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We present a theory of Mott memristors whose working principle is the non-linear carrier avalanche
multiplication in Mott insulators subject to strong electric fields. The internal state of the memristor,
which determines its resistance, is encoded in the density of doublon and hole excitations in the
Mott insulator. In the current-voltage characteristic, insulating and conducting states are separated
by a negative-differential-resistance region, leading to hysteretic behavior. Under oscillating voltage,
the response of a voltage-controlled, non-polar memristive system is obtained, with retarded current
and pinched hysteresis loop. As a first step towards neuromorphic applications, we demonstrate
self-sustained spiking oscillations in a circuit with a parallel capacitor. Being based on electronic
excitations only, this memristor is up to several orders of magnitude faster than previous proposals
relying on Joule heating or ionic drift.

INTRODUCTION

In strongly correlated materials, many-body electronic
interactions cannot be treated as a weak perturbation.
A spectacular consequence is the breakdown of standard
band theory in Mott insulators, which display a charge
gap despite having nominally partially-filled bands. Even
more interesting, from both fundamental and applied
points of view, are states of matter obtained from a Mott
insulator by applied pressure or chemical doping [1, 2],
photo-doping [3–6], or applied electric field [7,8].

A Mott insulator under a sufficiently large electric field
eventually displays a metallic response, a phenomenon
known as dielectric breakdown. Although the insulator-
to-metal transition may result from Joule heating [9,10],
there is growing experimental evidence that also purely
electronic transitions can occur [11–18]; see Refs. [19–30]
for theoretical investigations. Particularly in narrow-gap
Mott insulators [12,14] the dielectric breakdown happens
via carrier avalanche multiplication, whereby the kinetic
energy of accelerated carriers is converted into excitation
energy of additional carriers. While a similar mechanism
occurs also in semiconductors [31], a distinctive feature
of Mott materials is the non-linearity of the process. In-
deed, non-linear response to applied fields is a fingerprint
of strongly correlated insulators, which often display mul-
tivalued I–V characteristic with regions of negative dif-
ferential resistanceR ≡ dV/dI (V, I: voltage and current
across a two-terminal device) [7,8,32–35].

The resistance of Mott insulators may vary over several
orders of magnitude across different branches of the I–V
curve. Owing to this resistive switch, Mott materials are
promising candidates for replacing conventional semicon-
ducting transistors in the field of information processing.
More specifically, in neuromorphic applications [36] they
are proposed to fabricate memristors [37–40], electronic
devices whose resistance depends on the history of the
input signal, which are regarded as the building blocks
of bio-inspired novel computing architectures [41–45].

From a formal point of view, a voltage-controlled mem-

ristive system is defined by its state-dependent resistance,
or memristanceM(x) (x: state variable) and by the equa-
tion of motion ẋ = f(x, V ). The instantaneous resistance
depends, therefore, on the past voltage. From a more
empirical perspective, the fingerprint of a memristor is a
pinched hysteresis loop in the I–V plane when the device
is subject to a bipolar periodic signal [38,39].

Following semiconducting thin films with intertwined
electronic and ionic motion [40], diverse other solid-state
platforms are being investigated as physical realizations
of memristors; in particular Mott materials, using Joule
heating to locally trigger the insulating-to-metal transi-
tion [46–51]. The time scale of these devices is set by the
physical mechanism for the resistance switch and is of the
order of milliseconds for ionic drift [40, 52] and of nano-
to microseconds for Joule heating [47].

In this work we present a theory of a new type of mem-
ristor made of a narrow-gap Mott insulator, whose state
variable is the density of doublon excitations, which are
the charge carriers. In stark contrast with previous pro-
posals, the resistance switch in this memristor is based
on a purely electronic mechanism: the field-induced non-
linear carrier avalanche multiplication. This results, in
particular, in a time scale set by the doublon decay time
which is of the order of picoseconds, namely up to several
orders of magnitude faster than in previous proposals.

In the following, we illustrate the microscopic working
principle in Sec. I, where we present a phenomenological
model for the field-induced non-linear carrier avalanche
multiplication. Building on this, in Sec. II we introduce
our model of Mott memristor, derive the static current-
voltage curve, and study the d. c. transitions between in-
sulating and conducting states. In Sec. III we study the
a. c. response, obtaining the typical behavior of a voltage-
controlled, non-polar memristive system; and derive the
steady-state diagram. Finally, in Sec. IV, as a first step
towards neuromorphic applications, we study a circuit
with a parallel capacitor and demonstrate self-sustained
current oscillations, reminiscent of the periodic spiking
activity of biological neurons.
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I. PHENOMENOLOGICAL MODEL OF
FIELD-INDUCED CARRIER AVALANCHE

MULTIPLICATION IN MOTT INSULATORS

We start by presenting a phenomenological model of
Mott insulator as a material with variable concentration
of charge carriers. In this model, similarly to electrons
and holes in semiconductors, the carriers are doublons
and holes, which are one-particle excitations in upper and
lower Hubbard bands, respectively, see Fig. 1(a). Note
that here we adopt a simplified description and do not
consider the dynamical nature of the Mott gap, which
is held fixed. Furthermore, we impose the doublon-hole
symmetry, such that these excitations differ only for their
charge (±e) and have the same concentration n, which
hereafter is simply referred to as doublon density.

The density of doublon excitations n can be considered
as a state variable which determines the conductivity of
the material. In this phenomenological model, doublons
have charge e, effective mass m∗ and they accelerate in an
electric field, before scattering after a typical time τ . This
is formalized in the Drude formula for the conductivity,

σ(n) = e2(m∗)−1τn, (1)

which relates the current density j to the electric field E,

j = σ(n)E. (2)

Similar forms to Eq. (1) also apply to weakly correlated
materials, with for example n representing the density of
conduction-band electrons. The key difference with the
model at hand is in the rate equation for n, in which the
strong correlations typical of Mott materials appear as a
non-linear term in the doublon density,

ṅ = γ − nτ−1
d + (a1n+ a2n

2)E2 +D∇2n. (3)

Here the source term γ describes excitations of doublon-
hole pairs induced by thermal fluctuations or quantum
tunneling across the gap, see Fig. 1(b). In principle, these
depend on temperature and electric field; here we hold
γ fixed and concentrate on the field dependence of the
other terms. The second term in Eq. (3) describes the
decay of doublon excitations with a typical time τd [53].
The equilibrium density, namely the zero-field stationary
solution, is n = γτd ≡ n0. The one-body avalanche term
(a1nE

