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Preservation of coherence is a fundamental yet subtle phenomenon in open systems. We uncover its relation
to symmetries respected by the system Hamiltonian and its coupling to the environment. We discriminate
between local and global classes of decoherence-free subspaces for many-body systems through the intro-
duction of “ghost variables”. The latter are orthogonal to the symmetry and the coupling to the environment
does not depend on them. Constructing them is facilitated in classical phase space and can be transferred
to quantum mechanics through the equivalent role that Poisson and Lie algebras play for symmetries in
classical and quantum mechanics, respectively. Examples are given for an interacting spin system.

Introduction: A physical system interacting with an
environment [1–4] relaxes to an equilibrium or a non-
equilibrium steady state on time scales much longer than
the relaxation time [5]. In the steady state the system no
longer evolves in time due to its coupling to the environ-
ment and all associated physical observables reach a con-
stant value. This characteristic is inherent to classical and
quantum open systems.

Quantum mechanically, relaxation is accompanied by de-
coherence which remains a major obstacle in putting physi-
cal devices to work for quantum computation [6–8]. There-
fore, decoherence-free subspaces [9–11] (DFS), which are
protected against decoherence effects [12], play a crucial
role in realizing quantum computing [6, 13, 14]. Under-
standing and formulating the general conditions underlying
DFS is the prerequisite to tame decoherence and to estab-
lish open systems which exhibit non-stationary long-time
dynamics (NLD), that is, remain out of equilibrium despite
their interaction with an environment [11, 15, 16].

In closed systems, it is well known that symmetries, i.e.,
constants of motion, are crucial to characterize their dy-
namics. Here, we will show that this is also the case for
open systems: Symmetries can be used to formulate sim-
ple conditions for DFS in terms of the dependence of the
system and the coupling to the environment on these sym-
metries. Moreover, these conditions can be identified and
formulated in an intuitive way via classical dynamics since
exact symmetries hold quantum mechanically as well as
classically through their equivalent formulation in terms of
commutators and Poisson brackets, respectively. The classi-
cal phase-space perspective will also allow us to introduce
naturally new classes of DFS where the coupling to the en-
vironment depends only on so called “ghost variables”, or-
thogonal to the symmetries. Finally, we will present the
quantized conditions for the DFS in terms of eigenstates of
the symmetry operator.

Our starting point is the Lindblad master equation [4]
ρ̇= − iL (H,L)ρ for the systems’s density matrix ρ with
Hamiltonian H coupled to the the environment in Markov
approximation through the Lindblad operators L. In the
framework of the master equation DFS exist if and only
if the Lindbladian L has nonzero real eigenvalues [1, 9,
15, 17]. Here, we will work with the adjoint Lindbladian
L †(H,L) which has identical spectral properties, since we
are interested in operators, most prominently a symmetry

J. As a constant of motion for the open system its dynamics
is governed in the Heisenberg picture by L † through

0=
dJ
dt
= iL †J, (1)

with L † =L †
H +L

†
L , where

L †
HJ=

1
ħh
[H,J], (1a)

L †
LJ=

i
ħh

∑

α

�

L†
α[J,Lα] + [L

†
α,J]Lα

�

. (1b)

Since symmetries are respected equivalently by a quan-
tum system and its classical counterpart (here, via Poisson
brackets), we can give an intuitive account of these condi-
tions in classical phase space [2, 3]. For a constant of mo-
tion J with {H, J}= {Lα, J}=0, we find that semiclassically
DFS exist if there is at least one layer J=J0 on which

ω(J0)≡ ∂ H/∂ J |J0
6= 0, `α(J0)≡ ∂ Lα/∂ J |J0

= 0, (2)

where ω(J) is the Hamiltonian frequency and `α(J) can be
interpreted as the decay rate induced by the environment.
Note, that we denote quantum operators with X in contrast
to (classical) functions X . While the condition on H is nec-
essary for (oscillatory) non-stationary dynamics in the first
place, the condition on Lα makes sure that this dynamics
is preserved for long times and therefore establishes NLD.
Interestingly, since Lα=Lα(J ,Z) is in principle a function of
all phase-space variables (boldface letters denote a set of
variables), the condition `α(J)=0 can be achieved in two,
qualitatively different ways:

(i) local realization for a specific J0: the Lα depend ex-
plicitly on J but their derivative vanishes for J0;

(ii) global realization for all J : the Lα do not depend on J
but can depend on all the variables Z, the ghost vari-
ables, being orthogonal to J .

