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The nontrivial spin texture on the (001) surface of topological crystalline insulator SnTe hosts
exotic scientific importance and spintronic applications. Here, we study the effects of weak Floquet
optical driving on the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two magnetic
impurities on a doped SnTe(001) surface. Due to peculiar spin-orbit hybridization, we find a non-
collinear twisted RKKY interaction comprising XYZ-Heisenberg, symmetric in-plane, and asym-
metric Dzyaloshinskii-Moriya (DM) terms. We see that contributions from the z (x)-component of
the XYZ-Heisenberg (DM) interaction are dominant for most parameters. The interactions, includ-
ing DM terms that are responsible for interesting spin textures, require doping in most cases. We
propose to modify the interactions in situ via optical control of band structure, and thereby doping.
A notable aspect of this control protocol is breaking of electron-hole symmetry, which stems from
the DM interaction.

I. INTRODUCTION

For the past decade, topological insulators (TIs) have
been at the forefront of condensed matter physics [1, 2].
Due to the strong spin-orbit coupling (SOC) [3, 4], topo-
logical phases of matter contain gapped bulk and gapless
surface states, protected by the time-reversal symmetry.
Notably, quantum anomalous Hall effect (QAHE) has
been observed in magnetically doped TIs [5–8], which
is a topological effect with potential for low-power infor-
mation processing associated with dissipationless chiral
edge transport [9]. However, the QAHE becomes weak in
a wide variety of transition metal-doped TIs [7, 10–13] if
one increases the density of surface carriers, mainly due
to weakening of the magnetic order as a prerequisite for
anomalous Hall physics.

Although the mechanism of this phenomenon is still
under discussion [14], it was suggested that the indirect
Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange cou-
pling between magnetic ions/impurities plays a signifi-
cant role [15, 16] among other common types of mag-
netism because it is tightly connected to the density of
itinerant electrons in the host material [17]. Depend-
ing on the spin-orbit structures of topological materials,
various types of RKKY mechanisms [18–20] and eventu-
ally different weak/strong regimes of QAHE can emerge.
Furthermore, emergent spintronic applications need the
RKKY mechanism to find the proper material with im-
proved adjustability of spin alignments for logic magnetic
devices [21, 22]. It is the latter purpose that we mainly
aim at in this work, and we only conceptually (i.e., with-
out additional calculations) state its relationship with the
QAHE.
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It has been shown that nontrivial RKKY interac-
tions can appear on the surface of three-dimensional
TIs [16, 23–25] as well as at the edge of two-dimensional
TIs [26–28]. In this work, we proceed with the topo-
logical crystalline insulators (TCIs) [29–33] because, in
addition to the time-reversal symmetry, crystal symme-
tries protect gapless surface states as well. This, in turn,
covers a broad range of materials rather than specific
TI compounds. Moreover, in contrast to an odd num-
ber of Dirac cones in strong TIs, TCIs provide an even
number of cones, useful for spintronics and valleytron-
ics [21, 22, 34]. We choose to focus on SnTe(001) surface
as one of the well-known TCIs with a nontrivial spin tex-
ture [35] to see how its magnetic features can go beyond
the ones in TIs to be reflected in spintronics and QAHE
physics.

In order to understand novel features in these mate-
rials, we need the ability to tune the properties of the
surface. The best way to do so is through a gap opening
at Dirac cones because it suppresses the large density of
the doped surface around the Fermi energy, first, and sec-
ond, it makes the magnetic order strong enough through
the suppression of various phase alterations of ferromag-
netic (FM) and antiferromagnetic (AFM) interactions.
Among various ways for gap opening [36], we proceed
with optical driving using Floquet-Bloch states [37–40]
because by tuning the intensity and frequency of the
radiation, one can dynamically tune the photon-dressed
bands, and eventually modulate the properties of an ir-
radiated system in a controlled way.

Motivated by various light-induced phenomena [41–
46], we consider the interaction of a weak (to avoid
the heating issue) circularly polarized light with the
SnTe(001) surface, which opens a gap isotropically at
all four Dirac cones, and thereby modulates the RKKY
interaction. Subsequently, assuming that particles fill
the Floquet-Bloch bands up to a given chemical poten-
tial when the weak Floquet drive is turned on, we pose
the question: how does the interplay between doping
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and optical driving influence the RKKY interaction for
both spintronics and QAHE treatment? To answer this
question, we reformulate the Heisenberg RKKY interac-
tion [47, 48] of hybrid states of sublattices in SnTe(001)
for the bare spin-orbital states of each sublattice to take
into account the effect of a nontrivial spin texture. This
results in noncollinear twisted spin alignments including
XYZ-Heisenberg, symmetric in-plane, and asymmetric
DM interactions, implying that magnetic moments lie on
the surface with increased adjustability. The asymmet-
ric DM interaction is substantial for spintronic applica-
tions [49–51]. Interestingly, the Floquet drive tends to
treat the QAHE by suppressing the density of doped
states and RKKY amplitudes; however, we note that
topological features of the SnTe(001) surface are not es-
sential for our study.

This paper is structured as follows. In Sec. II, we
present the continuum Hamiltonian of pristine SnTe(001)
surface and construct the main building block of optically
driven states. In Sec. III, we turn to the RKKY theory
and derive the Floquet-Green’s functions for a weak and
off-resonant drive. The numerical results are presented
in Sec. IV. We discuss potential extensions in Sec. V and
finally we end the paper with a conclusion in Sec. VI.

