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Out-of-equilibrium systems continuously generate entropy, with its rate of production being a
fingerprint of non-equilibrium conditions. In small-scale dissipative systems subject to thermal
noise, fluctuations of entropy production are significant. Hitherto, mean and variance have been
abundantly studied, even if higher moments might be important to fully characterize the system
of interest. Here, we introduce a graphical method to compute any moment of entropy production
for a generic discrete-state system. Then, we focus on a paradigmatic model of active particles,
i.e., run-and-tumble dynamics, which resembles the motion observed in several microorganisms.
Employing our framework, we compute the first three cumulants of the entropy production for a
discrete version of this model. We also compare our analytical results with numerical simulations.
We find that as the number of states increases, the distribution of entropy production deviates
from a Gaussian. Finally, we extend our framework to a continuous state-space run-and-tumble
model, using an appropriate scaling of the transition rates. The approach here presented might help
uncover the features of non-equilibrium fluctuations of any current in biological systems operating
out-of-equilibrium.

I. INTRODUCTION

Biological systems are often found out of equilibrium,
constantly consuming energy to maintain a stationary
state [1, 2]. A large number of studies have been per-
formed on non-equilibrium properties that such systems
display [3–5]. One of the most relevant signatures of a
non-equilibrium condition is the net production of en-
tropy. At equilibrium, due to the time-reversal symme-
try, a forward trajectory is equally probable compared
to its time-reversed counterpart. Non-equilibrium con-
ditions break this symmetry, leading to entropy produc-
tion. This has been closely investigated, especially in the
context of biological systems, to quantify their distance
from thermodynamic equilibrium [6, 7]. Even outside the
context of biological systems, entropy production and its
features have been extensively studied [8–12].

Moreover, investigating macroscopic emergent behav-
iors is usually not enough in the realms of biologi-
cal and biochemical systems. In fact, thermal fluctu-
ations are prominent in small-scale systems. There-
fore, researchers have investigated fluctuations of differ-
ent thermodynamic quantities, such as work done [13–
15], entropy production [16–19], heat flow [15, 20–22],
and stochastic efficiency [23–27] within the framework of
stochastic thermodynamics [8, 28, 29].

In stark contrast to equilibrium systems, basic princi-
ples are constantly being searched for in non-equilibrium
systems. Stochastic thermodynamics provides a window
into the possibilities of out-of-equilibrium universal laws
through several seminal results, such as the fluctuation
theorems [30–33], the Jarzynski equality [34], the Crooks

∗ current address: Max Planck Institute for the Physics of Com-
plex Systems, 01187 Dresden, Germany

work-fluctuation theorem [31, 35], the non-equilibrium
linear response [36, 37], and the thermodynamic uncer-
tainty relations [38–41].

In particular, entropy production and its fluctuations
play a prominent role in linear response theory, fluctua-
tion theorems, and thermodynamic uncertainty relations.
In this context, various studies have focused on the esti-
mation of the mean entropy production, both theoret-
ically and experimentally, by using different methods,
such as uncertainty relations [42–44], waiting-time distri-
butions [45], machine learning [46], and stochastic single-
trajectory data [47–49]. While an explosion of research
investigate the mean entropy production, there is a lack
of general understanding of the properties of its proba-
bility density function (pdf). Nevertheless, researchers
have obtained the distribution of entropy production for
specific settings using analytical [50–52], numerical [53],
and experimental techniques [54–57].

Having an estimate for the moments of the entropy pro-
duction might be as important as quantifying its mean.
Though a system might be close to equilibrium, it can po-
tentially have large fluctuations of entropy production.
In fact, estimating the entire pdf provides information
about this variability [58]. From a general perspective,
our understanding of biological and chemical systems
might benefit from the knowledge of fluctuations of any
thermodynamic quantity, including entropy production
[7, 59–63]. Following this research direction, in [64] the
authors introduce a method to infer mean and variance of
entropy production from short-time experiments, while in
[55] these quantities are estimated numerically using dif-
ferential equations for moments of dissipated heat, follow-
ing [65]. Some studies place bounds on all steady-state
currents, including entropy production [66], specifically
through techniques of linear response theory [67], and
large deviation theory [40]. To the best of our knowledge,
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there exists no theoretical framework to compute the dis-
tribution of entropy production which applies to a large
class of systems. One of the difficulties encountered is
that entropy production is a trajectory-dependent quan-
tity, a property that makes the analytical computation
of its statistics beyond the mean a difficult task.

In the study of non-equilibrium systems, modeling of
active self-propelled particles has recently been one of
the most active fields. These particles break detailed bal-
ance via a self-driven term that leads to a wide range of
non-equilibrium phenomena resembling various distinc-
tive properties of living systems [68–70]. Examples of
such phenomena include self assembly [71, 72], sponta-
neous segregation [73], and motility induced phase sepa-
ration [74, 75]. The non-equilibrium nature of such sys-
tems automatically leads to questions about the proper-
ties of their thermodynamic features. Fluctuation the-
orems in active Ornstein-Uhlenbeck processes [76–78],
stochastic thermodynamics of active particles [79, 80],
their entropy production [81–85], heat fluctuations of in-
teracting active particles [86], and experimental measure-
ments of uncertainty relations [87] are only a few exam-
ples of works performed in this area.

