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Abstract. Multiphoton resonant excitation and frustrated tunneling ionization, manifesting the photonic and
optical nature of the driving light via direct excitation and electron recapture, respectively, are complementary
mechanisms to access Rydberg state excitation (RSE) of atoms and molecules in an intense laser field.
However, clear identification andmanipulation of their individual contributions in the light-induced RSE process
remain experimentally challenging. Here, we bridge this gap by exploring the dissociative and nondissociative
RSE of H2 molecules using bicircular two-color laser pulses. Depending on the relative field strength and
polarization helicity of the two colors, the RSE probability can be boosted by more than one order of magnitude
by exploiting the laser waveform-dependent field effect. The role of the photon effect is readily strengthened
with increasing relative strength of the second-harmonic field of the two colors regardless of the polarization
helicity. As compared to the nondissociative RSE forming H2

�, the field effect in producing the dissociative
RSE channel of ðHþ;H�Þ is moderately suppressed, which is primarily accessed via a three-step sequential
process separated by molecular bond stretching. Our work paves the way toward a comprehensive under-
standing of the interplay of the underlying field and photon effects in the strong-field RSE process, as well as
facilitating the generation of Rydberg states optimized with tailored characteristics.
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1 Introduction
Benefiting from their unique properties, such as extremely large
electron orbital radius and low electron binding energy, Rydberg
atoms or molecules have a huge potential for applications in a
wide range of fields, from quantum physics and chemistry to
astrophysics.1–3 For instance, they can serve as building blocks
for advanced technologies in precision measurements,4 quantum
information processing,5 quantum nonlinear optics,6 and long-

range many-body interactions.7,8 In particular, the Rydberg state
excitation (RSE) of atoms or molecules driven by intense laser
fields has a plethora of exciting applications, including acceler-
ating and de-accelerating neutral particles,9,10 generating near-
threshold harmonics11 and coherent extreme-ultraviolet light
emission,12 and realizing multiphoton Rabi oscillations.13

In analogy to the multiphoton and tunneling mechanisms
proposed for photoionization, the strong-field RSE of atoms
or molecules can be accessed via either resonant multiphoton
excitation14–18 or electron recapture excitation.19–31 These two
scenarios illustrate the individual photon and field contribu-
tions of the driving light to the RSE via direct photon absorption
or electron recapture, termed as the “photon effect” and “field
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effect,” respectively. In the photon point of view, the atoms or
molecules are resonantly excited to the Rydberg states by simul-
taneously absorbing multiple photons, which is primarily gov-
erned by the photon energy of the incident light. Alternatively,
in the field scenario, the electron tunnels through the laser-
dressed Coulomb barrier, quivers in the oscillating laser field,
and may be recaptured into the Rydberg orbitals of the parent
ion after the conclusion of the laser pulse.20,21 Depending on the
laser parameters, e.g., the field intensity, wavelength, and polari-
zation, both the photon and field effects have been observed in
the strong-field RSE of atoms14–17,21,29 and molecules.18,19,22–28,30

For instance, the RSE accessed via the photon scenario has been
observed at short wavelengths and low intensities regardless of
the laser polarization.18,19 In contrast, since the trajectory of the
tunneled electron critically depends on the detailed waveform
of the laser field, the electron-recapture-induced RSE occurs
in a linearly polarized laser field but is suppressed in circular
polarization, in which case electrons are driven away from
the ionic cores.21 In principle, the photon and field effects coex-
ist and both contribute to the RSE, even when one of them is
dominant.31,32 While they serve as the cornerstone to understand
and control the strong-field RSE of atoms and molecules, an
unambiguous identification of the individual contributions of
the photon and field effects, however, is experimentally chal-
lenging, and has not been achieved so far. Here, we bridge this
gap and report an experimental demonstration of disentangling
and controlling the photon and field effects in RSE of a H2

molecule by employing bicircular two-color (BCTC) laser
fields.