2), also known as impact ionization, is present in
both strongly [25] and weakly correlated materials [31]. It
describes a process in which the kinetic energy of a car-
rier is converted into excitation energy of new carriers via
scattering with impurities or phonons [Fig. 1(c),(d)]. The
two-body avalanche term (a2n

2E2), on the other hand,
describes many-body scatterings of two excitations kick-
ing out new carriers [Fig. 1(e)-(g)] and is therefore pro-
portional to the squared carrier density. The last term
describes carrier diffusion due to density gradients; here-
after we consider the homogeneous case ∇2n = 0.
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FIG. 1. (a) Schematic of lower and upper Hubbard bands, i. e.
one-particle-excitation density of states ρ, in a Mott insulator
with gap ∆g smaller than bandwidth W ; and of doublon-hole
pair excitation (γ). (b) Band bending in real space x under
electric field E and doublon-hole pair creation by thermal ac-
tivation (γthe) and quantum tunneling (γtun). (c)-(g) Sketch
of doublon and hole dispersions in momentum space k, with
one-body [(c),(d)] and two-body [(e)-(g)] avalanche processes.

In nonzero electric field, Eq. (3) yields two stationary
doublon densities, that is the solutions of ṅ = 0:

n̄(E) =
n0

[
E2

0 −AE2 ±
√

(E2
0 −AE2)2 − 4E2E2

0

]
2E2

.

(4)
Here E0 ≡ (τd

√
a2γ)−1 and A ≡ a1(a2γτd)

−1 is the ratio
of the one- to the two-body avalanche term for n = n0.
Imposing the solutions (4) to be real and positive yields
the condition E < Eth, with the threshold electric field

Eth = E0

√
1 +A− 1

A
≈ E0

2
(1− 0.25A), (5)

where the approximation is valid for small A, namely for
predominant two-body avalanche. At this threshold, the
two branches of Eq. (4) merge, the doublon density is

n̄(Eth) = n0
A√

1 +A− 1
≈ 2n0(1 + 0.25A), (6)

and the current density reads

j(Eth) = σ(n̄(Eth))Eth = σ0E0 ≡ j0, σ0 ≡ σ(n0). (7)

In contrast with the threshold electric field and doublon
density, the threshold current density does not depend
on the one-body constant a1, but only on the two-body
constant a2 (through E0) and it diverges for a2 → 0.

Since the conductivity increases with doublon density,
we can interpret the lower branch of Eq. (4) as the slightly
perturbed equilibrium insulating state, and the upper
branch as a conducting state. The corresponding current
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FIG. 2. (a) Stationary current density versus electric field for
varying ratio of one- to two-body avalanche. (b) Stationary
conductivity versus current density. j0 = E0 = σ0 = 1.

density j = σ(n̄(E))E is plotted in Fig. 2(a). It should
be stressed that the two branches correspond to the same
microscopic state and differ only in the doublon density;
in particular, this theory does not cover the field-induced
collapse of the Mott gap. Equation (4) also implies that,
within this model, there are no stationary solutions for
E > Eth, meaning that the material cannot sustain such
electric fields. In Fig. 2(b) we plot the conductivity as a
function of the current density,

σ(j) = j(Ē(j))−1

=
σ0

[
j2 + j2

0 +
√

(j2 + j2
0)2 +Aj2j2

0

]
2j2

0

≈ σ0[1 + (j/j0)2 +Aj2(j2 + j2
0)−1],

(8)

where Ē(j) is the inverse function of j(E) = σ(n̄(E))E
and the approximation is valid for small A. Expressions
similar to Eq. (8) have been suggested to explain experi-
ments on a class of charge-transfer insulators [7,32].

The results in Fig. 2 are in qualitative agreement with
experiments in which a current is passed through a Mott
insulator and the electric field (thus the conductivity) is
measured, see e. g. Refs. [34,35]. Indeed, up to this point
the treatment is suitable to describe situations in which
the current, and not the electric field, is the external
parameter. To show this from a formal point of view,
we linearize Eq. (3) around the stationary solution (4) at
fixed E or at fixed j = σ(n̄(E))E. In the former case we
get τdδṅ = ±δn[(1 − A(E/E0)2)2 − 4(E/E0)2]1/2 which
shows that only the lower branch is stable. If we instead
fix j, we get τdδṅ = −δn[1 + A(j/j0)2(n0/n)2] which is
stable for all current densities. Only in the latter case
states with large conductivity are stable and can there-
fore be observed.

Among the parameters introduced in this section, most
relevant are τd, E0, j0; which set the characteristic scales
of, respectively, time, electric field, current density. The
doublon decay time is typically τd ∼ 1–10 ps, as measured
in ultrafast pump-probe optical spectroscopy [3–6], while
electric fields of the order E0 ∼ 1–10 kV cm−1 and cur-
rent densities j0 ∼ 1–10 mA cm−2 have been measured
in Refs. [7,34,35]. Together with the physical dimensions
of the memristor, E0 and j0 also set the characteristic
scales of, respectively, voltage and current.

II. CURRENT-VOLTAGE CHARACTERISTIC
AND INSULATING-CONDUCTING

TRANSITIONS

We introduce now our model of Mott memristor as a
device composed of a Mott insulator connected in series
with a conventional resistor. Adopting the description in
Sec. I, the resistance of the Mott insulator is a function of
carrier density through the conductivity σ(n) [Eq. (1)]:

R(n) = LS−1(σ(n))−1, (9)

where L and S are length and section area. Instead, the
conventional resistor has a fixed resistance Rs. The total
resistance of the memristor, or memristance, is therefore

M(n) = R(n) +Rs, (10)

and the doublon density n is its state variable. Attaching
a voltage generator V to the memristor, the electric field
internal to the Mott material is

E =
V R(n)

L[R(n) +Rs]
=

V n0

L(n0 + rsn)
, (11)

with rs = Rs/R0, R0 ≡ R(n0). Thus, the electric field
does not depend solely on the applied voltage, but also
on the doublon density. For small density the resistance
of the Mott material is large, R(n)� Rs, and the field is
approximately proportional to the voltage. On the other
hand, for large density the resistance of the Mott material
drops, R(n)� Rs, and so does the field. This mechanism
is crucial for the stabilization of the conducting state of
the memristor, as we discuss in this section.

