are taken from Refs. [93]
and [68,94], respectively. The contributions to scalar αs

i (λ0), vector
αv

i (λ0), and tensor polarizability αt
i (λ0) are calculated based on those

values at λ0 =1064 nm. Other refers to contributions to the polariz-
ability from states, which are not listed explicitly and Core refers to
the contribution to the polarizability from the closed electron shells
of the atom. The units contain the electron charge e, the Bohr radius
a0, and the atomic unit of polarizability 1 a.u. = 4πε0a3

0, where ε0 is
the vacuum permittivity.

�Eki 〈k|D|i〉 αs
i (λ0) αv

i (λ0) αt
i (λ0)

State k (cm−1) (ea0) (a.u.) (a.u.) (a.u.)

State i = 5s2 1S0

5s5p 3P1 14504 0.158 0.40 0 0
5s5p 1P1 21698 5.248 228.61 0 0
5s6p 3P1 33868 0.034 0.01 0 0
5s6p 1P1 34098 0.282 0.37 0 0
Other 5.8 0 0
Core 5.3 0 0
Total 240.49 0 0

State i = 5s5p 3P2

5s4d 3D1 3260 0.6021 −0.45 3.85 0.45
5s4d 3D2 3320 2.331 −6.83 19.33 −6.83
5s4d 3D3 3421 5.530 −39.95 −219.52 11.41
5s4d 1D2 5251 0.102 −0.03 0.05 −0.03
5s6s 3S1 14140 4.521 75.78 −151.10 −75.78
5s5d 1D2 19829 0.365 0.25 −0.12 0.25
5s5d 3D1 20108 0.460 0.39 −0.55 −0.39
5s5d 3D2 20123 1.956 7.12 −3.32 7.12
5s5d 3D3 20146 4.994 46.30 43.20 −13.23
5p2 3P1 20502 2.992 16.18 −22.25 −16.18
5p2 3P2 20776 5.119 46.41 −21.00 46.41
5p2 1D2 22062 0.682 0.75 −0.32 0.75
5s7s 3S1 22526 1.264 2.51 −3.15 −2.51
Other 43.1 0.34
Core 5.6
Total 197.14 −354.90 −48.56

sition frequency ωki ≡ (Ek − Ei )/h̄ = �Eki/h̄. Here, αc
i is the

contribution of the core electrons to the scalar polarizability,
where Ref. [94] provided us with a calculated value listed in
Table II. The vector and the tensor polarizabilities are given
by

αv
i = −

√
6Ji

(Ji + 1)(2Ji + 1)

∑
k

(−1)Ji+Jk

×
{

1 1 1
Ji Jk Ji

} |〈k|D|i〉|2
h̄

(
1

ωki − ω
− 1

ωki + ω

)
,

(D4)

αt
i = −

√
10Ji(2Ji − 1)

3(Ji + 1)(2Ji + 1)(2Ji + 3)

×
∑

k

(−1)Ji+Jk+1

{
1 2 1
Ji Jk Ji

}
2

h̄

|〈k|D|i〉|2ωki

ω2
ki − ω2

. (D5)
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Calculated magic and tune-out wavelengths. In Fig. 9, we
plot the polarizabilities of the Zeeman sublevels of the 3P2

state under different polarization conditions as a function of
the trap wavelength. We also plot the polarizability of the
ground 1S0 and excited clock 3P0 states for reference. For
the 1S0 and 3P2 states, we use the matrix elements listed in
Table II. For the 3P0 state, we use the matrix elements reported
in Ref. [63].

We look for magic conditions between the 3P2 states and
the ground or excited clock state in the near-infrared, which is
usually the wavelength range in which deep, far-detuned traps
can be realized.

In Fig. 9(a), we show that we can achieve magic conditions
between the mJ = 0 state and the ground state for wavelengths
between 796 nm (horizontal polarization, i.e., linear polariza-
tion perpendicular to the quantization axis) and 1081 nm (π
polarization). We see that for horizontal polarization, the dif-
ferential polarizability between mJ = 0 and the excited clock
state is very small, reaching up to about 12 a.u. at most, over
the entire examined wavelength range. Based on those calcu-
lations, magic conditions for the clock and the 3P2 mJ = 0
states can be achieved between 756 nm and 1038 nm (both
limiting cases with horizontal polarization).