The BCTC laser fields have attracted considerable attention
in steering two-dimensional directional bond breaking,33 mani-
pulating the electron-ion rescattering34 and nonsequential
double ionization (NSDI),35–38 generating circularly polarized
extreme ultraviolet light,39–41 and spatially controlling surface
reactions on nanoparticles at the nanoscale.42 Past studies using
BCTC laser fields mostly focused on the atomic and molecular
ionization dynamics.33–42 Until recently, the excitation dynamics
of atoms and molecules via frustrated tunneling ionization21

were theoretically studied with BCTC laser pulses, which, how-
ever, only takes into account the field effect.43,44 In this article,
we use these versatile BCTC laser fields to experimentally in-
vestigate the strong-field RSE of H2 molecules, where the cre-
ated Rydberg fragments are measured and identified in the
coincidence measurements. Studying the yield probabilities
of the nondissociative (H2 þ nℏω → H2

�, denoted as H2
�)

and dissociative [H2 þ n ω → Hþ þ H� þ e−, denoted as
ðHþ;H�Þ] RSE channels versus the relative field strength
and polarization helicity of the two colors, we clearly determine
the individual contributions of the field and photon effects. For
a given relative field strength of the two colors, the electron
recapture process facilitated by the field effect of the driving
light is switched on or off by switching the polarization of
the BCTC fields from counterrotating to co-rotating, whereas
the contribution of the photon effect in the RSE yield remains
comparable. The observed yield difference in the counterrotat-
ing field as compared to the co-rotating case therefore qualita-
tively gives the contribution of the field effect in producing the
corresponding RSE channels. By finely adjusting the relative
field strength of the two colors, we can manipulate the wave-
form of the laser field and the number of photons participating
in the RSE processes and thus the relative contributions of the
field and photon effects.

2 Experimental Methods
In our experiment, as schematically illustrated in Fig. 1(a), the
BCTC laser fields were generated by spatiotemporally over-
lapping two circularly polarized fundamental wave (FW) and
second-harmonic (SH) pulses using a Mach–Zehnder interfer-
ometer. The SH pulse was created by frequency doubling the
linearly polarized FW laser pulse (25 fs, 790 nm, and 10 kHz)
in a β-barium borate crystal. Followed by the independent cir-
cular polarization shaping in two arms of the interferometer,
the FW and SH pulses with the opposite or same polarization
helicity were recombined using a dichromatic mirror to produce
counterrotating or co-rotating two-color laser fields. The BCTC
laser pulses were focused onto the supersonic gas jet ofH2 in the
apparatus of cold target recoil ion momentum spectroscopy
(COLTRIMS).45,46 The peak intensities in the focus for the
two colors, i.e., IFW and ISH, were calibrated separately by ex-
amining the proton momentum spectrum for the FW pulses47

and tracing the field-intensity-dependent energy shift of the dis-
crete above threshold ionization spectrum of H2 for SH pulses.48

The intensities can be adjusted individually via the neutral filters
installed in each beam arm before their collinear recombination.

By measuring the electron, ion, and excited neutral Rydberg
atom in coincidence, the COLTRIMS apparatus allows us to un-
ambiguously identify the RSE channels of H2

� and ðHþ;H�Þ.
As shown in Fig. 1(b), the H2

� channel can be identified in the
photoelectron–photoion coincidence (PEPICO) spectrum,19,29,49

which is measured on the basis of the postpulse field ionization
of the laser-induced Rydberg states,50–52 whereas the ðHþ;H�Þ
pair can be discriminated in the photoion–photoion coincidence
(PIPICO) spectrum,53 as shown in Fig. 1(c). We note that the
strong-field-induced neutral dissociation of H2 through super-
excited states,54 accompanied by further ionization of neutral
fragments, has a negligible effect on our measurements. More
details of the experimental methods and the information on the
principle quantum number of the measured Rydberg fragments
are presented in the Supplementary Material.

