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PONTRJAGIN DUALITY ON MULTIPLICATIVE GERBES

JAIDER BLANCO, BERNARDO URIBE, AND KONRAD WALDORF

Abstract. We use Segal-Mitchison’s cohomology of topological groups to de-
fine a convenient model for topological gerbes. We introduce multiplicative
gerbes over topological groups in this setup and we define its representations.
For a specific choice of representation, we construct its category of endomor-
phisms and we show that it induces a new multiplicative gerbe over another
topological group. This new induced group is fibrewise Pontrjagin dual to the
original one and therefore we called the pair of multiplicative gerbes ‘Pontrja-
gin dual’. We show that Pontrjagin dual multiplicative gerbes have equivalent
categories of representations and moreover, we show that their monoidal cen-
ters are equivalent. Examples of Pontrjagin dual multiplicative gerbes over
finite and discrete, as well as compact and non-compact Lie groups are pro-
vided.

Introduction

Gerbes with structure group U(1) over a manifold are geometrical objects whose
isomorphism classes are classified by degree three integer cohomology classes [Bry93].
They could be thought of as groupoid extensions of the underlying manifold by
the groupoid U(1)[1] [LGSX09], as U(1)-bundle gerbes [Mur96], or as principal
U(1)[1]-2-bundles [NW13]. In each of these versions, gerbes over manifolds define
a monoidal 2-category. Thus, one may consider weak monoid objects [BL04] in the
2-category of gerbes. These weak monoid objects in gerbes are what are known
in the literature as multiplicative gerbes [BM94, CJM+05, Wal10], and of particu-
lar interest has been the study of multiplicative gerbes over compact, simple and
simply connected Lie groups [Mei03, GR03, CJM+05, Wal10, GW09] due, among
others, to its relation with Chern-Simons theories andWess-Zumino-Witten models.
The classification of isomorphism classes of multiplicative gerbes over compact Lie
groups is well understood; isomorphic multiplicative gerbes over a fixed compact
Lie group are classified by degree four integer cohomology classes of its classify-
ing space, and every known equivalence relation between multiplicative gerbes over
compact Lie groups involves isomorphic underlying Lie groups. In the paper we
address the question how classify multiplicative gerbes up to Morita equivalence.
Namely, may multiplicative gerbes over non-isomorphic Lie groups have equivalent
categories of representations? Let us elaborate.
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Recall that multiplicative gerbes are weak monoid objects in the 2-category
of gerbes, and monoid objects in a 2-category may act on objects of the same
2-category. Therefore we may define the 2-category of representations of a multi-
plicative gerbe as the 2-category of its weak module objects [BL04]. Now the pre-
vious questions make sense; in particular, we will call multiplicative gerbes Morita
equivalent if they have equivalent 2-categories of representations. Clearly, isomor-
phic multiplicative gerbes over isomorphic Lie groups will be Morita equivalent. In
this work, we are looking for Morita equivalent multiplicative gerbes defined over
non-isomorphic Lie groups.

When considering multiplicative gerbes over finite groups, the previous question
has been completely solved [Nai07, Uri17]. A multiplicative gerbe over a finite group
defines a pointed fusion category [ENO05] and its module categories (representa-
tions) are well understood [Ost03a, Ost03b, Nai07]. The endomorphism category
of particular module categories induce again pointed fusion categories of the same
Frobenius-Perron dimension, and in these cases the pointed fusion categories be-
come Morita equivalent [Nai07]. An explicit description of the Morita equivalence
classes in terms of groups and cocycles has been obtained by the second author in
[Uri17].

This work generalizes the ideas and procedures carried out to classify Morita
equivalence classes of multiplicative gerbes over finite groups to the more general
case of topological groups. To make this generalization possible we construct a
model for gerbes over topological spaces similar to the one done for the finite group
case. We draw on the cohomology theory for topological groups constructed by
Segal and Mitchison [Seg70], and we define our model for gerbes using spaces and
degree 2 cocycles over the spaces. We call these gerbes Segal-Mitchison gerbes.

We emphasize here that the cohomology theory of topological groups defined by
Segal and Mitchison incorporates the information about the topological invariants of
these groups, as well as the cohomological information of the complex of continuous
cochains of the group. This cohomology theory permits to treat in equal footing
finite, discrete, compact and non-compact Lie groups.

We define the monoidal 2-category of Segal-Mitchison gerbes, we consider weak
monoid objects in this category as our model for multiplicative gerbes, and we define
their 2-categories of representations. We take a representation of a multiplicative
gerbe satisfying a cohomological condition expressed with the help of the Lyndon-
Hochschild-Serre spectral sequence, and we consider the monoidal category of its
endomorphism. We show that this monoidal category of endomorphisms defines a
new multiplicative Segal-Mitchison gerbe. This new multiplicative Segal-Mitchison
gerbe is called the ‘fibrewise Pontrjagin dual’ of the original one, because it is
constructed throughout a dualization procedure over a normal and abelian subgroup
of the original multiplicative gerbe. This dualization produces a new group with a
normal and abelian group which is the Pontrjagin dual of the normal and abelian
group of the original group.

We note here that the monoidal category of endomorphisms is a gerbe of a
particular kind called Lifting bundle gerbe [Mur96]. We include an Appendix where
we summarize the properties of lifting bundle gerbes, and we show that Segal-
Mitchison gerbes and lifting bundle gerbes form canonically equivalent monoidal
2-categories.
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We present an array of examples of Pontrjagin dual multiplicative gerbes, in-
cluding finite, discrete, compact and non-compact Lie groups, to demonstrate that
the model of Segal-Mitchison gerbes is ample enough to encompass them all. It
is important to notice that the classical Pontrjagin duality on abelian topological
groups could be recovered as the fibrewise Pontrjagin dual of the trivial multiplica-
tive Segal-Mitchison gerbe defined by the abelian groups once they fiber over a
trivial group.

Then we proceed to show that the 2-categories of representations of fibrewise
Pontrjagin dual multiplicative Segal-Mitchison gerbes are equivalent, and therefore
justify calling them ‘Morita equivalent’. We show furthermore that this equivalence
induces an equivalence of the categorical centers of the fibrewise Pontrjagin dual
multiplicative Segal-Mitchison gerbes.

We have thus succeeded in finding sufficient conditions for two multiplicative
Segal-Mitchison gerbes to be Morita equivalent. We conjecture that these condi-
tions are also necessary, as it is the case for multiplicative gerbes over finite groups.
Unfortunately, the foundations underlying the categorial constructions performed
in this work with topological groups are not as developed as the ones over fusion
categories. These foundations would have to be first developed in order to be able to
generalize the procedures and proofs that have been performed using pointed fusion
categories. Thus, the classification of Morita equivalence classes of multiplicative
Segal-Mitchison gerbes remains open. Nevertheless, the results of this work offer a
clear path on how to carry out the complete classification.

We start this work in §1 with and introduction to Segal-Mitchison’s cohomol-
ogy of topological groups; we summarize its most important features, we show its
relation to the cohomology of continuous cochains and to the cohomology of the
classifying space of the group, and we introduce the Lyndon-Hochschild-Serre spec-
tral sequence for this cohomology theory. In §2 we define the monoidal 2-category
of Segal-Mitchison gerbes, in §3 we define multiplicative Segal-Mitchison gerbes as
weak monoid objects in Segal-Mitchison gerbes, and in §4 we define the 2-category
of representations of multiplicative Segal-Mitchison gerbes as weak module objects
over weak monoid objects in Segal-Mitchison gerbes. In §5 we introduce the fi-
brewise Pontrjagin duality of multiplicative Segal-Mitchison gerbes and we present
several examples of this duality. Finally in §6 we show that fibrewise Pontrjagin
dual multiplicative Segal-Mitchison gerbes have equivalent 2-categories of represen-
tations, thus becoming Morita equivalent.

The final two sections include a summary on crossed modules and 2-groups in
§7 (Appendix A) and a summary on Lifting bundle gerbes and their relation to
Segal-Mitchison gerbes in §8 (Appendix B).

1. Segal-Mitchison cohomology

G. Segal in [Seg70] defined cohomology groups suited to understand the coho-
mology of a topological group with coefficients in a topological abelian group. The
description of this cohomology theory is closely related to the cohomology of a dis-
crete group with coefficients in an abelian group. In what follows we will review
the definition of Segal that appears in [Seg70].
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1.1. Coefficients. The coefficients of the Segal-Mitchison cohomology are in the
category Topab of compactly generated and locally contractible Hausdorff topolog-
ical abelian groups and continuous homomorphisms. A sequence

A′ i
−→ A

p
−→ A′′

in Topab is called a short exact sequence if i embeds A′ as a closed subgroup in A,
p induces an isomorphism of topological groups A/A′ ∼= A′′, and p : A → A′′ is a
principal A′-bundle. If A ∈ Topab, then EA and BA := EA/A are also in Topab

and
A→ EA→ BA

is a short exact sequence. Recall that EA is a contractible topological space ob-
tained from the nerve of the contractible category whose space of objects is A and
whose spaces of morphisms is A×A, one morphism for each pair of elements in A.
Since A is abelian, the contractible space EA may be endowed with the structure
of a topological abelian group [Seg70, Appendix A].

The previous construction may be iterated, thus giving the short exact sequences
in Topab

BlA
il−→ EBlA

pl
−→ Bl+1A

for every l ≥ 0. Composing the projections EBlA
pl
−→ Bl+1A with the embeddings

Bl+1A
il+1
−→ EBl+1A we obtain continuous homomorphisms EBlA

∂l−→ EBl+1A
which can be assembled to produce a resolution of A by contractible groups in
Topab

A →֒ EA
∂0−→ EBA

∂1−→ EB2A
∂2−→ EB3A

∂3−→ · · · .

For simplicity, the subindex in ∂i will be omitted in what follows.

1.2. Cohomology of spaces. Let X be a paracompact space and consider the
complex

Cl(X,A) := Map(X,EBlA)

with differential ∂f := ∂ ◦ f . The space of maps is endowed with the compact-open
topology and has a canonical group structure. Hence, Cl(X,A) belongs to Topab.

Definition 1.1. Let X be a paracompact space. The cohomology of the complex
(C∗(X,A), ∂) is called the Segal-Mitchison cohomology of X with coefficients in A
and will be denoted by

H∗(X,A) := H∗(C∗(X,A), ∂).

Note that the cocycles Z l(X,A) consist of maps X
f
→ EBlA such that the

composition X
f
→ EBlA

pl
→ Bl+1A is the identity in Bl+1A. Since the fiber of pl

at the identity element is BlA, we have an isomorphism of topological groups:

Z l(X,A) ∼= Map(X,BlA).

By the classification of principal bundles over paracompact spaces, we know that a
map X → BlA is null-homotopic if and only if the map lifts to EBl−1A. Therefore
we obtain the isomorphism

H l(X,A) ∼= [X,BlA]

whenever l ≥ 1. For l = 0 we obtain the isomorphism

H0(X,A) ∼= Map(X,A)
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and we may say that the Segal-Mitchison cohomology calculates the cohomology of
X with coefficients in the sheaf A of A-valued functions, i.e. is the derived functor
of Map(X,A).

Whenever we have a short exact sequence in Topab

A′ i
−→ A

p
−→ A′′,

a standard diagram chase argument shows that there is an induced long exact
sequence in cohomology

→ Hk−1(X,A′′) → Hk(X,A′) → Hk(X,A) → Hk(X,A′′) → Hk+1(X,A′) → .

1.3. Cohomology of simplicial spaces. Whenever X• is a simplicial paracom-
pact space we may define the double complex

Cp,q(X•, A) := Map(Xp, EB
qA)

whose horizontal differential

δ : Cp,q(X•, A) → Cp+1,q(X•, A)

is the one induced by the structural maps Xp+1 → Xp of the simplicial space, and
whose vertical differential is ∂. The total complex of the double complex will be
denoted by

C∗(X•, A) := Tot (C∗,∗(X•, A))

and its differential is d := δ + (−1)p∂.

Definition 1.2. Let X• be a simplicial paracompact space. The cohomology of
the complex C∗(X•, A) with differential d is denoted by

H∗(X•, A) := H∗ (C∗(X•, A), d) ,

and is called the Segal-Mitchison cohomology of the simplicial space X• with coef-
ficients in the topological abelian group A.

We may filter the total complex by the subcomplexes Tot (C∗≥p,∗(X•, A)) thus
obtaining a spectral sequence whose first page is isomorphic to

Ep,q1 = Hq(Xp, A).

Note that whenever the simplicial space X• is homotopy equivalent to a simplicial
set, or when A is contractible, we know that Ep,q1 = 0 for q > 0. For q = 0 we obtain

Ep,01 = Map(Xp, A), and therefore in this case H∗(X•, A) is simply the cohomology
of the complex (Map(X∗, A), δ). The cohomology of this complex will be denoted

H∗
cont(X•, A) := H∗(Map(X∗, A), δ)

and will be called the cohomology of continuous cochains.

Lemma 1.3. Suppose that X• is a simplicial paracompact space and A is a con-
tractible topological group, or alternatively suppose that the simplicial space X• is
homotopy equivalent to a simplicial set. Then, in either case, the forgetful homo-
morphism induces an isomorphism of cohomologies:

H∗(X•, A)
∼=
→ H∗

cont(X•, A).
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1.4. Cohomology of topological groups. Let G be a paracompact and com-
pactly generated topological group. Denote by G• the simplicial space defined
by the nerve of the topological category with one object and G for the space of
morphisms. In this case we have that Gp = Gp and the differential

δG : Map(Gp, EBqA) → Map(Gp+1, EBqA)

is defined by the formula:

δG(f)(h0, ..., hp) =

f(h1, ..., hp) +

p∑

i=1

(−1)if(h1, ..., hi−1hi, ..., hp) + (−1)p+1f(h0, ..., hp−1).

Definition 1.4. Let G be a paracompact and compactly generated topological
group and let A a compactly generated and locally contractible Hausdorff topologi-
cal abelian group. The Segal-Mitchison cohomology of the group G with coefficients
in A is:

H∗(G•, A) = H∗(Tot (C∗,∗(G•, A), dG = δG + (−1)p∂).

Segal in [Seg70, §4] shows that the cohomology groups H∗(G•, A) for ∗ = 1, 2
have their usual interpretations. Let us recall the proofs since they will be used in
what follows.

Lemma 1.5. The first Segal-Mitchison cohomology group is isomorphic to the topo-
logical group of continuous homomorphisms, i.e.

H1(G•, A) ∼= Hom(G,A).

Proof. An element in Z1(G•, A) consists of a pair of maps f1 : G → EA and
f0 : {∗} → EBA such that δGf1(g1, g2) = f(g2) − f(g1g2) + f(g1) = 0, ∂f1(g) =
−δf0(∗) = 0 and ∂f0(∗) = 0. The last two equations imply that the image of f1
lies in A, the kernel of ∂ : EA → EBA, and the image of f0 in BA, the kernel
of ∂ : EBA → EB2A. The first equation implies that f1 : G → A ⊂ EA is a
homomorphism of groups. Therefore we obtain the isomorphism of groups

Z1(G•, A) ∼= Hom(G,A)⊕BA.