II. HAMILTONIAN MODEL

A. Pristine SnTe(001)

In this section, we intorduce the continuum Hamil-
tonian model [30–33, 36, 52] to describe each coaxial
Dirac cone in the low-energy limit of SnTe(001) sur-
face. Two cones Λx and Λ′x are located along the di-
rection X1 − Γ − X1 of the projected surface Brillouin
zone (SBZ), while two cones Λy and Λ′y are located along
the direction X2 − Γ − X2, as shown in the left side of
Fig. 1. The pristine Hamiltonian of the Λx point is given
by (~ = 1) [36, 47, 48, 52–54]

HΛx
= η̃xpxσy − η̃ypyσx , (1)

where px = kx − Λx is measured from the Dirac cone at
Λx = (

√
n2 + δ2/ηx, 0), py = ky, η̃x = (δ/

√
n2 + δ2)ηx,

and η̃y = ηy [53]. Here, ηx = 3.53 eV.Å and ηy = 1.91
eV.Å refer to the bare Fermi velocities along the x- and
y-direction, respectively. The Pauli matrices are given
by σx and σy. The intervalley scattering parameters
n = 55 meV and δ = 40 meV are, respectively, responsi-
ble for the high-energy Dirac cones and the formation of
two copies of Dirac cones with opposite chiralities in the
four-band model (not shown here) [30, 36, 47, 52]. Al-
though they correctly describe intervalley scattering at
the lattice scale of SnTe(001), they vary sample to sam-
ple since they arise from non-universal effects such as sur-
face roughness. Indeed, the parameter n is the threshold
energy below which the low-energy model is valid.

The rotational symmetry C2 protects the coaxial Dirac
cones resulting in HΛ′x,y

= HΛx,y , while the perpendic-

FIG. 1. The low-energy spectrum of Dirac fermions on the
SBZ of SnTe(001) surface, left side, and the optically driven
spectrum, right side, with induced gap ∆ = 2a2/Ω from the
light with the ac field a and the frequency Ω. Other Dirac
cones follow from C2 and C4 rotational symmetries.

ular cones are formed by the C4 symmetry. This, in
turn, implies that HΛy

= η̃ypxσy − η̃xpyσx. It should
be stressed that the valence and conduction bands of
the energy spectrum refer to the hybridized p-orbitals
of the cation Sn2+ and anion Te2− sublattices, namely
|1〉 = (| ↑,Te〉 + | ↓,Sn〉)/

√
2 and |2〉 = (| ↑,Sn〉 + | ↓

,Te〉)/
√

2 [35, 36, 52, 53].
Before turning to the irradiated SnTe(001) surface, we

make one useful simplification, which will help later to
find analytical RKKY interactions. Because RKKY the-
ory is mainly based on low-momenta response, we neglect
the anisotropy feature of the surface Dirac cones originat-
ing from η̃x ' 2.08 eV.Å and η̃y = 1.91 eV.Å. Hence, we
set vF = (η̃x + η̃y)/2 ' 2 eV.Å.

B. Irradiated SnTe(001)

In this section, we present the expression for the effec-
tive two-band Hamiltonian model discussed above for the
case when the SnTe(001) Dirac cones are weakly driven
by a circularly polarized light. To do so, the time-
periodic vector potential ~A(t) = A0[sin(Ωt), cos(Ωt)],
where A0 = E0/

√
2Ω (E0 and Ω are the amplitude and

frequency of light, respectively) is chosen to drive the
Hamiltonian of the Λx point (and other Dirac cones)
through the minimal coupling scheme as

HΛx
(t) =

 0 −ivFp− − ae+iΩt

+ivFp+ − ae−iΩt 0

 ,

(2)
where p± = px ± ipy and a = eA0vF. The drive in-
duces transitions between the eigenstates. Since the
Hamiltonian is periodic in time, HΛx

(t) = HΛx
(t +

T ) with T = 2π/Ω, the valid theory to address the
time-periodic Hamiltonians is the Floquet-Bloch’s the-
orem [40, 55]: a complete set of solutions of the
time-dependent Schrödinger equation HΛx

(t)|ψ(t)〉 =
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i∂t|ψ(t)〉 reads as |ψf,p(t)〉 = e−iεf,p |Ff,p(t)〉, where the
integer Floquet index f classifies different sidebands with
energies εf,p. Accordingly, the Fourier series |Ff,p(t)〉 =∑∞
j=−∞ e−ijΩt|F jf,p〉 describes the time-periodic Floquet

states |Ff,p(t)〉 = |Ff,p(t + 2π/Ω)〉. It should be men-
tioned that f = 0 maps the quasienergies to the first
Floquet zone [−Ω/2,Ω/2]. Then, it is straightforward
to deduce the Floquet Hamiltonian HF,Λx

= HΛx
(t) −

i∂t in the Fourier domain [56]
∑∞
j=−∞HF,mj |F jf,p〉 =

εf,p|Fmf,p〉. Having the driving period T = 2π/Ω, the ma-
trix elements of the Floquet Hamiltonian can be found
viaHF,mj = Hmj−jΩδm,j , where j is the photon number
and [57–59]

Hmj =
1

T

∫ T

0

HΛx
(t)ei(m−j)Ωtdt . (3)

The Floquet Hamiltonian can be numerically diago-
nalized to study the exact dynamics governed by the ap-
plication of light. However, for sufficiently weak electric
field intensities, i.e., when the field intensity a is small
compared to the frequency Ω, we may approximate the
Floquet Hamiltonian using a high-frequency expansion
explained below. In the high-frequency limit, the Flo-
quet sidebands do not overlap; thus, there are no gaps
due to band crossings so the hybridization between dif-
ferent Floquet bands becomes weak, meaning that inter-
band transitions of electrons are suppressed.

Thus, using a perturbative approach known as the van
Vleck inverse-frequency expansion, we obtain the effec-
tive Floquet Hamiltonian in powers of Ω−1, HF,Λx

'
HΛx

+ [H−1,H+1]
Ω [39, 60, 61], which reads as:

HF,Λx =

 +∆/2 −ivF p e
−iϕp

+ivF p e
+iϕp −∆/2

 , (4)

where a gap ∆ = 2a2/Ω opens up at the Dirac cone
through a two-photon process similar to that in Refs. [37,
57, 59, 62, 63]. Using the C2 and C4 symmetries, one can
obtain the Floquet Hamiltonian at other Dirac cones.
Diagonalizing the above Hamiltonian leads to a gapped
Dirac dispersion EΛx(p) = ±

√
v2

Fp
2 + ∆2/4, as shown

in the right panel of Fig. 1.
In addition to optical driving, there are various ways

to open the gap at the Dirac cones [36], namely the ex-
change magnetization, the Zeeman term without an ex-
ternal magnetic field, and proximity coupling to a ferro-
magnet. However, as discussed in the introduction, the
Floquet drive allows us to tune the properties of the dis-
persion for various purposes by adjusting the intensity
and frequency of light. Moreover, further photon pro-
cesses in HF,Λx

can be taken into account by including
higher-order terms [57, 59].