3 Results and Discussion
Figure 2(a) shows the measured yields of the H2

� and ðHþ;H�Þ
channels in the counterrotating and co-rotating BCTC fields as
a function of the relative-field strength ESH∕EFW of the two
colors. In the measurements, the intensity of the combined laser
fields, i.e., Ic ¼ ðpISH þp

IFWÞ2, was kept constant ∼6.0×
1014 W∕cm2 for various field ratios. This allows one to mini-
mize the intensity-dependent photon spin effects originating
from different field helicities on the ionization and excitation
processes55 and also to obtain a proper event rate for data acquis-
ition. This is confirmed by the nearly flat and helicity-
independent single-ionization yields ofH2

þ (see Supplementary
Material). Each data point is normalized per laser shot over
more than 108 shots. The relative collection and detection effi-
ciencies for different fragmental species have been taken into
account.53,56 As shown in Fig. 2(a), noticeable yields of the H2

�
(red open circles) and ðHþ;H�Þ (blue open squares) channels are
clearly observed in the co-rotating bicircular fields, which are
mostly accessed via the multiphoton excitation process, since
the electron recapture process is suppressed here. The yields
of H2

� and ðHþ;H�Þ both increase rapidly when the field ratio
ESH∕EFW is increased from 0.5 to 2.0, followed by a broad pla-
teau. This indicates that the contribution of photon effect in the
RSE is boosted with the increase of the relative strength of the
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SH field. The reason for this enhancement is that the photon
energy of the SH field is 2 times that of the FW field.
Therefore, for a given RSE channel, fewer photons are required
with an increasing ratio ESH∕EFW, leading to increased acces-
sibility of the multiphoton excitation process. When multipho-
ton excitation already dominates RSE, a further increase in the
relative strength of the SH field only leads to a minor rise in the
excitation probability, leading to the observed nearly flat H2

�
and ðHþ;H�Þ yields at ESH∕EFW > 2.0. It is because the “share”

of the SH portion in the total laser field does not increase much
beyond this field ratio.

By switching the polarization helicity of the BCTC field
from co-rotating to counterrotating, as shown in Fig. 2(a),
the yields of the H2

� (red solid circles) and ðHþ;H�Þ (blue solid
squares) channels are significantly enhanced (by more than one
order of magnitude for H2

�). In the counterrotating field, both
the photon and field effects contribute, and thus the RSE yields
are overall higher than that of the co-rotating case, where the

Fig. 1 Experimental scheme. (a) Schematic illustration of the experimental setup to study the RSE
of the H2 molecules with BCTC laser fields. (b), (c) Measured (b) PEPICO and (c) PIPICO
spectrum of the H2 molecule. The Hþ

2 signals created from the postpulse ionization of H2
� and

from the strong-field ionization H2 can be distinguished in the PEPICO spectrum, while the
ðHþ;H�Þ and ðHþ;HþÞ channels can be unambiguously identified in the PIPICO spectrum. (d),
(e) Combined electric fields Ey versus Ez as well as the corresponding vector potential Ay versus
Az for the (d) counterrotating and (e) co-rotating circularly polarized two-color laser fields with a
field ratio of ESH∕EFW ¼ 1.5.

Zhang et al.: Rydberg state excitation in molecules manipulated by bicircular two-color laser pulses

Advanced Photonics 016002-3 Jan∕Feb 2023 • Vol. 5(1)
Downloaded From: https://www.spiedigitallibrary.org/journals/Advanced-Photonics on 17 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



field effect is significantly suppressed. For a given ESH∕EFW

ratio, the contribution of the photon effect is comparable in the
counterrotating and co-rotating fields; the strikingly enhanced
RSE probability in the counterrotating field is thus attributed
to the contribution of the field effect. To increase the visibility

of the enhancement and quantify the contribution of the field
effect as compared to that of the photon effect, in Fig. 2(b),
we plot the measured yield ratios of the RSE channels between
the counterrotating and co-rotating cases. Noticeable enhance-
ments of both the H2