These two ways exist also quantum mechanically, where the
conditions on the symmetry (2) are quantized in the form
that there exist two eigenspaces {|n〉} and {|m〉} of J with
eigenvalues Jn and Jm, respectively, such that

∆Hnm 6= 0 and ∆Lαnm = 0, (3)
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FIG. 1: Autocorrelation function trρ(t)ρ(t ′) for Hamiltonian (6)
with N=6. Parameters ωi , δi j and ∆i j are given in the supple-
ment [21]. (a) No dissipation, LL = 0. (b) Dissipation with N
Lindblad operators Lα = γSzα. (c) Dissipation with (N−1)N/2
ghost operators such that Lα jk

= γ(Szj −S
z
k). In both cases γ=1/3.

with the explicit forms of ∆Hαnm and ∆Lαnm given below
in Eq. (10).

Since systems which we classify now as local realizations
(i) have been discussed in [15, 16], we focus on global real-
izations (ii) in the following. Figure 1 shows such a global
realization with a Heisenberg spin model in comparison to
purely Hamiltonian dynamics (Fig. 1a) and to the case with
an arbitrary dissipative part (Fig. 1b). Indeed, for an en-
vironment depending on ghost operators only (Fig. 1c), co-
herent oscillations are preserved despite dissipation. Before
we construct the ghost operators explicitly via the corre-
sponding classical ghost variables, we derive the conditions
(2).

Consider phase-space variables (J ,θ ,Z) with J con-
served, {J , H}= {J , Lα}=0. The angle θ is canonically con-
jugate to the action-like J such that {θ , J}=1. Then, the
phase space is foliated by manifolds on which J is con-
served. The Z are a set of canonically (or noncanonically)
conjugate variables such that {Z, J}= {Z,θ}=0. The rel-
evance of the ghost variables Z for DFS will become clear
below.

From the action-angle variables we can construct “beat-
ing variables”

A= f (J)exp(−iθ ) and A∗ = f (J)exp(iθ ) , (4)

with f (J) = A∗A [21, 22]. The beating variables describe
dynamics along a path on which J is conserved. In the
semiclassical limit of the adjoint Lindbladian [2, 3, 21] the
dynamics of A on the manifold of constant J is given by
Ȧ= iL ∗A with

L ∗A= −
�

∂J H+
∑

α

�

2Im (Lα∂J L∗α)− iħh|∂J Lα|2
�

�

A, (5)

which follows from the Poisson brackets {A, H}=−i(∂J H)A
and {A, Lα}=−i(∂J Lα)A, where ∂J H is real and ∂J Lα can
be complex (since Lα can be complex). Hence, A evolves in
time with an oscillatory and a decaying part, regardless of
the dynamics of the ghost variables Z. The oscillatory part
comes from a combination of the Hamiltonian and the dis-
sipative components, while the decay part is a consequence
of dissipation only. Note, that the decaying part is of order
ħh and is a consequence of diffusion or quantum noise.

If ∂J Lα=0 the decaying part in (5) vanishes and the
beating variable A exhibits NLD, provided that ∂J H 6= 0
which leads to the conditions (2) specifying the existence
of DFS. If the Lindblad function depends explicitly on the
conserved quantity J and there exists a manifold J=J0 on
which `α(J0,Z)=0, the environment couples to the degree
of freedom associated with J , but not on the subspace J=J0.
Although J is conserved, NLD is restricted to the manifold
J=J0, and therefore we call this realization (i) of DFS local.
One also gets `α(J ,Z)=0, if Lα does not depend explicitly
on J at all. In this case, the environment does not couple
to the degree of freedom associated with J . These condi-
tions apply to all manifolds labeled by J , and therefore this
constitutes a global realization (ii) of DFS.