Now, the image of C0(G•, A) = Map(∗, EA) under d = δ + ∂ is simply {0} ⊕ BA
and therefore we obtain the desired isomorphism H1(G•, A) ∼= Hom(G,A). �

Lemma 1.6. The second Segal-Mitchison cohomology group is isomorphic to the
group of isomorphism classes of A-central extensions of G, i.e.

H2(G•, A) ∼= Ext(G,A).

Proof. We will consider A-central extensions of groups, A → P
p
→ G, i.e. short

exact sequences of groups where A is central in P . We recall that short exact
sequence means, in particular, that P is a principal A-bundle over G. Two of these

A-central extensions P
p
→ G and P ′ p

′

→ G are isomorphic if there is a homomorphism
of groups φ : P → P ′ with p′ ◦ π = p such that φ is a morphism of principal A-
bundles. Denote by Ext(G,A) the set of isomorphism classes of A-central extensions
of G.
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The group of 2-cocycles Z2(G•, A) consist of three maps F2 : G × G → EA,
F1 : G→ EBA and F0 : {∗} → EB2A satisfying the following equations:

F2(g2, g3) + F2(g1, g2g3) = F2(g1g2, g3) + F2(g1, g2)

∂F2(g1, g2) = F1(g1g2)− F1(g1)− F1(g2)

∂F1(g) = F0(∗)− F0(∗) = 0

∂F0(∗) = 0.

Hence F1 takes values in BA ⊂ EBA and we may take the pullback bundle F ∗
1EA

over G as F ∗
1EA := {(g, b) ∈ G × EA|F1(g) = p0(b)}. We may define the group

structure on F ∗
1EA by the equation

(g1, b1) · (g2, b2) := (g1g2, b1 + b2 + F2(g1, g2))

since we know by the second equation that

∂(b1 + b2 + F2(g1, g2)) = ∂(b1) + ∂(b2) + F1(g1g2)− F1(g1)− F1(g2) = F1(g1g2).

The associativity of the product structure in F ∗
1EA follows from the first equation

thus making F ∗
1EA an A-central extension of G. Therefore we have constructed

an A-central extension F ∗
1EA over G with the information of the maps F1 and F2

(the information of F0 is not important).
Now for an A-central extension P → G, which is moreover a principal A-bundle,

we may define its classifying map F1 : G→ BA together with its lift F ′
1 : P → EA,

a morphism of principal A-bundles. For any pair of elements p1, p2 ∈ P we define

F 2(p1, p2) := F ′
1(p1p2)− F ′

1(p2)− F ′
1(p1)

and we note that for any a1, a2 ∈ A we have F 2(p1, p2) = F 2(a1p1, a2p2). Therefore
F 2 is A×A-invariant and therefore it induces a map F2 : (A\P )×(A\P ) ∼= G×G→
EA. The associativity of P implies that δGF2 = 0 and the definition of F 2 implies
that ∂F2(g1, g2) ∼= F1(g1g2) − F1(g1)− F1(g2). Therefore the maps F2 and F1 are
the essential information that defines a 2-cocycle in Z2(G•, A).

The fact that cohomologous 2-cocycles induce isomorphic A-central extensions
and that isomorphicA-central extension induce cohomologous 2-cocycles are straight-
forward. �

By Lemma 1.3, whenever A is contractible we obtain an isomorphism with the
cohomology of continuous cochains of the group with coefficients in A

H∗(G•, A) ∼= H∗
cont(G,A).

Whenever A is discrete, by [Seg70, Prop. 3.3] there is an isomorphism with the
cohomology of the complex of singular cochains with coefficients in A

H∗(G•, A) ∼= H∗(BG,A).

The short exact sequence A → EA → BA induces a long exact sequence in co-
homology groups, and since EA is a contractible, we obtain the long exact sequence
in cohomology

→ Hn
c (G,EA) → Hn(G•, BA) → Hn+1(G•, A) → Hn+1

c (G,EA) → .

When n = 2 the homomorphism H2(G•, BA) → H3(G•, A) could be understood
as the assignment that takes the isomorphism class of a BA-central extension of G,

BA −→ Γ → G,
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to the isomorphism class of the crossed module EA → Γ which induces the exact
sequence

A −→ EA −→ Γ → G.

The 2-group Γ× EA⇒ Γ that defines the crossed module could be understood as
a 2-group central extension of the 2-group G⇒ G by the 2-group A⇒ {∗} and its
extension class is an element in the cohomology group H3(G•, A). We refer to the
Appendix in section §7.5 where we elaborate on the previous statement.

1.5. Segal-Mitchison cohomology as a derived functor. The cohomology
groupsH∗(G•, A) could be understood as the derived functor ofG-invariant sections
of the trivial G-equivariant topological abelian group A. Whenever A is endowed
with an action of G we need to elaborate a little further.

Denote by G-Topab the category of compactly generated locally contractible
topological abelian groups on which G acts continuously [Seg70, §2]. A sequence
A′ → A → A′′ in G-Topab is called a short exact sequence if it is one in Topab

when the action of G is neglected. Call an object in G-Topab soft if it is of the form
Map(G,A) where A is a contractible group and Map denotes space of continuous
maps endowed with the compact open topology [Seg70, pp. 380]. Note that a
soft group is contractible. Segal shows that every object A in G-Topab has a soft
resolution

A→ E(G)A→ E(G)B(G)A→ E(G)B
2
(G)A→ · · ·

where E(G)A := Map(G,EA) and B(G)A fits in the short exact sequence

A −→ E(G)A −→ B(G)A(1.1)

where A embeds in E(G)A as the constant maps taking values in A.

Alternatively one may take the double complex Map(Gk+1, EBlA), k, l ≥ 0, with
differentials ∂ and δ, with δ defined by the following equation:

δ(f)(h1, ..., hn) = f(h2, ..., hn) +
n−1∑

i=1

(−1)if(h1, ..., hihi+1, ..., hn).

The total complex becomes a soft resolution of A in G-Topab. Then, the derived
functor of the G-invariant sections ΓG(A) of A can be calculated by the cohomology
of the G-invariant sections of the previous total complex. The G-invariant double
complex is isomorphic to the double complex Map(Gk, EBlA), k, l ≥ 0 whose
differentials are ∂ and

δG(f)(h0, ..., hn) =

f(h1, ..., hn) +

n∑

i=1

(−1)if(h1, ..., hi−1hi, ..., hn) + (−1)n+1f(h0, ..., hn−1) · hn.

Denoting by H∗(G•, A) the cohomology of

(Tot ∗(Map(G∗, EB∗A)), dG = δG + (−1)p∂)

we see that RpΓG(A) = Hp(G•, A). Note that whenever the action of G on A
is trivial, the cohomology groups previously defined agree with the cohomology of
topological groups defined in section §1.4.
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1.6. Lyndon-Hochschild spectral sequence. Let us consider a short exact se-
quence of locally contractible and compactly generated groups

S →֒ G→ K

where S is abelian and central. Denote by K ⋊G the action groupoid determined
by the right action of G on K; the space of objects is K, the space of morphisms
is K × G, s(k, g) = k and t(k, g) = kg. Recall that the inclusion S[1] → K ⋊ G,
s 7→ (1K , s) is a weak equivalence of topological groupoids.

Consider first the double complex

Cl,m((K ⋊G)•, A) := Map(K ×Gl, EBmA)

with differentials δK⋊G : Cl−1,m((K ⋊G)•, A) → Cl,m((K ⋊G)•, A)

(δK⋊Gf)(k, g1, . . . , gl)

= f(kg1, g2, . . . , gl) +
l−1∑

i=1

(−1)if(k, g1, . . . , gigi+1, . . . , gl) + (−1)lf(k, g1, . . . , gl−1)

and ∂2 : Cl,m−1((K ⋊ G)•, A) → Cl,m((K ⋊ G)•, A), ∂2f = ∂ ◦ f (the reason for
the sub-index 2 in the second differential will become clear in what follows). The
cohomology of the total complex is H∗((K ⋊G)•, A).

Note that the groups Cl,m((K⋊G)•, A) belong to Topab and they come endowed
with a continuous right K action; for f ∈ Cl,m((K ⋊G)•, A) and h ∈ K let

(f · h)(k, g1, · · · , gl) := f(hk, g1, · · · , gl).

The groups Cl,m((K ⋊ G)•, A) then belong to K-Topab. Moreover, they are soft
since they are of the form Map(K,Map(Gl, EBmA)) with Map(Gl, EBmA) con-
tractible.

Let us now consider the quadruple complex

Ci,j,l,m := Map
(
Ki, EBj

(
Map(K ×Gl, EBmA)

))

with differentials δK : Ci−1,j,l,m → Ci,j,l,m defined by

(δKF )(k1, · · · , ki)

= F (k2, · · · , ki) +
i−1∑

r=1

(−1)rF (k1, · · · , krkr+1, · · · , ki) + (−1)iF (k1, · · · , ki−1) · ki,

∂1 : Ci,j−1,l,m → Ci,j,l,m, ∂1F = ∂ ◦ F with

∂ : EBj−1
(
Map(K ×Gl, EBmA)

)
→ EBj

(
Map(K ×Gl, EBmA)

)
,

and the ones induced by δK⋊G and ∂2 which will be denoted with the same symbols
δK⋊G : Ci,j,l−1,m → Ci,j,l,m and ∂2 : Ci,j,l,m−1 → Ci,j,l,m.

At this point it is important to notice that the functors E and B send exact
sequences inK-Topab to exact sequences inK-Topab [Seg70, Prop. A.3]. Therefore,
if we have a complex of groups (V ∗, d) inK-Topab, there is a canonical isomorphism
H∗(EBlV ∗, EBld) ∼= EBlH∗(V ∗, d) in K-Topab. This canonical isomorphism will
be used in what follows.

Define the double complex

Dp,q =
⊕

i+j=p,l+m=q

Ci,j,l,m(1.2)
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with differentials dK : Dp−1,q → Dp,q, dK := δK + (−1)i∂1, and dK⋊G : Dp,q−1 →
Dp,q, dK⋊G := δK⋊G + (−1)l∂2, and consider the total complex Tot (C∗,∗,∗,∗) =
Tot (D∗,∗) with total differential

d = dK + (−1)pdK⋊G = ∂K + (−1)i∂1 + (−1)i+jδK⋊G + (−1)i+j+l∂2.

We claim the following result.

Proposition 1.7. Consider the short exact sequence of locally contractible and
compactly generated groups

S →֒ G→ K

where K = S\G, S is abelian and is central. Then the inclusion of the K-invariant
groups

C∗((K ⋊G)•, A)
K →֒ Tot (C∗,∗,∗,∗)

is a quasi-isomorphism. Hence the cohomology groups

H∗(G•, A)
∼=
−→ H∗(Tot (C∗,∗,∗,∗), d)

are canonically isomorphic.

Proof. Filter the total complex Tot (C∗,∗,∗,∗) by the degree q in Dp,q, i.e. Fq =
Tot (D∗,∗≥q). The associated graded group

⊕
q≥0 Fq/Fq+1 is isomorphic to the

total complex but where we only take into account the differential dK . Since the
groups Map(K × Gl, EBmA) are soft in K-Topab, the first page of the spectral
sequence becomes the K-invariant subgroup

Ep,01
∼= Cp((K ⋊G)•, A)

K

with E∗,q≥1
1 = 0. Now, since Cp((K ⋊G)•, A)

K ∼= Cp(G•, A) we have that Ep,02
∼=

Hp(G•, A). The result follows. �

Proposition 1.8 (Lyndon-Hochschild spectral sequence). Under the same condi-
tions of above, filtering the total complex F ′

p = Tot (D∗≥p,∗) by the degree p in Dp,q,
we obtain a spectral sequence whose second page is

Ep,q2
∼= Hp(K•, H

q(S•, A))

which converges to H∗(G•, A).

Proof. The associated graded group
⊕

p≥0 F
′
p/F

′
p+1 is isomorphic to the total com-

plex but where we only take into account the differential dK⋊G. The first page of
the spectral sequence is

Eq,p1
∼=

⊕

i+j=p

Map
(
Ki, EBj (Hq((K ⋊G)•, A))

)

and since Hq((K ⋊G)•, A) ∼= Hq(S•, A) we have that the first page is

Eq,p1
∼=

⊕

i+j=p

Map
(
Ki, EBj (Hq(S•, A))

)
.

The differential of the first page coincides with the differential of the complex
C∗(K•, H

q(S•, A)) and therefore the second page is

Eq,p2
∼= Hp(K•, H

q(S•, A)).

The spectral sequence converges to H∗(G•, A) by the previous proposition. �
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2. Segal-Mitchison gerbes

In this section we will introduce a homological model for gerbes based on Segal-
Mitchison cohomology. Let A be an abelian group in Topab. In what follows we will
define the strict 2-category A-SM-Grbs of Segal-Mitchison gerbes with structure
group A.

2.1. Objects. The objects are pairs (M,α) where M is a paracompact and locally
compact space and α belongs to Z2(M,A).

Note that the 2-cocycle is a map α : M → EB2A such that ∂ ◦ α is constant
to the identity in EB3A. Since B3A → EB3A is an inclusion we have that the

composition M
α
→ EB2A → B3A is constant to the identity. Therefore the image

of α lies on the fiber of the identity and this fiber is isomorphic to B2A. Therefore,
Z2(M,A) ∼= Map(M,B2A) and we may consider α as a map α :M → B2A.

Any Segal-MitchisonA-gerbe (M,α) defines a Lifting bundle A-gerbe [α∗EBA/EA]
as defined in §8 Appendix B, where α∗EBA is the pullback of the canonical bundle
EBA→ B2A along α : M → B2A.

2.2. Morphisms. Let (M,α) and (N, β) be two Segal-Mitchison gerbes with struc-
ture group A. A morphism from (M,α) to (N, β) is a pair (F, c) where F :M → N
is a continuous map and c ∈ C1(M,A) such that

α− F ∗β = ∂c.

This equation implies that the principal BA-bundles α∗EBA and F ∗β∗EBA
are isomorphic, and that one can construct a bundle morphism α∗EBA→ β∗EBA
covering F : M → N . This bundle morphism determines a strict 1-morphism
[α∗EBA/EA] → [β∗EBA/EA] of lifting bundle A-gerbes in the following way. Let

α∗EBA := {(m,λ) ∈M × EBA|α(m) = ∂(λ)}

β∗EBA := {(n, σ) ∈ N × EBA|β(n) = ∂(σ)}

for p : EBA→ B2A the projection map and define the following map

[F, c] : α∗EBA→ β∗EBA

(m,λ) 7→ (F (m), λ− c(m)).