One of the most studied models for active matter com-
ponents is the run-and-tumble motion. Particles under-
going this dynamics capture the typical homonymous be-
havior displayed by microorganisms, such as E. Coli and
Salmonella, characterized by driven diffusive dynamics
(run) interspersed by random changes of the velocity di-
rection (tumble) [88, 89]. In its simplest form, the model
consists of a random walker whose velocity direction is
influenced by a dichotomous noise [90, 91], often referred
to as ‘telegraphic’ noise [92], and the walker’s position
is described by the telegrapher’s equation (also relevant
in electronics [93, 94]). In addition to displaying motion
similar to microorganisms, run-and-tumble particles ex-
hibit interesting steady states [91, 95] which also leads
to clustering near the boundaries [89]. Recent studies
have also investigated the first passage properties of this
system with [94] and without stochastic resetting [96].

Run-and-tumble particles have been shown to have
non-zero average entropy production [97]. Due to their
popularity, the dynamics might serve as a paradigmatic
model to study active matter systems. Here, we start
from a discrete-state version of a model for run-and-
tumble particles (Sec. II) and present a graphical method
to compute cumulants of the entropy production at
any order (Sec. III). Notice that, although the graph-
ical method is employed to study the run-and-tumble
setup, it is nevertheless valid for any Markovian system.
We proceed to calculate analytically the third cumulant
of the entropy production in this model, and verify it
through simulations of the system (Sec. IV). Although
obtaining the full distribution remains a lofty goal, our
formalism can be, in principle, extended up to a desired
precision.

Furthermore, for the given model, we find an interest-
ing system-size scaling of the entropy production’s com-

plementary cumulative distribution function. We em-
phasize that the approach presented here can be easily
generalized to any discrete-state system (both undergo-
ing discrete- and continuous-time evolution) and different
boundary conditions. Finally in Sec. V, by implement-
ing a proper coarse-graining procedure, we show that
our predictions are compatible with those numerically
obtained from the Langevin equation of run-and-tumble
particles.

II. SETUP

We consider a run-and-tumble walker on a discrete
state-space with reflecting boundary states. The walker
hops with a switching rate r between two lanes, rep-
resenting two different velocity directions in a one-
dimensional system. On the upper (lower) lane, the
walker hops forward with a rate a (b), and backward
with a rate b (a). Without loss of generality, we consider
a > b. The schematic diagram describing the system is
shown in Fig. 1. Thus, the system consists of 2N states,
of which N states are in the + regime (i.e., upper lane),
and the remaining N are in the − regime (i.e., lower
lane). Here ‘+’ and ‘-’ correspond to the direction in
which the walker hops on average.

FIG. 1. Schematic representation of a run-and-tumble par-
ticle. Top layer: + regime. Bottom layer: - regime. The
particle hops forward and backward, respectively, with a rate
a (b) and b (a) in the + (-) regime, where a > b. Moreover,
the particle switches states in between the two layers with a
rate r.

The master equation governing the probability of find-
ing a particle in the i-th state is [98]

Ṗ (i, t) =
∑
j

Wij P (j, t), (1)

where the dot indicates the time-derivative. Wij ≡Wi←j
is transition rate from the state j to i, j 6= i, and the
element of the transition rate matrix Ŵ in the position
(ij). Since the probability distribution is normalized at
all times, i.e.,

∑
i P (i, t) = 1, the sum of elements of each

column of Ŵ is zero:
∑
iWij = 0 which gives Wjj =

−
∑
i 6=jWij . Herein, we consider a system in which if

Wij 6= 0, so is Wji, since there are no unidirectional
transitions.
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In this paper, we aim to compute fluctuations of en-
tropy production of a run-and-tumble particle. In the
case of a discrete state-space, the total entropy pro-
duction, Σtot, at the level of a single trajectory is
defined as follows. Given a forward trajectory Γ ≡
{(i0, t0), (i1, t1), . . . , (iM , tM )}, where the state ik is vis-
ited at time tk and changes to state ik+1 at time tk+1,
the asymmetry between the probability of forward and
reverse trajectories quantifies the total entropy produc-
tion [8, 28, 99, 100]:

Σtot(Γ) ≡ ln
P(Γ)

P(Γ†)
, (2)

where P(Γ) and P(Γ†), respectively, are the probabil-
ities of observing a forward and a time-reversed trajec-
tory. Note that this definition of entropy production is
valid when the local detailed balance is satisfied, which
we shall assume to be the case [101, 102]. In the event
of local detailed balance violated, informatic entropy pro-
duction needs to be considered [103]. Following [104], the
total entropy production along the trajectory Γ reads:

Σtot(Γ) = ln

[
P (i0, t0)

P (iM , tM )

∏
i,j∈Γ

(
Wij

Wji

)nij
]
, (3)

where P (i0, t0) and P (iM , tM ), respectively, are the prob-
abilities of initial and final states of the trajectory, and
nij ≡ ni←j counts the number of jumps from the state
j to i in the trajectory Γ. Σtot can be split into two
contributions: system entropy production Σsys, and en-
vironment entropy production Σenv. In particular, Σenv

is associated with the heat dissipated by the particle into
the surrounding bath along the trajectory Γ:

Σenv(Γ) ≡
∑
i,j∈Γ

nij ln
Wij

Wji
, (4)

where j precedes i in the trajectory Γ. This is the only
term that survives in the stationary state, when averaged
over many trajectories [104]. Additionally, for any finite
discrete-state systems, Σsys = Σtot − Σenv is a boundary
term involving the initial and final states for each tra-
jectory, and is the sub-leading contribution to the total
entropy production in the long-time limit.

