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Abstract: We present a gravitoelectric quadrupolar dynamical tidal-interaction Hamiltonian for a

compact binary system, that is valid to second order in the post-Newtonian expansion. Our derivation

uses the diagrammatic effective field theory approach, and involves Feynman integrals up to two loops,

evaluated with the dimensional regularization scheme. We also derive the effective Hamiltonian for

adiabatic tides, obtained by taking the appropriate limit of the dynamical effective Hamiltonian, and we

check its validity by verifying the complete Poincaré algebra. In the adiabatic limit, we also calculate

two gauge-invariant observables, namely, the binding energy for a circular orbit and the scattering angle

in a hyperbolic scattering. Our results are important for developing accurate gravitational waveform

models for neutron-star binaries for present and future gravitational-wave observatories.
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1 Introduction

The detection of gravitational waves (GWs) produced by the inspiral of neutron-star (NS) binaries [1–3]

is a unique probe into the physics of dense nuclear matter inside these stars. The phasing of the GW

signal carries information not only about the binary component’s masses, but also about their mutual

tidal interaction [4]. A NS under the influence of its companion’s tidal field acquires a quadrupole

moment and, depending on the binary’s orbital frequency, the NS can have its normal modes of

oscillation excited. The magnitude of these two effects depends on star’s mass and on the EOS (see

Fig. 1.) The energy spent in deforming each star comes at the expense of the binary’s binding energy

making the inspiral dynamics unfold faster. The imprint of tidal interactions in the GW signal was

observed in GW170817 [1] and lead to constraints on the underlying NS EOS [5–7].

NSs feature a number of oscillation modes, and to understand them we can picture a basic stellar

model that consists of the continuity equation (conservation of mass), Euler’s equation (equation of

motion for the fluid elements), Poisson’s equation (that determines the gravitational force from the

matter distribution), and the EOS (that describes how pressure and density are related). With these

elements combined, we can describe a star in equilibrium, which we can then perturb. The resulting

normal modes of oscillation can be classified as follows [8–12].

The acoustic waves, known as p-modes, arise when the equilibrium state of the star is homogeneous.

The restoring force is due to pressure, hence their name. For p-modes, the radial component of the

fluid perturbations is usually significantly larger than the tangential component, and these modes are

thus sensitive to the compressibility of matter. The gravity waves, known as g-modes, arise when the

equilibrium state of the fluid is stratified due to gravity. The buoyancy acting on fluid elements provides

the restoring force. For g-modes, the tangential component of the fluid perturbations is significantly

larger than the radial component. We can distinguish the p- and g-modes by their evolution in the phase

diagram as one approaches from the center to the star’s surface [10, 13]. When the fluid is assumed to

– 1 –



be of constant density, the gravity waves travel only on the surface, and thus do not have any nodes in

the radial direction. These waves are called surface gravity waves and their frequency depend only on

the mean density of star. Therefore, they are approximately insensitive to the EOS [14, 15].

R(a)

m(a)

λ(a)

Figure 1 Illustration of the problem. Two neutron

stars with massesm(a) and radiiR(a) (a = 1, 2) orbit

one another. Each star experiences a tidal field due

to the gravitational field of its companion. The

tidal field induces a quadrupolar deformation (with

magnitude encoded in the tidal Love number λ(a))

and the displacement away from equilibrium of the

star’s fluid elements is described as an harmonic

oscillator with angular frequency ωf(a), related to

the star’s fundamental (f-)mode. The values of λ(a)

and ωf(a) depend on the star’s mass and internal

composition. The conservative dynamics of this

dynamical tidal problem is studied here to second

post-Newtonian order using an effective field theory

description.

The lowest frequency surface gravity waves is known as the f-mode, which is one of the dominant

modes in the context of tidal excitation [16]. The relation between orbital motion and the quadrupolar

f-modes was first studied by Cowling [17] in Newtonian gravity and then in Refs. [18–22] in general

relativity. The quadrupole f-mode oscillation of a NS coupled to the external tidal field can be described

by the Newtonian Lagrangian (see Ref. [4] or Ref. [23], Sec. 2.5)

LN =
1

4λω2
f

[
dQij

dt

dQij

dt
− ω2

fQ
ijQij

]
− 1

2
EijQij , (1.1)

where ωf is the frequency of the f-mode and λ is the tidal deformability.1 While this Lagrangian only

describes the f-mode, it phenomenologically provides a very good approximation for the total linear

gravitoelectic tidal response, since tidal contributions from other modes (e.g. p-modes) are typically

much smaller. Then Qij is the quadrupole moment of the star and Eij = ∂i∂jΦext is the quadrupolar

tidal field given in terms of spatial derivatives of the external Newtonian gravitational potential Φext.