Similarly, we see in Fig. 9(c) that, using tensor polariz-
ability tuning, we can achieve magic conditions between the
ground and the mJ = ±1 states between 844 nm (horizontal
polarization) and 994 nm (π polarization). For these states,
it is impossible to reach magic condition with the clock state
using only tensor polarizability tunings. Conversely, as seen
in Fig. 9(e), magic conditions between the ground and the
mJ = ±2 states in the near-infrared can be found for wave-
lengths of up to 994 nm (horizontal polarization), and between
the mJ = ±2 states and the clock state throughout the entire
examined wavelength range. In both cases, the vector polar-
izability is large enough to enable reaching magic conditions
with either the ground and clock states across the examined
wavelength range, as seen in Figs. 9(d) and 9(f).

Finally, in Fig. 9(b), we examine the polarizability of the
mJ = 0 state in a wavelength range in the visible, where
resonant transitions can be found. These resonances lead to
the existence of tune-out wavelengths [18], where the state’s
polarizability vanishes. The tune-out condition can be used
to generate highly state-dependent optical traps with applica-
tions in quantum computing and quantum simulation [40,75].
We find that tune-out conditions can be found for wavelengths
between 612 nm (π polarization) and 679 nm (horizontal
polarization).

The uncertainty estimates on the calculated polarizability
values are estimated to be about 1%. Due to the shallow
crossings in the near infrared wavelength range, this corre-
sponds to uncertainties of up to 10 nm on the calculated magic
wavelengths between the ground states and the 3P2 states. For
the magic conditions between the clock and the 3P2 mJ = 0
states, the uncertainty is even larger, due to the two polar-
izability curves nearly overlapping. Additional experimental
information, such as the magic conditions at 1064 nm that we
found in this paper, can help to constrain these values better.

Calculated “triple-magic” conditions for 1S0, 3P0, 3P2.
To take full advantage of both ultranarrow transitions avail-
able between the ground state and the triplet manifold, it is

FIG. 9. Calculated polarizability of the ground state 1S0, excited
clock state 3P0, and the 3P2 Zeeman sublevels for different trapping
wavelengths and polarizations. The polarizability of the ground and
excited clock states is independent of the orientation of the magnetic
field with respect to the quantization axis and the polarization el-
lipticity, while the polarizability of the different Zeeman sublevels
of 3P2 depends strongly on these conditions. The shaded areas in-
dicate the dynamic range of polarizability tuning for the Zeeman
sublevel under consideration. (a) Tensor polarizability tuning of the
3P2 mJ = 0 state, assuming linear trap polarization (γ = 0). The
curves are the limiting case of π (β = 0) and horizontal (β = π/2)
polarizations, while the shaded area is the range accessible by tuning
the angle between polarization and magnetic field. Specific magic
wavelengths are indicated by stars. At the magic wavelength for the
clock states, the mJ = 0 state can be made to be magic as well.
(b) The same conditions as in panel (a), but plotted in the wavelength
range that covers multiple tune-out conditions (indicated by circles).
Around 633 nm, the polarizability of both 3P0 and 3P2 mJ = 0
can be tuned out simultaneously. (c) Tensor polarizability tuning
for the 3P2 mJ = ±1 states. (d) Vector polarizability tuning for
the 3P2 mJ = ±1 states. The curves are the limiting case of σ±

(γ = ±π/4) and σ∓ (γ = ∓π/4) polarizations. The shaded area is
the range accessible by tuning the ellipticity angle of the polarization
while maintaining propagation along the magnetic field (β = π/2).
In contrast to panel (c), we can find a magic wavelength for all three
states. (e) Tensor polarizability tuning for the 3P2 mJ = ±2 states.
(f) Vector polarizability tuning for the 3P2 mJ = ±2 states.
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useful to find a condition where all three relevant states have
the same polarizability—a “triple-magic” condition. Such a
condition requires operating at the 1S0-3P0 magic wavelength,
because the polarizabilities of these states can only be tuned
via the trap wavelength. We will consider the most common
and useful magic wavelength of this transition, at 813 nm.
The question of existence of the triple-magic condition is then
equivalent to the question of whether, for the desired Zeeman
sublevel of 3P2 and the polarizability tuning mechanism under
consideration, 813 nm is within the range of possible magic
wavelengths with the ground state.