Since the number of jumps, nij , performed by the run-
and-tumble walker is a trajectory-dependent quantity,
i.e., it varies from one realization to another, the knowl-
edge of its statistics is required to obtain the fluctuations
of the entropy production in Eq. (4).

III. COMPUTATION OF CUMULANTS OF
ENTROPY PRODUCTION

To compute the various correlations of the number
of jumps, we start from a simpler dynamical model: a
Markov chain [105, 106]. Unlike the master equation
in which time changes continuously, now the time in-
creases in discrete steps, ∆t. In one time increment,
the transition probability of the system to jump from
the state j to i is P(i, t + ∆t|j, t) ≡ Aij = Wij∆t for
i 6= j, and the probability of staying in the state i is
Aii = 1 −

∑
j 6=iWji∆t = 1 + Wii∆t. It follows that

the sum of the elements of each column is unity, i.e.,∑
iAij = 1. Therefore, the Markov chain equation is

P (i, t+ ∆t) =

2N∑
j=1

AijP (j, t). (5)

In the limit ∆t→ 0, the above equation (5) reduces to the
master equation (1). Note that herein we are considering
time-independent transition rates.

Since the time evolution runs only over times multiple
of ∆t, fixing the observation time T is equivalent to fixing
the total number of jumps to T/∆t. In a Markov chain,
time is a bookkeeping measure, and therefore, we are able
to consider equally spaced time intervals for the trajec-
tory. Hence, the probability of a Markov chain (MC)
trajectory ΓMC ≡ {(i0, t0), (i1, t1), . . . , (iM , tM )}, where
tk+1 = t0 + (k + 1)∆t is:

P(ΓMC) ≡ AiM iM−1
AiM−1iM−2

. . . Ai2i1Ai1i0P (i0, 0),
(6)

where P (i0, 0) is the initial probability distribution of
the run-and-tumble walker at time t0 = 0. Note that in
Eq. (6), it is possible that ik+1 = ik for some k’s, i.e.,
there is a possibility of staying in the same state after
the time interval ∆t which is a consequence of imposing
M equally spaced time intervals. When we move back
to the master equation, these probabilities of staying in
the same state lead to exponential waiting time distribu-
tions of times between jumps from one state to another,
thereby ΓMC converges to Γ.

The path probability, P(ΓMC), is normalized over all
trajectories, i.e.,∑

ΓMC

P(ΓMC) =
∑

iM ,iM−1,...,i1,i0

AiM iM−1
AiM−1iM−2

. . .

× Ai2i1Ai1i0P (i0, 0) = 1,

where we used
∑
i Aij = 1 for each summation.

The number of jumps performed up to the time T
across a link from ` to m in a trajectory Γ is then:

nm`(ΓMC) ≡
M−1∑
k=0

δik+1,m δik,`, (7)

where the Kronecker deltas give 1 whenever the system
performs jumps from state ` to m.

Let us first compute the average number of jumps over
all possible trajectories:
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〈nm`〉ΓMC
=
∑
ΓMC

P(ΓMC)

M−1∑
k=0

δik+1,m δik,` (8a)

=

M−1∑
k=0

∑
iM ,iM−1,...,i1,i0

AiM iM−1
AiM−1iM−2

. . . Ai2i1Ai1i0P (i0, 0) δik+1,m δik,` (8b)

=

M−1∑
k=0

∑
iM ,...,ik+1,ik,ik−1

AiM iM−1
. . . Aik+1ik δik+1,m δik,` Aikik−1

∑
ik−2,...,i0

Aik−1ik−2
. . . Ai1i0P (i0, 0) (8c)

=

M−1∑
k=0

∑
ik−1,...,i0

Am`A`ik−1
Aik−1ik−2

. . . Ai1i0P (i0, 0) (8d)

=

M−1∑
k=0

Am` P (`, k∆t). (8e)

To go from Eq. (8b) to (8c), we move the Kronecker deltas
next to the Â’s matrix elements with the corresponding
indices, and identify two groups of indices. Then, the
summation over iM , . . . , ik+2 gives 1 using the property∑
iAij = 1, while the one over the indices k+1 and k can

be carried out using the Kronecker delta. The resulting
expression is in Eq. (8d). Finally, we use the Markov
chain evolution in Eq. (5) to perform the summation on
indices ik−1 to i0 to obtain the last equality, Eq. (8e).

Similarly, we compute the correlations between two
sets of jumps:

〈nm` nm′`′〉ΓMC =
∑
ΓMC

P(ΓMC)

M−1∑
k=0

δik+1,m δik,`

×
M−1∑
k′=0

δik′+1,m
′ δik′ ,`′

=

M−1∑
k=0

M−1∑
k′=0

∑
iM ,...,i0

δik+1,m δik,` δik′+1,m
′

× δik′ ,`′ AiM iM−1
. . . Ai1i0P (i0, 0).