In the limit in which ωf →∞, the Lagrangian Eq. (1.1) describes adiabatic tides. In this limit, the

tidal bulges do not oscillate, and are instead locked to the external tidal field as Qij = −λEij [24–26].

Qualitatively, the tidal deformability, encoded by the Love numbers, describe how easily a body is

deformed in response to external tidal forces [27]. The value of the Love numbers depend on the body’s

internal composition, and as the compactness of the body increases, the value of the Love numbers

decrease and eventually approaches zero for a black hole [25] (see also Ref. [28].)

The relativistic version of the (1.1) can be obtained by demanding that the Lagrangian is invariant

under Lorentz transformations and reparametrization of worldlines, as first proposed in Ref. [29],

LDT =
z

4λω2
f

[
c2

z2

dQµν
dτ

dQµν

dτ
− ω2

fQµνQ
µν

]
− z

2
EµνQ

µν , (1.2)

1The tidal deformability is related to the dimensionless electric-type quadrupolar Love number k2 of the body and

the radius R of the star as k2 = 3GNλ/(2R
5) [4].
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where Qµν is a symmetric trace-free tensor that models the relativistic quadrupole moment of the

star, Eµν = −c2Rµανβuαuβ/z2 is the gravitoelectric field2, which is the relativistic analogue of the

Newtonian external tidal field, z =
√
u2 is the redshift factor, and τ is the proper time, related to the

coordinate time t as dτ = c dt. Since Qµν has 9 degrees of freedom, whereas the physical quadrupole

of the NS has only 5, we also have to impose a gauge condition

Qµνu
µ = 0 . (1.3)

The most notable effects introduced by the relativistic Lagrangian (1.2) are the appearance of redshift

and frame-dragging effects [29]. In the relativistic case the adiabatic limit is also obtained by taking

ωf →∞ limit. This limit gives us the equation of motion for Qµν ,

Qµν = −λEµν , (1.4)

which substituted back into Eq. (1.2) results in the Lagrangian for adiabatic tides

LAT =
zλ

4
EµνE

µν . (1.5)

Similarly, we can also write a Lagrangian for the higher adiabatic multipole moments which were

studied in Ref. [30]. See also Refs. [25, 26, 31–35]. In general relativity, in addition to the relativistic

gravitoelectric tides, we also get a new sector of gravitomagnetic tides [36–43] that are coupled to

the odd-parity normal modes of the NS, modeled by the current-type multipole moments. For the

adiabatic limit of the gravitomagnetic sector, see Ref. [30]. We note that Eq. (1.4) is justified here

from the phenomenological observation that the f-mode contributes the dominant gravitoelectic tidal

effect. In a systematic EFT construction of dynamical tides, further couplings should we included, as

outlined in Ref. [43] and applied to gravitomagnetic tides, which we leave for future work.

Why should one care about modelling dynamical tidal effects? Recently, Ref. [44] showed that the

higher-order tidal effects, specifically the f-mode dynamical tides, are important to the inference of the

NS EOS with current GW detectors. The absence of dynamical tidal effects can lead to substantial

biases to the inference of the tidal deformability which, in turn, translate into an inaccurate inference

of the EOS. Moreover, the inclusion of dynamical tides are also known to improve the agreement

between GW models and numerical relativity simulations [29, 45–47]. Accurate waveform models are

also necessary to fulfill the scientific goals of next generation ground-based GW observatories [48–50].

With these motivations in mind, we examine here how the dynamic tides affect the dynamics of a

compact binary. To do so, we use effective field theories (EFT) techniques [51] to analyze the binary’s

inspiral, i.e., when the the binary components are moving at nonrelativistic velocities and the orbital

separation is large. In this regime, we can use a perturbative approach that involves a series expansion

in powers of v/c, where v is the orbital velocity of the binary and c is the speed of light. The virial

theorem requires that the kinetic and potential energies of a bound state system to be equal in this case.