For our purposes, the Floquet drive will be used to tune
the RKKY interaction for both spintronics and eventu-
ally QAHE physics (indirectly through the density of sur-
face carriers). We now proceed to the RKKY interaction
in irradiated SnTe(001).

III. RKKY INTERACTION IN IRRADIATED
SnTe(001)

As explained in the introduction, the indirect exchange
coupling between two magnetic impurities or two local-
ized spins ~S1 and ~S2 mediated by the host itinerant elec-
tron spins ~s is described by RKKY theory [17]. In our
case, the host itinerant electrons are the optically driven
ones on the SnTe(001) surface given by Eq. (4). Accord-
ing to this theory, the magnetic moments are treated as
immobile defects on the lattice sites ~R1 and ~R2, and the
interaction Hamiltonian is given by Hint = J

∑
i
~Si · ~si,

where J denotes the bare exchange energy. Thus, we
consider the total Hamiltonian for SnTe(001) surface in-
cluding a contact interaction with the magnetic centers,
namely, H = HF,Λx

+ Hint. Using second-order pertur-
bation theory, one finds [17]

HαβRKKY = J2
∑
l,j

Slα1 χαβlj ( ~R )Sjβ2 , (5)

with lattice sites α and β, and the impurity separation
~R = ~R2 − ~R1. In the above equation, the spin sus-
ceptibility χαβlj ( ~R ) can be obtained from the retarded
Green’s functions in the spin-space for different flavors
{l, j} ∈ {x, y, z} [64–66]:

χαβlj ( ~R ) = − 2

π
=
∫ EF
−∞

dE Fαβlj (E , ~R) , (6)

where EF is the Fermi energy and

Fαβlj (E , ~R) = Tr
[
σlG

αβ(E , ~R)σjG
βα(E ,−~R)

]
. (7)

We set the temperature to zero in the present work, so
EF = µ, where µ is the chemical potential. The role of
doping is then characterized by µ > 0 and µ < 0 referring
to electron and hole doping, respectively. We assume that
the electrons fill all energies up to µ within the Floquet-
modified dispersion because the optical drive considered
is sufficiently weak and off-resonant that it may be turned
on continuously, resulting in a new (quasi zero tempera-
ture) steady state. Note that this is fundamentally dif-
ferent from many other Floquet systems which are ex-
perimentally constrained to pump-probe non-equilibrium
states to avoid heating, for which the electron filling is
quite different [67]. In Eq. (7), we have

Gαβ(E , ~R) =

G↑↑αβ (E , ~R) G↑↓αβ (E , ~R)

G↓↑αβ (E , ~R) G↓↓αβ (E , ~R)

 , (8)

which denotes the real-space non-interacting Green’s
function of sublattices in spin-space, given by the photo-
dressed Dirac bands. However, we must sum over the
directions X1−Γ−X1 and X2−Γ−X2 on the SnTe(001)
surface, as well as the pair of Dirac cones at X1 and X2
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points, to cover the entire SBZ. Thus, we have

Gσσ
′

αβ (E , ~R) =
1

SSBZ

∫
d2p ei~p·

~R
[
ei
~X1·~RGσσ

′

αβ (~p+ ~X1, E)

+ ei
~X2·~RGσσ

′

αβ (~p+ ~X2, E)
]
,

(9)
with {σ, σ′} = {↑, ↓}, where SSBZ is the area of the en-
tire SBZ. The integral is dominated by low momentum,
p� |Λx,y|, justifying our choice to treat each Dirac cone
independently in the low-energy limit of two-band model.

It is necessary to point out that in the Hamiltonian
model, a superposition of sublattices given by the eigen-
states |1〉 and |2〉 appears, rather than the bare sublat-
tices |Te/Se, ↑ / ↓〉. Therefore, one needs to express
the real-space Green’s functions of the hybrid states in
terms of the bare sublattices considering the correspond-
ing spins. Hence, we rewrite the above Green’s function
as [see Appendix A]

Gσσ
′

αβ (E , ~R) =
∑
γ,η

u∗α,γ,σuβ,γ,σ′Gγη(E , ~R) , (10)

in which the summation runs over hybrid states {|1〉, |2〉}
and uTe,1,↑ = uTe,2,↓ = uSn,1,↓ = uSn,2,↑ = 1/

√
2.

To calculate Gγη(E , ~R), we first calculate the reciprocal-
space Green’s functions around all Dirac cones within
the weak-driven approximation. Therefore, using the re-
lation GΛx(p, E) = [E + io+ −HF,Λx ]

−1 with infinitesi-
mal parameter o+ → 0 for the Λx point as well as us-
ing the expressions d2p = p dp dϕp and exp

[
i~p · ~R

]
=

exp [i pR cos (ϕp − ϕR)] with ϕp = tan−1 (py/px), we
obtain

Gγη(E , ~R) =
1

SSBZ

∫ pc

0

∫ 2π

0

d2pei ~p·
~R Gγη(p, E). (11)

We set the cutoff pc →∞, as the long-range interactions
are dominated by low momentum modes within this in-
tegral. Hence, for the Λx point, the real-space Green’s
functions of hybrid states |1〉 and |2〉 read as

G11(E , ~R) =
−2π [E + io+ + ∆/2]

SSBZ v2
F

K0(−iẼ R/vF) , (12a)

G12(E , ~R) =
+2π i e−iϕR Ẽ
SSBZ v2

F

K1(−iẼ R/vF) , (12b)

G21(E , ~R) =
−2π i e+iϕR Ẽ
SSBZ v2

F

K1(−iẼ R/vF) , (12c)

G22(E , ~R) =
−2π [E + io+ −∆/2]

SSBZ v2
F

K0(−iẼ R/vF) , (12d)

where Ẽ =
√

(E + io+)2 −∆2/4 and K0,1 denote modi-
fied Bessel functions. For the Λ′x, Λy, and Λ′y points, we
have the exact same expressions since the gap is opened
isotropically at all Dirac cones by the optical driving.
The above elements fulfil the relations G11/22(E ,−~R) =

G11/22(E , ~R) and G12/21(E ,−~R) = −G12/21(E , ~R).