We split the second summation over k′ depending on
three different scenarios: 1) k′ < k, 2) k′ = k, and 3)
k′ > k. Performing similar calculations as in the case of
the first moment, we obtain, for k′ < k,

〈nm` nm′`′〉ΓMC
=

M−1∑
k=0

k−1∑
k′=0

Am` P(`, k∆t|m′, (k′ + 1)∆t)

×Am′`′ P (`′, k′∆t), (10)

for k < k′,

〈nm` nm′`′〉ΓMC =

M−1∑
k=0

M−1∑
k′=k+1

Am′`′ P(`′, k′∆t|m, (k + 1)∆t)

×Am` P (`, k∆t), (11)

and for k′ = k,

〈nm` nm′`′〉ΓMC =

M−1∑
k=0

Am` P (`, k∆t) δm,m′δ`,`′ . (12)

Combining the above three contributions, Eqs. (10), (11),
and (12), finally we obtain:

〈nm` nm′`′〉ΓMC =

M−1∑
k=0

[ k−1∑
k′=0

Am` P(`, k∆t|m′, (k′ + 1)∆t)Am′`′ P (`′, k′∆t)

+

M−1∑
k′=k+1

Am′`′ P(`′, k′∆t|m, (k + 1)∆t)Am` P (`, k∆t)

+Am` P (`, k∆t)δm,m′δ`,`′

]
. (13)

Such calculations become tedious on proceeding to higher
order correlations. However, we present a graphical
method to scale up the calculations to any order of corre-
lations of the number of jumps. For a given correlation,
we first determine the set of all possible time-orderings
of k-s, i.e. the times at which a specific jump takes place.
For the first moment, there is only one jump considered,
hence no ordering is required. For the correlations be-
tween two sets of jumps, say {m, `} and {m′, `′}, hap-
pening at times k∆t and k′∆t respectively, as mentioned
earlier, the possible permutations are k < k′, k > k′, and
k = k′. Once all the orderings are listed, the set of states
are graphically located according to the orderings. For
example, corresponding to k < k′, the set of states {m, `}
appears before in time than the set of states {m′, `′}. No-
tice that in what follows, we consider the time-axis from
right to left to be consistent with the ordering at which
propagators appear.

Fig. 2 shows possible orderings for the second order
correlation.
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FIG. 2. Graphical representation for the computation of sec-
ond order correlation for number of jumps. a) k′ > k, b)
k > k′, and c) k′ = k. Circle indicates the set of states
corresponding to the summation label, either k or k′. The
arrow and equality, respectively, correspond to the transition
probability from left set of states to the right ones, and the
Kronecker deltas equating the set of states.

For k′ > k (see Fig. 2a), the rightmost circle car-
ries a contribution from its starting state, {m, l}, at
time k∆t. The contribution is equal to its probability
Am`P (`, k∆t). Then the system moves towards the left
circle, which is associated to the final set of states in
this scenario. This transition comes with its propaga-
tor: Am′`′P(`′, k′∆t|m, (k + 1)∆t). Finally the summa-
tion runs over all possible indices k and k′ with the pre-
scribed ordering (k′ > k in this case). Hence, we can
immediately write the contribution to the second order
correlation as given by Eq. (11). Similarly, we can write
the contributions for k′ = k, and k′ < k.

For the third order correlation, repeating the graphi-
cal procedure leads to 13 possible orderings with three
k-s indices (i.e., k, k′, k′′). We show all the orderings in
Fig. 3. Writing down the summation terms according to
the graphical rules, we find them to be equal to those
obtained from the full calculationIn order to avoid clut-
ter, we relegate the detailed form of the third order jump
correlation to Appendix A.

To move back from a Markov chain to a master equa-
tion description, we rewrite the transition probability as
Am` = Wm`∆t, m 6= l, and take the limite ∆t → 0.
Thus, each summation over k-s appearing in the jump
correlations is converted into an integral over time, t.
Although the calculations shown above are valid for an
arbitrary initial condition, in what follows, we focus
on the case in which the system starts from an ini-
tial steady state distribution, P (i0, t0) = P st(i0) and
P (iM , T ) = P st(iM ). Thus, the jump correlations in

Eqs. (8e) and (13) in the continuous-time limit read:

〈nm`〉Γ =

∫ T

0

dt Wm` P
st(`), (14)

〈nm`nm′`′〉Γ =

∫ T

0

dt

(∫ t

0

dt′ Wm` P(`, t|m′, t′) Wm′`′

× P st(`′) +

∫ T

t

dt′ Wm′`′ P(`′, t′|m, t)

×Wm` P
st(`)

)
+

∫ T

0

dt Wm` P
st(`) δ`,`′ δm,m′ , (15)

where P(`′, t′|m, t) is the probability to be in the state `′
at time t′, starting from the state m at time t, computed
from the master equation. The same limit can be com-
puted for the third moment, as shown in Appendix A.

The integration on the right-hand side of first jump
moment, Eq. (14), yields:

〈nm`〉Γ = T Wm` P
st(`), (16)

whereas the computation of higher order jump moments
requires the knowledge of the transition probability:
P(i′, t′|i, t). To this end, we use the eigenvector expan-
sion of the transition rate matrix Ŵ to compute such
quantity. The master equation can be written in a com-
pact matrix form:

|Ṗ (t)〉 = Ŵ |P (t)〉, (17)

where |P (t)〉 = [P (1, t), P (2, t), . . . ]> is the probability
vector, and > is the matrix transpose operator. The so-
lution of the above linear differential equation (17), given
an initial state vector |P (t0)〉, is

|P (t)〉 = eŴ (t−t0)|P (t0)〉. (18)

Let 〈ψj| and |φj〉, respectively, be the j-th left and
right eigenvectors of the transition rate matrix, Ŵ , corre-
sponding to eigenvalue λj. The left and right eigenvectors
satisfy the normalization condition [98]:

〈ψj|φj′〉 = δj,j′ . (19)

Expanding the right-hand side of Eq. (18) in the eigen-
basis of Ŵ gives:

|P (t)〉 =
∑
j

〈ψj|P (t0)〉 e−λj(t−t0) |φj〉, (20)

where 0 = λ1 < <(λ2) ≤ <(λ3) ≤ · · · ≤ <(λ2N ), where
<(λj) represents the real part of λj. The system consid-
ered here reaches a steady-state in the long-time limit,
|P (t → ∞)〉 → |P st〉 which is the right eigenvector cor-
responding to λj=1 = 0 eigenvalue, i.e., |φj=1〉. Since
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FIG. 3. Possible orderings in the graphical method for the third order correlation of number of jumps.

〈ψj=1| is a row vector with all entries equal to 1, it gives
the condition 〈ψj=1|P (t0)〉 =

∑
i P (i, t0) = 1.

In particular, if the initial state vector |P (t0)〉 is a col-
umn vector of all zeros except 1 at i0-th location, then
the system is in the state i0 at time t0. Let us call this
vector |i0〉. Then, the probability of the system to be
in state i at time t given the initial state i0 at time t0,

P(i, t|i0, t0) ≡ 〈i|P (t)〉, can be written as:

P(i, t|i0, t0) =
∑
j

cj(i0) e−λj(t−t0) φj(i), (21)

where we defined the projection of the left eigenvector
onto the initial state as the coefficients of the expansion,
i.e., cj(i0) ≡ 〈ψj|i0〉. Similarly, we define φj(i) ≡ 〈i|φj〉.

Using the eigenvector expansion, Eq. (21), in the inte-
grals appearing in Eq. (15), we obtain

〈nm`nm′`′〉Γ = Wm` Wm′`′

[
P st(`) P st(`′)T 2 +

∑
j>1

[cj(m) φj(`
′) P st(`) + cj(m

′) φj(`) P
st(`′)]

× 1

λj

(
T − 1

λj
(1− e−λjT )

)]
+ δ`,`′ δm,m′ Wm` P

st(`) T. (22)

For the third order jump correlation, let us consider an
example of one of the orderings, k < k′ < k′′, with {m, `},
{m′, `′}, and {m′′, `′′} being the set of states correspond-
ing to k, k′, and k′′ respectively. The contribution of this
ordering is:

〈nm,`nm′,`′nm′′,`′′〉Γ =Wm′′`′′ Wm′`′ Wm` P
st(`)

×
∑
j1,j2

[
φj1(`′′) cj1(m′)

× φj2(`′) cj2(m) Tj1,j2
]
, (23)

where Tj1,j2 represents the solution to the integral over
time appearing in the third order jump correlation (see
Appendix A). It is given by:

Tj1,j2 ≡
λ2
j2

(
1− Tλj1 − e−Tλj1

)
− λ2

j1

(
1− Tλj2 − e−Tλj2

)
λ2
j2

(λj1 − λj2)λ2
j1

.

(24)

When λj1 = λj2, Eq. (24) is indeterminate. Taking
L’Hôpital’s rule, we find

lim
λj1
→λj2

Tj1,j2 =
Tλj1 + e−Tλj1 (Tλj1 + 2)− 2

λ3
j1

. (25)

Eq (24) is also indeterminate when either of the eigenval-
ues is zero. In such circumstances, applying L’Hôpital’s
rule twice, we obtain its limiting value. As an example,
the limit λj2 → 0 with λj1 6= 0 results in the integral
having the form

lim
λj2
→0
Tj1,j2 =

2
(
1− e−Tλj1

)
+ Tλj1 (Tλj1 − 2)

2λ3
j1

. (26)

The solution (26) is similar for λj2 if λj1 → 0 with λj2 6= 0.
If both eigenvalues are zero, i.e., λj1 = λj2 = 0, Eq. (24)



7

FIG. 4. Scaled cumulants of entropy production. Dots: Numerical simulation. Lines: theoretical predictions. Number of states
in each regime N = 8, with transition rates a = 1.0, and b = 0.1. Inset shows the variation of κ̂1,2.3 with different switching
rates r. Here the averaging is performed over 105 trajectories (generated using the Gillespie algorithm). In each panel, the
color intensity increases with r.

results in

lim
λj1

,λj2
→0
Tj1,j2 =

T 3

6
. (27)

Notice that for all the terms in which two events hap-
pen at the same time, for example, k1 = k2 < k3, the
contribution to the n-th order jump correlation can be
written in terms of the n− 1-th order one (see Appendix
A). Iterating through all possible orderings and using the
solution of the time integral in Eq. (24), we can obtain
the complete third order correlation for the number of
jumps.

The moments and the cumulants of the environmen-
tal entropy production can be calculated from the corre-
sponding moments and correlations for number of jumps.
Indeed, for instance,

κ1(T ) ≡ 〈Σenv(T )〉 =
∑
i,j

〈nij〉Γ ln
Wij

Wji
, (28)

where the i, j indices run over all 2N states. Scaled cu-
mulants can then be defined as

κ̂1(T ) ≡ κ1(T )

T
, (29a)

κ̂2(T ) ≡ κ2(T )

T
≡ 1

T

(
〈Σ2

env〉 − 〈Σenv〉2
)
, (29b)

κ̂3(T ) ≡ κ3(T )

T
≡ 1

T

(
〈Σ3

env〉 − 3〈Σ2
env〉〈Σenv〉+ 2〈Σenv〉3

)
,

(29c)

where the time dependence of Σenv has been omitted for
convenience.