Hence, we can perform a post-Newtonian analysis which involves an expansion in two perturbative

parameters: v/c and GN , where GN is Newton’s constant. Terms of order (v/c)n are said to be of

(n/2)PN order. The PN analysis of the binary dynamics can be divided into two sectors, namely

the conservative sector, where the emitted radiation is neglected and the orbital separation does not

decrease, and the radiative sector, where the emitted radiation carries away energy and momentum.

At higher PN orders, these sectors can mix, as due to tail effects which originate from radiation being

2We differ from the action in Ref. [29] for the signature of the metric. Therefore, we add a prefactor of −c2 in the

definition of Eµν so that the leading order contribution matches the required result Eij = ∂i∂jΦext.
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scattered by the orbital background curvature interacting back onto the orbital dynamics (see, e.g.,

Ref. [52].) Using the EFT approach, we can determine any observable quantity at any given PN order.

By using modern diagrammatic based methods, first proposed in Ref. [53], which we recently applied

also to account for spin-dependent effects in Refs. [54, 55], the problem is turned into the determination

of scattering amplitudes. These amplitude can be systematically obtained through the calculation of

the corresponding Feynman diagrams. See, e.g., Refs. [56, 57] for reviews.

The state-of-the-art of the conservative dynamical gravitoelectric tides is the 1PN effective Hamilto-

nian computed in Refs. [29, 58]. The effects of spin and tides were analyzed together in Refs. [43, 59, 60]

for gravitomagnetic tides. In the adiabatic limit, the 2PN effective Hamiltonian was computed in

Refs. [30, 35] for both gravitoelectric and gravitomagnetic tides. Other works in PN theory can be found

in Refs. [30, 39, 58, 61–63]. In the post-Minkowskian (PM) expansion, where the perturbative series is

controlled by GN alone, the adiabatic tidal corrections were studied to 3PM order in Refs. [64, 65].

See also Refs. [66–72]. Adiabatic tidal effects where also included to effective-one-body waveform

models [73, 74] in Refs. [30, 34, 75–77] and in Refs. [29, 45, 59] for the case of dynamical tides.

In this paper, we extend the state-of-the art of the analytic calculations of dynamical gravitoelectric

tides in the conservative sector by working to 2PN order, and we discuss a few physical applications.

The paper is organized as follows. In Section 2, we review the description of tidally-interacting

binaries in the EFT formalism. Next, in Section 3, we present the algorithm used to compute the 2PN

dynamic tidal potential. Our main result, the effective dynamical tidal Hamiltonian (4.4), is presented

in Section 4. In Section 5, we consider the adiabatic limit, and derive an effective adiabatic tidal

Hamiltonian. We scrutinize this result by performing a nontrivial check of the Poincaré algebra and,

as applications, we compute two gauge-independent observables: (i) the binding energy of a circular

binary and (ii) the scattering angle for the hyperbolic encounter of two stars. Finally, we present our

conclusions and avenues for future work in Section 6. This work is supplemented with two ancillary

files: Hamiltonian-DT.m, containing the analytic expression of the Hamiltonian for the dynamic tides

and Hamiltonian-AT.m, containing the analytic expression of the Hamiltonian for the adiabatic tides.

Notation – The mostly negative signature for the metric is employed. Bold-face characters are used

for three-dimensional variables, and normal-face font, for four-dimensional variables. The subscript (a)

labels the binary components on all the corresponding variables, like their position x(a) and quadrupole

moment Q(a). An overdot indicates the time derivative, e.g., v(a) = ẋ(a) is the velocity, a(a) = ẍ(a)

the acceleration and Q̇ = dQ/dt. The separation between two objects is denoted by r = x(1) − x(2),

with absolute value r = |r| and the unit vector along the separation is n = r/r.

2 An EFT description of dynamical tides

In this section, we introduce the EFT description of dynamical tides in a compact binary, following

closely the presentation in Ref. [29]. This section will also serve to fix the notation that will be used in

the remainder of this paper.

We begin by defining three reference frames. These are: (i) the general coordinate frame (denoted

by Greek indices), (ii) the local Lorentz frame (denoted by small Latin indices), (iii) and the rest frame

of the compact objects (denoted by capital Latin indices). The dynamical quadrupolar variables in the

different frames are then given by

Qµν = eµae
ν
bQ

ab , and Qab = BaAB
b
BQ

AB , (2.1)

where eνb is the tetrad that transforms between the general coordinate frame and the local Lorentz

frame. The Lorentz transformation, which boosts between the local Lorentz frame and the rest frame
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of the body is given by

Ba(a)A = ηaA + 2
ua(a)δ

0
A

z(a)
−

(ua(a) + z(a)δ
a
0 )(u(a)A + z(a)δ

0
A)

z(a)(z(a) + uaδ0
a)

, (2.2)

where z(a) =
√
u2

(a). The boost operator satisfies the properties: Ba(a)AB
bA
(a) = ηab and Ba(a)0 = ua(a)/z(a).