The state-dependent resistance [Eq. (10)] and the rate
equation for the state variable [Eqs. (3) and (11)] define
a non-polar voltage-controlled memristive system [38]. In
practice, the fixed term in the resistance corresponds to
either the contact resistance, often present especially in
two-probe measurements (see e. g. Ref. [33]), or a resistor
added to obtain a stable conducting state [7,34,35].

A. Stationary doublon density

The stationary condition is obtained plugging Eq. (11)
into Eq. (3) and imposing ṅ = 0 (we set A = 0 hereafter).
We solve the resulting equation for V :

V̄ (n) =
V0(n0 + rsn)

√
n− n0

n
√
n0

, (12)

where V0 ≡ LE0. This is plotted in Fig. 3(a) as n versus
V̄ (n) which allows us to visualize the stationary density
n̄ as a function of voltage. This solution is stable only if
dn̄/dV > 0, namely for n̄ outside a range [n∗1, n

∗
2], where

these values are therefore obtained imposing

dV̄

dn
=
V0(rsn

2 − n0n+ 2n2
0)

2n2
√
n0(n− n0)

= 0, (13)
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FIG. 3. (a) Stationary doublon density n̄ versus voltage. The
arrows point up (down) where ṅ is positive (negative) showing
that the solution is unstable if dn̄/dV < 0. (b) “S”-shaped
I–V curve (solid) and trajectories upon adiabatic and non-
adiabatic sweep across coexistence region [V ∗

2 , V
∗
1 ] (dashed).

(c) Stationary current versus internal field (solid) and same
trajectories as in (b) visualized on the I–E plane (dashed).
rs = 0.01; n0 = V0 = I0 = E0 = 1.

which yields

n∗1,2 =
n0

(
1±
√

1− 8rs
)

2rs
. (14)

For small rs we can approximate n∗1 ≈ 2n0(1 + 2rs) and
n∗2 ≈ n0r

−1
s . Therefore, the two stable branches are well

separated (n∗2/n
∗
1 ≈ 0.5r−1

s ) and we can interpret them as
the insulating (n < n∗1) and conducting (n > n∗2) states of
the memristor. Increasing rs the two branches approach
each other as n∗2 − n∗1 = n0

√
1− 8rs/rs and eventually

merge for rs = 0.125. Beyond this value, we have one
continuous stable state with no clear separation between
insulating and conducting states. In the opposite limit,
rs → 0, the stable conducting branch vanishes (n∗2 →∞).
In the remainder of this work we set rs = 0.01. Between
V ∗

2 = V̄ (n∗2) ≈ 2V0
√
rs and V ∗

1 = V̄ (n∗1) ≈ 0.5V0(1+2rs)
insulating and conducting states coexist. In particular, to
V ∗

1 correspond the densities n∗1 on the insulating branch
and n∗3 on the conducting branch.

B. Current-voltage characteristic

In the stationary state with voltage V̄ (n) and doublon
density n, the current through the memristor is

Ī(n) =
V̄ (n)

R(n) +Rs
=
I0
√
n− n0√
n0

, (15)

where I0 ≡ V0R
−1
0 . Plotting Eq. (15) versus Eq. (12) we

obtain the current-voltage curve in Fig. 3(b). This has
a distinct “S” shape composed of three branches with
alternating differential resistance R ≡ dV/dI, which is
positive in the stable insulating and conducting branches;
and negative in the unstable region in between [negative-
differential-resistance region (NDR)].

A voltage sweep across the range [V ∗
2 , V

∗
1 ] results in

a current hysteresis, see Fig. 3(b). If the voltage change
is adiabatic, meaning so slow that at each moment the
memristor is stationary, then from the insulating branch
the current follows the I-V curve up to V ∗

1 , where a jump
discontinuity leads from I∗1 = Ī(n∗1) ≈ I0(1 + 2rs) to the
conducting branch in I∗3 = Ī(n∗3). Then, upon decreasing
the voltage, the current remains large down to V ∗

2 where
a second discontinuity leads from I∗2 = Ī(n∗2) ≈ I0/

√
rs

back to the insulating branch. If the voltage change is
non-adiabatic, namely rapidly increasing and decreasing,
the current does not follow thoroughly the I-V curve but
instead traces a larger hysteresis area.

In Fig. 3(c) we plot the same quantities as in Fig. 3(b)
versus the electric field internal to the Mott insulator.
Since current and current density are proportional, I =
jS, the stationary curve is a rescaled copy of Fig. 2(a)
with the crucial difference that this is now stable also
for I > I∗2 . The trajectories appear different in the I–E
plane with respect to the I–V curves; since during the
constant-voltage insulating-conducting transitions both
current and internal field vary. Also in this case, a non-
adiabatic voltage results in a wider trajectory.

C. Delay time and relaxation time

To study the time scales associated with the transitions
between insulating and conducting states, we consider a
voltage V (t) = Vi + (Vf − Vi)f(t) with a ramp function
f(t) = [1 + tanh(t− 10)]/2 and we numerically integrate
Eqs. (3), (11). From the insulating state, as the voltage
increases above V ∗

1 , the transition takes place in two steps
[Fig. 4(a),(b)]: first, during a delay time τD the current
remains low; then, it rapidly increases above I∗2 , meaning
that the memristor has become conducting. Notice that
after the transition I ∝ Vf since in the conducting state
the memristance is approximately constant M(n) ≈ Rs.