We can immediately see that the first jump moment
scales linearly with time as seen from Eq. (16), so does
the average entropy production, 〈Σenv(T )〉. Concerning
the second cumulant, the first term on the right-hand side
of Eq. (22) scales with T 2. However, this term cancels
out when evaluating the cumulant, since it is equal to
〈nm`〉〈nm′`′〉 [see Eq. (16)]. Hence, in the long-time limit,
i.e., T � max(1/λj, 1 < j ≤ 2N) (λ1 = 0 corresponding

to the stationary state), the second and third terms on
the right-hand side of Eq. (22) grow linearly with the
observation time T . Therefore, in this limit, the second
cumulant defined in Eq. (29b) becomes

〈Σ2
env〉 − 〈Σenv〉2 ≈ T ×

∑
i,j,k,l

f(i, j, k, l) (30)

where f(i, j, k, l) is a function that depends only on the
states of the system but not on time, and can be readily
determined from Eq. (22). Hence, Eqs. (29a) and (29b)
give that, in the long-time limit,

κ̂1 = constant, (31)
κ̂2 = constant. (32)

Therefore, in any finite discrete system with bidirectional
time-independent transition rates, at large times, the
mean and the variance of the environmental entropy pro-
duction scale linearly with time. This agrees with pre-
vious results by Lebowitz and Spohn [32] and hence, we
expect all cumulants to scale linearly with time at large
times, for both discrete and continuous state systems.

IV. ENTROPY PRODUCTION IN THE
RUN-AND-TUMBLE MODEL

In the proposed framework, we return to the run-and-
tumble model shown in Fig. 1. The transition rate matrix
Ŵ has the following elements: Wi+,i++1 = b, Wi+,i+−1 =
a, Wi−,i−+1 = a, Wi−,i−−1 = b, Wi+,i− = Wi−,i+ = r
with zero cross transition rates between two layers, and
W1±,0± = 0 and WN±,N±+1 = 0, where the subscript ±
again denotes the respective regime of the states.

We analytically calculate the cumulants of the envi-
ronmental entropy production for this system in the sta-
tionary state (up to the third cumulant, for the sake of
simplicity). Furthermore, we simulate the dynamics, gen-
erating trajectories that start from the steady state, and
numerically compute the entropy production. Figure 4
shows a comparison of the scaled cumulants of Σenv for
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FIG. 5. a) Scaling of cumulants (κ̂1,2,3) of entropy production for different number of states of the discrete run-and-tumble
model. Points are obtained using analytical expressions (lines serve as a visual aid to connect the dots). Inset shows the
evolution of scaled cumulants against time for the system with N = 25. b) Collapse of the complementary cumulative density
function (c-cdf) of entropy production, P>(Σenv|N,T ), for different number of nodes in the discrete run-and-tumble model.
Entropy production at time T = 200 is obtained from numerical simulation using 106 trajectories initialized from stationary
state. Inset shows the uncollapsed c-cdf, without appropriate rescaling with number of nodes. Parameters for both panels are
a = 1.0, b = 0.1 and r = 0.05.

various values of switching rate r, obtained from analyt-
ical results with their numerical simulation counterpart.
We find that each scaled cumulant reaches a stationary
value in the long-time limit. The non-vanishing value of
the third cumulant reflects the fact that the probability
density function of the entropy production is asymmetric
about its mean value.

Figure 4 also shows how κ̂1,2,3 change with increasing
r as a function of time. We notice that the scaled av-
erage entropy production increases when the switching
rate increases. This effect can be understood by realiz-
ing that, when r → 0, each layer will relax to an equilib-
rium distribution, hence generating no entropy into the
environment on average. Hence, when r increases, the
system starts to feel the non-equilibrium condition that
is generated by the presence of two regimes, + and −,
and the entropy production increases. Due to the same
reason, the variance of the entropy production also in-
creases with increasing r. As a second observation, the
third cumulant is consistently far from zero, stressing the
non-Gaussianity of the pdf of entropy production.

It is also important to analyze the scaling of the cumu-
lants with the number of nodes, in order to investigate
how the distribution of entropy production changes as a
function of the system size. We analytically compute the
scaled cumulants κ̂1,2,3 for various system sizes, starting
from the steady state, and show them in Fig. 5a, while
the inset shows scaled cumulants against time for the sys-
tem with N = 32. We observe that the first two cumu-
lants increase with N . Conversely, the sign of the third
cumulant changes with N , due to the shift of mode of
the distribution of entropy production with respect to its
mean, i.e., skewness is positive when the mean is greater
than the mode, and negative otherwise.

Then, we numerically simulate the system for dif-

ferent N , starting from the steady state, to compute
the complementary cumulative density function (c-cdf),
P>(Σenv|N,T ), of Σenv, defined as

P>(Σenv|N,T ) ≡
∫ ∞

Σenv

ds pΣ(s|N,T ). (33)

Here, pΣ(s|N,T ) is the probability density function of
finding the environmental entropy production to be equal
to s at time T for a system of N sites in each regime. We
find the leading order scaling with N of the c-cdf of Σenv

to be (ln (N))5/3. We note that this is a preliminary
observation about the distribution of entropy production
and warrants further studies to understand its origin.