To build the EFT description of dynamical tides, we start by modifying the Lagrangian (1.2) by

introducing the conjugate momenta Pµν with respect to the quadrupole moment, that is,

P(a)µν =
1

c

∂L
∂(dQµν(a)/dτ)

=
c

2λω2
fz(a)

dQ(a)µν

dτ
. (2.3)

The advantage of working with Pµν , is that the new Lagrangian will depend only linearly on the

complicated covariant derivative of the quadrupole moment tensor Qµν [29]. The new Lagrangian is

LDT = cPµν
dQµν

dτ
− z

[
λω2

fP
µνPµν +

1

4λ
QµνQµν

]
− z

2
EµνQ

µν . (2.4)

The gauge fixing condition for the dynamical degrees of freedom (1.3) in the rest frame of the star

becomes:

QA0
(a) = 0 , and PA0

(a) = 0 , (2.5)

where, we now explicitly see that QAB(a) and PAB(a) are spatial tensors that encode only the physical degrees

of freedom. Thus, hereafter, we write the spatial tensor QAB(a) δ
i
Aδ

j
B = Qij

(a) and PAB(a) δ
i
Aδ

j
B = P ij

(a).

We can obtain the action for dynamical tides, written explicitly in terms of the physical degrees

of freedom, Qij
(a) and P ij

(a), by bringing the dynamical variables to the rest frame of each body by

using the boost operator (2.2) on the various terms in the Lagrangian (2.4). This gives us the effective

point-particle (“pp”) action

Spp =
∑
a=1,2

∫
dτ

c

[
−m(a)z(a)c

2 + LFD(a) + LMQ(a) + LEQ(a)

]
. (2.6)

The first term is simply the action for a point particle, while the remaining terms originate from the

Lagrangian (2.4) as follows. The first term in Eq. (2.4) gives rise to,

LFD(a) = P ij
(a)Q̇

ij
(a) + c

[
−uµ(a)ω

ij
µ

(
SijQ(a)

2
−

SikQ(a)u
k
(a)u

j
(a)

z(a)(z(a) + ua(a)δ
0
a)

)
− uµ(a)ω

ai
µ δ

0
aS

ij
Q(a)

uj(a)

z(a)

+
SijQ(a)u

i
(a)

z(a)(z(a) + ua(a)δ
0
a)

duj(a)

dτ

]
, (2.7)

which describes frame-dragging (“FD”) effects on the quadrupole moment of each binary component.

Here, we introduced the “tidal spin” tensor

SijQ(a) = 2 (Qki
(a)P

jk
(a) −Q

kj
(a)P

ik
(a)) , (2.8)

which describes the angular momentum of the dynamical quadrupole moment. The second term in

Eq. (2.4) yields,

LMQ(a) = −z(a)

[
λ(a)ω

2
f(a)P

ij
(a)P

ij
(a) +

1

4λ(a)
Qij

(a)Q
ij
(a)

]
= −z(a)MQ(a) . (2.9)
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This term governs the dynamics of the quadrupole moment, which, by the second equality, can be

described a time-dependent effective mass term for quadrupole moment (“MQ”). The second equality

is valid because all dependence on the gravitational field comes only through the redshift z(a). Thus

now LMQ(a) becomes similar to the point mass terms [first term in Eq. (2.6)], where the mass MQ(a)

is now time dependent. Finally, the last term in Eq. (2.4) results in,

LEQ(a) = −
z(a)

2
Eij

(a)Q
ij
(a) . (2.10)

This term acts as a driving source for the quadrupole moment’s dynamics and is induced on each of

the binary components by the gravitoelectric tidal field Eij
(a) = Ba(a)iB

b
(a)je

µ
ae
ν
bEµν of its companion.

In these equations, the indices contracted to the physical degrees of freedom, Qij
(a) and P ij

(a), are

understood to be in the rest frame of each star. A derivation of Eq. (2.6) can be found in Ref. [29].