The structural equation α − F ∗β = ∂c implies that β(F (m)) = α(m) − ∂c(m)
and therefore [F, c] is well defined. Moreover, the map [F, c] is EA-equivariant and
therefore it defines a strict morphism of lifting bundle A-gerbes

[F, c] : [α∗EBA/EA] → [β∗EBA/EA].

If we have morphisms

(M,α)
(F,c)
−→ (N, β)

(H,d)
−→ (O, γ)

the composition is

(H, d) ◦ (F, c) = (H ◦ F, F ∗d+ c).

This composition is associative, and it follows that the functor to lifting bundle
A-gerbes strictly preserves this composition.
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2.3. 2-Morphisms. If we have two morphisms between the same objects, (F1, c1), (F2, c2) :
(M,α) → (N, β), there are 2-morphisms between (F1, c1) and (F2, c2) whenever
F = F1 = F2. If this is the case, a 2-morphisms

(F, c1)
e

=⇒ (F, c2)

consists of an element e ∈ C0(M,A) such that

∂e = c2 − c1.

In the realm of lifting bundle A-gerbes the 2-morphism provides a natural trans-
formation between the two morphisms of lifting bundle A-gerbes from [(α∗EBA)/EA]
and [(F ∗β∗EBA)/EA]. The natural transformation is given by the map

α∗EBA→ F ∗β∗EBA× EA,

(m,λ) 7→ ((F (m), λ − c1(m)),−∂e(m))

where ((F (m), λ − c1(m)),−∂e(m)) is the morphism in [(F ∗β∗EBA)/EA] from
(F (m), λ− c1(m)) to (F (m), λ − c1(m)− ∂e(m)) = (F (m), λ− c2(m)).

Note that the category HomA-SM-Grbs((M,α), (N, β)), whose objects are the
morphisms of Segal-Mitchison gerbes and whose morphisms are the 2-morphisms of
Segal-Mitchison gerbes, defines a lifting bundle gerbe with structure groupH0(M,A).
In the notation of §8.1 it can be written as follows:

C0(M,A)
∂
� Hom0

A-SM-Grbs((M,α), (N, β)).

2.4. Monoidal structure. The 2-category A-SM-Grbs can be endowed with a
symmetrical monoidal structure. Take two Segal-Mitchison gerbes (M,α) and
(N, β) and define their product

(M,α)× (N, β) := (M ×N, π∗
1α+ π∗

2β)

where where π1 : M ×N →M and π2 :M ×N → N are the projections.
This monoidal structure is compatible with the monoidal structure of the associ-

ated lifting bundle A-gerbes of §8.4 of Appendix B. From the maps α : M → B2A
and β : N → B2A we construct the map M × N → B2A, (m,n) 7→ α(m) + β(n)
using the group structure of B2A. This map encodes the Segal-Mitchison A-gerbe
of the product of lifting bundle A-gerbes [(α∗EBA)/EA]⊗ [(β∗EBA)/EA].

In §8.4 (Appendix B) we give a summary of the properties of the 2-category
of Lifting bundle A-gerbes and in Theorem 8.2 we show its equivalence with the
2-category of Segal-Mithchison A-gerbes.

3. Multiplicative Segal-Mitchison gerbes

Multiplicative Segal-Mitchison gerbes will be nothing else but weak monoid ob-
jects in the monoidal 2-category A-SM-Grbs of Segal-Mitchison gerbes. They also
form a 2-category which will be defined in the following.

3.1. Objects. Amultiplicative Segal-Mitchison gerbe consists of an object (M,α1),
a morphism

(M,α1)× (M,α1)
(m,α2)
−→ (M,α1),

a 2-morphism which controls the defect of the associativity, and a cocycle condition
on the 2-morphism for the pentagon property.

Since at the level of spaces the maps are indeed associative, the space itself

together with the product M ×M
m
→ M is an associative monoid in spaces. We
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may consider the double complex Cp,q(M•, A) that the monoid M induces since
the maps that define the differential δM only require the product of the monoid.
In terms of that double complex, a multiplicative Segal-Mitchison gerbe over M
consists of:

• A Segal-Mitchison gerbe (M,α1) with ∂α1 = 0.
• A morphism lifting the product in M

(M,α1)× (M,α1)
(m,α2)
−→ (M,α1)

whose structural equation is

π∗
1α1 −m∗α1 + π∗

2α1 = ∂α2

with α2 ∈ C1(M2, A); this equation can be read as

−δMα1 + ∂α2 = 0

in the double complex Cp,q(M•, A) with α1 ∈ C1,2(M•, A) and α2 ∈
C2,1(M•, A).

• A 2-morphism α3 ∈ C0(M3, A) controlling the defect of associativity

(m,α2) ◦ (1M ×m,π∗
23α2)

α3=⇒ (m,α2) ◦ (m× 1M , π
∗
12α2)

where π23 : M3 → M2 denotes the projection on the last two coordinates,
π12 :M3 →M2 the projection on the first two and 1M denotes the identity
map on M . The structural equation becomes

π∗
12α2 − (1M ×m)∗α2 + (m× 1M )∗α2 − π∗

23α2 = ∂α3

which can be read as

δMα2 + ∂α3 = 0

in the double complex Cp,q(M•, A) with α3 ∈ C3,0(M•, A).
• And the pentagon condition for the 2-morphism α3 which can be simply
written as

δMα3 = 0

in the double complex Cp,q(M•, A).

The element α := α1 ⊕−α2 ⊕ α3 becomes a 3-cocycle in Z3(M•, A) since

(δM + (−1)p∂)α = (−∂α1)⊕ (δMα1 − ∂α2)⊕ (−δMα2 − ∂α3)⊕ (δMα3) = 0,

and any 3 cocycle in Z3(M•, A) whose component in C0,3(M•, A) = Map(pt, EB3A)
is zero defines a 2-monoid structure on Segal-Mitchison A-gerbes over the monoid
M .

Note that the 0-th column C0,∗(M•, A) = Map(pt, EBqA) in the double com-
plex is acyclic, and moreover the differential δM is zero on all elements of this
column. Therefore we remove the 0-th column from the complex, just leaving the
coefficients A at the (0, 0) coordinate, thus obtaining a better suited complex for
understanding Segal-Mitchison multipliciative gerbes. Then define a new double
complex C

p,q
(M•, A) as the subcomplex of Cp,q(M•, A) as follows:

C
p,q

(M•, A) =





Cp,q(M•, A) if q > 0
A if p = q = 0
0 if q = 0, p 6= 0.
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Denote C
∗
(M•, A) := Tot (C

∗,∗
(M•, A)) and by Z

k
(M•, A) := Zk(C

∗
(M•, A) its

cocycles. Note that the inclusion

C
∗
(M•, A)

≃
−→ C∗(M•, A)

is a quasi-isomorphism and therefore H∗(C
∗
(M•, A), d) ∼= H∗(M•, A). We now

may claim the following result.

Proposition 3.1. Multiplicative Segal-Mitchison gerbes structures over the monoid

M are in one-to-one correspondence with elements in Z
3
(M•, A).

Proof. We have seen by the construction of the 2-monoid that α := α1 ⊕−α2 ⊕α3

defines a 3-cocycle in Z
3
(M•, A) since we removed the group corresponding to

C0,3(M•, A). Any 3-cocycle is also of this form and therefore it defines a multi-
plicative Segal-Mitchison A-gerbe over the monoid M . �

Notation. We will denote multiplicative Segal-Mitchison A-gerbes by pairs

〈M,α〉 where M is a monoid and α ∈ Z
3
(M•, A). All information is encoded in

this pair.

3.2. Morphisms. A morphism of multiplicative Segal-Mitchison gerbes

〈M,α〉
〈F,β〉
−→ 〈M ′, α′〉

consists of a pair 〈F, β〉 with F : M → M ′ a morphism of monoids (a continuous

map preserving the monoidal structure) together with β ∈ C
2
(M•, A) such that

α− F ∗α′ = dMβ = (δM + (−1)p∂)β.

3.3. 2-Morphisms. Take two morphisms of multiplicative Segal-Mitchison gerbes

〈F1, β1〉, 〈F2, β2〉 : 〈M,α〉
〈F,β〉
−→ 〈M ′, α′〉.

There exist 2-morphisms only when F1 = F2 = F , and in this case the 2-morphisms

〈F, β1〉
γ

=⇒ 〈F, β2〉

consist of an element γ ∈ C
1
(M•, A) such that

β2 − β1 = dMγ.

If we restrict the 2-category to a fixed monoidM and we only consider morphisms
which are the identity map on the monoid M , we obtain the complex

C
1
(M•, A)

dM // C
2
(M•, A)

dM // Z
3
(M•, A),

whose cohomology groups are

H1(M•, A), H
2(M•, A) and H

3(M•, A).

Therefore we can classify multiplicative Segal-MitchisonA-gerbes over a fixed monoid
M by the following result.

Proposition 3.2. Isomorphism classes of multiplicative Segal-Mitchison gerbes
with structure group A over the monoid M are in 1-1 correspondence with the
elements of the group H3(M•, A).
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4. Representations of multiplicative Segal-Mitchison gerbes

In what follows we will represent multiplicative Segal-Mitchison gerbes on Segal-
Mitchison gerbes. We will define the 2-category Rep〈M,α〉 of representations of a

multiplicative Segal-Mitchison gerbe 〈M,α〉 by using the cohomological nature that
the Segal-Mitchison gerbes possess and we will provide explanations for the specific
choices.

4.1. Objects. A representation of the multiplicative Segal-Mitchison gerbe 〈M,α〉
consists of a pair (N, β) where N is a space endowed with an action of the monoidM
(in this case it is a right action but it may well be a left action). Denote the action
by the map µ : N ×M → N . The second part is a 2-cochain β ∈ C2((N ⋊M)•, A)
such that

dN⋊Mβ = π∗α

where π denotes the projection map (N ⋊ M)• → M• which forgets the N -
coordinate. Let us call (N, β) a 〈M,α〉-representation.

Let us untangle the definition in order to see its structural pieces. Let β =
β0 ⊕−β1 ⊕ β2 with βi ∈ Ci,2−i((N ⋊M)•, A) = Map(N ×M i, EB2−iA) and recall
that π∗α := π∗α1 ⊕−π∗α2 ⊕ π∗α3 with π∗αj ∈ Cj,3−j((N ⋊M)•, A).

• First thing to notice is that ∂β0 = 0 and therefore (N, β0) is a Segal-
Mitchison gerbe.

• The second equation that one obtains is

δN⋊Mβ0 + ∂β1 = π∗α1.

But since δN⋊Mβ0 = µ∗β0 − π∗
1β0 we may rearrange the equation as

π∗
1β0 + π∗α1 − µ∗β0 = ∂β1

which says that

(N, β0)× (M,α1)
(µ,β1)
−→ (N, β0)

is a morphism of Segal-Mitchison gerbes.
• The third equation is

−δN⋊Mβ1 + ∂β2 = −π∗α2.

Unwinding it we obtain the equation for the defect of associativity

(µ× 1M )∗β1 + π∗
12β1 − (1N ×m)∗β1 − π∗α2 = ∂β2

associated to the diagram

(N × β0)× (M,α1)× (M,α1)
(µ×1M ,(µ×1M )∗β1) //

(1N×m,π∗α2)

��

(N × β0)× (M,α1)

(µ,β1)

��
(N × β0)× (M,α1)

(µ,β1)
//

β2❡❡❡❡❡❡❡❡❡❡❡
❡❡❡❡❡❡❡❡❡❡❡

.6❡❡❡❡❡❡❡❡❡❡
❡❡❡❡❡❡❡❡❡❡

(N × β0).

• The last equation

δN⋊Mβ2 = π∗α3

is simply the pentagon identity for the associator.

It should be now clear how to define the morphisms and 2-morphisms using the
cohomological structure. We will not untangle the information anymore.
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4.2. Morphisms. A morphism of multiplicative Segal-Mitchison gerbe represen-
tations

(N, β)
(F,γ)
−→ (N ′, β′)

consists of a M -equivariant map F : N → N ′ and a cochain γ ∈ C1((N ⋊M)•, A)
such that

β − F ∗β′ = dN⋊Mγ.

The space of morphisms Hom〈M,α〉((N, β), (N
′, β′)) is endowed with the subspace

topology of MapM (N,N ′) × C1((N ⋊M)•, A) where the space of M -equivariant
maps MapM (N,N ′) is endowed with the compact open topology. The composition
of morphisms is continuous and is given by the formula

(F ′, γ′) ◦ (F, γ) = (F ′ ◦ F, γ + F ∗γ′).

4.3. 2-Morphisms. For two morphisms

(F1, γ1), (F2, γ2) : (N, β) −→ (N ′, β′)

there are 2-morphisms from one to the other only if F1 = F2 = F . If this is the
case a 2-morphism

(F, γ1)
ν

=⇒ (F, γ2)

is a cochain ν ∈ C0((N ⋊M)•, A) such that

γ2 − γ1 = dN⋊Mν.

Fix a space N where M acts and a multiplicative Segal-Mitchison gerbe 〈M,α〉.
We see from the definition of a multiplicative Segal-Mitchison gerbe representation
that a module over the space N exists if and only if [π∗α] = 0 in H3((N ⋊M)•, A).
If this is the case, the 〈M,α〉-representation structures overN are (non-canonically)
isomorphic with Z2((N ⋊M)•, A), hence we have the following result.

Proposition 4.1. Consider 〈M,α〉 a multiplicative Segal-Mitchison gerbe with
structure group A and N a space with a right action of M . Then the space N
can be endowed with the structure of a representation of 〈M,α〉 if and only if
[π∗α] = 0 in H3((N ⋊ M)•, A). Whenever [π∗α] = 0, the isomorphism classes
of 〈M,α〉-representations with underlying space N are in (non-canonical) one-to-
one correspondence with the group H2((N ⋊M)•, A).

Example 4.2 (Canonical representation). Let us describe the canonical represen-
tation of a multiplicative Segal-Mitchison gerbe 〈M,α〉 with structure group A.
Recall that α = α1 ⊕−α2 ⊕ α3 with

αj ∈ Cj,3−j(M•, A) = Map(M j , EB3−jA).

Let αj := αj+1 and consider them as an elements in

αj ∈ Cj,2−j((M ⋊M)•, A) = Map(M ×M j, EB2−jA)

where the right action of M over M is given by right multiplication. Then α =
α1 ⊕−α2 ⊕ α3 ∈ C2((M ⋊M)•, A) and it satisfies the equation

dM⋊Mα = (δM⋊M + (−1)p∂)α = π∗α

where π : (M ⋊M)• →M• forgets the first coordinate. Notice that

π∗α− δM⋊Mα = δMα, and (−1)p∂α = (−1)p+1∂α
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and therefore we get the desired equation

dM⋊Mα = (δM⋊M + (−1)p∂)α = π∗α− (δMα+ (−1)p∂)α = π∗α.(4.1)

Therefore, (M,α) is a representation of 〈M,α〉 and we call it the canonical repre-
sentation.