In both cases, the environment does not affect the oscil-
latory dynamics of the beating variable A characterized by
the (non-zero) real eigenvalues ω(J ,Z) of the Lindbladian.
If the Hamiltonian frequency ω depends explicitly on the
ghost variables Z, this oscillatory dynamics can be very com-
plicated. If ω=ω(J) only, one can directly solve Ȧ= iL ∗A
to obtain A(t) = exp(−iω(J)t)A(0). In case (i) the envi-
ronment extinguishes for long times all oscillatory motion
linked to J but one with frequency ω(J0) on the manifold
J0.

From the semiclassical perspective as developed above
we can draw further conclusions. The conditions (2) do
not require integrability (or near-integrability) of the sys-
tem. Therefore, also classically chaotic systems can have
DFS, which we demonstrate here explicitly with the Heisen-
berg spin model. Furthermore, if DFS exist due to a symme-
try, small perturbations of the system will not destroy them.
This follows from the KAM theorem [23], which ensures the
existence of modified action-angle variables for open sys-
tems subjected to perturbations. Therefore, we construct
now explicitly a coupling to the environment according to
(ii) for a chaotic Hamiltonian.

Application to the Heisenberg XXZ spin model: A realiza-
tion of (ii) requires the Lindblad operators {Zi} to be inde-
pendent of the symmetry J of the system. Therefore, only
many-body systems render this case nontrivial. We consider
the Heisenberg XXZ spin model [24–27]

H=
∑

i

ωiSzi +
∑

i j

�

σi j

�

S+i S
−
j +S

−
i S
+
j

�

+∆i jSzi S
z
j

�

, (6)

where the Si=(Sx
i ,Sy

i ,Szi ) are spin 1/2 operators on site i
from Pauli matrices, and S±i = S

x
i ± iSy

i are ladder opera-
tors, with i = 1, ..., N and N the number of spins, evoking
spin flips between site i and j in the combinations S±i S

∓
j .

The total spin J = Sz =
∑N

k=1 S
z
k/N is conserved in time as

L †J=0 and this leads to pertinent oscillations associated
with J, see Fig. 1c. The parameters used in Eq. (6) are given
in the supplemental material [21].

We construct now an environment depending on ghost
operators {Zi} only which does not affect these oscilla-
tions. First, we derive classical ghost variables with canoni-
cal transformations and transfer the ghost variables to ghost
operators in the quantum domain. To this end, we in-
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FIG. 2: (a) Schematic of the spin system for N=6 governed by
Hamiltonian (6) as used before in Fig. 1. The red lines illustrate
the dissipations induced by the ghost operators. (b) and (c) Spec-
trum of the adjoint of the Lindbladian L †. The cyan circles are
the purely real eigenvalues. (b) For (N−1)N/2 Lindblad opera-
tors as a linear combination of the ghost operators (8a) such that
Lαi j
= γ(Szi −S

z
j ). (c) For N−1 Lindblad operators as a function of

the ghosts (8b) with Lα = γeS+α . In both cases γ=1/3.

troduce polar coordinates Si = [S2
i − (S

z
i )

2]1/2(ex cosθi +
ey sinθi) + ezS

z
i for the spin on site i, where the az-

imuthal angles θi are canonically conjugate to the Sz
i and

Si
2=|Si |2. Obviously, Hamiltonian (6) is invariant under

rotation with arbitrary azimuthal angle and therefore J =
Sz/N =

∑

i Sz
i /N is conserved. Akin to relative center-of-

mass motion for massive particles we take advantage of
this fact by introducing relative angles ∆θk = θk+1 − θk for
k = 1, ..., N − 1, and the total angle θ =

∑

i θi . They are
related to the Jacobi coordinates for celestial many-body
systems [28].

The canonical transformation from phase-space variables
(θi , Sz

i ) to phase-space variables (J ,θ ,Z), with ghost vari-
ables Z = (∆θk, eSk) for k = 1, ..., N − 1, and its inverse are
given in the supplemental material [21]. The transforma-
tion is obtained by using the canonical rules [4] with a suit-
able generating function associated with the center of mass
and the relative angles. Besides ∆θk, we obtain as ghost
variables [21]

eSz
k =

k
N

N
∑

i=1

Sz
i −

k
∑

i=1

Sz
i , (7)

which are linear functions of the spin variables. Note that
using canonical transformations ensures that the new set of
variables spans the entire phase space. If the interaction
with the environment is any combination of these variables
or operators (i.e., if it does not depend explicitly on θ and
J) DFS exist and the open system exhibits NLD. The ghost
variables or operators do not affect the oscillatory dynamics
associated with the conserved quantity J . Therefore, coher-
ent oscillations persist on long-timescales and the spectrum
of the Lindbladian contains nonzero real eigenvalues, cf.