Turning back to Eq. (5), one would rewrite the RKKY
Hamiltonian as

HRKKY = − 2J2

π
Im
∫ µ

−∞
dE
∑
lj

Sl1S
j
2 Flj . (13)

The components Fααlj and Fαβlj for the spins on the same
and different sublattices, respectively, are presented in
Appendix B. Accordingly, the Hamiltonians read as

Hαα,αs

RKKY =
∑
i

J ααi Si1S
i
2 + ~J αs

DM · (~S1 × ~S2)

+ αsJ ααxy [Sx1S
y
2 + Sy1S

x
2 ] , (14a)

Hαβ,αd

RKKY =
∑
i

J αβi Si1S
i
2 + ~J αd

DM · (~S1 × ~S2), (14b)

where we have ~J αs

DM = (J ααDM,x, αsJ ααDM,y, 0), and ~J αd

DM =

(J αβDM,x, 0, αdJ αβDM,z). When the impurities are placed on
the TeTe (SnSn) sublattices, we use αs = +1 (−1), while
αd = +1 (−1) for the TeSn (SnTe) sublattices.

The first terms in both Hamiltonians of Eq. (14) cou-
ple the same spin directions with different exchange
strengths {Jx, Jy, Jz}, which gives the XYZ-Heisenberg
interaction. Furthermore, due to the intrinsic SOC of
the SnTe(001) surface, the symmetry of spin space is ex-
pected to be broken in response to the impurities, lead-
ing to off-diagonal components of the RKKY Hamilto-
nian (the last terms) [68, 69]. While the asymmetric sec-
ond terms resemble a DM interaction, the third term in
Eq. (14a) gives rise to an in-plane symmetric interaction.
The large DM interaction (which we will show in the fol-
lowing) compared to the one in TI thin films [70] can lead
to interesting phenomena such as spin Nernst effect, the
appearance of the nontrivial topology, and topological
spin excitations [71–73]. The DM interaction has been
also explored extensively in recent years for spintronic
applications [49–51, 74]. These off-diagonal terms en-
able the full RKKY Hamiltonian to provide noncollinear
twisted alignment between the magnetic impurities.

Let us define the form factor between Dirac points and
{X1 and X2} points from Eq. (9)

f(~R) = 2 [eiX1Rx cos(ΛxRx) + eiX2Ry cos(ΛyRy)] . (15)

For clarity, we work with the normalized exchange in-
teractions, C J2 |f(~R)|2, where C = 4π/S2

SBZv
4
F thus,

J̃ (R) = J (R)/C J2 |f(~R)|2 suppresses the beating type
of oscillations from the multiple surface Dirac cones [47],
as shown in Fig. C.1 of Appendix C. With tthis, we show
the results for a single Dirac cone in what follows. The
modulations captured in |f(~R)|2 are different than those
of graphene and other systems [75–78] and can be use-
ful to modulate the couplings on medium-length scales
1/Λx,y. Crucially, such a length scale only exists in TCIs
and is potentially tunable via, e.g., strain.

For numerical purposes, we first define E −µ = E ′, ow-
ing to the electron-hole symmetry [64–66, 77], to set the
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upper limit of the integral in Eq. (13) to zero. Then, we
use the imaginary energy representation E ′ + io+ = iω
to get rid of the numerical singularities and tight toler-
ances in the real energy integration. After simple algebra
calculations and defining ω̃2 = (ω − iµ)2 + (∆2/4), the
components of RKKY Hamiltonians for the first config-
uration (impurities on the same sublattices) read as:

J̃ ααx (R) = + Im
∫ ∞
o+

idω ω̃2
[
K2

0(ω̃ R/vF)

+ cos(2ϕR)K2
1(ω̃ R/vF)

]
, (16a)

J̃ ααy (R) = + Im
∫ ∞
o+

idω ω̃2
[
K2

0(ω̃ R/vF)

− cos(2ϕR)K2
1(ω̃ R/vF)

]
, (16b)

J̃ ααz (R) = + Im
∫ ∞
o+

idω ω̃2
[
K2

0(ω̃ R/vF)

+ K2
1(ω̃ R/vF)

]
− ∆2

2
Im
∫ ∞
o+

idωK2
0(ω̃ R/vF), (16c)

J̃ ααxy (R) = + sin(2ϕR)Im
∫ ∞
o+

idω ω̃2 K2
1(ω̃ R/vF),

(16d)

J̃ ααDM,x(R) =− 2 sin(ϕR) Im
∫ ∞
o+
dω ω̃

√
ω̃2 −∆2/4

×K0(ω̃ R/vF)K1(ω̃ R/vF) , (16e)

J̃ ααDM,y(R) =− 2 cos(ϕR) Im
∫ ∞
o+
dω ω̃

√
ω̃2 −∆2/4

×K0(ω̃ R/vF)K1(ω̃ R/vF) . (16f)

Due to the symmetrical form of the states |1〉 and |2〉,
the x and y components of the XYZ-Heisenberg interac-
tion differ only by a sign in the off-diagonal components
of the real-space Green’s functions. Moreover, the DM
components are shifted by the π/2 phase.

For the second configuration (impurities on different
sublattices), we find

J̃ αβx (R) = + J̃ ααx (R) , (17a)

J̃ αβy (R) = − J̃ ααy (R) , (17b)

J̃ αβz (R) = − J̃ ααz (R) , (17c)

J̃ αβDM,x(R) = − J̃ ααDM,x(R) , (17d)

J̃ αβDM,z(R) = − J̃ ααxy (R) , (17e)

stemming from the spin-orbit structure of the model, and
not from the spatial symmetry of the SnTe(001) surface.