The delay time is plotted in Fig. 4(c) versus the voltage
and for varying initial conditions. While the insulting-to-
conducting transition naturally starts from the insulating
branch [n0, n

∗
1], here we consider also initial conditions

in the unstable region [n∗1, n
∗
2] which are relevant in the

case the voltage changes while the memristor is not at
equilibrium. The delay time decreases with increasing
voltage and larger initial density. It diverges in V ∗

1 if
the initial density is below n∗1 ≈ 2.02n0, or in V̄ (n(0))
otherwise. This difference can be explained with the aid
of the stationary curve in Fig. 3(a), which shows that for
n > n∗

1 the minimum voltage leading to the conducting
branch is indeed V̄ (n).
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FIG. 4. (a) Voltage ramp to Vf > V ∗
1 and (b) corresponding

current evolution. The delay time τD is the interval between
the voltage ramp and when I = I∗2 (see arrow for Vf = 0.55).
(c) Delay time versus Vf for various initial conditions n(0)
(markers) and approximation Eq. (17) (solid). (d) Voltage
ramp to Vf < V ∗

2 and (e) corresponding current evolution.
The relaxation time τR is the interval between the voltage
ramp and when I = I∗1 (see arrow for Vf = 0.15 in the log-
scale inset). (f) Relaxation time versus Vf for various initial
conditions n(0). Voltage, current, time are in units of V0 =
1 V (e. g. E0 = 1 kV cm−1, L = 10 µm), I0 = 1 µA (e. g. j0 =
10 mA cm−2, S = 100 × 100 µm2), τd = 10 ps. rs = 0.01.

To get analytical insight into the delay time and its de-
pendence on voltage and initial density, we solve Eq. (3)
in the approximation E ≈ V L−1 obtaining for V > V ∗

1 ≈
0.5V0 (see Appendix A):

n(t) = n̄av [1−∆ cot [∆(t− τD)/(2τd)]] , (16)

where n̄av = 2n0(V ∗
1 /V )2 and ∆ = [(V/V ∗

1 )2 − 1]1/2. In
this approximation the transition to the conducting state
happens where Eq. (16) diverges, giving the delay time

τD = (2τd/∆) cot−1 [(n(0)− n̄av)/(n̄av∆)] , (17)

which we plot in Fig. 4(c) alongside the numerical result.
In the limit V → (V ∗

1 )+ we have n̄av → 2n0 ≈ n∗1 and
∆ → 0. The behavior of τD depends on whether n(0) is
smaller or larger than n∗1, in the former case it diverges
as τd ≈ 2τdπ/∆, while in the latter case it stays finite
and diverges at a lower voltage V̄ (n(0)).

Also the transition from the conducting state, as the
voltage decreases below V ∗

2 , takes place in various steps
[Fig. 4(d),(e)]: first, the current rapidly decreases; then,
it remains high during a relaxation time τR; finally, it
decreases below I∗1 . The relaxation time is plotted in

Fig. 4(f) versus the voltage and for varying initial condi-
tions. Analogously to what discussed for the delay time,
we consider initial conditions in the conducting branch
[n1,∞] as well as in the unstable region [n∗1, n

∗
2]. The re-

laxation time increases with increasing voltage and larger
initial density; and diverges in V ∗

2 if the initial density is
above n∗2 ≈ 100n0, or in V̄ (n(0)) otherwise.

The results in this section, in particular the current-
voltage characteristic and the delay time, qualitatively
agree with various experiments on similar devices [7,8,32–
35]. Moreover, the analysis of delay and relaxation times
sets the stage for the discussion of the a. c. response, a
fundamental characteristic of a memristive system.

III. RESPONSE TO ALTERNATING VOLTAGE

We proceed now with the study of the a. c. response of
the Mott memristor introduced in Sec. II and defined by
its state-dependent resistance and state-variable equation
of motion [Eqs. (3), (9)-(11)], including the typical mem-
ristive features of current retardation and current-voltage
pinched hysteresis loop.

A. Time evolution of doublon density and
steady-state current

In Fig. 5(a)-(d) we plot the time evolution of doublon
density [obtained by numerical integration of Eqs. (3) and
(11)] for various amplitude and frequency of the voltage
V (t) = Va cos(Ωt) and for two different initial conditions.
We distinguish four qualitatively different steady states.
In Fig. 5(a),(b) the steady state is respectively insulating
(n < n∗1) or conducting (n > n∗2) independently of the
initial condition. In contrast, in the case of Fig. 5(c) there
are two possible steady states depending on the initial
condition. Finally, in Fig. 5(d) the steady state goes back
and forth the insulating and conducting states.

The corresponding steady-state current is plotted in
Fig. 5(e)-(h) for the insulating initial condition and along-
side the voltage. The time axis is rescaled with the period
T = 2π/Ω and the current and voltage axes with their
maxima, for the purpose of comparing various choices
of parameters. The insulating steady state [Fig. 5(e),(g)]
shows a clear retardation, namely the current profile is
distorted with respect to the sinusoidal voltage. Such a
retardation effect is the hallmark of memristive systems
(see e. g. Ref. [40]) as it exemplifies the inertial change of
instantaneous resistance. The effect almost vanishes in
the conducting steady state [Fig. 5(f)] because in this case
the memristance is approximately constant M(n) ≈ Rs.
Finally, in the steady state back and forth insulating and
conducting [Fig. 5(h)] the retardation is very pronounced;
in this case the voltage effectively acts as an adiabatic
switch, as we discuss below in more detail.
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FIG. 5. Memristive behavior in a. c. voltage. (a)-(d) Time evolution of doublon density with initial condition n(0) = n0 (solid)
or n(0) = 100n0 (dashed) for various choices of frequency and amplitude (Ω, Va) (cf. triangle markers in Fig. 6). The state is
insulating if n < n∗

1 and conducting if n > n∗
2. (e)-(h) Corresponding steady-state current (solid) and applied voltage (dashed).

(i)-(l) Pinched hysteresis loop in the I-V plane. (m)-(p) Integral of current (charge q) versus integral of voltage (flux φ) in the
steady state. In (g), (k), (o) only the initial condition n(0) = n0 is considered.

B. Current-voltage pinched hysteresis loop and
charge-flux relation

In Fig. 5(i)-(l) we plot the steady-state current versus
the voltage. This curve traces a pinched hysteresis loop
(so called because it crosses the coordinate axes only in
the origin) which is considered the empirical definition of
a memristive system [38]. Also here, we have rescaled the
axes for the sake of comparing the different steady states.
The curve slope is the instantaneous inverse differen-
tial resistance R−1 = dI/dV , meaning that the greater
the resistance change, the larger the area encircled by
the loop. Indeed, this is more evident in the insulating
state [Fig. 5(i),(k)] than in the conducting state [Fig. 5(j)]
which has almost constant resistance. In the steady state
back and forth insulating and conducting [Fig. 5(l)] the
loop is composed of flat, vertical and steep segments.
These correspond to, respectively, insulating state, insu-
lating-to-conducting transition, conducting state; while
the conducting-to-insulating transition happens near the
origin [cf. arrows in Fig. 5(l)].