Fig. 2.
The beating variables associated with the conserved

quantity, as given in Eq. (4), are obtained in terms of spin
variables by performing a non-canonical change of coordi-
nates [21] leading to A∝

∏N
i=1 S−i and A∗∝

∏N
i=1 S+i . The

beating variables oscillate at a frequency Ω=
∑N

i=1ωi , cor-
responding to the absolute value of the nonzero real eigen-
values and are not affected by dissipation. The ghost oper-
ators as the quantum analogs of the ghost variables follow
simply from replacing the Cartesian spin variables in the
ghost variable expressions by the corresponding Cartesian
spin operators. Therefore, the ghost operators are functions
of the spin operators (Pauli matrices) and read

eSzk =
k
N

N
∑

i=1

Szi −
k
∑

i=1

Szi , (8a)

eS±k = Dk S±k+1 S
∓
k , (8b)

with k = 1, ..., N−1 and ia diagonal matrix Dk [21]. By con-
struction, all combinations of ghost operators are also ghost
operators. Any Lindbladian which is an analytic function of
these ghost operators leads to DFS.

In Fig. 2b, we have used (N−1)N/2 Lindblad operators as
a linear combination of the ghost operators (8a) such that
Lα jk

= γ(Szj − S
z
k) with γ=1/3 and αi j = ( j−1)( j−2)/2+i

for j = 2, ..., N and i = 1, ..., j−1. For Fig. 2c, we have
used N−1 Lindblad operators of the ghost operators (8b)
such that Lα = γeS+α with γ=1/3 and α = 1, ..., N − 1. In
both cases, the coherent oscillations associated with the
symmetry J are not affected, neither are the beating op-
erators A=

∏N
i=1 S

−
i and A† =

∏N
i=1 S

+
i . Note also, that the

(real) eigenvalues (cyan circles) are the same for the cases
of Fig. 2b and 2c, since they come from the Hamiltonian
part of the Lindbladian L †

H which we have not changed.
We find L †

HA=ΩA and L †
LA=0 corresponding to the cyan

circles for positive real eigenvalues (the negative one cor-
responds to the one associated with A†) in Figs. 2b and 2c.

Theory of symmetry-induced DFS in quantum mechanics:
Finally, we are in a position to briefly sketch the deriva-
tion of the quantized condition (3) for DFS. We have a set
of commuting operators, {Zi}, its conjugate J and and the
ghost operators. Together, they span the Hilbert space for
the open system dynamics.

The Hamilton operator H (and similarly all Lindblad op-
erators Lα) with the symmetry J can be written as a direct
sum of irreducible (square) matrices

H=
⊕

n
Hn, Lα =

⊕

n
Lαn, (9)

where Xn is associated with the eigenspace of Jn, an eigen-
value of J. They are defined as Xn= trnPnXPn where
Pn=

∏

j(Jj 6=Jn)
(J−Jj1)/(Jn−Jj) are projectors [30] render-

ing all subspaces to null operators but the one associated
with the eigenvalue Jn of J. trn, finally, takes the partial
trace over all complementary subspaces, reducing the di-
mension of Xn to the irreducible one of Jn. Correspond-
ing to the multiplicity ηn of the eigenvalue Jn, the Hn
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and Lαn are ηn×ηn matrices. Due to the block-diagonal
form (9), the superoperator L † can be written as blocks
associated with a pair of eigenvalues (Jn, Jm) such that
L †=

⊕

n,mL †
nm. Each block of the superoperator

L †
nm =

1
ħh
∆Hnm+

i
ħh

∑

α

�

L†
αn∆Lαnm+∆L†

αnmLαm

�

(10)

is of size (ηn×ηm)×(ηn×ηm) with [31]

∆Hnm ≡Hn ⊗ 1m − 1n ⊗H>m, (10a)