� and ðHþ;H�Þ channels are observed

Fig. 2 Manipulation of RSE yield by BCTC laser pulses. (a) Experimentally measured yields of the
Rydberg fragments of H2

� and ðHþ;H�Þ channels created in the interaction of the H2 molecules
with BCTC laser fields. Solid and open symbols represent the counterrotating and co-rotating
cases, respectively. The thick arrows near the right ordinate indicate the measured yield of
the H2

� and ðHþ;H�Þ channels employing a single-color SH circularly polarized laser pulse.
The yield of each data point is normalized to a single laser shot. (b) The corresponding yield ratios
between the counterrotating and co-rotating cases of the RSE channels displayed in panel (a).
The shapes of combined electric fields of the BCTC fields for different field ratios and polarization
helicities are illustrated in the inset of panel (b). (c) Numerically simulated Rydberg yields of H� for
the counterrotating and co-rotating cases of the BCTC laser pulse. The yield of each data point
is normalized to the simulated total number of released electrons. The right ordinate shows the
inverse of the magnitude of the vector potential ½−AðtÞ� of the counterrotating and co-rotating fields
where the field amplitude maximizes. The case without the photon effect is shown in blue, and
the other case with the photon effect included is shown in orange. (d) The corresponding yield
ratios between the counterrotating and co-rotating cases of the simulated Rydberg yield of H�

for the two cases in panel (c).
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around ESH∕EFW ¼ 1.0, with increment factors of ∼28 and ∼5,
respectively, suggesting a crucial role of the field effect in boost-
ing the RSE in the counterrotating BCTC laser fields.

The enhancement observed here is similar to the previous
observations of the field-ratio-dependent NSDI probability of
atoms and molecules in the sense of the control offered by the
BCTC laser fields, where the enhanced double ionization is do-
minated by the electron recollision.38–40 Owing to the peculiar
waveform of the counterrotating two-color fields, the tunneled
electron will initially be driven away but later be driven back to
the parent ion. The two-dimensional close loop trajectory results
in a much higher probability for the electron to re-encounter the
parent ion, giving rise to the NSDI. The situation is a bit differ-
ent for the RSE here. In contrast to NSDI, the trajectory of the
electron does not have to return to the parent ion, but needs to
have a small velocity after the conclusion of the laser field, such
that the electron can be captured into a Rydberg orbital. As illus-
trated in Fig. 1(d), in the counterrotating bicircular laser field,
the magnitude of the vector potential features a local minimum
(red dot) where the electric field is at a local maximum (green
dot) of its magnitude, so that the electron with a maximal tun-
neling probability will end up with a small final velocity. Such a
property of the counterrotating bicircular field leads to a promi-
nent field effect in generating RSE. This observation is again
in line with the properties of the counterrotating field, since
the local minimum in the magnitude of the vector potential can
be lowered by optimizing the field ratio, as plotted in Fig. 2(c)
(green solid stars). In contrast, for the co-rotating field, as shown
in Fig. 1(e), the vector potential has a local maximum (red dot)
in its magnitude where the electric field peaks (green dot), which
strongly suppresses electron recapture.

The much higher increment of the H2
� channel compared to

that of the ðHþ;H�Þ channel, as shown in Fig. 2(b), implies that
the field effect plays a more dominant role in producing the H2

�
as compared to the ðHþ;H�Þ channel. To illuminate the differ-
ence between the relative roles of the field and photon effects in
producing the H2

� and ðHþ;H�Þ channels, we turn to inspect the
accessing dynamics of these two channels.