4.4. Category of morphisms between representations. Note that the cate-
gory

Hom〈M,α〉op((N, β), (N
′, β′))

of morphisms of multiplicative Segal-Mitchison gerbe representations is a lifting
bundle gerbe with structure group H0(N ⋊M,A) = Map(N,A)M , the group of
M -invariant maps from N to A. We have added the superscript op to recall that
the action of the multiplicative Segal-Mitchison gerbe acts from the right. Using
the notation of §8.1 the category of morphisms of multiplicative Segal-Mitchison
representations has the following form:

C0(N ⋊M,A)
dN⋊M

� Hom0
〈M,α〉op((N, β), (N

′, β′)).

The underlying category is an action groupoid where the abelian group C0(N ⋊

M,A) acts on the morphisms Hom0
〈M,α〉op((N, β), (N

′, β′)) by adding the image of
the differential dN⋊M .

4.5. Endomorphisms of representations. We will be interested in the category
of endomorphisms of a right 〈M,α〉-representation (N, β). Denote this category by

End〈M,α〉op(N, β) := Hom〈M,α〉op ((N, β), (N, β))

and note that its space of objects fits in the sequence of monoids

Z1((N ⋊M)•, A) −→ End0〈M,α〉op(N, β) −→ EndMop(N, [β])

where the monoid EndMop(N, [β]) denotes the space of right M -equivariant maps
F : N → N such that the cohomology class [β − F ∗β] is trivial. The space of

morphisms of this category, End1〈M,α〉op(N, β), is parameterized by

End0〈M,α〉op(N, β)) × C0((N ⋊M)•, A)

whose product structure is

((F1, γ1), ν1) · ((F2, γ2), ν2) = ((F1 ◦ F2, F
∗
2 γ1 + γ2), F

∗
2 ν1 + ν2).

Note furthermore that the space of isomorphism classes of objects fits in the
sequence of monoids

H1((N ⋊M)•, A) −→ π0
(
End〈M,α〉op(N, β)

)
−→ EndMop(N, [β])

and the group of endomorphisms of the identity map is the space of right M -
invariant maps over N :

H0((N ⋊M)•, A) = Map(N,A)M .

The underlying four term sequence of the monoid in lifting bundle gerbes is

Map(N,A)M → C0((N⋊M)•, A) → End0〈M,α〉op(N, β) −→ π0
(
End〈M,α〉op(N, β)

)
,

and whenever EndM (N, [β]) is a group, it becomes the four term sequence of the
crossed module

C0((N ⋊M)•, A) → End0〈M,α〉op(N, β)
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associated to the 2-group. Note that End〈M,α〉op(N, β) is also a group object in
lifting bundle gerbes as it is explained in Appendix B §8.5. In this case the structure
group of the gerbe is the group Map(N,A)M of M -invariant maps.

Example 4.3 (Endomorphisms of the canonical representation). Consider a mul-
tiplicative Segal-Mitchison gerbe 〈G,α〉 where the monoid is a topological group G,
and (G,α) its canonical representation defined on Example 8.1. Here the group G
acts by multiplication on the right on G.

The morphisms of the category of endomorphisms fits in the short exact sequence
of groups

Z1((G⋊G)•, A) −→ End0〈G,α〉op(G,α) → G(4.2)

since EndGop(G,G)
∼=
→ G, F 7→ F (1) and H∗((G⋊G)•, A) is trivial for ∗ > 0. The

associated crossed module, or group object in Lifting bundle gerbes (see Lemma
8.1), produces a four term exact sequence

A // C0((G⋊G)•, A)
dG⋊G // End0〈G,α〉op(G,α) // G

where A sits inside C0((G⋊G)•, A) = Map(G,EA) as the G invariant maps to A.
Note that the crossed module, or group object in Lifting bundle A-gerbes

C0((G ⋊G)•, A)
dG⋊G // End0〈G,α〉op(G,α)

encodes the information of the multiplicative Segal-Mitchison gerbe 〈G,α〉.
Note that the complex C∗((G ⋊ G)•, A) is a complex of G-Topab soft sheaves

and moreover it is acyclic. Therefore the short exact sequence

A // C0((G⋊G)•, A)
dG⋊G // Z1((G ⋊G)•, A)

induces an isomorphism

H2(G•, Z
1((G⋊G)•, A))

∼=
−→ H3(G•, A).

The inverse map of this isomorphism is given by the class inH2(G•, Z
1((G⋊G)•, A))

that encodes the group extension of (4.2).
Note that this 2-group of endomorphisms End〈G,α〉op(G,α) is also group object

in Lifting bundle A-gerbes as it is explained in §8 of Appendix B, Lemma 8.1. In
this case the structure group of the gerbe is A since the kernel of the differential
dG⋊G consists of the G-invariant A-valued maps over the transitive space G.

The 2-group of endomorphisms End〈G,α〉op(G,α) encodes the same topological
information as the multiplicative Segal-Mitchison gerbe 〈G,α〉. The first is a strict
group object in Lifting bundle A-gerbes, the second is a weak monoid object in
Segal-Mitchison gerbes. The former could be understood as a strictification of the
latter.

5. Pontrjagin duality on multiplicative Segal-Mitchison U(1)-gerbes

In this section we will present a procedure by which we construct, from a specific
choice of multiplicative Segal-Mitchison U(1)-gerbe with a representation, another
multiplicative Segal-Mitchison U(1)-gerbe. This second multiplicative gerbe will
be called fibrewise Pontrjagin dual because it generalizes Pontrjagin’s duality on
locally compact topological abelian groups [Mor79, Pon34].
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Recall that for a topological abelian group S its Pontrjagin dual group is Ŝ :=

Hom(S,U(1)). Whenever S is locally compact, Ŝ is also locally compact and the

double Pontrjagin dual is canonically isomorphic to the original group S ∼=
̂̂
S. In

what follows we will use the notation and results of section §1.6.
Let us consider a central extension of locally contractible and compactly gener-

ated groups
S −→ G −→ K

with S locally compact. Let us take a cohomology class in H3(G•, U(1)) that

vanishes once restricted to H3(S•, U(1)) ∼= E0,3
2 ⊇ E0,3

∞ and once restricted to E1,2
∞

in the Lyndon-Hochschild spectral sequence of section §1.6. If we denote by Ω(G,S)
those classes, the group is defined as the following subgroup of H3(G•, U(1)) :

Ω(G,S) := ker
(
ker

(
H3(G•, U(1)) → E0,3

∞

)
→ E1,2

∞

)
.

This group of cohomology classes fits into the short exact sequence

0 → E3,0
∞ −→ Ω(G,S) −→ E2,1

∞ −→ 0

where the left hand side is the pullback of the classes from K

E3,0
∞ = Im (H3(K•, U(1)) → H3(G•, U(1))),

and the right hand side is the cohomology of the middle term in the sequence

H2(S•, U(1))
d2−→ H2(K•, Ŝ)

d2−→ H4(K•, U(1))

with d2 the second differential of the spectral sequence. Here we have used the fact

that Ŝ ∼= H1(S•, U(1)).

Take a cocycle α ∈ Z3(G•, U(1)) whose cohomology class lies in Ω(G,S). Con-
sider the restriction homomorphism

H3(G•, U(1))
π∗

→ H3((K ⋊G)•, U(1)) ∼= H3(S•, U(1))

and note that [α] ∈ Ω(G,S) implies that [α|S ] = 0. Therefore [π∗α] = 0 in H3((K⋊

G)•, U(1)) and thus there is a representation (K,β) with β ∈ C2(K⋊G,U(1)) such

that dK⋊Gβ = π∗α. We should think of β as an element in D0,2 in the double
complex defined in the notation of (1.2) satisfying the equation

dK×Gβ = π∗α.(5.1)

Recall that the double complex is

Dp,q =
⊕

i+j=p,l+m=q

Ci,j,l,m

with differentials dK : Dp−1,q → Dp,q, dK := δK + (−1)i∂1, and dK⋊G : Dp,q−1 →
Dp,q, dK⋊G := δK⋊G + (−1)l∂2, and the total complex Tot (C∗,∗,∗,∗) = Tot (D∗,∗)
has for total differential d = dK + (−1)pdK⋊G.

Since [α] belongs to Ω(G,S), the cohomology class [α] maps to zero in the coho-
mology group E1,2

∞ and therefore there must exist γ ∈ D1,1 such that

dKβ − dK⋊Gγ = 0.

Therefore dKγ ∈ D2,1 satisfies the equations

dK(dKγ) = 0 and dK⋊G(dKγ) = 0.
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Hence we have that

dKγ ∈ Z2(K•, Z
1((K ⋊G)•, U(1))),

and the cocycles π∗α and dKγ are cohomologous in Tot 3(C∗,∗,∗,∗).
Recall that the inclusion (pt ⋊ S) → (K ⋊ G) of action groupoids induces an

equivalence of groupoids. Therefore the restriction map

Z1((K ⋊G)•, U(1)) → Z1((pt⋊ S)•, U(1)) ∼= Hom(S,U(1)) = Ŝ

induces a homomorphism

Z2(K•, Z
1((K ⋊G)•, U(1))) → Z2(K•, Ŝ), d1γ 7→ F̂ .

This cocycle F̂ defines a central extension of the form Ŝ → Ĝ→ K.
We will see in what follows that by choosing [α] ∈ Ω(G,S) we make sure that

there is a representation (K,β) of the multiplicative Segal-Mitchison gerbe 〈G,α〉,
such that all the right G-equivariant homomorphisms fh ∈ MapGop(K,K) with
fh(k) = hk and h ∈ K may be lifted to morphisms of representations from (K,β)
to (K, f∗

hβ).
Having set up the structure we claim the following result.

Theorem 5.1. Let 〈G,α〉 be a multiplicative Segal-Mitchison U(1)-gerbe such that
[α] ∈ Ω(G,S), with S → G→ K a central extension by the locally compact abelian
group S, and let (K,β) be a right representation of 〈G,α〉 as above. Then, the en-
domorphism category End〈G,α〉op(K,β) is a crossed module, or group lifting bundle
A-gerbe, whose four term sequence fits into the middle column of the diagram

U(1) //

��

U(1)

��
C0((K ⋊G)•, U(1)) //

��

C0((K ⋊G)•, U(1))

��
Z1((K ⋊G)•, U(1))

��

// End0〈G,α〉op(K,β) //

��

K

��
Ŝ // Ĝ // K.

Proof. Since the class [α] belongs to Ω(G,S), we have shown above that there
must exist γ ∈ D1,1 such that dKβ − dK⋊Gγ = 0. Therefore dKγ and π∗α are

cohomologous and dKγ ∈ Z2(K•, Z
1((K ⋊G)•, U(1))) defines the cocycle F̂ ∈

Z2(K•, Ŝ) by the canonical map induced by the restriction

r : Z1((K ⋊G)•, U(1)) → Hom(S,U(1)) = Ŝ.

Since we have the isomorphism of topological groups

MapGop(K,K) ∼= K, fh 7→ h(5.2)

where fh(k) = hk for h, k ∈ K, we know that the existence of γ implies that for all
h ∈ K

[dK(β)](h) = β − f∗
hβ = (dK⋊Gγ)(h).(5.3)
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Therefore the projection map

End0〈G,α〉op(K,β) → MapGop(K,K) ∼= K(5.4)

is surjective.
Now, γ lives in Map(K,EC1((K ⋊ G)•, U(1))) and for every h ∈ K it chooses

an element in C1((K ⋊ G)•, U(1)) such that β − f∗
hβ = (dK⋊Gγ)(h). The class

dKγ ∈ Z2(K•, Z
1((K ⋊G)•, U(1))) measures the obstruction for the assignment γ

to be a section of the homomorphism End0〈G,α〉(K,β) → K. The cocycle F̂ defined
by dKγ through the restriction map

r∗ : Z2(K•, Z
1((K ⋊G)•, U(1))) → Z2(K•, Ŝ), dKγ 7→ r∗(dKγ) = F̂

is equivalently defined as the cocycle in Z2(K•, H
1(S•, U(1))) that dKγ defines once

one takes isomorphism classes of morphisms in End〈G,α〉(K,β). Therefore we have
the isomorphism of groups

Ĝ ∼= π0(End〈G,α〉op(K,β))

and F̂ defines the extension class of the exact sequence

Ŝ −→ π0(End〈G,α〉op(K,β)) −→ K.

The rest of the diagram follows from the four term exact sequence

U(1) → C0((K ⋊G)•, U(1)) → Z1((K ⋊G)•, U(1)) → Ŝ

since H1((K ⋊G)•, U(1)) = Ŝ. �

The crossed module, or group lifting bundle A-gerbe, and its four term sequence

U(1) −→ C0((K ⋊G), U(1))
dK⋊G

−→ End0〈G,α〉op(K,β) → Ĝ

defines a cohomology class in H3(Ĝ•, U(1)) which is constructed as follows.

The central extension Ŝ → G
p̂
→ K defines an element F̂ = (−F̂1, F̂2) ∈

Z2(K•, Ŝ) whose components are F̂1 : K → BŜ and F̂2 : K × K → EŜ satis-
fying the equations

δK F̂1(k1, k2) = F̂1(k2)− F̂1(k1k2) + F̂1(k1) = ∂F̂2(k1, k2), δK F̂2 = 0.

Let F̂ ′
1 : Ĝ → EŜ be the map of Ŝ-principal bundles making the diagram commu-

tative

Ĝ

p̂

��

F̂ ′
1 //

��

EŜ

��
K

F̂1 // BŜ.

Then the map F̂ ′
1 could be seen as living in C1(Ĝ, Ŝ) and it satisfies the equations

δ
Ĝ
F̂ ′
1 = p̂∗F̂2, ∂F̂ ′

1 = p̂∗F̂1,

hence (δ
Ĝ
+ (−1)l∂)F̂ ′

1 = d
Ĝ
F̂ ′
1 = p̂∗F̂ .

Let us carry out the same construction for the central extension S → G
p
→ K.

Define its extension class F = (−F1, F2) ∈ Z2(K•, S) and the map of S-principal
bundles F ′

1G→ ES satisfying δGF
′
1 = p∗F2 and ∂F ′

1 = p∗F1.
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Define the cocycle E = (E0, E1) ∈ Z1((K ⋊G)•, S) with E0 ∈ Map(K,BS) and
E0 = F1 by the equations

E0 = F1, E1(k, g) = F ′
1(g)− F2(k, p(g)).

A simple calculation shows that the following equations are satisfied

δK⋊GE0(k, g) = F1(kg)− F1(k) = F1(p(g))− ∂F2(k, p(g)) = ∂E1(k, g)

δK⋊GE1(k, g1, g2) = 0.