3 Computational algorithm

Having obtained the effective point-particle action which includes dynamical gravitoelectric quadrupolar

dynamical tides, we can now proceed to compute the effective two-body potential. In this section, we

present the computational algorithm to perform this calculation. This potential will then be used in

the next section to obtain the effective two-body Hamiltonian.

The dynamics of the gravitational field gµν is given by the Einstein-Hilbert action along with a

harmonic gauge fixing term in d+ 1 spacetime dimensions,

SEH = − c4

16πGd

∫
dd+1x

√
g R+

c4

32πGd

∫
dd+1x

√
g gµν ΓµΓν , (3.1)

where Γµ = Γµρσg
ρσ, Γµρσ is the Christoffel symbol, R is the Ricci scalar, and g is the metric de-

terminant. We work with the gravitational constant in (d + 1) spacetime dimensions written as

Gd = (
√

4π exp(γE)R0)d−3GN . We express Gd in this particular form because later on we will employ

the modified minimal subtraction scheme [78], and hence the appearance of the 4π, the Euler-Mascheroni

constant γE, and the (arbitrary) lenghtscale R0.

Since we are interested in the conservative dynamics of the system, we decompose the metric

as gµν = ηµν +Hµν , where Hµν is the potential graviton. We then decompose the metric using the

standard Kaluza-Klein parametrization where the 10 degrees of freedom of Hµν are encoded in three

fields: a scalar φ, a three-dimensional vector A and a three-dimensional symmetric rank two tensor

σ [79, 80]. In this parametrization, we write the metric as

gµν =

(
e2φ/c2 −e2φ/c2Aj/c

2

−e2φ/c2Ai/c
2 −e−2φ/((d−2)c2)γij + e2φ/c2AiAj/c

4

)
, with γij = δij + σij/c

2 . (3.2)

We can now obtain the effective action for the binary by integrating out the gravitational degrees

of freedom as follows,

exp

[
i

∫
dt Leff

]
=

∫
DφDAi Dσij exp[i (SEH + Spp)] , (3.3)

where the Einstein-Hilbert action is given by Eq. (3.1) and the point-particle action is given by Eq. (2.6).

To perform this integration, it is convenient to decompose the effective Lagrangian Leff as

Leff = Keff − Veff , (3.4)
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Order Diagrams Loops Diagrams

0PN 1 0 1

1PN 4
0 3

1 1

2PN 21

0 6

1 10

2 5

(a) Point particle sector

Order Diagrams Loops Diagrams

0PN 1 0 1

1PN 4
0 3

1 1

2PN 26

0 6

1 12

2 8

(b) EQ sector

Order Diagrams Loops Diagrams

1PN 2 0 2

2PN 13
0 5

1 8

(c) FD sector

Order Diagrams Loops Diagrams

1PN 1 0 1

2PN 4
0 3

1 1

(d) MQ sector

Table 1: Number of Feynman diagrams contributing different sectors.

where Keff is an effective kinetic term, which does not dependent on any potential graviton (i.e., it does

not depend on φ, A, and σ). We can compute Keff directly up to the required PN order. Explicitly,

we decompose Keff in a point-particle, a frame-dragging, and a “quadrupole mass” contribution, i.e.,

Keff = Kpp +KFD +KMQ,

Kpp =
∑
a=1,2

m(a)

[
1

2
v2
a +

1

8
v4

(a)

(
1

c2

)
+

1

16
v6

(a)

(
1

c4

)]
+O

(
1

c6

)
, (3.5a)

KFD =
∑
a=1,2

{
P ij

(a)Q̇
ij
(a) + SijQ(a)v

i
(a)a

j
(a)

[
1

2

(
1

c2

)
+

3

8
v2

(a)

(
1

c4

)]}
+O

(
1

c6

)
, (3.5b)

KMQ =
∑
a=1,2

M(a)

[
1 +

1

2
v2
a

(
1

c2

)
+

1

8
v4

(a)

(
1

c4

)]
+O

(
1

c6

)
. (3.5c)

The terms that are obtained after performing the integral are collectively denoted by the potential

Veff . These terms are computed by summing over the connected Feynman diagrams without graviton

loops, as shown below,

Veff = i lim
d→3

∫
ddp

(2π)d
eip·(x(1)−x(2))

(2)

(1)

, (3.6)

where p is the linear momentum transferred between the two bodies. To calculate (3.6), we first

generate all the topologies that correspond to graviton exchanges between the worldlines of the two

compact objects. There is one topology at tree-level (GN ), two topologies at one-loop (G2
N ), and nine

topologies at two-loop (G3
N ). We then dress these topologies with the Kaluza-Klein fields φ, A and