In the electron recapture scenario, driven by the field effect
of the counterrotating bicircular field, H2

� can be formed if the
tunneled electron with negligible kinetic energy is recaptured
by the parent ion H2

þ, while for the generation of the ðHþ;H�Þ
channel,53,57,58 the ionization-created nuclear wave packet ofH2

þ
needs to stretch to a critical internuclear distance (R ∼ 10 a.u.),
where the charge-resonance-enhanced ionization occurs to
boost the tunneling of the second electron.59 The tunneled elec-
tron is subsequently recaptured by one of the outgoing Hþ ions
of the Coulomb explosion double ionization channel, i.e., H2 þ
n ω → Hþ þ Hþ þ 2e− [denoted as ðHþ;HþÞ]. By consider-
ing the kinetic energy release (KER) of the observed ðHþ;H�Þ
channel, we estimate a bond stretching time of about 25 fs for
the nuclear wave packet propagating from R ∼ 1.4 a.u. (the
equilibrium internuclear distance of H2) to ∼10 a.u. on the
potential energy curves of Hþ

2 . Therefore, the tunneling of the
second electron at the critical internuclear distance mostly oc-
curs at the trailing edge of the bicircular laser pulse where the
field strength is moderately weak. It results in a lower probabil-
ity in producing the ðHþ;H�Þ channel as compared to that of the
H2

� channel, in which the electron tunneling mostly occurs
around the peak of the laser pulse. It explains the much larger
increment of the yield of H2

� than that of the ðHþ;H�Þ channel,
as shown in Fig. 2(b), where the enhancement is facilitated

by the electron recapture process with a maximal efficiency
around field ratio of ESH∕EFW ∼ 1 in the counterrotating BCTC
laser pulse.

In contrast, in the multiphoton excitation scenario, the RSE is
accessed by directly absorbing multiple photons from the laser
field, which will be considerably boosted if multiphoton reso-
nance occurs. As compared to the nondissociative H2

�, the
resonance excitation of the stretching H2

þ to the ðHþ;H�Þ can
always be fulfilled with the energy of a certain number of pho-
tons matching the potential energy gap between the 2pσu state
and the repulsive Rydberg states at proper internuclear distan-
ces. As discussed above, the contribution of the photon effect
increases with the rising field ratio ESH∕EFW for a constant
combined laser intensity. This is more obvious in the co-rotating
bicircular field, where the electron recapture process is sup-
pressed. As a result, as shown in Fig. 2(a), the yields of the
ðHþ;H�Þ channel exceed that of the H2

� channel when the field
ratio ESH∕EFW > 2.5 and 1.75 for the counterrotating and co-
rotating fields, respectively. At the first glance, it seems counter-
intuitive, since many more photons are required to access the
ðHþ;H�Þ than H2

�, which further confirms the importance of
the resonance in the multiphoton excitation process. The fact
that the yield of ðHþ;H�Þ surpasses that of H2

� with increasing
field ratio ESH∕EFW is consistent with our measurement using a
single circularly polarized SH field, which corresponds to the
limiting case of ESH∕EFW → ∞.

As indicated by the thick arrows near the right ordinate of
Fig. 2(a), driven by a single circularly polarized SH pulse with
an intensity of ∼6.0 × 1014 W∕cm2, the yield of ðHþ;H�Þ
(2.0 × 10−5 counts∕laser shot, blue arrow) is one order of mag-
nitude higher than that of theH2

� (7.4 × 10−6 counts∕laser shot,
red arrow). In this scenario, the photon effect dominates ioniza-
tion,18,19 and the ðHþ;H�Þ channel is accessed via the following
process: H2

þ created upon photoionization first stretches on
the 1sσg potential energy curve and transits to the 2pσu state
by absorbing one SH photon via a 1ωSH pathway, followed
by a resonant excitation to the repulsive Rydberg state at an
internuclear distance around 10 a.u., which eventually fragmen-
tizes into a ðHþ;H�Þ pair with a KER ∼ 4.0 eV, as indicated by
the blue arrow pointing to the black dashed curve in Fig. 3(b).
Alternatively, the stretching H2