In Fig. 5b, we show the collapse of different c-cdf for
an increasing number of nodes, N . Clearly, there are also
sub-leading contributions to the scaling of the moments
that play a role in determining the behavior of the third
cumulant shown in Fig. 5a.

Notice that increasing the number of states without
scaling the rates by N does not correspond to the correct
continuum limit [11]. In the next section, we present
how to generalize our findings to the case of a run-and-
tumble particle in a continuous domain by considering
appropriate rescaling of the transition rates.

V. CONVERGENCE TO CONTINUOUS
RUN-AND-TUMBLE MODEL

Let us start from the description of a particle expe-
riencing run-and-tumble dynamics in a 1D continuous
space [−L,L], with reflecting boundary conditions. The
Langevin equation describing this dynamics is [91]:

ẋ = v σ(t) +
√

2Dη(t), (34)
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where σ(t) = ±1 is a dichotomous noise that switches
between +1 and −1 with a constant rate r, v the bare
velocity of the particle in either direction in the absence
of thermal noise, D ≡ kBT/γ the diffusion constant (for
kB the Boltzmann’s constant, T the temperature, and γ
the dissipation constant), and η(t) is the Gaussian white
noise with zero mean and unit variance. The correspond-
ing Fokker-Planck equation reads:

∂tρ+ = −v ∂xρ+ +D∂2
xρ+ − r(ρ+ − ρ−), (35a)

∂tρ− = +v ∂xρ− +D∂2
xρ− − r(ρ− − ρ+), (35b)

where ρ+ and ρ−, respectively, are the probability density
functions for the system to be in the state σ = +1 and
σ = −1, respectively, at the position x and time t [91].
For convenience, we have omitted the position and time
dependence from ρ±(x, t).

Let us now go back to our original discrete-state de-
scription. The particle can move either in the upper or
in the lower 1D lattices, i.e., lanes, with a rate of switch-
ing between the lanes equal to r. The master equation
associated solely with the motion along the upper lane
(+), ignoring the switching between lanes, is:

Ṗ (i+, t) = aP (i+ − 1, t) + bP (i+ + 1, t)− (a+ b)P (i+, t).
(36)

A similar equation holds also for the lower lane, in-
terchanging a with b, following the model sketched in
Fig. 1). In order to map this dynamics to a continu-
ous space, we introduce the information that the system
exists in a 1D box, [−L,L]. Hence, as we increase the
number of states N in each lane, the spacing between the
states has to decrease. In particular, let the spacing be-
tween the states δ ≡ 2L/N . Considering again the upper
lane, employing this mapping, the spatial position of the
particle, x = i+δ, and the probability density function
transforms as follows: ρ+(x) = P (i+)/δ = P (x/δ)/δ.

A standard Kramers-Moyal expansion [105] on
Eq. (36), taking δ as small parameter in the limit N →
+∞, up to the second order, gives:

∂tρ+ = −(a− b)δ ∂ρ+

∂x
+

(a+ b)

2
δ2 ∂

2ρ+

∂x2
. (37)

Performing the same expansion on the lower lane dynam-
ics as well, and adding the switching process between
these two regimes, we can compare the resulting set of
coupled differential equation with Eq. (35). The match-
ing between these two dynamical evolution becomes ex-
act in the N → +∞ limit, when the following scaling
holds:

a =
N

4L

(
DN

L
+ v

)
, (38a)

b =
N

4L

(
DN

L
− v
)
. (38b)

It is indeed always true that when performing the con-
tinuum limit starting from a discrete-state process, the
rates have to properly scaled with the number of states.

Let us now compute the thermodynamics of the con-
tinuous process. Given the Langevin equation (34), the
amount of the heat absorbed by the run-and-tumble par-
ticle from the heat bath during an observation time, T ,
is [29]:

Q ≡
∫ T

0

dτ
[√

2Dγ2η(τ)− γẋ(τ)
]
◦ ẋ(τ), (39)

where ◦ denotes the Stratonovich product. In the absence
of switching, the system satisfies detailed balance and
reaches equilibrium. In the presence of switching, effec-
tively, there is only an additional stochastic force on the
system with respect to the equilibrium scenario. Hence,
we expect the local detailed balance to hold. Thus, the
environmental entropy production is [28]:

Senv(T ) =
γ

T

∫ T

0

dτ
[
ẋ(τ)−

√
2Dη(τ)

]
◦ ẋ(τ). (40)

where we use the Einstein relation, D = kBT/γ for kB =
1. This system is known to have non zero mean entropy
production rate [97].

Figure 6 shows the first two scaled cumulants of the
entropy production for various system sizes, using the
scaling in Eq. (38), against their value for the continuous
system. In particular, the mean entropy production rate
has been computed analytically in [97] while we compute
the variance of Senv in Eq. (40) from the Langevin sim-
ulations. The convergence to the continuous case as N
increases can be clearly appreciated. Furthermore, due to
this convergence, we note that our assumption of local de-
tailed balance in the discrete case is justified a-posteriori.

Unlike the mean entropy production rate, to the best of
our knowledge, there have been no theoretical considera-
tions into calculating the variance of entropy production
of the run-and-tumble model in continuous space. We
have shown that we can compute it using our method un-
der appropriate scaling, and its value converges to what
is observed in the continuous system. Similar procedure
can also be performed for any moment of the entropy
production, but the computation of the third moment in
discrete-state system already scales as O(N3), making its
computation intensive for a large number of states.