σ. The number of diagrams3 appearing in the point-particle sector is given in Table 1a, whereas that

in the tidal sector are given in Tables 1b, 1c and 1d. We then compute these Feynman diagrams by

means of an in-house code that uses tools from EFTofPNG [81] and xTensor [82], for the tensor algebra

3The diagrams which can be obtained from the change in the label 1↔ 2, are not counted as separate diagrams.
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manupulation, and LiteRED [83], for the integration-by-parts reduction. This reduction recasts the

Feynamn diagrams in terms of two point massless master integrals [53] as shown in Fig. 2.

Gravity

Diagrams
←→

≡

Multi-loop

Diagrams

Figure 2: The diagrammatic correspondence between the four-point EFT-Gravity graphs and the

two-point quantum-field-theory (QFT) graphs.

Once the exact expressions for the master integrals are substituted, we perform a Fourier transform

to obtain the position-space effective potential Veff . The details of the algorithm and the expressions

for the master integrals up to two loops can be found in Ref. [54].

After carrying all these steps, the effective potential can be decomposed into a point-particle and a

dynamical tide contribution, i.e., Veff = Vpp + VDT, where

Vpp = VN +

(
1

c2

)
V1PN +

(
1

c4

)
V2PN +O

(
1

c6

)
, (3.7a)

VDT =

2∑
n=0

(
1

c2

)n (
VEQ
nPN + VFD

nPN + VMQ
nPN

)
+O

(
1

c6

)
, (3.7b)

and we remark that VDT has contributions due to the driving source, the “quadrupole-mass” and the

frame-dragging terms.

The potential Veff is now a function of the dynamical variables x(a), Q(a), and SQ(a) and MQ(a)

through Eqs. (2.8) and (2.9) as well, with higher order time derivatives included. The first and

higher-order time derivatives of Q(a), SQ(a), and MQ(a) can be removed using integration by parts,

while second and higher-order time derivatives of x(a) are removed using a coordinate transformation

x(a) → x(a) + δx(a). This coordinate transformation changes the Lagrangian as

δL =
δL
δxi(a)

δxi(a) +O(δx2
(a)) , (3.8)

where δx(a) is chosen such that it removes the undesirable terms from our final Lagrangian. In our

case, since we work up to 2PN order, the process of removing the higher order time derivatives using a

coordinate transformation is equivalent to the substitution of the equation of motion for the acceleration

a(a) and its higher order time derivatives back into the Lagrangian. In the end, this procedure distils

the Lagrangian into a final form which depends only on x(a), v(a), and Q(a).

4 The effective Hamiltonian for dynamical tides

In this section, we present the result of the effective two-body Hamiltonian with dynamical gravitoelectric

tides. This Hamiltonian H is computed from the Lagrangian obtained in the previous section using a
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Legendre transformation

H(x,p,Q) =
∑
a=1,2

(pi(a)v
i
(a) + P ij

(a)Q̇
ij
(a) )− L(x,v,Q) . (4.1)

To express this Hamiltonian in a compact form we introduce a few variables. The total mass of the binary

is denoted by M = m(1) +m(2), the reduced mass by µ = m(1)m(2)/M , the mass ratio by q = m(1)/m(2),

the symmetric mass ratio by ν = µ/M , and the antisymmetric mass ratio δ = (m(1) −m(2))/M , which

are related to each other by,

ν =
m(1)m(2)

M2
=

µ

M
=

q

(1 + q)2
=

(1− δ2)

4
. (4.2)

We express the results in the center-of-mass (COM) frame of reference and define the momentum in

the COM frame as p ≡ p(1) = −p(2). In the COM frame, the orbital angular momentum is defined as

L = r× p. Hence, we can write p2 = p2
r +L2/r2, where pr = p ·n, p = |p| and L = |L|. We rescale all

the variables to express the Hamiltonian in terms of dimensionless quantities, which we denote by a

tilde as follows

p̃ =
1

c

p

µ
, r̃ =

c2

GN

r

M
, L̃ =

c

GN

L

Mµ
, H̃ =

1

c2
H
µ
,

Q̃(a) =
c4

G2
N

Q(a)

M2µ
, S̃Q(a) =

c

GN

SQ(a)

Mµ
, and M̃Q(a) =

1

c2
MQ(a)

µ
. (4.3)