þ can also dissociate into a hy-
drogen atom and a proton, i.e., H2

þ þ nℏω → Hþ þ Hþ e−
[denoted as ðHþ;HÞ], via a comparable 1ωSH pathway. As
shown in Figs. 3(a) and 3(b), for the case using the co-rotating
bicircular fields, the yields of the 1ωSH pathway of the ðHþ;HÞ
channel (KER ∼ 1.2 eV) and of the ðHþ;H�Þ channel (KER ∼
4.0 eV) increase with rising SH field strength. It is consistent
with the observed steep enhancement in the ðHþ;H�Þ yield,
as shown in Fig. 2(a), as well as the ðHþ;HÞ and ðHþ;HþÞ
channels, as shown in Fig. S2(a) in the Supplementary
Material, when the field ratio ESH∕EFW increases from 0.5 to
2. Accordingly, as shown in Fig. 3(a), the ðHþ;HÞ channel with
KER smaller than 0.5 eV produced via the 1ωSH − 1ωFW and
1ωFW pathways is suppressed as the FW field strength decreases
[see Fig. S3(a) in the Supplementary Material for the counter-
rotating case].

To further illuminate the photon and field effects in the
strong-field RSE process, we take the simplest hydrogen atom
to model the RSE process in the BCTC laser pulses by perform-
ing a classical trajectory Monte Carlo (CTMC) simulation,
which accounts only for the field effect. More details of the sim-
ulation are presented in the Supplementary Material. As shown
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in Fig. 2(c), the experimentally observed field effect in access-
ing the strong-field RSE process is qualitatively reproduced
(blue solid and open circles). It has a similar tendency to (the
inverse of) the magnitude of the vector potential [−AðtÞ, green
solid and open stars], where the electric field amplitude E max-
imizes [right ordinate of Fig. 2(c)], as expected for the field
effect, which requires the final velocity to be small so that
the tunneled electron can be recaptured. We note that due to
the lack of photon effect in the CTMC simulation, a much
higher yield ratio (∼608) between the counterrotating and co-
rotating cases is observed in Fig. 2(d) (blue solid circles).
While a more sophisticated theoretical method (say, full three-
dimensional time-dependent Schrödinger equation or the strong-
field approximation generalized to apply to Rydberg excitation)
is necessary to fully account for the photon effect, here we
readily include the photon effect based on the simple physical
intuition that the photon excitation probability should scale with
the individual intensity of the two-color laser field to the power
corresponding to the number of photons involved. With this in
mind, we arrive at the yield of H� with both field and photon
effects, shown as orange solid and open squares in Figs. 2(c)
and 2(d). For the counterrotating case, the field effect dominates,
and adding the additional photon effect does not change the
yield much. For the co-rotating case, the field effect is sup-
pressed such that the contribution of the photon effect drastically
enhances the yield, and reduces the ratio between the counter-
rotating and co-rotating cases to be around 32 [orange solid
squares in Fig. 2(d)], arriving at a much better agreement with
the experimental results of the H2

� channel. This additional con-
tribution illustrates the importance of photon effects in a strong-
field RSE process. In contrast, the large ratio between counter-
rotating and co-rotating cases, as shown in Fig. 2(d), confirms
our conclusion that the field effect plays a crucial role in the
underlying dynamics of the strong-field RSE process.

4 Conclusions
We have demonstrated that the bicircular laser fields of tunable
relative strength and polarization helicity of the two colors not
only support a precise control of the strong-field RSE dynamics,
but also allow for an unambiguous discrimination of the indi-
vidual contributions of the field and photon effects. Our findings
show that both the field and photon effects play an important

role in accessing the strong-field dissociative and nondissocia-
tive RSE of H2 molecules, while the field effect is crucial in
boosting the RSE in the counterrotating BCTC laser fields en-
abled by the tailored field shape. Our work with BCTC laser
fields provides novel insights into the underlying mechanisms,
i.e., the field effect versus the photon effect, of the RSE process
and offers a promising route for manipulating the output of the
RSE of atoms and molecules in intense laser fields.
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