The magnetic impurities can reside on the same,
Fig. 2(a), or different, Fig. 2(b), sublattices. Other
configurations, such as impurities on the bonds or in
the center of the unit cell, can be simply obtained by
adding together the results for the RKKY interaction
on the nearby sites. For example, if one magnetic im-
purity is located halfway between a Sn site at location
a0ŷ/2 and Te site at −a0ŷ/2 (a0 is the lattice con-
stant), then the interaction with an impurity located at

(a) (b)

FIG. 2. A simple schematic for the position of magnetic im-
purities on (a) the same and (b) different sublattices of the
SnTe(001) surface. Cation Sn2+, anion Te2−, and the local
magnetic impurities are, respectively, shown by the black, red,
and blue spheres.

a distance ~R away on a Sn site is given by Hbond
RKKY =

HSnSn
RKKY(~R − a0ŷ/2) + HTeSn

RKKY(~R + a0ŷ/2). Note that
the microscopic coupling J for this case will be different
from the site-located impurity, and will depend on the
sublattice. Generalizations to other impurity positions
are straightforward.

In general, for the sublattice setup, we continue only
with αs = +1 in Eq. (14) henceforth for the magnetic im-
purities on the same TeTe sublattices. A sign change in
J̃ ααDM,y and J̃ ααxy gives rise to the results for magnetic im-
purities on the same SnSn sublattices; for different TeSn
sublattices, one can simply use Eq. (17). Finally, the sign
of J̃ αβDM,z should be swapped for the results on different
SnTe sublattices.

IV. RESULTS AND DISCUSSION

The role of the chemical potential µ and the optical
gap ∆ in various terms of the RKKY interaction form
the main messages of the present work for both spintronic
applications and QAHE physics. The Fermi sea can be
drained out if one keeps increasing the driving strength
for a fixed impurity separation R and direction ϕR. This,
in turn, manipulates the surface states involved in the
RKKY coupling. It is very important to control the
chemical potential to bring the surface states into the
so-called low-energy regime. This can be tuned with,
e.g., a back gate from the thin film substrates [79, 80].

It is necessary to mention that the Floquet parame-
ter a/Ω mainly tunes the light-matter interaction effect
on the SnTe(001) surface, which should be small in the
weak drive regime (to avoid heating of the sample). It is
worthwhile commenting that the alignment of magnetic
moments can be influenced by both a and Ω. In Fig. D.1
of Appendix D, we systematically address this matter.
As soon as we turn on the light, independent of the sym-
metric and asymmetric contributions to the RKKY in-
teraction, magnetic moments talk to each other only be-
neath the line a ∝

√
Ω. The bandwidth of our model is

given by 2n = 110 meV. To have a broader range of light
intensity for tuning the RKKY interaction (less zero re-
sponse), we continue with an off-resonant high-frequency
Ω = 1 eV ∝ 270 THz much larger than the bandwidth.
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Thus, the gap of the system can reach ∆ ' 23 K [81],
i.e., a ' 47 meV. However, we vary intensity a up to 200
meV (optical gap ∆ up to 80 meV) in what follows.

From the Eqs. (16a)-(16f) and Eqs. (17a)-(17e),
one can observe the periodicity of interactions in ϕR
– except ϕR-independent J̃ ααz (R) – which provides
HRKKY(ϕR) = HRKKY(ϕR + π). Due to the square lat-
tice of the host SnTe(001) surface, three angles ϕR = 0,
π/4, and π/2 between the magnetic impurities lead to
special RKKY interactions. A quick analysis results in
J̃ ααxy (R) = 0 for both 0 and π/2 and J̃ ααDM,x/y(R) = 0,
respectively, for 0 and π/2. While for π/4, we find
J̃ ααx (R) = J̃ ααy (R) and J̃ ααDM,x(R) = J̃ ααDM,y(R). But, for
noncollinear twisted alignments of magnetic moments on
the surface with more adjustability, we continue with an
in-plane angle, e.g., ϕR = π/3. We set the chemical po-
tential and the optical gap at µ = 27.5 meV and ∆ = 45
meV, respectively, where necessary. In the driven-doped
surface, this set helps to have effective interactions be-
cause of µ > ∆/2 (see interpretation below).

Figure 3 shows the RKKY terms as a function of
impurity separation R/a0. For the pristine (undriven-
undoped) surface, µ = 0 and ∆ = 0, which leads to real
ω̃ = ω, the analytical solution of Eqs. (16a)-(16d) is al-
ready known [47, 48, 64–66, 78] and can straightforwardly
be found with the help of Eq. (E1) in Appendix E such
that the non-zero interactions decay asR−3, see Fig. 3(a).
Under the same conditions, the DM terms in Eqs. (16e)
and (16f) vanish J̃ ααDM,x/y(R) = 0 due to the absence
of imaginary energy. The physical reason for a vanish-
ing DM interaction stems from the presence of inversion
symmetry between sublattices (absence of µ) for which
asymmetric alignment of spins from the interplay of di-
agonal and off-diagonal spin-orbital states does not take
place. The presence of DM interaction due to doping has
been experimentally confirmed in TI thin films [50]. In-
terestingly, only J̃ ααx (R) forms an AFM order since the
response from different spin-orbital states, {|1〉 and |2〉}
or {|2〉 and |1〉}, are three times larger than the same
spin-orbital states, {|1〉 and |1〉} or {|2〉 and |2〉}, result-
ing in J̃ ααx (R) < 0.

For the undriven-doped surface, µ 6= 0 and ∆ = 0,
which leads to imaginary ω̃ = ω−iµ, one needs Eq. (E2)
in Appendix E. It is obvious that the short-range RKKY
interactions are given by the power-law R−3, while for the
long-range couplings, oscillatory Meijer functions [82, 83]
emerge, as presented in Fig. E.1. Our numerical data in
Fig. 3(b) confirm this dependence. In contrast to the
pristine surface, DM interactions wake up when the sur-
face is doped for the same reason of inversion symmetry
breaking between sublattices.

For the driven-undoped surface, µ = 0 and
∆ 6= 0, which leads to real ω̃ =

√
ω2 + ∆2/4,

with the help of Eq. (E3) in Appendix E, we
find short-range RKKY interactions ∝ R−3, while
for the long-range interactions, one needs to use
lim∆R/vF→∞Kn(∆R/vF) '

√
πvF/2∆R exp(−∆R/vF)

FIG. 3. RKKY interactions on the SnTe(001) surface at ϕR =
π/3 as a function of impurity separation R when the surface
is (a) pristine (undriven-undoped), (b) undriven-doped, (c)
driven-undoped, and (d) driven-doped. We set µ = 27.5 meV
and ∆ = 45 meV, respectively, for the chemical potential
and optical gap. It can be observed that the asymmetric
DM term exists only on the doped surface. Furthermore, the
Floquet drive suppresses all terms due to the reduced density
of mediating states.

and the Laplace method to obtain RKKY interactions
∝ (R/∆)−3/2 exp(−2∆R/vF) [64], which are again in
agreement with the numerical results in Fig. 3(c). For
the reason mentioned before about the doping effect on
the DM interaction, one still expects a vanishing DM re-
sponse for the driven-undoped surface.