The total EFT Hamiltonian in the dimensionless parameters is given by

H̃ = H̃pp + H̃DT , (4.4)

where

H̃pp = H̃0PN +

(
1

c2

)
H̃1PN +

(
1

c4

)
H̃2PN +O

(
1

c6

)
, (4.5a)

H̃DT =

2∑
n=0

(
1

c2

)n (
H̃EQ
nPN + H̃FD

nPN + H̃MQ
nPN

)
+O

(
1

c6

)
. (4.5b)

The point particle Hamiltonian till 2PN is presented in the same gauge in Appendix C.1 of Ref. [54],

and the tidal sector of the Hamiltonian is known till 1PN [29]. The new result for the tidal Hamiltonian

at 2PN is presented here for the first time to the best of our knowledge.

The leading order contribution at 0PN order is given as

H̃EQ
0PN =

(
Q̃ij

(1)r̃
ir̃j
)(
− 3ν

2r̃5
− 1

q

3ν

2r̃5

)
+ (1↔ 2) , (4.6a)

H̃FD
0PN = 0 , (4.6b)

H̃MQ
0PN = M̃Q(1) + (1↔ 2) . (4.6c)

The next-to-leading order terms at 1PN order are

H̃EQ
1PN =

(
Q̃ij

(1)r̃
ir̃j
) {

L̃2

(
−3ν2

4r̃7
− 3ν

r̃7

)
+ p̃2

r

(
9ν

4r̃5
− 3ν2

r̃5

)
+

15ν

4r̃6

+
1

q

[
L̃2

(
−3ν2

4r̃7
− 9ν

4r̃7

)
+ p̃2

r

(
3ν

4r̃5
− 3ν2

r̃5

)
+

6ν

r̃6

]}
+
(
Q̃ij

(1)L̃
iL̃j
)(
− 3ν

2r̃5
− 1

q

3ν

2r̃5

)
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+
(
Q̃ij

(1)r̃
iL̃j
)
p̃r

[
3ν2

2r̃5
+

1

q

(
3ν2

2r̃5
+

3ν

2r̃5

)]
+ (1↔ 2) , (4.7a)

H̃FD
1PN =

(
S̃Q(1) · L̃

)(2ν

r̃3
+

1

q

3ν

2r̃3

)
+ (1↔ 2) , (4.7b)

H̃MQ
1PN = M̃Q(1)

[
−ν
r̃

+
1

q

(
−L̃2 ν

2r̃2
− p̃2

r

ν

2
− ν

r̃

)]
+ (1↔ 2) . (4.7c)

And finally the novel contributions of the next-to-next-to-leading order terms at 2PN order are

H̃EQ
2PN =

(
Q̃ij

(1)r̃
ir̃ j
){

L̃4

(
− 9ν3

16r̃9
− 63ν2

16r̃9

)
+ L̃2

[
p̃2
r

(
−15ν3

8r̃7
− 45ν2

4r̃7
+

15ν

2r̃7

)
+

225ν2

16r̃8
+

149ν

16r̃8

]
+ p̃2

r

(
75ν2

8r̃6
− 27ν

4r̃6

)
+ p̃4

r

(
−9ν3

2r̃5
+

9ν2

r̃5
− 45ν

16r̃5

)
− 183ν2

28r̃7
− 285ν

56r̃7

+
1

q

[
L̃4

(
− 9ν3

16r̃9
− 45ν2

16r̃9
+

15ν

16r̃9

)
+ L̃2

(
p̃2
r

(
−15ν3

8r̃7
− 33ν2

4r̃7
+

3ν

4r̃7

)
+

231ν2

16r̃8
+

27ν

2r̃8

)