Any element ρ ∈ Ŝ induces homomorphisms ES → EU(1) and BS → BU(1) and
therefore we may define the homomorphism

ψ : Ŝ → Z1((K ⋊G)•, U(1)), ρ 7→ ψ(ρ) = ρ ◦ (E0, E1),

which is an inverse to the restriction homomorphism Z1((K ⋊ G)•, U(1)) → Ŝ.
Nevertheless, the map ψ does not preserve the structure of K-module and this
deficiency is quite important.

Let us consider the homomorphism

C1(Ĝ•, Ŝ)
ψ∗
−→ C1(Ĝ•, Z

1((K ⋊G)•, U(1)))

induced by the map ψ at the level of the coefficients and take ψ∗F̂
′
1 the image of

F̂ ′
1. The element ψ∗F̂

′
1 : Ĝ → EZ1((K ⋊ G)•, U(1)) should be understood as the

lift of the map F̂ ′
1 : Ĝ→ EŜ to Z1((K ⋊G)•, U(1)) in the left vertical map of the

diagram

Z1((K ⋊G)•, U(1)) //

��

End0〈G,α〉op(K,β)

��

// K

Ŝ // Ĝ // K.

The failure of the map ψ∗F̂
′
1 to induce a section is measured by the cocycle

d
Ĝ
(ψ∗F̂

′
1) ∈ Z2(Ĝ•, Z

1((K ⋊G)•, U(1))),

and its restriction to Z2(Ĝ•, Ŝ) is

r∗

(
d
Ĝ
(ψ∗F̂

′
1)
)
= p̂∗F̂ .

The element

[d
Ĝ
(ψ∗F̂

′
1)− p̂∗(dKγ)] ∈ Z2(Ĝ•, Z

1((K ⋊G)•, U(1)))

restricts to zero in Z2(Ĝ•, Ŝ) since r∗(p̂
∗(dKγ)) = p̂∗(r∗(dKγ) = p̂∗F̂ . Therefore

[d
Ĝ
(ψ∗F̂

′
1)− p̂∗(dKγ)] ∈ Z2(Ĝ•, B

1((K ⋊G)•, U(1)))

where B1((K ⋊G)•, U(1)) are the coboundaries fitting in the short exact sequence

B1((K ⋊G)•, U(1)) →֒ Z1((K ⋊G)•, U(1))
r
→ Ŝ.

Now, the coboundaries also fit in the short exact sequence of abelian groups in

Ĝ-Topab

U(1) → C0((K ⋊G)•, U(1)) → B1((K ⋊G)•, U(1))
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thus inducing a map in cohomology

H2(Ĝ•, B
1((K ⋊G)•, U(1))) → H3(Ĝ•, U(1))

[d
Ĝ
(ψ∗F̂

′
1)− p̂∗(dKγ)] 7→ [α̂(K,β)].

The explicit description of the cocycle α̂(K,β) ∈ Z3(Ĝ•, U(1)) depends on several

choices, but its cohomology class only depends on the multiplicative Segal-Mitchison
gerbe 〈G,α〉 and the representation (K,β). The cohomology class [α̂(K,β)] charac-
terizes the group lifting bundle A-gerbe End〈G,α〉op(K,β).

Bundling up we obtain:

Theorem 5.2. The crossed module, or group lifting bundle A-gerbe,

C0((K ⋊G)•, U(1)) −→ End0〈G,α〉op(K,β)

induced by the category End〈G,α〉op(K,β) of endomorphisms of the right 〈G,α〉-

representation (K,β) has Ĝ for cokernel, U(1) as kernel and it is classified by the
cohomology class

[α̂(K,β)] ∈ H3(Ĝ•, U(1))

defined above.

Both groups G and Ĝ project to K and the fibers are S and Ŝ = Hom(S,U(1))
respectively. Since S is a locally compact abelian group, its Pontrjagin dual group

Ŝ is also a locally compact abelian group [Pon34, First Fundamental Theorem].
Therefore we propose the following definition.

Definition 5.3. The multiplicative Segal-Mitchison gerbe 〈Ĝ, α̂(K,β)〉 is a fibrewise
Pontrjagin dual of the multiplicative Segal-Mitchison gerbe 〈G,α〉.

Let us now see some specific cases.

5.1. Classical Pontrjagin duality. Take S a locally compact abelian group and
α = 0. By the Second Fundamental Theorem of Pontrjagin [Pon34, p. 377], cf.
[Mor79, Thm. 2], the group S is locally compact and locally contractible and
therefore it satisfies the conditions of Theorem 5.1. Consider the representation of
〈S, 0〉 to be (∗, 0) where ∗ is a point.

The 2-group End〈S,0〉(∗, 0) is isomorphic to U(1)[1] × Ŝ since its four term se-
quence is

U(1) −→ C0((∗⋊ S)•, U(1)) −→ Z1((∗ ⋊ S)•, U(1)) −→ Ŝ

and its cohomology class in H3(Ŝ•, U(1)) is trivial because the last homomorphism

splits through the inclusion of groups Ŝ = Hom(S,U(1)) ⊂ Z1((∗⋊ S)•, U(1)).

We see that the fibrewise dual of the multiplicative Segal-Mitchison U(1)-gerbe

〈S, 0〉 is the multiplicative Segal-Mitchison U(1)-gerbe 〈Ŝ, 0〉 and vice versa, thus
recovering Pontrjagin’s duality in the context of multiplicative Segal-Mitchison
gerbes.
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5.2. Multiplicative Segal-Mitchison gerbe with trivial cocycle. Consider a
non-trivial central extension S → G → K and α = 0. Then we may take the
representation to be (K, 0) and therefore we get that

End0〈G,0〉op(K, 0)
∼= K ⋉ Z1((K ⋊G)•, U(1)).

Hence the fibrewise Pontrjagin dual multiplicative Segal-Mitchison gerbe has for

underlying group Ĝ = K × Ŝ. Now consider F̂ ′
1 : K × Ŝ → EŜ to be defined by the

inclusion Ŝ → EŜ. Following the construction we get (ψ∗F̂
′
1)(k, ρ) = ρ ◦ (E0, E1)

and

[d
Ĝ
(ψ∗F̂

′
1)]((k1, ρ1), (k2, ρ2)) = ρ1(k

∗
2(E0, E1)− (E0, E1)).

The cocycle thus defined α̂(K,0) = (α̂3
(K,0), α̂

2
(K,0)) with α̂3

(K,0) : Ĝ3 → EU(1) and

α̂2
(K,0) : Ĝ

2 → BU(1) is defined in coordinates as follows:

α̂3
(K,0)((k1, ρ1), (k2, ρ2), (k3, ρ3)) = ρ1(F2(k2, k3)) ∈ EU(1)(5.5)

α̂2
(K,0)((k1, ρ1), (k2, ρ2)) = ρ1(F1(k2)) ∈ BU(1).

Therefore the cohomology class [α̂(K,0)] ∈ H3(K × Ŝ•, U(1)) is simply obtained by

the composition of [F ] ∈ H2(K•, S) with Ŝ = Hom(S,U(1)), and the Multiplicative

Segal-Mitchison gerbe 〈K × Ŝ, α̂(K,0)〉 is a fibrewise Pontrjagin dual of 〈G, 0〉.

5.3. Multiplicative Segal-Mitchison gerbe over a trivial extension. Let us

start now with the trivial extension Ĝ = K × Ŝ and the cocycle α̂(K,0) defined by
the equations (5.5). In this case the dual group is

π0(End
0
〈K×Ŝ,α̂(K,0)〉

(K, 0)) ∼= G

with cocycle F ∈ Z2(K•, S), and the cohomology class of the crossed module is
trivial because

dGψ∗F
′
1 = p∗ψ∗F

and γ may be chosen so that dGγ = ψ∗F . Therefore, we conclude:

Proposition 5.4. The multiplicative Segal-Mitchison U(1)-gerbes

〈G, 0〉 and 〈K × Ŝ, α̂(K,0)〉

defined above are mutually fibrewise Pontrjagin dual.

5.4. Groups whose connected components of the identity are contractible.

In the case that G, Ĝ, S, Ŝ and K are groups whose connected components of the
identity are contractible, we can provide an explicit description of the class [α̂(K,β)]
using the results of [Uri17, §3].

For these specific choice of groups we know by Lemma 1.3 that

H∗(G•, U(1)) ∼= H∗
cont(G,U(1))

whereH∗
cont(G,U(1)) denotes the cohomology of the complex of continuous cochains

of the group G with values in U(1).
Following the notation, the formulas and the calculations of [Uri17, §3] we may

take G ∼= S ⋊F K where F ∈ Z2
c (K,S) and the product structure on S ⋊F K is

given by the formula

(a1, k1) · (a2, k2) = (a1a2F (k1, k2), k1k2).
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From [Uri17, Thm. 3.6] we know that the 3-cocycle α ∈ Z3
c (G,U(1)) can be

defined as

α((a1, k1), (a2, k2), (a3, k3)) = F̂ (k1, k2)(a3)ǫ(k1, k2, k3)

where F̂ ∈ Z2(K, Ŝ) and

δKǫ(k1, k2, k3, k4) = F̂ (k1, k2)(F (k3, k4))

with ǫ ∈ C3
c (K,U(1)).

From this definition of α we know that Ĝ ∼= K ⋉
F̂
Ŝ with product structure

(k1, ρ1) · (k2, ρ2) = (k1k2, ρ1ρ2F̂ (k1, k2)).

From [Uri17, Thm. 3.6] we know that β ∈ C2
c (K ⋊ G,U(1)) can be written as

follows

β(k1, (a2, k2), (a3, k3)) =
(
F̂ (k1, k2)(a3)ǫ(k1, k2, k3)

)−1

and γ ∈ C1
c (K,C

1
c (K ⋊G,U(1)) by the equation

γ(k1, (x1, (a2, x2)))) = F̂ (k1, x1)(a2)ǫ(k1, x1, x2);

therefore p̂∗d1γ satisfies the following equation

(p̂∗d1γ)((k1, ρ1), (k2, ρ2))(x1, (a2, x2)) =

F̂ (k1, k2)(a2F (x1x2))ǫ(k1, k2, x1x2)ǫ(k1, k2, x1)
−1.

The cochain F̂ ′
1 can be defined by the map F̂ ′

1(k, ρ) = ρ−1 and therefore ψ∗F̂
′
1

satisfies the following equation

ψ∗F̂
′
1(k, ρ)(x1, (a2, x2)) = ρ(a2F (x1, x2))

−1.

Calculating the coboundary we obtain

δ
Ĝ
ψ∗F̂

′
1((k1, ρ1), (k2, ρ2))(x1, (a2, x2)) =

F̂ (k1, k2)(a2F (x1, x2))ρ1(F (k2, x1)F (k2, x1x2)
−1)

and therefore

[δ
Ĝ
(ψ∗F̂

′
1)− p̂∗(d1γ)]((k1, ρ1), (k2, ρ2))(x1, (a2, x2))

=ǫ(k1, k2, x1x2)
−1ǫ(k1, k2, x1)ρ1(F (k2, x1x2)

−1F (k2, x1))

=δK⋊Gη(((k1, ρ1), (k2, ρ2))(x1, (a2, x2))

where η((k1, ρ1), (k2, ρ2), x)) = ǫ(k1, k2, x)
−1ρ1(F (k2, x))

−1 with η ∈ C2
c (Ĝ, C

0
c (K⋊

G,U(1))). The coboundary of η satisfies the equation

δ
Ĝ
η((k1, ρ1), (k2, ρ2), (k3, ρ3), x) = ǫ(k1, k2, k3)ρ1(F (k2, k3))

and it is independent of the variable x. We obtain that the dual class α̂(K,β) can
be written explicitly by the following formula

α̂(K,β)((k1, ρ1), (k2, ρ2), (k3, ρ3)) = ǫ(k1, k2, k3)ρ1(F (k2, k3)).

From the previous calculations we can conclude the following theorem which
generalizes [Uri17, Thm. 3.7].
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Theorem 5.5. Let K be a compactly generated topological group and S a locally
compact and compactly generated topological abelian group, such that the connected

components of the identity on K, S and Ŝ are contractible groups. Consider the

groups G = S ⋊F K and Ĝ = K ⋉
F̂
Ŝ with Ŝ the Pontrjagin dual of S, F ∈

Z2
c (K,S), F̂ ∈ Z2

c (K, Ŝ) such that δKǫ(k1, k2, k3, k4) = F̂ (k1, k2)(F (k3, k4)) for

ǫ ∈ C3
c (K,U(1)). Define the 3-cocycles α ∈ Z3

c (G,U(1)) and α̂ ∈ Z3
c (Ĝ, U(1)) by

the equations

α((a1, k1), (a2, k2), (a3, k3)) =F̂ (k1, k2)(a3)ǫ(k1, k2, k3)

α̂((k1, ρ1), (k2, ρ2), (k3, ρ3)) =ǫ(k1, k2, k3)ρ1(F (k2, k3)).

Then the multiplicative Segal-Mitchison gerbes 〈G,α〉 and 〈Ĝ, α̂〉 are fibrewise Pon-
trjagin dual.

Example 5.6. Consider K = R
2, S = R and G = K × S = R

3. The Pontrjagin

dual group Ŝ = Hom(S,U(1)) is isomorphic to the reals and we may consider
α ∈ Z3

c (R
3, U(1)) by the formula

α((r1, s1, t1), (r2, s2, t2), (r3, s3, t3)) = e2πir1s2t3 .

Applying Proposition 5.4 and Theorem 5.5 we see that the fibrewise Pontrjagin dual
multiplicative Segal-Mitchison gerbe is 〈H, 0〉 where H is the Heisenberg group of
upper triangular 3× 3 matrices with ones on the diagonal and trivial 3-cocycle. In

this case F̂ ((r1, s1), (r2, s2)) = r1s2 with F̂ ∈ Z2
c (R

2,R) and F = 0. We conclude
that

〈R3, α〉 and 〈H, 0〉

are fibrewise Pontrjagin dual multiplicative Segal-Mitchison gerbes.

5.5. Finite abelian fiber. Consider the case on which S is a finite abelian group.
In what follows we will provide an explicit construction of the crossed modules
associated to the fibrewise Pontrjagin dual multiplicative Segal-Mitchison U(1)-
gerbes of Proposition 5.4.

Let Ŝ := Hom(S,U(1)) be the Pontrjagin dual finite group and take b : S×S →

U(1) a bilinear map inducing an isomorphism of groups b♯ : S
∼=
→ Ŝ, s 7→ b(s,−).

Consider a topological group G on which S is a central subgroup fitting into the
non-trivial group extension S → G→ K.

We are going to define two non-equivalent crossed modules with this information
which are fibrewise Pontrjagin dual. They will have the same structural groups N
and E, same action of E onN and same π1 but different structural homomorphisms.
Let us define the two 2-groups first.