The direction of the loop, namely whether it is traced
clockwise or anti-clockwise, is related to the polarity of
the memristive system. In bipolar memristors, e. g. based
on ionic drift [40], the resistance changes depending on
the sign of the input. Consequently, it is either maximum
or minimum in the origin of the I–V plane, and the loop
is anti-clockwise for positive and clockwise for negative
input. In contrast, in the present case the memristor is
non-polar, meaning the resistance change is independent

of the sign of the input, cf. Eq. (3). As a result, the loop
is anti-clockwise both for positive and negative inputs
[see arrows in Fig. 5(k),(l)]. Moreover, this implies that
the slope in the origin, namely the zero-voltage inverse
instantaneous resistance, is the same for increasing or
decreasing voltage.

Other characteristics of a memristive system are more
conveniently discussed in terms of the relation between
charge q and flux φ, namely the integrals of, respectively,
current and voltage. Indeed, originally the memristance
was introduced as the quantity relating flux to charge
[dφ = M(q) dq] similarly to how the resistance relates
voltage to current [dV = R(I) dI] [37]. The steady-state
charge-flux relation is plotted in Fig. 5(m)-(p). The mul-
tivaluedness of this relation is the empirical evidence that
the memristive system belongs to the class of non-ideal
memristors [38]. For ideal memristors, the state-variable
equation of motion depends on the input only [ẋ = f(V )]
giving a unique relation between charge and flux [37,40].
Instead, in the broader class of non-ideal memristors, the
equation of motion depends also on the state variable it-
self [ẋ = f(x, V )] which yields a multivalued charge-flux
relation, as in the this case. On a practical level, an
ideal memristor is non-volatile, meaning its state does
not change on zero input [f(0) = 0], while the state of a
non-ideal memristor typically relaxes [f(x, 0) 6= 0] which
makes it a volatile memory.
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C. Steady-state diagram

In Fig. 6 we plot the steady-state diagram as a function
of voltage frequency and amplitude. This contains four
regions, delimited by the frequency-dependent amplitude
thresholds V ∗

1,2(Ω), corresponding to each of the steady
states discussed above:

1. For amplitude smaller than V ∗
1,2(Ω) (blue region in

Fig. 6) the steady state is insulating, as in Fig. 5(a).

2. For amplitude larger than V ∗
1,2(Ω) (red region) the

steady state is conducting, as in Fig. 5(b).

3. For frequency not too low and amplitude within
the range [V ∗

2 (Ω), V ∗
1 (Ω)] (purple region) the steady

state is insulating or conducting depending on the
initial condition, as in Fig. 5(c).

4. For low frequency and amplitude within the range
[V ∗

1 (Ω), V ∗
2 (Ω)] (green region) the steady state goes

back and forth insulating and conducting, as in
Fig. 5(d).

The a. c. thresholds V ∗
1,2(Ω) are closely related to the d. c.

thresholds V ∗
1,2 of Sec. II. If we apply a voltage with small

amplitude, such that the memristor is insulating, and
then gradually increase it, V ∗

1 (Ω) is the minimum value
at which the memristor becomes conducting. Notice the
analogy with V ∗

1 , which is the minimum voltage to trigger
the d. c. insulating-to-conducting transition. However, in
the a. c. case two scenarios are possible: the memristor
either stays conducting indefinitely, or it goes back to in-
sulating at a later point of the voltage period. The two
regions above V ∗

1 (Ω) (respectively red and green in Fig. 6)
correspond to these two cases. Analogously, applying a
voltage with large amplitude, such that the memristor is
conducting, and then gradually decreasing it, V ∗

2 (Ω) is
the amplitude at which the memristor becomes insulat-
ing.

To discuss the frequency dependence of V ∗
1,2(Ω), it is

convenient to separately consider the regimes of low, in-
termediate, and high frequency.

1. Low frequency

At low frequency, the a. c. response to a voltage V (t) =
Va cos(Ωt) is in a sense singular. On the one hand, at zero
frequency the voltage reduces to constant. On the other
hand, at non-zero albeit low frequency, it successively
assumes all values in [−Va, Va]. In other words, in the
low-frequency limit the a. c. voltage is equivalent to an
adiabatic sweep, such as considered in Sec. II. Thus, the
steady state is insulating if Va < V ∗

1 and back and forth
insulating and conducting if Va > V ∗

1 , as for repeated
sweeps, cf. Fig. 3(b). Note the absence of conducting
steady states in this limit, since no matter how large
the amplitude, the memristor invariably turns insulating
during the long interval in which the voltage assumes low
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FIG. 6. Steady-state diagram as a function of frequency
and amplitude of a. c. voltage: insulating (blue), conducting
(red), going back and forth insulating and conducting (green)
and insulating or conducting depending on initial condition
(purple). Markers indicate the four choices of parameters in
Fig. 5. V ∗

1,2(Ω) are the a. c. threshold voltages for insulating-

conducting transitions. Axes are in units of τ−1
d = 0.1 THz

and V0 = 1 V (e. g. E0 = 1 kV cm−1, L = 10 µm).

values. This is reflected in the divergence of V ∗
2 (Ω), while

V ∗
1 (Ω) is continuous and tends to the d. c. threshold V ∗

1 .

2. Intermediate frequency

The intermediate-frequency regime can be understood
in terms of a competition of time scales: the half-period
τΩ = π/Ω; and the delay (τD) and relaxation (τR) times,
namely the time scales for, respectively, the insulating-to-
conducting and the conducting-to-insulating transitions.
While these were precisely defined in Sec. II for the d. c.
transitions, here the discussion is more qualitative and
depends only on τD,R being, respectively, decreasing and
increasing as a function of voltage amplitude.

Since within the range [V ∗
1 (Ω), V ∗

2 (Ω)] (green region
in Fig. 6) there are one insulating-to-conducting and one
conducting-to-insulating transition during each half a pe-
riod [cf. Fig. 5(d),(h)], this region is characterized by the
relation τD, τR < τΩ. Indeed, if either time scale were
longer than τΩ, the corresponding transition could not
take place. This suggests the interpretation of V ∗

1,2(Ω)
as the curves where, respectively, τΩ = τD and τΩ = τR.
Crossing for example V ∗

1 (Ω), the region with insulating
steady states is characterized by τR < τΩ < τD, that is by
the inhibition of the insulating-to-conducting transition.
Within this perspective, V ∗

1 (Ω) increases with frequency
because – as τΩ decreases – a larger voltage amplitude is
needed to match the condition τΩ = τD.