For the driven-doped surface in Fig. 3(d), we consider
the µ > ∆/2 regime where the chemical potential is out-
side the optical gap so the states added by doping play
role in RKKY interactions (for µ < ∆/2 the DM terms
vanish). Although it is not easy to find analytical expres-
sions for the driven-doped surface, we expect a modified
version of Meijer functions for the long-range coupling
as the interactions behave like the undriven-doped sur-
face. However, we believe that the power-law R−3 is
still valid for short-range couplings. As both driving and
doping are present, the drastic change of oscillations for
all RKKY components is evident. This is a direct con-
sequence of the optical gap for which the corresponding
density of mediating states in the RKKY interaction de-
creases, and thus, most of the doped states are washed
out. For this reason, the oscillations are accompanied by
smaller amplitudes compared to the undriven-doped sur-
face. This is mainly where our novel contribution pays off
in QAHE physics since magnetic characters focus more
on purely positive (FM) and negative (AFM) signs.

It is also worth mentioning that various FM and AFM
characters emerge for symmetric XYZ-Heisenberg J̃i and
in-plane J̃xy components depending on the interplay be-
tween driving and doping, as well as between the impu-
rity separation and direction. But, for the change of signs
in DM components, one needs to take into account the
chirality. When DM is positive, the coupling between
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FIG. 4. RKKY interactions for (a) µ = 13.75 meV and (b)
µ = 27.5 meV at R/a0 = 50 and ϕR = π/3 as a function of the
optical gap ∆ on the SnTe(001) surface. Independent of the
chemical potential, RKKY responses vanish for ∆ ≥ 2|µ| once
the chemical potential lies in the gap, due to their exponential
decay with R.

magnetic impurities favors clockwise rotation, meaning
that it tends to align right handedly more naturally than
left. Similarly, a negative DM interaction favors counter-
clockwise rotation for magnetic moments.

To gain further insights into the gap dependency of
interactions, we proceed to plot the RKKY couplings
against the optical gap ∆ for µ = 13.75 meV, Fig. 4(a),
and µ = 27.5 meV, Fig. 4(b), at R/a0 = 50 and
ϕR = π/3. As soon as we turn on the Floquet drive,
all interactions start to emerge due to the presence of
µ. It is noteworthy that once the gap edge lies at the
chemical potential level, i.e., when ∆ = 2|µ|, they start
to vanish because the doped states start to lie in the gap
without any significant density of mediating states. If we
dope the surface stronger, Fig. 4(b), RKKY responses
become stronger compared to Fig. 4(a). This can be eas-
ily understood by taking into account that the density
of carriers on the surface with µ = 27.5 meV is larger
than at µ = 13.75 meV; thus, more itinerant carriers act
as mediators for the indirect exchange coupling between
impurities.

Next, we systematically explore the RKKY interac-
tions of driven-doped SnTe(001) surface at fixed direction
ϕR = π/3 and impurity separation R/a0 = 50. In Fig. 5,
at first glance, one would observe that the amplitude
of oscillations increases as more surface states (larger
µ) are involved in the exchange coupling. However,
the gap opening reduces the rate of involved states and
for a certain chemical potential µ, RKKY interactions
are non-zero only below ∆ = 2|µ|. For example, at
µ = ± 27.5 meV, one obtains zero RKKY responses at
∆ ≥ 50 meV, as confirmed in Figs. 5(a)-(f), implying
that there is no effective mediating state anymore on the
surface (at least, within our approximations) so that the
RKKY responses approach zero. The red and blue colors
highlight the character of FM and AFM (clockwise and
counter-clockwise spin rotations) for symmetric (asym-
metric) RKKY components, while the yellow color dis-
plays nearly zero responses.

Additionally, the dominant oscillation amplitude be-
longs to the z-component of the XYZ-Heisenberg, though
the x-component of the DM term is the next prevalent

FIG. 5. RKKY interactions at ϕR = π/3 and R/a0 = 50
as a function of both optical gap ∆ and chemical potential
µ on the driven-doped SnTe(001) surface. Red (blue) color
refers to FM (AFM) order in (a)-(d), while they refer to clock-
wise (contour-clockwise) spin rotation in the DM terms of (e)
and (f). The yellow color depicts nearly zero RKKY response.
The dominant contribution to the RKKY interaction belongs
to the z (x)-component of symmetric (asymmetric) interac-
tion, i.e., J̃ ααz (J̃ ααDM,x). As expected, no response appears for
∆ ≥ 2|µ| due to the vanishing density of mediating states.

among others. As mentioned before, DM interaction en-
ables the system to be applicable for emergent spintronic
applications [49–51, 74]. This does not occur on the sur-
face of conventional TI thin films [70]. Therefore, our
large DM compatible with J̃ ααz (R) is a very useful fea-
ture of TCIs.

It is also worth exploring the intrinsic electron-hole
symmetry on the driven-doped SnTe(001) surface. The
electron-hole symmetry is valid for all symmetric inter-
actions, XYZ-Heisenberg and in-plane xy, independent
of doping and optical gap (also independent of the im-
purity separation and position of impurities – not shown
here). For the DM interaction at a given direction, one
immediately extracts the following relation

J̃ ααDM,x/y(−µ,∆) = −J̃ ααDM,x/y(+µ,∆) , (18)

which has already been confirmed experimentally on the
surface of TI thin films [50], as also shown in Figs. 5(e)
and 5(f). It has an opposite sign when the chemical po-
tential cuts through the upper or lower band. We em-
phasize that the presence of inversion symmetry between
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sublattices and the corresponding spin-orbital states is
the main origin of the above relationship.