Consider the groups

G0 := S ×G and G1 := (S ×G× S)⋉ U(1)

where the product in G1 is given by the formula

(s1, g1, s1, λ1) · (s2, g2, s2, λ2) = (s1s2, g1g2, s1s2, λ1 + λ2 + b(s1, s2)).

In both cases the underlying groupoid comes from the action of S×U(1) on S×G. In
one case we let S×U(1) act on S×G by multiplication on the first coordinate, and in
the other case by multiplication on the second coordinate. In both cases the source
map is the same s(s, g, s, λ) = (s, g) and the identity map also e(s, g) = (s, g, 0, 0).
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Therefore the induced right action of S ×G on S × U(1) is given by the following
formula

(s, λ)(s,g) = (s, λ+ b(s, s)).

The target maps are defined as follows

t1(s, g, s, λ) = (ss, g), t2(s, g, s, λ) = (s, gs)

and therefore they define crossed modules

S × U(1)
t1−→ S ×G and S × U(1)

t2−→ S ×G

such that in both cases Ker (t1) ∼= U(1) ∼= Ker (t2).
Nevertheless the crossed modules are non-equivalent since Coker (t1) = G and

Coker (t2) = S×K. Moreover, the cohomology class [α] ∈ H3((S×K)•, U(1)) that
induces the second crossed module is not trivial.

These two crossed modules defined above are the fibrewise Pontrjagin dual mul-
tiplicative Segal-Mitchison gerbes of Proposition 5.4.

Example 5.7. ConsiderG = SU(2) and S = Z/2 ⊂ G its center. ThenK = SO(3)
and we may take the bilinear form b : Z/2 × Z/2 → U(1), (x, y) 7→ xy

2 with
x, y ∈ {0, 1} and U(1) = R/Z. The cohomology class of the crossed module that
induces the four term sequence

U(1) → Z/2× U(1) −→ Z/2× SU(2) −→ Z/2× SO(3)

is the only non-trivial class that comes from the map

H1(H2(SO(3)•,Z/2), U(1)) → H3((Z/2 × SO(3))•, U(1)).

The two crossed modules previously defined induce multiplicative Segal-Mitchison
U(1)-gerbes. On the one hand we have the group SU(2) with trivial cohomology
class and in the other hand we have the group Z/2 × SO(3) with the cohomology
class in H3((Z/2 × SO(3))•, U(1)) defined by composition of the Stiefel-Whitney

classw2 ∈ H2(BSO(3),Z/2) with the non-trivial homomorphism inH1((Z/2)•, U(1)).

5.6. Finite groups. Multiplicative Segal-Mitchison gerbes over finite groups and
pointed fusion categories are very related entities. A multiplicative Segal-Mitchison
gerbe 〈G,α〉 with G a finite group and α ∈ Z3(G,U(1)) encodes the information
of a pointed fusion category. A pointed fusion category is a rigid tensor category
with finitely many isomorphism classes of simple objects which moreover are invert-
ible [ENO05]. The relevant pointed fusion categories are Vect(G,α) of G-graded
complex vector spaces with associativity constraint α. Module categories over the
pointed fusion categories Vect(G,α) play the role of representations of the multi-
plicative Segal-Mitchison gerbe 〈G,α〉 and vice versa.

The realm of fusion categories and their module categories has been extensively
studied [ENO05, Ost03a, Ost03b, Müg03a, Müg03b, Nai07] and there are many
properties and constructions which do not necessarily generalize to the continu-
ous case. Nevertheless, in the finite case we can compare our Theorem 5.5 with
Theorem 3.9 in [Uri17] and we can conclude that Morita equivalent pointed fu-
sion categories (namely such that their module categories are equivalent) induce
fibrewise Pontrjagin dual multiplicative Segal-Mitchison gerbes and that pointed
fusion categories of fibrewise Pontrjagin dual multiplicative Segal-Mitchison gerbes
are Morita equivalent. Therefore we can conclude that fibrewise Pontrjagin dual
multiplicative Segal-Mitchison gerbes over finite groups have equivalent categories
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of representations. The generalization to multiplicative Segal-Mitchison gerbes over
topological groups will be approached in the next section.

Concrete examples of fibrewise Pontrjagin dual multiplicative Segal-Mitchison
gerbes can thus be obtained by looking at the examples that have been constructed
of Morita equivalent pointed fusion categories. A complete classification of all
fibrewise Pontrjagin dual Segal-Mitchison gerbes over groups of dimension 8 appears
in [MU18], over groups of order p3 for p odd prime in [MMU21] and over groups
of order less than 32 in [MS17]. Several other examples appear in [Nai07, Müg03a,
Ost03a, Ost03b] and the references therein.

6. Morita equivalence for fibrewise Pontrjagin dual multiplicative

Segal-Mitchison gerbes

In this section we will focus on the relation between the categories of repre-
sentations of fibrewise Pontrjagin dual multiplicative Segal-Mitchison gerbes. For
this let us take a multiplicative Segal-Mitchison U(1)-gerbe 〈G,α〉 and a its rep-
resentation (K,β) as it appears in Theorem 5.1. In Theorem 5.2 we have shown
that the 2-group of endomorphisms End〈G,α〉op(K,β), which is also a group ob-

ject in lifting bundle A-gerbes, has Ĝ for its underlying group and its classifying

class is [α̂(K,β)] ∈ H3(Ĝ•, U(1)). The multiplicative Segal-Mitchison U(1)-gerbe

〈Ĝ, α̂(K,β)〉 was called a fibrewise Pontrjagin dual of 〈G,α〉 in Definition 5.3.
In order to define the functors relating the categories of representations of the

Segal-Mitchison U(1)-gerbes we need to recall first the properties of the groupoids
of morphisms of two representations from §4.4. Let us consider two right represen-
tations (V, χ) and (W, ν) of the Segal-Mitchison U(1)-gerbe 〈G,α〉. The groupoid
of morphisms

Hom〈G,α〉op((V, χ), (W, ν)) = [Hom0
〈G,α〉op((V, χ), (W, ν))/C

0((V ⋊G)•, U(1))]

is an action groupoid where the group C0((V ⋊ G)•, U(1)) acts on the space of

objects Hom0
〈G,α〉op((V, χ), (W, ν)) by the image of the differential dV⋊G. The kernel

of the differential is H0((V ⋊G)•, U(1)) ∼= Map(V, U(1))G, the space of G-invariant

maps from V to U(1), and therefore the groupoid of morphisms becomes a Lifting
bundle gerbe with structure group Map(V, U(1))G as it described in §8 Appendix
B.

The endomorphism 2-groups End〈G,α〉op(G,α) and its Pontrjagin dual End〈G,α〉op(K,β)
defined in Example 4.3 and Theorem 5.1 respectively, are both also group objects
in Lifting bundle U(1)-gerbes. As such, they act on Lifting bundle gerbes and we
will denote by

RepEnd〈G,α〉op (G,α)
and RepEnd〈G,α〉op (K,β)

their 2-categories of representations.
The canonical covariant functor

Rep〈G,α〉op → RepEnd〈G,α〉op (G,α)op

(V, χ) 7→ Hom〈G,α〉op((G,α), (V, χ))

induces an equivalence of 2-categories from the category of right representations
of the Segal-Mitchison U(1)-gerbe 〈G,α〉 to the 2-category of Lifting bundle U(1)-
gerbes right representations of End〈G,α〉(G,α). The endomorphisms act on the right
by pre-composition of morphisms.
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There is also the contravariant functor

Rep〈G,α〉op → RepEnd〈G,α〉(K,β)

(V, χ) 7→ Hom〈G,α〉op((V, χ), (K,β))

that takes a right representation of the Segal-Mitchison U(1)-gerbe 〈G,α〉 to a left
representation of the Pontrjagin dual group lifting bundle U(1)-gerbe End〈G,α〉(K,β).

The groupoid Hom〈G,α〉op((V, χ), (K,β)) is a lifting bundle H0(V, U(1))G-gerbe and

it becomes a left representation by composition of morphisms. Now, if we would
want the image of the functor to produce only lifting bundle U(1)-gerbes, we would
need to restrict to G-spaces V which are homogeneous spaces themselves. In this
way we would have that H0(V, U(1))G = U(1).

The Lifting bundle U(1)-gerbe

Hom〈G,α〉op((G,α), (K,β))

is a right representation of End〈G,α〉op(G,α) and is a left representation of End〈G,α〉op(K,β).
This lifting bundle U(1)-gerbe is the bi-representation that permits to relate End〈G,α〉op(G,α)
with End〈G,α〉op(K,β); let us see more closely its structure.

Proposition 6.1. The representation Hom〈G,α〉op((G,α), (K,β)) of End〈G,α〉op(K,β)

defines a left representation (K, β̂) of the multiplicative Segal-Mitchison U(1)-gerbe

〈Ĝ, α̂〉.

Proof. Recall from (5.1) and (4.1) that

β ∈ C2(K ⋊G,U(1)), dK⋊Gβ = π∗α

α ∈ C2(G⋊G,U(1)), dG⋊Gα = π∗α

for π : K → ∗ and π : G → ∗ respectively. Denote by p : G → K the projection
homomorphism g 7→ [g] and recall from (5.2) the notation fh ∈ MapGop(K,K),
fh(k) = hk for h, k ∈ K. Then we have the isomorphism

MapGop(G,K) ∼= K fh ◦ p 7→ h.

From the proof of Theorem 5.1 and (5.1) we know that there exists γ such
β − f∗

hβ = (dK⋊Gγ)(h) for all h ∈ K, and therefore

dG⋊G(α− p∗f∗
hβ) = 0

for all h ∈ K. Since the complex C∗(G ⋊ G,U(1)) is acyclic we see that the four

term sequence for the lifting bundle U(1)-gerbe Hom〈G,α〉op((G,α), (K,β)) is simply

U(1) −→ C0(G⋊G,U(1)) � Hom0
〈G,α〉op((G,α), (K,β)) −→ K.

The action of End〈G,α〉op(K,β) on Hom〈G,α〉op((G,α), (K,β)) induces a left ac-

tion of Ĝ on K by left multiplication. Moreover, this action implies that the
Segal-Mitchison U(1)-gerbe associated to Hom〈G,α〉op((G,α), (K,β)) can be made

into a left representation of the multiplicative Segal-Mitchison U(1)-gerbe 〈Ĝ, α̂〉.
Therefore the must exist

β̂ ∈ C2(Ĝ⋉K, (U(1)), with d
Ĝ⋉K

β̂ = π̂∗α̂

where π̂ : Ĝ→ K, ĝ 7→ [ĝ].

Hence (K, β̂) is the desired left representation of 〈Ĝ, α̂〉 induced by

Hom〈G,α〉op((G,α), (K,β)).
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�

Now we will argue that the representation (K, β̂) satisfies the hypothesis of

Theorem 5.1 thus implying that [α̂] ∈ Ω(Ĝ, Ŝ). For this to happen we just need to
verify that the projection map

End〈Ĝ,α̂〉(K, β̂) → Map
Ĝ
(K,K)

is surjective (see (5.4) and the argument of Theorem 5.1). This surjectivity is
equivalent to the surjectivity of the projection map

EndEnd〈G,α〉op (K,β)

(
Hom〈G,α〉op((G,α), (K,β))

)
→ EndEndGop (K) (HomGop(G,K))

induced by projecting on the components of the endomorphisms given by the maps
among spaces.

This surjectivity is part from a bigger result that relates the multiplicative Segal-
Mitchison U(1)-gerbe 〈G,α〉 with its double dual constructed from the representa-
tion (K,β). The setup is the following.

Since left and right compositions commute, the composition on the right by
elements in End〈G,α〉op(G,α) induce endomorphisms of Hom〈G,α〉op((G,α), (K,β))
as left End〈G,α〉op(K,β) representations. Therefore we obtain the right composition
functor

Ψ : End〈G,α〉op(G,α) → EndEnd〈G,α〉op (K,β)

(
Hom〈G,α〉op((G,α), (K,β))

)

F 7→ Ψ(F) (Ψ(F) : Q 7→ Q ◦ F)(6.1)

with T ◦ Ψ(F)(Q) = T ◦ Q ◦ F = Ψ(F)(T ◦ Q) for all T ∈ End〈G,α〉op(K,β). We
claim the following result.

Theorem 6.2. Let 〈G,α〉 be a multiplicative Segal-Mitchison U(1)-gerbe with [α] ∈
Ω(G,S) and (K,β) a representation as in Theorem 5.1. Then the canonical right
composition functor

Ψ : End〈G,α〉op(G,α) → EndEnd〈G,α〉op (K,β)

(
Hom〈G,α〉op((G,α), (K,β))

)

from End〈G,α〉op(G,α) to its double dual is an equivalence of 2-groups.

Proof. The outline of the proof is the following. First we will show that the pro-
jection map

EndEnd〈G,α〉op (K,β)

(
Hom〈G,α〉op((G,α), (K,β))

)
→ EndEndGop (K) (HomGop(G,K))

(6.2)

is surjective. The surjectivity implies that [α̂] ∈ Ω(Ĝ, Ŝ) and by Theorem 5.1 we
obtain that the isomorphism classes of objects

̂̂
G = π0

(
EndEnd〈G,α〉op (K,β)

(
Hom〈G,α〉op((G,α), (K,β))

))

fits into the short exact sequence of groups
̂̂
S −→

̂̂
G −→ K. This implies also that

the induced homomorphism of groups Ψ : G →
̂̂
G factors through the projection

homomorphisms to K

G
Ψ //

p

��❄
❄❄

❄❄
❄❄

❄
̂̂
G

p̂

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

K.
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Second we will show that the homomorphism, once restricted to the subgroup

S ⊂ G, gives the fiber
̂̂
S via the Pontrjagin dual isomorphism S

∼=
→

̂̂
S. The two

facts together imply that Ψ induces an isomorphism of groups G ∼=
̂̂
G, and together

with the fact that Ψ is a functor of group lifting bundle U(1)-gerbes, we have that
Ψ induces an equivalence of 2-groups.

Let us start with the surjectivity of the projection map of (6.2). Let (Fg, ηg) ∈

End0〈G,α〉op(G,α) with Fg : G → G, Fg(g
′) = gg′ for all g, g′ ∈ G, and α − F ∗

g α =

dG⋊Gηg. Every morphism in Hom0
〈G,α〉op((G,α), (K,β)) is of the form (fh◦p, ǫ) with

fh : K → K, fh(k) = hk for all h, k ∈ K, p : G→ K the projection homomorphism
and α− p∗f∗

hβ = dG⋊Gǫ.
The right composition functor Ψ of (6.1) applied to (Fg, ηg) acts on (fh ◦ p, ǫ)

by right composition as follows:

(Ψ(Fg, ηg)) (fh ◦ p, ǫ) = (fh ◦ p ◦ Fg, ηg + F ∗
g ǫ).