For the magnetically-insensitive 3P2 mJ = 0 state, 813 nm
is indeed found within this range. Given the uncertainty
estimates of the magic wavelengths discussed above, the prob-
ability of a sufficiently large error such that a triple-magic
condition cannot be met is very small. Quantitatively, we
estimate that a triple-magic condition can be achieved for
β

mJ =0
triple = 0.42 π .

For the magnetically sensitive states, 3P2 mJ = ±1 and
3P2 mJ = ±2, it is possible to achieve a triple-magic condi-
tion by tuning the vector polarizability. For the 3P2 mJ = ±2
states, it is also possible to achieve a triple-magic condition
by tuning the tensor polarizability, at β

mJ =±2
triple = 0.22 π .

Calculated magic conditions at 1064 nm. In this paper,
we did not vary the trap wavelength, but rather modified
the atomic-frame trap polarization. This method allows find-
ing magic conditions while choosing a trapping wavelength
based on other technical considerations. In our case, we use
1064 nm, a wavelength in which lasers with high optical
power and low intensity noise are readily available.

For this reason, we are interested in the differential polar-
izability between the 1S0 state (g) and a certain 3P2 mJ state
(e), given by

�α = αs
g −

(
αs

e + mJ

2J
sin(2γ0)αv

e

+ 3 cos2(β ) − 1

2

3m2
J − J (J + 1)

J (2J − 1)
αt

e

)
, (D6)

where J = 2 and mJ refer to the angular momentum of e.
Using the values from Table II, we can thus extract the magic
conditions for the scenarios of interest.

First, we consider the 3P2 mJ = 0 state. For this state,
the vector polarizability vanishes. We can therefore use a
linear polarization, and tune its orientation relative to quan-
tization axis (β) to modify the tensor polarizability. We find
that the polarizability vanishes for the magic angle value of
β0 = 0.089 π .

Second, we consider the 3P2 mJ = 1 state, and assume that
the trapping light propagates parallel to the quantization axis.
As described in Sec. VI, these are the conditions required for
local addressing. Here, β = π/2, and the contribution of the
tensor polarizability is constant. Hence, we tune the ellipticity
angle γ and thereby the vector polarizability to find the magic
condition. The polarizability vanishes for the magic ellipticity
value of γ0 = 0.108 π .

Experimental determination of the magic ellipticity. Here
we describe the determination of the magic ellipticity shown
in Fig. 5. In our experimental characterization of the vector
ac Stark shift, we can only measure the differential ac Stark
shift between the 1S0 state and the 3P2 state. The differential
ac Stark shift �ν and the differential polarizability �α are
connected by

�νac = 1

2ε0ch
�α I ∝ �α P, (D7)

where c is the speed of light, and I is the trapping light
intensity, which in turn depends linearly on the beam
power P.

We measure spectra for each value of the ellipticity angle
at lattice powers of 2.5 W, 5 W, 7.5 W, and 10 W, with some
examples shown in Figs. 5(b) and 5(c). From each spectrum,
we extract the transition frequency, and fit all the measured
points to a function with independent slopes for each elliptic-
ity value, but a common intercept, with part of the data shown
in the inset of Fig. 5(d).

We then fit the slopes d�νac/dP as a function of γ with

d�νac

dP
= a0[sin(2γ ) − sin(2γ0)], (D8)

where a0 is the amplitude of the curve and γ0 is the magic
ellipticity, where the differential Stark shift changes sign, as
shown in Fig. 5(d). In this parametrization, all the experi-
mental uncertainties related to the intensity calibration are
contained in a0, and do not influence γ0. For this reason, we
rely on the magic condition γ0 for comparison with atomic
structure calculations, as is the standard practice in the field
[68].

The largest uncertainty in the estimation of γ0 arises from
the uncertainty in the measured ellipticity values, determined
with a commercial polarimeter. Based on the day-to-day vari-
ations we observed between measurements under ostensibly
identical conditions, we conservatively estimate the uncer-
tainty in the ellipticity as �γ = ±0.01π . We attribute this
uncertainty to a combination of polarimeter precision and
repeatability of the motorized waveplate rotation mounts. The
fit uncertainty leading to γ0 is thus mostly determined by the
error on the x axis and not by errors on the y axis.
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