For the experimental perspectives, one would extract
the following critical Floquet driving amplitude Ec

0 (con-
sidering an arbitrary driving frequency Ω) in the low-
energy regime of SnTe(001) surface above which a nearly
zero RKKY coupling is achieved:

Ec
0 =

√
n

evF
Ω3/2 . (19)

For instance, in our case, for the selected light frequency
of Ω ' 1 eV, the Fermi velocity of vF ' 2 eV. Å,
and n = 55 meV, one finds Ec

0 ' 109 V/m, which is
nowadays easily realizable in experiment [84–86]. Hav-
ing this information, we would suggest using a light in-
tensity below Ec

0 in experiments so tuning the RKKY
coupling with light can play role in determining the pre-
requisites for spintronic applications and QAHE. Ex-
perimentally, single-atomic magnetometry and magne-
totransport through scanning tunneling microscopy and
angle-resolved photoemission spectroscopy can measure
the RKKY interaction [87–89].

V. OUTLOOK

Before closing the discussion, let us briefly discuss pos-
sible avenues for upcoming research. The present study
for the “weak” light-induced RKKY interaction, which
still reports applicable findings, can also be addressed
for the “strong” driving regime. First, in the strong driv-
ing regime, the full Floquet Hamiltonian is required for
further photon processes [57]; second, the nonlinear cor-
rections should be solved numerically [57, 59]. The ex-
tended continuous strong driving must inevitably lead to
heating, which without remediation would destroy the
sample. We can propose a heat sink, e.g., a high-quality
Al [90], which maintains a low system temperature de-
spite the Floquet drive. Beyond the weak driving regime,
our calculations could also be done for a “linearly” polar-
ized light if one considers the nth-order Bessel functions
for the corrections up to infinite orders [91].

To address the low-frequency limit beyond our high-
frequency expansion, band crossings should also be con-
sidered in the theory; this requires another expansion of
the effective Floquet Hamiltonian and extra terms will
be generated. Additionally, the finite temperature effects
can also be explored for both short- and long-range cou-
plings within the finite-temperature self-consistent field
approximation [92, 93].

Note that the drive used to tune the RKKY interac-
tion also opens up a topological gap in the surface Dirac
cones. With four Dirac cones of identical chirality, it will
correspond to Chern number 2, suggesting that TCIs may
also be a useful playground for light-induced anomalous
quantum Hall physics. Unlike existing two-dimensional
systems, such as graphene [86], we propose to realize the

gapped TCI surface states by continuous, moderate am-
plitude optical driving, which allowed the realization of
an effective Fermi surface earlier in the paper, Sec IV.
This also implies the quasi-static topology of the sur-
face electronic states, which will be an interesting topic
for future exploration. However, unlike graphene, this
topological state is complicated by the presence of gap-
less edge states on the other [non-(001)] surfaces as well
as the bottom (001) surface of the material. We leave
an analysis of topological transport in this geometry for
future work.

VI. CONCLUSIONS

Exploring the physics of magnetically doped topologi-
cal systems in tuning QAHE as well as for the spintron-
ics community has triggered interest in condensed matter
physics. Recently, experimental photonic platforms have
also become increasingly urgent for tuning the proper-
ties of materials. To contribute to these, we have em-
ployed the isotropic optically driven continuum model for
Dirac cones with nontrivial spin textures on the doped
SnTe(001) surface as a well-known TCI to investigate the
(quasi)out-of-equilibrium physics of the RKKY interac-
tion between two magnetic impurities. This, in turn,
aims at providing spintronic applications as well as mak-
ing the TCI-based QAHE strong. To tune the features,
in particular, we have focused on the weak driving effects
and off-resonant regime between the light and bandwidth
of the Dirac cones using the van Vleck inverse-frequency
expansion. We make use of the bare spin-orbital states of
each sublattice, resulting in noncollinear twisted RKKY
interaction comprising of XYZ-Heisenberg, symmetric in-
plane, and asymmetric DM terms.

Preliminary analyses highlighted the z (x)-component
of the XYZ-Heisenberg (DM) interaction as the first (sec-
ond) dominant contribution to the total RKKY interac-
tion. Moreover, depending on the position of magnetic
impurities, chemical potential, and the optical gap, the
driven-doped SnTe(001) surface reaches various modu-
lations of FM and AFM characters for the symmetric
RKKY terms as well as of the clockwise and counter-
clockwise spin rotations for the asymmetric DM ones. A
systematic analysis of the RKKY coupling on the inter-
play between doping and driving demonstrated that the
efficient range of chemical potential in controlling the am-
plitudes belongs to the strengths outside the optical gap.
The optical gap (Floquet drive) in the presence of doping
leads to a reduction of the RKKY amplitudes because of
the decreased total density of mediating states. This is
where we propose a Floquet drive to make the TCI-based
QAHE strong when the surface is doped. Alongside, we
find non-zero DM interactions only for the doped surface
because of inversion symmetry breaking between sublat-
tices. Moreover, to evaluate the intrinsic electron-hole
symmetry of the system, we found that the symmetry is
broken because of the DM term.



9

Providing reasonable light intensity and frequency
compatible with the low-energy Dirac bands of the
SnTe(001) surface, insights from the present work are
discussed for feasible experimental observations. Finally,
we would mention that the large DM term on the surface
of TCIs is highly desirable for spintronic applications,
highlighting their additional usefulness compared to TIs
due to the presence of multiple Dirac cones.
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Appendix A: Components of the real-space Green’s
function

The real-space Green’s functions of hybrid states
in terms of bare sublattices considering corresponding
spins requires the following definition Gσσ

′

αβ (E , ~R) =∑
γ,η u

∗
α,γ,σuβ,γ,σ′Gγη(E , ~R), where components are given

by [in the following we omit (. . . ), so Gγη means
Gγη(E , ~R)]

G↑↑Te Te = G11/2 , G↑↓Te Te = G12/2 , (A1a)

G↓↑Te Te = G21/2 , G↓↓Te Te = G22/2 , (A1b)

G↑↑Te Sn = G12/2 , G↑↓Te Sn = G11/2 , (A1c)

G↓↑Te Sn = G22/2 , G↓↓Te Sn = G21/2 , (A1d)

G↑↑Sn Te = G21/2 , G↑↓Sn Te = G22/2 , (A1e)