VI. SUMMARY

In summary, first we have presented a graphical
method to compute the exact moments of entropy pro-
duction for any discrete-state Markovian system. Em-
ploying this method, we have shown that the first and
second cumulants scale linearly with time in the long-
time limit.

Then, we have applied the developed framework to pre-
dict the cumulants of the environmental entropy produc-
tion in the discrete run-and-tumble model at stationar-
ity, finding non-zero mean, variance and skewness. Ad-
ditionally, increasing the system size, the environmental
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FIG. 6. Comparison between scaled cumulants of entropy
production in the discrete and the continuous run-and-tumble
model. The dashed line is the mean entropy production rate
(EPR) given analytically in Ref. [97]. The dotted line is the
variance of environmental entropy production calculated from
the Langevin simulations of the continuous run-and-tumble
model on 1D box within [−5, 5] with velocity of the particle
v = 1.0, diffusion coefficient D = 0.5, and switching rate r =
1.0. The points are analytically calculated scaled cumulants
of environmental entropy production in the discrete run-and-
tumble model with scaling of transition rates given by (38).

entropy production exhibits a remarkable non-Gaussian
behavior, highlighting the potential relevance of higher
moments when studying the fluctuations of discrete-state
systems. Finally, we have performed the continuum limit
on the proposed model, finding the correct scaling of the
rates with the number of nodes. Within this description,
we computed the cumulants of the environmental entropy
production for a Langevin run-and-tumble model. We
found striking agreement between our predictions, nu-
merical simulations, and a theoretical result previously
obtained only for the mean [97].

The graphical method presented here can be straight-
forwardly extended to analyze the moments of currents
of any discrete-state systems (and also their continuous
counterparts). Our findings suggest that cumulants other
than the first two might be relevant in quantifying out-
of-equilibrium fluctuations. In principle, one could try
to estimate the full probability density function (pdf)
of the entropy production including more than the first
two moments, using a Maximum Entropy Principle. This
task is usually computationally expensive even with only
the first three cumulants. Hence, a smarter approach to
move from cumulants to an estimation of the PDF would
be an interesting topic for future investigations.

Apart from the run-and-tumble model, other common
active particle models in the literature are active Brow-
nian particles [107], and active Ornstein-Uhlenbeck par-
ticles [78]. Recently, general principles for the entropy
production of these active systems have been investi-

gated [108], also in the underdamped regime [109]. While
results indicated by our work and Ref. [32] give ideas
about long time scaling of the cumulants, the exact de-
tails about the nature and scaling of entropy production
cumulants of various active particle models is another
possible line of future investigation.
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Appendix A: Third order jump correlation

In order to compute the third cumulant, we require
all the third order correlations for the number of jumps
between states. In this section, following the graphical
method, we show some of the terms that arise in this
computation. From Fig. 3, we choose three orderings of
different kinds, a) k > k′ > k′′ where all three k-s are
different, b) k > k′ = k′′ where only two of the k-s are
different, and c) k = k′ = k′′ where all three k-s are
equal.

For k > k′ > k′′, the contribution to third order corre-
lation is

〈nm`nm′`′nm′′,`′′〉ΓMC =

M−1∑
k=0

k∑
k′=0

k′∑
k′′=0

Am`

× P(`, k∆t|m′, (k′ + 1)∆t) Am′`′

× P(`′, k′∆t|m′′, (k′′ + 1)∆t)

×Am′′`′′ P (`′′, k′′∆t). (A1)

Similarly for k > k′ = k′′,

〈nm`nm′`′nm′′,`′′〉ΓMC =

M−1∑
k=0

k∑
k′=0

Am`

× P(`, k∆t|m′, (k′ + 1)∆t) δm′,m′′

× δ`′,`′′ Am′`′ P (`′, k′∆t),
(A2)

and for k = k′ = k′′,

〈nm`nm′`′nm′′,`′′〉ΓMC
=

M−1∑
k=0

δm,m′ δ`,`′ δm′,m′′ δ`′,`′′

×Am` P (`, k∆t)

=〈nm,`〉ΓMC
δm,m′ δ`,`′ δm′,m′′ δ`′,`′′ .

(A3)
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The contributions from k < k′ = k′′, and k > k′ = k′′ can
be written in terms of the second order jump correlations
and the first moment of jumps, i.e.,

〈nm`nm′`′nm′′,`′′〉ΓMC
= 〈nm`nm′`′〉ΓMC

δm′,m′′ δ`′,`′′

− 〈nm,`〉ΓMC
δm′,m′′ δ`′,`′′

× δm′,m′′ δ`′,`′′ (A4)

Conversely, starting from a stationary state, P st, and
taking the limit ∆t → 0 to recover the master equation
formalism, the term arising from Eq. (A1) gives the fol-

lowing integral:

〈nm`nm′`′nm′′,`′′〉T =Wml Wm′`′ Wm′′`′′ P
st(`′′)

×
∫ T

0

dt

∫ t

0

dt′ P(`, t|m′, t′)

×
∫ t′

0

dt′′P(`′, t′|m′′, t′′) (A5)

Using the eigenvector expansion for the transition prob-
ability P(i, t|i0, t0) (see Eq. (21)), the integrals on the
right-hand side of Eq. (A5) give Tj1,j2 , i.e, Eq. (24).
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