∆Lαnm ≡ Lαn ⊗ 1m − 1n ⊗L>αm. (10b)

Coherent oscillations of a beating operator Anm, which is an
eigenoperator of L †

nm with nonzero real eigenvalues, oc-
cur for those ∆Hnm and ∆Lαnm that fulfill condition (3).
The eigenoperators Anm are matrices with an ηn×ηm non-
vanishing part such that Anm=PnAnmPm and can have
multiple beating frequencies. Furthermore, the Anm are
also eigenoperators of the Lindbladian since under condi-
tion (3), with (10b), [Lαn,L†

αn]=[Lαm,L†
αm]=0. The fact

that the Lindbladian and its adjoint share the same eigenop-
erators associated to real eigenvalues show that dissipation
plays a passive role in this case.

This completes our classical, semiclassical and quantum
treatment of symmetry-induced DFS. It clearly reveals that
the notion of non-stationary (oscillating) behavior and its
equivalence to real eigenvalues of the Lindbladian applies
equally to classical, semiclassical and quantum systems
which establishes DFS for classical and semiclassical sys-
tems. For the latter, while coherent oscillations in classi-
cal systems can still occur in the presence of dissipation
(through the second term in (5), see [32–34] for examples),
diffusion can inhibit long-time oscillatory non-stationary

motion (through the third term in (5) being of order ħh). The
eigenoperator of the adjoint Lindbladian corresponding to
the real nonzero eigenvalues can be constructed classically,
see Eq. (4), or quantum mechanically (Anm) from a symme-
try. Playing the role of a beating operator, A or Amn connect
different elements of the constant of motion J or J in form
of its layers in phase space or its irreducible representations
in Hilbert space, respectively. Elements Jn of the symmetry
itself can be expressed in terms of the beating operator as
Jn=A†

mnAmn. This irreducible representation also plays a
crucial role in the context of breaking the ergodicity ther-
malization hypothesis in Hamiltonian systems [35], which
is related to NLD in the absence of dissipation. For DFS,
the Lindblad operators must be degenerate with respect to
at least two different irreducible subspaces n 6= m of the
symmetry, while the hamiltonian must not be degenerate,
see (3). This gives a clear picture how DFS emerge.

Guided by this insight, we have identified a new class of
couplings to the environment leading to DFS, namely when
the Lindblad operators do only depend on ghost operators
which span the Hilbert space but commute with the sym-
metry J, as explicitly demonstrated with the Heisenberg
XXZ spin model. In terms of the eigenoperator, DFS exist
if [Lα,Anm]=[L†

α,Anm]=0 [15]. Note, however, that the
latter condition is not necessary since for the adjoint Lind-
bladian to have real eigenvalues, it follows from (1b) that
only the sum L†

α[A,Lα]+[L†
α,A]Lα=0 must vanish. How

this extends the classes of possible interactions with the en-
vironment leading to DFS even further beyond those de-
pending only on ghost operators will be a subject of further
research [36].
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I. LINDBLADIAN OPERATOR, ITS ADJOINT OPERATOR AND ITS SEMICLASSICAL LIMIT

In the quantum mechanical context, the inner product between two observables F and G in the Hilbert space is given by
〈F,G〉 = tr (F†G) where F† denotes the complex-conjugate transpose of F. The adjoint L † of the Lindbladian is defined
through 〈L †F,G〉= 〈F,LG〉. The Lindbladian and its adjoint are given by [1]

Lρ =
1
ħh
[H,ρ] +

i
ħh

∑

α

�

[Lα,ρL†
α] + [Lαρ,L†

α]
�

, (S11a)

L †F=
1
ħh
[H,F]−

i
ħh

∑

α

�

L†
α[F,Lα] + [L

†
α,F]Lα

�

, (S11b)

respectively, such that we have ρ̇ = −iLρ and Ḟ = iL †F. In the limit Lα=0 it is L=L †. In the semiclassical limit, the
scalar product in the Hilbert space with phase-space variables z is given by 〈F, G〉 =

∫

d
n
z F∗(z)G(z) for an n-dimensional

phase space. The semiclassical limit of the Lindbladian and its adjoint are given by [2]

Lρ = i{H,ρ} −
∑

α

�

�

{Lα,ρL∗α}+ {Lαρ, L∗α}
�

−
iħh
2

�

{{Lα,ρ}, L∗α}+ {Lα, {ρ, L∗α}}
�

�

, (S12a)

L ∗F = i{H, F}+
∑

α

�

�

L∗α{F, Lα}+ {L∗α, F}Lα
�

+
iħh
2

�

{{Lα, F}, L∗α}+ {Lα, {F, L∗α}}
�

�

. (S12b)

The Lindbladian can always be cast into a Fokker-Planck equation [2, 3].