The composition map fh ◦ p ◦ Fg is equal to the map fhp(g) ◦ p. Therefore,
the projection map of (6.2) applied to Ψ(Fg, ηg), is equivalent to the assignment
fh ◦ p 7→ fhp(g) ◦ p for all fh ◦ p ∈ HomGop(G,K) with h ∈ K. Since we know that

K ∼= EndEndGop (K) (HomGop(G,K)) , l 7→ (fh ◦ p 7→ fhl ◦ p)

we see that the projection map of (6.2) is surjective.
Now let us understand the image under Ψ of the endomorphism functors (Fs, ηs) ∈

End0〈G,α〉op(G,α) whenever s ∈ S ⊂ G. Note that we can take a continuous homo-

morphism S → End0〈G,α〉op(G,α), s 7→ (Fs, ηs) since we know that [α|S ] = 0. Hence
S acts on the short exact sequence

U(1) −→ C0(G⋊G,U(1)) −→ Z1(G⋊G,U(1))(6.3)

via the map F ∗
s , and the relevant part of End〈G,α〉op(K,β) acts via the pullback of

the complex

U(1) −→ C0(K ⋊G,U(1)) −→ Z1(K ⋊G,U(1));(6.4)

both actions commute. The maps F ∗
s act on the complex C∗(G⋊G,U(1)) via the

pullback of the left translation action Fs : G ⋊ G → G ⋊ G, Fs(g, h) = (sg, h) for
all g, h ∈ G. The map F ∗

s provides an external automorphism of the short exact
sequence of (6.3) which commutes with the action of the complex in (6.4). Therefore
the endomorphism functors Ψ(Fs, ηs), once projected to their isomorphism classes,

generate the group S ∼=
̂̂
S ⊂

̂̂
G. Hence we have that the functor Ψ induces an

equivalence of groups in lifting bundle U(1)-gerbes as desired. �

6.1. Morita equivalence. Let us now restrict our representation category Rep〈G,α〉
to objects (V, χ) such that

H0(V ⋊G,U(1)) = U(1);

these are G-spaces V on which the action of G is transitive. Denote this subcat-
egory by Rep+〈G,α〉. We carry out these restrictions to ensure that the category of

morphisms

Hom〈G,α〉op ((V, χ), (K,β))

is a lifting bundle U(1)-gerbe for all (V, χ) ∈ Rep+〈G,α〉.



32 JAIDER BLANCO, BERNARDO URIBE, AND KONRAD WALDORF

Denote by

C :=End〈G,α〉op(G,α),

D :=End〈G,α〉op(K,β),

F :=Hom〈G,α〉op ((G,α)(K,β)) ,

note that Theorem 6.2 claims that

Ψ : C → EndD(F)

is an equivalence of 2-groups, and denote also by Rep+ the restriction of the cate-
gories of representations of the endomorphism groups in lifting bundle gerbes where

the induced action of the groups G and Ĝ on the underlying spaces of the lifting
bundle gerbes is transitive.

Consider the covariant functor

Rep+〈G,α〉op → Rep+Cop , (V, χ) 7→ Hom〈G,α〉op ((G,α)(V, χ))

and the contravariant functors

Rep+
〈G,α〉op →Rep+D Rep+D →Rep+EndD(F)op

(V, χ) 7→Hom〈G,α〉op ((V, χ)(K,β)) M 7→HomD(M,F),(6.5)

where HomD(M,F) denotes strict morphisms of lifting bundle gerbes. The covari-
ant functor compared with the composition of the contravariant functors gives us
the following assignments:

Rep+〈G,α〉op →Rep+Cop Rep+〈G,α〉op →Rep+EndD(F)op

(G,α) 7→C (G,α) 7→EndD(F)

(K,β) 7→F (K,β) 7→HomD(D,F).

From the previous assignments we see that the composition of the contravari-
ant functors provides and equivalence of 2-categories, and therefore we obtain as
byproduct the desired Morita equivalence.

We have seen in Theorem 5.2 that the group in lifting bundle U(1)-gerbes

End〈G,α〉op(K,β) induces a multiplicative Segal-Mitchison U(1)-gerbes 〈Ĝ, α̂(K,β)〉.
Take the category of its left representations Rep〈Ĝ,α̂(K,β)〉

and restrict it to objects

(W, η) such that

H0(Ĝ⋉W,U(1)) = U(1).

Denote this subcategory by Rep+
〈Ĝ,α̂(K,β)〉

.

Theorem 6.3. Let 〈G,α〉 and 〈Ĝ, α̂(K,β)〉 be Pontrjagin dual multiplicative Segal-

Mitchison U(1)-gerbes over the topological groups G and Ĝ. Then, the 2-category
Rep+〈G,α〉op of right representations of 〈G,α〉 is equivalent to the 2-category Rep+

〈Ĝ,α̂(K,β)〉

of left representations of 〈Ĝ, α̂(K,β)〉.

Proof. Our proof is based on the principles underlying a Morita context [Row08,
25A.15]. Nevertheless, we need to add extra equivalences of categories for the setup
to work. The relevant bi-representations were:

Hom〈G,α〉op((G,α), (K,β)) and Hom〈Ĝ,α̂(K,β)〉

(
(Ĝ, α̂(K,β)), (K, β̂)

)
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where the former is a End〈G,α〉op(K,β) − End〈G,α〉op(G,α) representation and the

former is a End〈Ĝ,α̂(K,β)〉
(K, β̂)−End〈Ĝ,α̂(K,β)〉

(Ĝ, α̂(K,β)) representation. The nec-

essary equivalences of 2-groups are the following

End〈G,α〉op(K,β) ≃ End〈Ĝ,α̂(K,β)〉
(Ĝ, α̂(K,β))(6.6)

End〈G,α〉op(G,α) ≃ End〈Ĝ,α̂(K,β)〉
(K, β̂),(6.7)

where the first equivalence of (6.6) follows from Theorem 5.2 and the second equiv-
alence of (6.7) follows from Theorem 6.2.

The functors defined in (6.5) together with the equivalence of Theorem 6.2 pro-
vides the equivalence. �

6.2. Equivalence of centers. The endomorphism categories of (6.6) and (6.7)
are strict tensor categories and the equivalence of 2-groups of Theorem 6.2 implies
that their centers are all tensor equivalent. Let us elaborate.

Let C be a monoidal category and let its center be

Z(C) := EndC−C(C),

the endomorphisms of C which are compatible with the left and right monoidal
structures.

Theorem 6.4. The centers of End〈G,α〉op(G,α) and End〈G,α〉op(K,β)are equiva-
lent:

Z(End〈G,α〉op(G,α)) ≃ Z(End〈G,α〉op(K,β)).

Proof. Consider the following equivalences

Z
(
End〈G,α〉op(G,α)

)

≃ ��
EndEnd〈G,α〉op (K,β)−End〈G,α〉op (G,α)

(
Hom〈G,α〉op((G,α), (K,β))

)

Z
(
End〈G,α〉op(K,β)

)
.

≃
OO

The uppper one is an equivalence induced by the monoidal equivalence

EndEnd〈G,α〉op (G,α)

(
End〈G,α〉op(G,α)

)

≃ Ψ��
EndEnd〈G,α〉op (K,β)

(
Hom〈G,α〉op((G,α), (K,β))

)

defined by Ψ of Theorem 6.2. The bottom is an equivalence which is induced by
the following natural equivalences

EndEnd〈G,α〉op (G,α)op
(
Hom〈G,α〉op((G,α), (K,β))

)

EndEnd〈G,α〉op (K,β)

(
End〈G,α〉op(K,β)

)≃
OO

End〈G,α〉op(K,β).

≃
OO

�
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From the previous Theorem we see that Pontrjagin dual multipliciative Segal-
Mitchison gerbes will have equivalent centers. This result will implies interesting
consequences on the topological invariants associated to Pontrjagin dual multiplica-
tive Segal-Mitchison gerbes. We postpone its study to a forthcoming publication.

7. Appendix A: Crossed modules and 2-groups

Here we summarize the equivalent concepts of Crossed Module and 2-group,
together with its morphisms and its classification.

7.1. Crossed modules. A topological crossed module φ : N → E consists of
topological groups N and E, of a continuous homomorphism φ, and of a right
action of E on N by group homomorphisms, denoted by ne for n ∈ N and e ∈ E,
such that φ is E-equivariant

φ(ne) = e−1φ(n)e

and φ satisfies the Peiffer identity

nφ(m) = m−1nm.

The kernel of φ is always abelian and the image of φ is normal in E. Therefore
the crossed module induces an exact sequence

A→ N → E → G

where A = ker(φ), G = Coker (φ), and there is an induced action of G on A.

The groups A and G are sometimes denoted by π1(N
φ
→ E) and π0(N

φ
→ E),

respectively.
Whenever the group N is abelian the Pfeiffer identity implies that the subgroup

φ(N) of E acts trivially on N . Therefore a crossed module φ : N → E with
N abelian is nothing else but a homomorphism of groups φ and an action of G
on N such that φ is E-equivariant. We will denote the crossed module by the
homomorphism φ : N → E.

7.2. 2-groups. A topological 2-group is a group object in topological groupoids,
or equivalently a groupoid object in topological groups. Let G be the groupoid
in topological groups and denote by G1 the group of morphisms, G0 the group of
objects, s, t : G1 → G0 the source and target homomorphisms and e : G0 → G1

the identity homomorphism. To a 2-group one may associate the groups π0(G)
and π1(G), the first being the isomorphism classes of objects of G which becomes
a group by the group operation of G, and the second the group of automorphism
of the identity object 1G0 ∈ G0. The group π1(G) is abelian and is endowed with a
right action of π0(G). Strict morphisms of 2-groups are continuous functors that are
group homomorphisms on the level of objects and of morphisms. A strict morphism
of 2-groups is an equivalence if it induces isomorphisms at the level of π1 and π0
[BL04, Thm. 8.3.7 & Cor. 8.3.8].

7.3. Equivalence of 2-groups and crossed modules. 2-groups and crossed
modules are equivalent concepts. If we have a 2-group G let N = Ker (s) ⊂ G1,
E = G0, φ = t|N and the right action of E on N is obtained by the equation
ne := e(e)−1ne(e), then t : N → E is a crossed module. If we have a crossed
module φ : N → E, define the action groupoid [E/N ] whose group of morphisms
is G1 := E × N , whose group of objects is G0 = E, and the structural maps are
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s(e, n) = e, t(e, n) = eφ(n) and e(e) = (e, 1N). The product structure on E ×N is

given by the semidirect product, (e, n) · (e′, n′) = (ee′, ne
′

n).
Two extremal cases are worth highlighting, i.e. whenever one of the two groups

N or E on the crossed module N → E is trivial. For G a group, the crossed module
{0} → G induces the 2-group G ⇒ G where the source and the target maps are
the identity; this 2-group is simply denoted by G, sometimes by G[0]. For A an
abelian group, the crossed module A→ {0} induces the 2-group A⇒ {0} which is
sometimes denoted A[1]. A 2-group of the form A[1]×G defines the crossed module
A→ G with trivial homomorphism and trivial action of G on A.

7.4. Morphisms of crossed modules. A strict morphism of crossed modules
consists of group homomorphisms ψ2 : N → N and ψ1 : E → E commuting with
φ and φ and which respect the actions. A strict morphism is an equivalence of
crossed modules if the induced homomorphisms on π2 and π1 are isomorphisms
[BL04, Thm. 8.3.7 & Cor. 8.3.8].

Non-strict morphisms between crossed modules where coined butterflies by Noohi
[AN09, Def. 4.1.3] and they are the following. Take two crossed modules φ : N → E
and φ : N → E, then a butterfly from the first to the second consist of a diagram

N

κ

��❅
❅❅

❅❅
❅❅

❅

φ

��

N

ι

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

φ

��

P

π

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

J

��❅
❅❅

❅❅
❅❅

❅

E E

of topological groups and group homomorphisms, such that N
ι
→ P

π
→ E is a group

extension, and N
κ
→ P

J
→ E is a complex. The maps must satisfy the equivariance

conditions

ι(nJ(p)) = p−1ι(n)p, κ(nπ(p)) = p−1κ(n)p

where n ∈ N , p ∈ P and n ∈ N .
A morphism of butterflies P and P ′ (a 2-morphisms) consists of a group homo-

morphism ψ : P → P ′ such that the diagram

N

  ❆
❆❆

❆❆
❆❆

❆

φ

��

// P ′

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵

��✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍

Noo

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

φ

��

P

OO

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

  ❆
❆❆

❆❆
❆❆

❆

E E

commutes and is compatible with all structural maps.
A strict morphism between the crossed modules, consisting of homomorphisms

f1 : N → N and f0 : E → E commuting with φ and φ′ and preserving the actions,
does define a butterfly in which P = E ⋉ N , π(e, n) = e, J(e, n) = f0(e)φ(n),
ι(n) = (1, n) and κ(n) = (φ(n), f1(n

−1)). The product in E ⋉N is

(e1, n1) · (e2, n2) = (e1e2, n
f0(e2)
1 n2).
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7.5. Classification of crossed modules. Let us consider the category of crossed
modules whose underlying groups are locally contractible, compactly generated and
paracompact. Then the isomorphism classes of crossed modules in this setup are
classified by a group G, an abelian group A, which is moreover a G-module, and
a Segal-Mitchison cohomology class in H3(G•, A). This result follows from [Bre92,
Prop. 2.3.4], cf. [Rou03, SP11], when considering the isomorphism classes of crosses
module extensions of the crossed module G[0] by the crossed module A[1].

Whenever the action of G on A is trivial, we may say that the crossed module
defines a multiplicative Segal-Mitchison gerbe with structure group A in the sense
of this article.

From the short exact sequence A→ E(G)A→ B(G)A defined in (1.1), we obtain
the isomorphism

H3(G•, A) ∼= H2(G•, B(G)A)

since E(G)A = Map(G,A) is G-soft. A class in H3(G•, A) defines a short exact
sequence of groups

B(G)A→W → G,

which induces a crossed module whose four term exact sequence is

A→ E(G)A→W → G.

This procedure allow us to construct a crossed module extension of G[0] by A[1]
for any element in H3(G•, A) in a canonical way.

8. Appendix B: Lifting bundle gerbes

The bundle gerbes that appear in this work are of specific type and deserve some
explanation. They were denoted lifting bundle gerbes by Murray [Mur96] and they
are constructed using principal bundles. For a comprehensive study of gerbes and
its properties we refer to [NW13] and the references therein.

Consider the category Topab of compactly generated and locally contractible
Hausdorff topological abelian groups and continuous homomorphisms. Let us fix
a topological group A in Topab which will be the structure group of the gerbes
[Bry93].

8.1. Objects. A lifting bundle A-gerbe is a pair (N,E) consisting of a central
extension A → N → N/A and of a principal N/A-bundle E. A lifting bundle
A-gerbe can be understood as a representative for the problem to lift the structure
group of the principal bundle E from N/A to N . In this article, another perspective
will be useful.