Where V ∗
1,2(Ω) intersect each other, the time scales are

all equal: τΩ = τD = τR. Crossing this point at constant
voltage amplitude, τΩ becomes at the same time shorter
than both τD,R, meaning that both the insulting-to-con-
ducting and the conducting-to-insulating transitions are
inhibited, and the memristor remains in the same state
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as the initial condition (purple region in Fig. 6).

3. High frequency

The behavior at high frequency is better illustrated in
terms of the infinite-frequency limit, in which the voltage
is equivalent to a d. c. Va/

√
2. Indeed, the voltage enters

the equation of motion [Eqs. (3), (11)] through the square
[Va cos(Ωt)]2 which at high frequency is equivalent to its
average V 2

a /2. The steady state is therefore insulating if

Va <
√

2V ∗
1 and conducting if Va >

√
2V ∗

2 . Similarly to

the d. c. coexistence region, in the range [
√

2V ∗
2 ,
√

2V ∗
1 ]

the steady state is insulating or conducting depending
on the initial condition. Note that in the high-frequency
limit V ∗

1,2(Ω) tend to constant. To reconcile this with
the previous discussion in terms of time scales, we have
to consider that at high frequency the transitions can
happen across multiple voltage periods.

IV. SELF-SUSTAINED OSCILLATIONS AND
SPIKING BEHAVIOR

We study now a first use case of the Mott memristor in
electric circuits. In the circuit in Fig. 7(a) the memristor
is connected in parallel with a capacitor C and is attached
to a voltage generator V` through a load resistor R`. This
setup allows us to study self-sustained current oscillations
as observed, e. g., in Refs. [33–35]; a phenomenon at the
basis of spiking-based computational schemes.

A. Nullclines and fixed point

The equation for the voltage V across the memristor is
obtained applying Kirchhoff’s law of current conservation
at the nodes of the circuit in Fig. 7(a):

CV̇ + V (Rs +R(n))−1 + (V − V`)R−1
` = 0, (18)

which are the currents through, respectively, capacitor,
memristor and voltage generator. Equation (18) has to
be solved together with the rate equation for the doublon
density [Eqs. (3), (11)]. Defining r` = R`/R0, rt = rs+r`
and the time scale τc = R`C we rewrite these equations
as a dynamical system{

τcV̇ = Vl − V (rtn+ n0)(rsn+ n0)−1,

τdṅ = n0 − n+ n0n
2(V/V0)2(rsn+ n0)−2.

(19a)

(19b)

The fixed point of this system is at the intersection of
the so-called nullclines, namely the curves along which
V̇ = 0 and ṅ = 0, which read respectively{

V = Vl(rsn+ n0)(rtn+ n0)−1,

V = V0(rsn+ n0)
√
n− n0(n

√
n0)−1.

(20a)

(20b)
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FIG. 7. (a) Circuit with load voltage V`, load resistor R`

and capacitor C in parallel with the memristor [Rs + R(n)].
(b) Fixed points at the intersection of memristor I–V curve
(black) with load lines I = (V` − V )R−1

` . (c) Fixed-point
doublon density versus load voltage. (d) Boundaries ñ1,2 of
the region with limit cycles (brown) as a function of fixed-
point doublon density and τc/τd; and NDR region (gray).
The same regions are highlighted in (b)-(c) for τc/τd = 10.
Markers in (b)-(d) correspond to fixed points in Fig. 8; the
dashed line in (d) to fixed points in Fig. 9. n0 = V0 = I0 = 1.

We subtract now the nullclines and, similarly to Sec. II,
we solve the resulting equation for V`, thereby expressing
the fixed-point doublon density as the inverse function of

V̄l(n) =
V0(rtn+ n0)

√
n− n0

n
√
n0

. (21)

This can also be obtained imposing the intersection of the
so-called load line I = (V`−V )R−1

` with the I–V curve of
the Mott memristor [Eqs. (12), (15)], see Fig. 7(b), since
at the fixed point the same current flows through voltage
generator and memristor [cf. Eq.(18) with CV̇ = 0].

Because the current through the capacitor is zero at the
fixed point, the resistances Rs and R` are in series and
the circuit reduces to the situation considered in Sec. II
with the substitutions V → V` and Rs → Rs+R`, which
indeed make Eq. (21) identical to Eq. (12). Therefore, the
same analysis applies here: if rt > 0.125 the solution is
unique, while if rt < 0.125 there is a region with three
solutions, see Fig. 7(c). Together with rs = 0.01, we set
hereafter r` = 0.1 which gives rt = 0.11.

Depending on load voltage and load resistor, the fixed
point can be in the NDR region of the Mott memristor,
see Fig. 7(b)-(d), which is necessary for having limit-cycle
self-sustained oscillations, as we discuss in the following.

B. Limit-cycle oscillations

Self-sustained oscillations are periodic solutions of a
dynamical system, such as Eqs. (19), in absence of any
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periodic input. In the system configuration space (here
the n–V plane) the corresponding trajectories are limit
cycles, namely isolated closed trajectories which either
attract or repel nearby ones [54]. Simply stated, the con-
ditions for a limit cycle are the non-linearity of the system
and the instability of its fixed point. In this case, the for-
mer is provided by the non-linear rate equation for the
doublon density. The latter is satisfied if the fixed-point
doublon density is between the values (see Appendix B)

ñ1,2 =
n0[τc − τd ±

√
(τc − τd)2 − 8τc(rsτc + rtτd)]

rsτc + rtτd
.

(22)
Once the load voltage – thus the fixed-point doublon den-
sity – is chosen, Eq. (22) gives an implicit expression for
the critical τ∗c , which varies with the fixed-point doublon
density and whose minimum is obtained setting to zero
the argument of the square root in Eq. (22):

min τ∗c =
τd[(1 + 4r`) +

√
(1 + 4r`)2 − (1− 8rs)]

1− 8rs
. (23)

The region [ñ1, ñ2] is included in the NDR region of the
memristor, coinciding with it in the limit of large τc. As
depicted in Fig. 7(d), to enter this region one can either
tune the load voltage (thus the doublon density) or the
capacitor (thus the characteristic time τc). At this point,
a supercritical Hopf bifurcation takes place [54], namely
the fixed point loses stability and a limit cycle arises.