II. HEISENBERG SPIN MODEL

We provide details of the classical construction of ghost variables in order to define environments that allow for
decoherence-free subspaces for the Heisenberg model presented in the text.

Classical spin algebra

We consider a chain of N spins with in the classical limit is described by the spin variables Si = S x
i ex + S y

i ey + Sz
i ez with

i = 1, ..., N and the spin algebra

{Sαi , Sβj }= δi jεαβγS
γ
i (S13)

with εαβγ the Levi-Civita symbol. The corresponding non-canonical Poisson bracket is given by

{F, G}=
N
∑

i=1

Si ·
∂ F
∂ Si
×
∂ G
∂ Si

. (S14a)

Equivalently, we can describe the dynamics with the beating variables S±i = S x
i ± iS y

i , for which the Poisson bracket reads

{F, G}=
N
∑

i=1

�

−2iSz
i

�

∂ F
∂ S+i

∂ G
∂ S−i

−
∂ F
∂ S−i

∂ G
∂ S+i

�

+ i S+i

�

∂ F
∂ S+i

∂ G
∂ Sz

i

−
∂ F
∂ Sz

i

∂ G
∂ S+i

�

− i S−i

�

∂ F
∂ S−i

∂ G
∂ Sz

i

−
∂ F
∂ Sz

i

∂ G
∂ S−i

��

, (S14b)

with the fundamental spin algebra {Sz
i , S±i } = ∓iS±i and {S+i , S−i } = −2iSz

i . Note that in both cases, the classical Poisson
bracket is non-canonical and is related to the quantum Lie bracket by [F,G]≡ iħh{F, G}.

6
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Cylindrical coordinates and conserved quantity

In cylindrical coordinates {Sz
i ,θi} it is Si =

Æ

Si
2−(Sz

i )2 (ex cosθi + ey sinθi) + Sz
i ez or equivalently

S±i =
Æ

Si
2−(Sz

i )2 exp(±iθ ) with Si
2 = |Si |2 a Casimir invariant. Therewith the Hamiltonian (in the semiclassical limit)

reads

H(θi , Sz
i ) =

N
∑

i=1

�

ωiS
z
i +

N
∑

j=1

�

2σi j

Ç

[S2
i − (S

z
i )2][S

2
j − (S

z
j )2] cos

�

θi − θ j

�

+∆i jS
z
i Sz

j

�

�

, (S15)

and the Poisson bracket becomes

{F, G}=
N
∑

i=1

�

∂ F
∂θi

∂ G
∂ Sz

i

−
∂ F
∂ Sz

i

∂ G
∂θi

�

. (S16)

From the Hamiltonian (S15), it is clear that

J =
1
N

N
∑

i=1

Sz
i , (S17)

is a conserved quantity due to the invariance under a rotation around ez . The variable canonically conjugate to J such that
{θ , J}= 1 is given by

θ =
N
∑

i=1

θi , (S18)

corresponding to the total angle. There is some freedom for choosing the set of canonically-conjugate variables from there
and therefore the ghost variables. Indeed, note that one can transform one set of ghost variables into another one by
canonical transformations. The most natural starting point are the Jacobi coordinates for the celestial many-body problem
∆θi = θi+1 − θi . It is clear that {∆θi , J} = {∆θi ,θ} = 0 for i = 1, ..., N − 1. The goal is now to find the set of variables eSz

i

canonically conjugate to ∆θi , i.e., {∆θi , eS
z
j }= δi j with δi j the Kronecker delta.