Associated to any lifting bundle A-gerbe is a topological action groupoid [E/N ],
where N acts on E through the projection N → N/A. We will use the notation
[E/N ] for lifting bundle A-gerbes below. Note that the isotropy group of each
object is A. The base space of a lifting bundle A-gerbe [E/N ] is the base space
E/N of the principal bundle E; it is the space of isomorphism classes of objects of
the topological groupoid [E/N ]. We will denote the lifting bundle A-gerbes also by
the four term sequence

A −→ N � E −→ E/N .

Given the abelian group A, there are two canonical examples:



PONTRJAGIN DUALITY ON MULTIPLICATIVE GERBES 37

(1) The canonical lifting A-bundle gerbe is [EBA/EA]; here, the central exten-
sion is A→ EA→ BA, and the principal BA-bundle is EBA→ B2A. As
a four term sequence it looks as follows:

A −→ EA � EBA −→ B2A.

(2) The trivial lifting A-gerbe is [∗/A], i.e., N = A and E = ∗.

The Lifting bundle gerbes appearing in this work are ones with N abelian, which
we then call abelian lifting A-gerbes. In most of the cases it is the degree 0 group
C0 of a complex, and the group A is the zeroth cohomology group H0 ⊂ C0. The
space E consists of pairs of points on a fixed space together with elements in the
degree 1 group C1 of the complex. The action of N on E is simply obtained by
adding the image of the differential d : C0 → C1.

8.2. Morphisms. Take two lifting bundle A-gerbes [E/N ] and [D/M ]. A strict
morphism is a continuous functor ψ : [E/N ] → [D/M ] that is A-equivariant at the
level of morphisms.

More explicitly, the functor ψ is at the level of morphisms given by a continuous
map ψ1 : E×N → D×M , and A acts on both sides by multiplication on N andM ,
respectively. The requirement is that ψ1 is equivariant for these actions. Denoting
for one moment the 1-category of lifting A-gerbes by A-LftGrbs we have then:

HomA-LftGrbs([E/N ], [D/M ])

= {ψ ∈ HomTopGpds([E/N ], [D/M ]) | ψ1 is A-equivariant}.

It is important to notice that not all continuous functors are morphisms of liftingA-
gerbes. The most simple case on which this could be seen is the trivial gerbe [∗/A].
On the one hand HomTopGpds([∗/A], [∗/A]) = Hom(A,A) consists off all endomor-
phism of groups of A. On the other hand HomA-LftGrbs([∗/A], [∗/A]) consists of only
the identity map. Notice also that the natural transformations from the identity
functor on [A/∗] to itself are parameterized by elements in A.

A special example of strict morphisms comes from principal bundle morphisms.
Let E be a principal N/A-bundle, and let D be a principal M/A-bundle, let φ :
N → M be an A-equivariant group homomorphism, and let ψ0 : E → D be a
φ-equivariant map, i.e., ψ0(e[n]) = ψ(e)[φ(n)]. Then, ψ0 and ψ1 := ψ0 × φ from
a strict morphism ψ : [E/N ] → [D/M ]. Note that this works, in particular, when
M = N and φ = idN .

8.3. 2-Morphisms. Continuous natural transformations provide the 2-morphisms
that turn the 1-category of lifting bundle A-gerbes into a 2-category, which from
now will be denoted by A-LftGrbs.

8.4. Monoidal structure. The 2-category A-LftGrbs of lifting bundle A-gerbes
can be moreover be endowed with a monoidal structure. Take two lifting bundle
A-gerbes [E/N ] and [D/M ] and define their product

[E/N ]⊗ [D/M ] := [((E ×D)/(N ⊗M)]

where the group N ⊗M is the quotient of N ×M by its diagonal subgroup ∆ :=
{(a, a−1) | a ∈ A}. The trivial lifting A-gerbe [∗/A] is neutral with respect to this
tensor product.

We remark that the underlying groupoid of [E/N ] ⊗ [D/M ] is not the direct
product of the groupoids [E/N ] and [D/M ], but that there is a continuous functor
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[E/N ] × [D/M ] → [E/N ] ⊗ [D/M ] that is the identity on the level of objects.
A continuous functor ψ : [E/N ] × [E′/N ′] → [D/M ] induces a strict morphism
[E/N ] ⊗ [E′/N ′] → [D/M ] of lifting bundle A-gerbes if and only if its restriction
to isotropy groups is the product of the group A. In terms of the trivial gerbe
[∗/A], the only functor [∗/A]× [∗/A] → [∗/A] that induces a morphism of A-gerbes
[∗/A]⊗ [∗/A] → [∗/A] is the one induced by the product structure on A.

8.5. Strict group objects. A strictly multiplicative lifting bundle A-gerbe is a
strict group object in lifting bundle A-gerbes [BL04]. Thus, it is a lifting bundle
A-gerbe [E/N ] together with strict morphisms [E/N ]⊗ [E/N ] → [E/N ] (multipli-
cation), [E/N ] → [E/N ] (inversion), and [∗/A] → [E/N ] (unit), satisfying strictly
the axioms of a group. Note that a strictly multiplicative lifting bundle A-gerbe is in
particular a group in the category of topological groupoids, i.e., a strict topological
2-group. In fact, these two conditions are equivalent:

Lemma 8.1. A lifting bundle A-gerbe is strictly multiplicative if and only if the
underlying groupoid is a strict topological 2-group.

Proof. The reason for this phenomenon is the fact that for a groupoid [∗/A] to
become a 2-group it is necessary that A is abelian and that the product structure
[∗/A] × [∗/A] → [∗/A] coincides with the product structure of A. Hence, the
structural properties of groups in groupoids impose the conditions necessary for
the product to induce one on lifting bundle A-gerbes. �

We remark that for a strictly multiplicative lifting bundle A-gerbe, the spaces E
and E/N are in fact topological groups, and that there is a group homomorphism
N → E. Hence we obtain an exact four term sequence

A −→ N −→ E −→ E/N .

Under the correspondence between strict 2-groups and crossed modules, the above
4-term sequence is precisely the one associated to a crossed module, see §7.1.

The trivial lifting bundle A-gerbe [∗/A] is strictly multiplicative in a unique
way, and the canonical lifting bundle A-gerbe [EBA/EA] is strictly multiplica-
tive for the given group structure on EBA. Also, the 2-groups of endomorphisms
End〈G,α〉op(G,α), End〈G,α〉(K,β) and

EndEnd〈G,α〉op (K,β)

(
Hom〈G,α〉op((G,α), (K,β))

)

defined in Example 4.3, Theorem 5.1 and Theorem 6.2 respectively are strictly
multiplicative lifting bundle U(1)-gerbes.

8.6. Representations of strictly multiplicative lifting bundle gerbes. Strict
group objects may act on objects. In our case, lifting bundle A-gerbes representa-
tions of group objects in lifting bundle A-gerbes form a 2-category. This 2-category
is constructed in the usual way [BL04]. Objects are lifting bundle A-gerbes rep-
resentations of the specific group object in lifting bundle A-gerbes, morphisms are
morphisms of lifting bundle A-gerbes compatible with the action, and 2-morphisms
are the natural transformations.

An example of a representation of a group in lifting bundle U(1)-gerbes is the
lifting bundle U(1)-gerbe Hom〈G,α〉op((G,α), (K,β)) of Proposition 6.1. It is a right
representation of the group lifting bundle U(1)-gerbe End〈G,α〉op(G,α) and a left
representation of the group lifting bundle U(1)-gerbe End〈G,α〉op(K,β).
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8.7. Weak morphisms. Strict morphisms as defined above are not enough to
capture the essence of the bicategory of lifting bundle A-gerbes (though, for the
purpose of this article they suffice to discuss group objects). There is a well estab-
lished notion of weak morphisms between topological groupoids that correctly re-
flects the equivalence between topological stacks, known as anafunctors, bibundles,
or Hilsum-Skandalis morphisms, see, e.g., [Hae84, Moe91, Pro96]. An A-equivariant
(smooth) version has been introduced in [NW13, App. A]. Adapted to our setting,
we obtain the following. A weak morphism between lifting bundle A-gerbes [E/N ]
and [D/M ] consists of the following structure:

• a space F together with maps µ : F → E and ν : F → D,
• an action of N on F making µ N -equivariant,
• an action ofM on F making ν M -equivariant and µ a principal M -bundle,

such that the actions of A ⊂ N and A ⊂ M agree on F . Weak morphisms will be
pictured as diagrams

F
µ

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

ν

  ❆
❆❆

❆❆
❆❆

❆

E D.

Whenever the map µ : F → D is also an N -principal bundle, the weak morphism
becomes a weak isomorphism, whose inverse is obtained by flipping the sides. In
this case we obtain homeomorphisms

F/D ∼= E, F/M ∼= D, E/N ∼= D/M

and the following diagram induce equivalence of topological groupoids

[F/(M ×N)]

µ

≃
xxqqq

qq
qq
qq
q

ν

≃
&&◆◆

◆◆◆
◆◆◆

◆◆◆

[E/N ] [D/M ].

We shall see now that a strict morphism induces a weak one. Indeed, suppose
Ψ : [E/N ] → [D/M ] is a strict morphism. We obtain a map ψ : E/N → D/M
of the underlying spaces and we may consider the space ∆∗(E × ψ∗D) where ∆ :
E/N → E/N × E/N is the diagonal map. There is a canonical action of N ×M
on ∆∗(E × ψ∗D) and canonical projection maps

∆∗(E × ψ∗D) → E and ∆∗(E × ψ∗D) → D

where the first one is an M -principal bundle. The space ∆∗(E × ψ∗D) together
with the action and the maps is the weak morphism induced by Ψ.

Weak morphisms are related through weak 2-morphisms, which are maps F → F ′

that exchange the maps to E and D, and are equivariant with respect to the actions
of M and N . We refer the reader to the references above for a detailed study of
the 2-categorical structure. Now we are ready to show the following result.

Theorem 8.2. Let us consider the 2-category of Segal-Mitchison gerbes with struc-
ture group A and the 2-category lifting bundle A-gerbes with weak morphisms and
weak 2-morphisms. Then, the functor

A-SM-Grbs →A-LftGrbs

(M,α) 7→[(α∗EBA)/EA],
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is an equivalence of 2-categories.

Proof. The functor is defined in section §2.1 at the level of objects, in section §2.2
at the level of morphisms and in section §2.3 at the level of 2-morphisms.

Let us now show that the functor is essentially surjective. That is, for a lifting
bundle A-gerbe [E/N ] we need to find a Segal-Mitchison A-gerbe α : E/N → B2A
and a weak isomorphism between [E/N ] and [α∗EBA/EA]. For this we need some
preparation.

Since the principal bundle N/A → E → E/N is obtained by pullback from the
universal one N/A→ E(N/A) → B(N/A), we will focus our attention in finding a
canonical Segal-Mitchison A-gerbe

α : B(N/A) −→ B2A

and a weak isomorphism from [E(N/A)/N ] to [α∗EBA/EA].
Consider the diagonal action of A on N ×EA and denote N ×AEA the quotient

group. Consider the diagram of topological groups

N

%%▲▲
▲▲

▲▲
▲▲

▲▲ EA

yysss
ss
ss
ss
s

N ×A EA

π1

yyss
ss
ss
ss
s

π2

$$❏❏
❏❏

❏❏
❏❏

❏❏

N/A BA

where the diagonals are central extensions of groups, and π1 and π2 are the homo-
morphisms induced by projections on the first and second coordinates, respectively.
Applying the classifying space functor B, we obtain the diagram

BN

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖ BEA

xx♣♣♣
♣♣♣

♣♣♣
♣♣

B(N ×A EA)

Bπ1

ww♣♣♣
♣♣♣

♣♣♣
♣♣

Bπ2

&&▼▼
▼▼▼

▼▼▼
▼▼▼

B(N/A)
σ

BB

B2A

and note that there exists a section σ : B(N/A) → B(N ×A EA) of the fiber map
Bπ1 since the fiber BEA is contractible. Take

α := Bπ2 ◦ σ : B(N/A) → B2A

and let us show that the lifting bundle A-gerbes [E(N/A)/N ] and [α∗EBA/EA]
are weakly isomorphic.

The diagram of principal bundles

E(N/A)

p1

��

E(N ×A EA)
Eπ1oo Eπ2 //

p

��

EA

p2

��
B(N/A)

σ

55
B(N ×A EA)

Bπ1oo Bπ2 // B2A
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induces the diagram of principal bundles over the same base B(N/A)

E(N/A)

p1

��

σ∗E(N ×A EA)
Eπ1oo Eπ2 //

p

��

α∗EA

p2

��
B(N/A) B(N/A) B(N/A).

The space σ∗E(N×AEA) has free commuting actions of both N and EA and their
actions agree on A. The bundle Eπ2 : σ∗E(N ×A EA) → α∗EA is an N -principal
bundle and the bundle Eπ1 : σ∗E(N×AEA) → E(N/A) is an EA-principal bundle.
Hence, we have a weak isomorphism.

Note that whenever N = EA we may take σ : B2A→ B(EA×AEA) as σ := B∆
where ∆ : BA→ EA×A EA, ∆[λ] = [(λ, λ)]. The composition becomes

α = Bπ2 ◦B∆ = B(π2 ◦∆) = B(id) = id

and therefore the map α : B2A→ B2A is the identity.
Let us now show that the functor is fully faithful. Consider two Segal-Mitchison

gerbes (M,α) and (N, β), and let F be a weak morphism between [α∗EBA/EA]
and [β∗EBA/EA]. We have then maps

F
µ

{{✇✇
✇✇
✇✇
✇✇
✇

ν

##●
●●

●●
●●

●●

α∗EBA β∗EBA

where F is endowed with an action of EA × EA and µ is a principal EA-bundle.
The maps µ and ν induce maps at the level of quotient spaces

F/(EA× EA)

µ̃

∼=uu❧❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧
ν̃

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

M = α∗EBA/EA β∗EBA/EA = N

where µ̃ is a homeomorphism and µ̃−1 is its inverse. It is now straightforward to
check that the maps α and β ◦ ν̃ ◦ µ̃−1 are homotopic, where ν̃ ◦ µ̃−1 : M → N .
This implies that the functor

HomA-SM-Grbs((M,α), (N, β)) → Homweak
A-LftGrbs([α

∗EBA/EA], [β∗EBA/EA])

is essentially surjective. In order to see that it is fully faithful, we recall that
morphisms of Segal-Mitchison gerbes are mapped to strict morphisms of lifting
bundle A-gerbes. It is well known from above references about weak morphisms,
that the functor

Homstrict
A-LftGrbs([E/N ], [D/M ]) → Homweak

A-LftGrbs([E/N ], [D/M ])

is fully faithful. Thus, it suffices to show that the 2-morphisms between Segal-
Mitchison gerbes correspond one-to-one with 2-morphisms between strict mor-
phisms of the corresponding lifting gerbes. This follows directly from the defi-
nitions. �
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