1. Tuning the load voltage

At fixed τc we consider three load voltages such that
the fixed-point doublon density is below, inside, or above
the unstable region [ñ1, ñ2], see Fig. 7(b)-(d). For each
load voltage we numerically integrate Eqs. (19) with vary-
ing initial conditions and plot the trajectories in the
n–V plane in Fig. 8(a)-(c). Outside the unstable region
(V` = 0.60, 0.90) all trajectories tend to the fixed point.
Notice that this implies the absence of closed trajectories.
In stark contrast, inside the unstable region (V` = 0.75)
there is an isolated closed trajectory (i. e. a limit cycle)
which attracts all other trajectories. Notice that the limit
cycle is around the unstable fixed point. In this case
there is no stationary stable solution and, despite the
constant load voltage, density and voltage oscillate indef-
initely. In other words, the system undergoes limit-cycle
self-sustained (or autonomous) oscillations.

The current profile is markedly different in the three
cases. Let us consider [see Fig. 8(d)-(f)] the trajectories
with initial condition (n0, 0). For V` = 0.60 the current
increases monotonically to the stable fixed point, which
is on the insulating branch, see Fig. 8(d). In contrast, for
V` = 0.90 the stable fixed point is near the conducting
branch and is reached only after a transient, which in
the n–V plane takes the form of a spiral around the fixed
point [Fig. 8(c)], and the current profile has a single spike
followed by damped oscillations, see Fig. 8(f).
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FIG. 8. (a)-(c) Trajectories (solid) and nullclines (dashed) in
n–V plane for three load voltages and τc = 10 [see markers in
Fig. 7(b)-(d)]. The trajectories converge to the fixed point in
(a) and (c); or to a limit cycle around the fixed point in (b).
(d)-(f) Current profile for the same parameters and initial
condition (n0, 0) with spiking behavior corresponding to the
limit cycle (e). r` = 0.1; n0 = V0 = I0 = 1.

Finally, corresponding to the limit cycle, for V` = 0.75
the current has periodic spiking, see Fig. 8(e). Each spike
consists of a sudden increase and a similarly rapid, but
slower, decrease. These are due to repeated transitions
between the memristor insulating and conducting states,
Note that this is consistent with the spiking behavior
of biological neurons, in which the neural-cell membrane
also transitions between insulating and conducting in the
course of an oscillation [55].

2. Tuning the capacitor

In Fig. 9 we plot the trajectories obtained by numerical
solution of Eqs. (19) with initial condition (n0, 0), fixed
load voltage and varying τc. With its location unaltered,
the fixed point loses stability across a critical τ∗c ≈ 6.06 τd
(for V` = 0.75), see Fig. 7(d). It is stable for τc < τ∗c and
reached after a number of oscillations which become more
dense as τ∗c is approached. As soon as τc > τ∗c , the fixed
point becomes unstable and a small limit cycle appears.
Increasing τc further, the limit cycle grows and tends to a
loop with segments at constant voltage connecting lower
and upper branches of the ṅ = 0 nullcline, see Fig. 9(d).
Since this nullcline is nothing but the stationary doublon
density n̄ versus the voltage [cf. Fig. 3(a)] this limit cycle
is equivalent to the hysteresis loop in adiabatic voltage
considered in Sec. II. In other words, in this limit the
circuit behaves like a relaxation oscillator [54].

The limit-cycle current spikes can be characterized by
height (difference between maximum and minimum) and
period, see Fig. 10. Evidently, these quantities are only



10

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

104
n

V

(a)
τc < τ∗c

τc/τr
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

104

n

V

(b)
τc ≈ τ∗cV̇ =0 ṅ=0
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FIG. 9. Trajectories (solid) and nullclines (dashed) in n–V
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with initial condition (n0, 0). The fixed point is stable in (a)
and (b); and unstable in (c) and (d) where it is encircled by a
limit cycle whose area and size change with τc. For very large
τc (d) the limit cycle tend to an adiabatic hysteresis loop [cf.
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FIG. 10. (a) Height and (b) period of current spikes along
the limit cycle [see inset in (a)] as a function of τc at fixed
V` = 0.75 and r` = 0.1. Current, time are in units of I0 =
1 µA (e. g. j0 = 10 mA cm−2, S = 100 × 100 µm2), τd = 10 ps.

defined for τc ≥ τ∗c . At τ∗c we have the typical behavior
for a supercritical Hopf bifurcation [54]: the height grows
from zero (the limit cycle has vanishing amplitude) while
the period is finite and equal to 2π[det(J)]−1/2 ≈ 12 τd,
with J the Jacobian of the dynamical system (19) at the
fixed point (see Appendix B). Increasing τc, the height
first rapidly increases, then it slowly saturates to a value
close to I∗3 which is, together with I∗1 , the stationary
current at the threshold voltage V ∗

1 , cf. Fig. 3(b). At the
same time, already at τc ≈ 7 τd, the period is linear in τc,
showing a decoupling of time scales for doublon density
and voltage, as expected for a relaxation oscillator.

CONCLUSIONS

We have proposed the narrow-gap Mott insulator as a
compact realization of a new type of memristor based on
the field-induced carrier avalanche multiplication. Due to
this purely electronic mechanism for the resistive switch,
this Mott memristor has a characteristic time scale set by
the doublon-excitation decay time τd ∼ 1–10 ps, which is
up to several orders of magnitude faster than in devices
based on Joule heating or ionic drift.

As a first step we have put forward a phenomenological
description of the field-induced carrier avalanche in Mott
insulators, in which the conductivity depends on the car-
rier density, whose rate equation contains the non-linear
scattering terms induced by strong correlations. Building
on this, we have introduced the Mott memristor as a de-
vice made of a Mott material in series with a conventional
resistor; and we have derived its current-voltage curve, as
well as the transitions between conducting and insulat-
ing states. While the very definition qualifies the model
as a non-polar, voltage-controlled memristive system, we
have analyzed in detail its a. c. response, in particular the
pinched hysteresis loop and the steady-state diagram as
a function of amplitude and frequency. Finally, we have
considered a circuit with a capacitor in parallel with the
Mott memristor, and demonstrated self-sustained cur-
rent oscillations and periodic spiking behavior, consistent
with the periodic activity of biological neurons.