Ghost variables using canonical transformations

For doing so, we use the F2 generating function [4]. We recall that for a set of canonically conjugate variables (θ ,Sz) the
new set of canonically conjugate variables (eθ ,eSz) can be found by using transformations, such that F2(θ ,eSz), such that

Sz =
∂ F2

∂ θ
, eθ =

∂ F2

∂ eSz
. (S19)

Here, the old variables are given by θ = (θ1, ...,θN ) and Sz = (Sz
1, ..., Sz

N ). The new variables are eθ = (∆θ1, ...,∆θN−1,θ )
and eSz = (eSz

1, ..., eSz
N−1, J). Given the form of the new variables eθ which we have imposed, the generating function is given

by

F2(θ ,eSz) = J
N
∑

i=1

θi +
N−1
∑

i=1

eSz
i (θi+1 − θi). (S20)

Indeed, from (S19) and (S20), we obtain that eθ0 ≡ θ =
∑N

i=1 θi and eθi ≡∆θi = θi+1−θi for i = 1, ..., N−1. The expression
of the old momenta with respect to the new ones are found using (S19) as

Sz
1 = J − eSz

1, Sz
i = J + eSz

i−1 − eS
z
i , Sz

N = J + eSz
N−1, (S21)
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for i = 2, ..., N−1. We can easily check that (S17) is fulfilled. In order to invert this transformation and obtain the expression
of the ghost variables with respect to Sz

i , a convenient way is to write it in a matrix form



















Sz
1

Sz
2

Sz
3
...

Sz
N−2

Sz
N−1
Sz

N



















=



















−1 0 0 . . . 0 0 1
1 −1 0 . . . 0 0 1
0 1 −1 . . . 0 0 1
...

...
... . . .

...
...

...
0 0 0 . . . −1 0 1
0 0 0 . . . 1 −1 1
0 0 0 . . . 0 1 1







































eSz
1
eSz

2
...

eSz
N−3
eSz

N−2
eSz

N−1
J





















. (S22)

The inverse transformation is given by





















eSz
1
eSz

2
...

eSz
N−3
eSz

N−2
eSz

N−1
J





















=
1
N



















−N+1 1 1 . . . 1 1 1
−N+2 −N+2 2 . . . 2 2 2
−N+3 −N+3 −N+3 . . . 3 3 3

...
...

... . . .
...

...
...

−2 −2 −2 . . . −2 N−2 N−2
−1 −1 −1 . . . −1 −1 N−1
1 1 1 . . . 1 1 1





































Sz
1

Sz
2

Sz
3
...

Sz
N−2

Sz
N−1
Sz

N



















. (S23)

Therefore, the ghost variables are given by the Jacobi momentum coordinates

eSz
k =

k
N

N
∑

i=1

Sz
i −

k
∑

i=1

Sz
i , ∆θk = θk+1 − θk, k = 1, ..., N−1 (S24)

as given in the main text. One can easily check that the transformation is canonical with {θ , J} = 1, {∆θi , eS
z
j } = δi j and

{θ , eSz
i }= {J , eSz

i }= {θ ,∆θi}= {J ,∆θi}= {eSz
i , eSz

j }= {∆θi ,∆θ j}= 0 for all i and j. In the same way, we find the change of
coordinates for the angles and relative angles.

In this new set of variables, the Hamiltonian H(J ,∆θi , eS
z
i ) replacing the one in Eq. (S15) is independent of the angle θ .

Beating variables and transformation back to Cartesian spin algebra

As mentioned in the main text, from canonical variables associated to a conserved quantity (θ , J), one can construct
beating observables A= f (J)exp(−iθ ) and A† = f (J)exp(iθ ). One can always perform the inverse change of coordinates
from (S16) to (S14) by going back to a spin algebra. For instance, using f (J) = 1 we find the beating variables

A=
N
∏

i=1

S−i
Æ

Si
2 − (Sz

i )2
, A∗ =

N
∏

i=1

S+i
Æ

Si
2 − (Sz

i )2
. (S25)

In the previous paragraph, we have described the canonical transformation from (θi , Sz
i ) to variables (θ , J ,∆θi , eS

z
i ). One

can always go back to a spin representation by performing the inverse change of coordinates from (S16) to (S14). Here,
this change of coordinates reads

eS±N =
q

eSN
2 − J2 exp(±iθ ), eSz

N = J , (S26a)

eS±i =
Ç

eSi
2 − (eSz

i )2 exp(±i∆θi), eSz
i = eS

z
i , i = 1, ..., N−1, (S26b)

which allows us to obtain the spin algebra (S16). Note that A∝ eS−N and A∗∝ eS+N corresponding to the beating variables
associated with the conserved quantity J introduced in the main text.