G↓↑Sn Te = G11/2 , G↓↓Sn Te = G12/2 , (A1f)

G↑↑Sn Sn = G22/2 , G↑↓Sn Sn = G21/2 , (A1g)

G↓↑Sn Sn = G12/2 , G↓↓Sn Sn = G11/2 . (A1h)

Appendix B: Components of the spin susceptibility

The spin susceptibility is described by χαβlj ( ~R ) =

− 2
π =

∫ µ
−∞ dE Fαβlj (E , ~R) with the following expressions

for the first configuration (impurities on the same sub-
lattices)

Fααxx =
|f(~R)|2

4

[
2G11G22 − G2

12 − G2
21

]
, (B1a)

Fααyy =
|f(~R)|2

4

[
2G11G22 + G2

12 + G2
21

]
, (B1b)

Fααzz =
|f(~R)|2

4

[
2G12G21 + G2

11 + G2
22

]
, (B1c)

Fαα,αs

xy/yx = iαs
|f(~R)|2

4

[
G2

21 − G2
12

]
, (B1d)

Fαα,αs

xz/zx = ± αs
|f(~R)|2

4
[G11 + G22] [G21 − G12] , (B1e)

Fααyz/zy = ∓ i
|f(~R)|2

4
[G11 + G22] [G12 + G21] . (B1f)

For the second configuration (impurities on different sub-
lattices), we acheive

Fαβ/β αxx =
|f(~R)|2

4

[
2G11G22 − G2

12 − G2
21

]
, (B2a)

Fαβ/β αyy =
|f(~R)|2

4

[
−2G11G22 − G2

12 − G2
21

]
, (B2b)

Fαβ/β αzz =
|f(~R)|2

4

[
−2G12G21 − G2

11 − G2
22

]
, (B2c)

Fαβ,αd

xy/yx = ± iαd
|f(~R)|2

4

[
G2

12 − G2
21

]
, (B2d)

Fαβ,αd

xz/zx = αd
|f(~R)|2

4
[G11 + G22] [G12 − G21] , (B2e)

Fαβyz/zy = ± i
|f(~R)|2

4
[G11 + G22] [G12 + G21] . (B2f)

Appendix C: Beating oscillation of RKKY
interaction

Here, we aim at showing the beating type of oscillations
from multiple Dirac cones on the SnTe(001) surface, see
Eq. 15 for |f(~R)|2, as shown in Fig. C.1. The momenta
contributed to this beating function are X1/2±Λx/y and
2Λx/y on the SBZ [47].

Appendix D: Floquet engineering of magnetic
moments alignment on the SnTe(001) surface

An important motivation for Fig. D.1 presented here
originates from the spintronics community where the

0 /2 3 /2 2
0

1

2

3

4
10 30

FIG. C.1. Beating type of RKKY oscillations due to the mul-
tiple Dirac cones on the SnTe(001) surface, Eq. (15), for im-
purity separations R/a0 = 10 and 30 as a function of the
polar angle ϕR.
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FIG. D.1. Magnetic phase diagram of RKKY interactions
on the driven-doped SnTe(001) surface at R/a0 = 50 and
ϕR = π/3. Depending on the interplay between light intensity
a and frequency Ω, various FM/AFM and clockwise/contour-
clockwise characters can be seen for symmetric and asym-
metric components, respectively. Also, J̃ ααz (R) > J̃ ααDM,x(R)
holds true.

quest for the control of magnetic phases is still active.
Among the fundamental open questions is whether the
magnetic moments alignment on the SnTe(001) surface
with a nontrivial spin texture is adjustable through the
interplay between the intensity and frequency of light.
This is somehow important for the Floqeut engineer-
ing of surface. As can be seen, phase diagrams for
symmetric and asymmetric contributions to the RKKY
interaction highlight the characters of FM/AFM (for
symmetric contributions in Figs. D.1(a)-(d)) as well as
clockwise/contour-clockwise (for asymmetric contribu-
tions in Figs. D.1(e)-(f)) in different controlled ways,
characterized by red and blue colors. In a certain regime
above the line a ∝

√
Ω, the RKKY interaction vanishes.

Getting away from the alignments, we have the relation
J̃ ααz (R) > J̃ ααDM,x(R) between the strongest symmetric
and asymmetric RKKY components.

Appendix E: Solution of integrals in Eq. (16) for
undriven-undoped, undriven-doped, and

driven-undoped SnTe(001) surface

In this part, we present the analytical expressions for
the integrals in Eq. (16). For the pristine surface, we use
the following relation for n = {0, 1}:

Im

∫ ∞
o+

idω ω2K2
n(ωR/vF) = +(2n+ 1)

π2v3
F

32R3
. (E1)

For the undriven-doped surface, the following relations
are required to understand the short- and long-range re-
sponses:

Kn(iu) = (−1)n+1π

2
einπ/2

[
Yn(u) + iJn(u)

]
, (E2a)

Im

∫ ∞
o+

idω[ω − iµ]2K2
n([ω − iµ]R/vF) =

+ (2n+ 1)
π2v3

F

32R3
− (−1)n

π2µ3

4
√
π
G 2,1

2,4

(
− 1

2 ,
1
2

0,n,− 3
2 ,−n

∣∣∣∣ µ2R2

v2
F

)
︸ ︷︷ ︸

Mn(µR/vF)

,

(E2b)

where Mn(x) is the special Meijer function [82, 83], as
shown in Fig. E.1, which leads to oscillatory RKKY in-
teractions in Fig. 3(b).

For the driven-undoped surface, we use the following
mathematical identity [94]∫ 0

−∞
xj−1dxKn(ax)Km(ax) =

2j−3

ajΓ(j)
Γ([j + n+m]/2)

Γ([j + n−m]/2)Γ([j − n+m]/2)Γ([j − n−m]/2) ,
(E3)

where Γ(. . . ) is the special Gamma function.

0 5 10 15 20

-0.2

0

0.2

0 1

0 5 10 15 20
-0.2

0

0.2

(a)

(b)

FIG. E.1. Oscillatory Meijer functions, Eq. (E2), versus
x = µR/vF for undriven-doped SnTe(001) surface, resulting
in oscillatory RKKY interactions in Fig. 3(b).
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