While similar devices have been subject of intensive ex-
perimental study [7,8,32–35], this is the first time (to the
best of our knowledge) they are proposed as memristors.
Moreover, our work provides a comprehensive theory of
the key features of those prior studies: threshold electric
field, negative differential resistance (NDR), multivalued
current-voltage characteristic, delay time, and current os-
cillations. At the same time, our proposal consists of a
tractable set of equations; which stands in contrast with
previous more complicated models, see e. g. Ref. [47], and
results in two valuable features. First, it allowed us to
derive analytical expressions, such as the boundaries of
the NDR region and the conditions for limit-cycle oscil-
lations. Second, and perhaps more importantly, it makes
promising to include the model into the description of cir-
cuits of growing complexity, in the quest for bio-inspired
novel computing architectures.

Appendix A: Derivation of Eqs. (16) and (17)

In this appendix we derive Eqs. (16), (17) of Sec. II for
doublon density and delay time of the d. c. insulating-to-
conducting transition. To simplify the exposition, we set
τd = n0 = E0 = 1, A = 0. Then Eq. (3) is rewritten as

ṅ = 1− n+ n2E2. (A1)

The two stationary solutions are n̄ = n̄av(1± i∆) where

n̄av = 1/(2E2) and ∆ =
√

4E2 − 1 [cf. Eq. (4)] and are
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real only if E < Eth = 0.5 [cf. Eq. (5)]. Since during the
delay time the doublon density does not change much, we
approximate the field in the Mott insulator as constant,
E ≈ V L, which is equivalent to approximating rs ≈ 0,
yielding V ∗

1 ≈ 0.5V0 and n∗1 ≈ 0.5n0. Equation (A1) can
then be solved with a variable change:

n = −ẋ/(xE2), (A2)

ẍ+ ẋ+ E2x = 0. (A3)

The general solution of the transformed equation (A3) is
x = α1e

s1t + α2e
s2t where s1,2 = (−1 ± i∆)/2. Substi-

tuting this back into (A2) yields the solution of Eq. (A1):

n = n̄av

(
1− i∆α1e

i∆t/2 − α2e
−i∆t/2

α1ei∆t/2 + α2e−i∆t/2

)
. (A4)

Notice that the solution of (A3) depends on both α1,2

while Eq. (A4) depends only on their ratio. To proceed,
we parametrize α1,2 = ± exp(∓i∆τD/2) and obtain

n = n̄av

[
1−∆ cot[(∆/2)(t− τD)]

]
, (A5)

τD = (2/∆) cot−1
[
(n(0)− n̄av)/(∆n̄av)

]
. (A6)

which coincide with Eqs. (16) and (17).

Up to now we have considered the electric field above
threshold E > Eth, which is equivalent to V > V ∗

1 and
makes ∆ and Eqs.(A5), (A6) real. In the limit V → V ∗

1

we have ∆→ 0, n̄av → 2n0 ≈ n∗1 and the behavior of the
delay time Eq. (A6) depends on the initial condition:

τD ≈

{
2π/∆, if n(0) < n∗1,

2n∗1/(n(0)− n∗1), if n(0) > n∗1.
(A7)

Indeed with a large initial density the transition happens
even below threshold. In this case we have to choose α1,2

differently or, alternatively, we can analytically continue
Eqs. (A5), (A6) with ∆̃ = i∆ which yields

n = n̄av

[
1− ∆̃ coth[(∆̃/2)(t− τD)]

]
, (A8)

τD = (2/∆̃) coth−1
[
(n(0)− n̄av)/(∆̃n̄av)

]
. (A9)

In this case the delay time diverges for n(0) = ∆̃(nav+1),
namely for V = V̄ (n(0)), as shown in Fig. 4(c).

Appendix B: Derivation of Eq. (22)

In this appendix we derive Eq. (22) for the region with
limit cycle in Sec. IV. A limit cycle is guaranteed to exist
by the Poincaré–Bendixson theorem when the system is
confined in a region with no stable fixed point therein [54].
Such a trapping region is (with V`rtr

−1
s > V ∗

1 ) {(n, V ) ∈
[0, n̄(V`rtr

−1
s )]×[0, V`rtr

−1
s ]}. The fixed point turns from

stable to unstable (Hopf bifurcation) when, with positive
determinant, the trace of the Jacobian becomes positive.
For the system (19) the Jacobian reads

J(n, V ) =

(
− rtn+n0

τc(rsn+n0) − V rln0

τc(rsn+n0)2

2n2n0V V
−2
0

τd(rsn+n0)2 −
1
τd

+
2nn2

0(V/V0)2

τd(rsn+n0)3

)
. (B1)

Plugging Eq. (20b) for the ṅ = 0 nullcline into Eq. (B1),
we obtain the Jacobian as a function of the fixed-point
doublon density:

J(n) =

 − rtn+n0

τc(rsn+n0) −V0rl[n0(n−n0)]1/2

τcn(rsn+n0)
2n[n0(n−n0)]1/2

τdV0(rsn+n0)
−rsn2+nn0−2n2

0

τdn(rsn+n0)

 , (B2)

whose determinant and trace read

det(J) =
rtn

2 − n0n+ 2n2
0

τdτc(rsn+ n0)n
, (B3)

tr(J) =
τc(−rsn2 + n0n− 2n2

0)− τd(rtn2 + n0n)

τdτc(rsn+ n0)n
.

(B4)

The sign of the determinant does not depend on τc
and is positive for n outside the range [n̂1, n̂2] with
n̂1,2 = n0(1 ±

√
1− 8rt)(2rt)

−1. The sign of the trace
depends on τc. Notice that a necessary condition for the
trace to vanish is (−rsn2 + n0n − 2n2

0) > 0 which is the
same condition for the NDR region of the memristor, cf.
Eq. (13), demonstrating that the region with limit-cycle
oscillations is a subset of the NDR region, as depicted in
Fig. 7(b)-(d). Imposing the trace to be positive we get
the condition that n should be outside the range [ñ1, ñ2]
with ñ1,2 given in Eq. (22).
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