To summarize, we started with a Hamiltonian in terms of a spin algebra in the main text. Switching to canonical variables
we obtained Hamiltonian (S15). Then, using a canonical transformation, we found the new coordinates which consist
of the DOFs of the collective spin variables (θ , J) and the ghost variables (∆θi , eS

z
i ). From (S26), the expression of the
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ghost variables with respect to the initial spin variables read by means of the abbreviations Sρi ≡
q

S2
i − (S

z
i )2 and eSρi ≡

q

eS2
i − (eS

z
i )2 (with Casimir invariants eS2

i = |eSi |2)

eSz
N =

1
N

N
∑

i=1

Sz
i , eS±N =

eSρN
∏N

i=1 Sρi

N
∏

i=1

S±i , (S27a)

eSz
k =

k
N

N
∑

i=1

Sz
i −

k
∑

i=1

Sz
i , eS±k =

eSρk
Sρk+1 Sρk

S±k+1S∓k , k = 1, ..., N−1. (S27b)

This transformation is canonical, in the sense that it preserves the form of the Poisson bracket (S13) for the spin algebra.
The beating variables associated with the conserved quantity J are therefore A = eS−N . We go from {S i

n, S j
m} = εi jkSk

mδnm,
to {eS i

n, eS j
m} = εi jk

eSk
mδnm. Or equivalently, from {S±n , Sz

m} = ±iS±n δnm and {S+n , S−m} = −2iSz
nδnm to {eS±n , eSz

m} = ±ieS±n δnm and
{eS+n , eS−m} = −2ieSz

nδnm. Therefore, the new spin variables eSi for i = 1, ..., N−1 are ghost variables which do not affect the
DOF associated with the conserved quantity eSN .

Ghost and beating operators

From (S27a), we upgrade the beating and ghost variables to their quantum mechanical counterparts, the beating and
ghost operators. To do so, we replace the variables by their associated operators (which are matrices) in the expres-
sions (S27a). We first notice that the quantities Sρi , in the basis of the operators Szi , are diagonal matrices since Si is
proportional to identity (Casimir invariant) and Szi is diagonal. This allows us to compute the square roots and inverse
of the operators Sρi . In addition, these operators commute with each other. For the Heisenberg spin model, we find a
simplified version of a beating operator

A=
N
∏

i=1

S−i , (S28)

since these operators are defined up to a factor. The expectation value of this operator oscillates in time. From the classical
ghost variables (S27b), we obtain the ghost operators in the main text

eSzk =
k
N

N
∑

i=1

Szi −
k
∑

i=1

Szj eS±k = Dk S±k+1S
∓
k , Dk =

eSρk
Sρk+1 S

ρ

k

. (S29)

As mentioned above, all Sρk are diagonal, which makes the expression for Dk unique.

Parameters for the Heisenberg model presented in the text

In Figs. 1 and 2, the self-energy ωi of each spin site i has been generated randomly. The actual values and the matrices
for nearest-neighbors interactions, cf. Eq. (6) in the text, are

[ωi] =













0.6358
0.9452
0.2089
0.7093
0.2362
0.1194













, [σi j] =
1
2













0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0













, [∆i j] =
1
4













0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0













. (S30)

For the Lindblad operators in Fig. 2c, we have used a combination of ghost operators such that Lαi j
= γ(Szi − S

z
j ). This is

done using (S21).

As initial condition we have taken ρ(0) = |ψ〉 〈ψ| with

|ψ〉=

∑

k1...k6
|k1 . . . k6〉Ck1...k6

q
∑

k1...k6
Ck1...k6

2
where Ck1...k6

=
∑

ξ=±63

exp
�

−
�∑

jk j 2 j−ξ
�2
/128

�

(S31)
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and k j = {−
1
2 ,+ 1

2} and thus 64 different states |k1 . . . k6〉.
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