+p̃2
r

(
63ν2

4r̃6
− 9ν

2r̃6

)
+ p̃4

r

(
−9ν3

2r̃5
+

9ν2

2r̃5
− 9ν

16r̃5

)
− 183ν2

28r̃7
− 57ν

4r̃7

]}

+
(
Q̃ij

(1)L̃
iL̃j
){

p̃2
r

(
−3ν3

8r̃5
− 45ν2

8r̃5
+

15ν

4r̃5

)
+ L̃2

(
−9ν2

4r̃7

)
+

3ν2

r̃6
+

43ν

4r̃6

+
1

q

[
L̃2

(
3ν

4r̃7
− 9ν2

4r̃7

)
+ p̃2

r

(
−3ν3

8r̃5
− 51ν2

8r̃5
+

3ν

8r̃5

)
+

3ν2

r̃6
+

9ν

r̃6

]}
+
(
Q̃ij

(1)r̃
iL̃j
)
p̃r

{
L̃2

(
9ν3

8r̃7
+

15ν2

8r̃7

)
+ p̃2

r

(
33ν3

8r̃5
− 39ν2

8r̃5

)
− 15ν2

4r̃6
− 91ν

4r̃6

+
1

q

[
L̃2

(
9ν3

8r̃7
+

21ν2

8r̃7
− 3ν

8r̃7

)
+ p̃2

r

(
33ν3

8r̃5
+

15ν2

8r̃5
− 9ν

8r̃5

)
− 27ν2

4r̃6
− 9ν

r̃6

]}
+ (1↔ 2) , (4.8a)

H̃FD
2PN =

(
S̃Q(1) · L̃

){
−5ν2

4r̃4
− 7ν

r̃4
+ p̃2

r

(
43ν2

8r̃3
− 2ν

r̃3

)
+ L̃2

(
13ν2

8r̃5
+

ν

r̃5

)
+

1

q

[
−5ν2

4r̃4
− 5ν

r̃4
+ p̃2

r

(
17ν2

4r̃3
− 5ν

8r̃3

)
+ L̃2

(
5ν2

4r̃5
− 5ν

8r̃5

)]}
+ (1↔ 2) , (4.8b)

H̃MQ
2PN = M̃Q(1)

{
L̃4

(
−3ν2

8r̃4

)
+ L̃2

[
p̃2
r

(
−3ν2

4r̃2

)
− 2ν

r̃3

]
+ p̃2

r

(
−3ν

2r

)
+ p̃4

r

(
−3ν2

8

)
+

3ν

2r̃2

+
1

q

[
L̃4

(
3ν

8r̃4
− 3ν2

4r̃4

)
+ L̃2

(
p̃2
r

(
3ν

4r̃2
− 3ν2

2r̃2

)
+

3ν

2r̃3

)
+ p̃ 2

r

3ν

2r
+ p̃4

r

(
3ν

8
− 3ν2

4

)
+

ν

2r̃2

]}
+ (1↔ 2) . (4.8c)

Equations (4.8), together with the previously known results (4.6) and (4.7), complete the description of

the conservative dynamics of gravitoelectric dynamical quadrupolar tidal interaction in a nonspinning

compact binary at 2PN order.

We remark that Steinhoff et al. [29], who worked to 1PN order, had observed that H̃EQ and H̃FD

are similar to the next-to-leading order spin-induced quadrupole and leading-order spin-orbit Hamilto-

nians [84] respectively, upon applying certain replacements. Here, we have derived Eqs. (4.7) and (4.8)

from first principles, starting from the effective action (2.6). As an additional confirmation of our result,
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we used the analogy identified in Ref. [29], to find a canonical transformation from the spin-induced

quadrupole Hamiltonian up to next-to-next-to-leading order [55] to H̃EQ, and from the spin-orbit

Hamiltonian up to next-to-leading order [54] to H̃FD. The effective Hamiltonian in a general reference

frame is provided by us in the ancillary file Hamiltonian-DT.m.

5 The adiabatic limit

In this section, we specialize our results to the limit of adiabatic tides, that is, we take the ωf →∞
limit of the Hamiltonian (4.4). This eliminates the dependence of Hamiltonian on the variables Q(a),

SQ(a) and MQ(a), and hence simplifies our further calculations. We then compute the Poincaré algebra

to validate the result of adiabatic Hamiltonian. Finally, we compute the binding energy and scattering

angle using the adiabatic Hamiltonian and compare these against known results in the literature.

The adiabatic limit physically refers to the quadrupole mode being locked to the external tidal

field induced by the binary companion. In this case, the equation of motion for the Qij
(a) is given by

Qij
(a) = −λ(a)E

ij
(a) , (5.1)

where the Eij
(a) is obtained from the dynamic tides Hamiltonian using the relation

Eij
(a) =

2

z(a)

∂H
∂Qij

(a)

. (5.2)

We can then substitute Eqs. (5.1) and (5.2) in the Hamiltonian (4.4) to obtain the effective Hamiltonian

for adiabatic tides.

We remark that we could also have derived the adiabatic Hamiltonian starting from the action (1.5).

Following this route, we would have to do a three-loop computation to obtain the 2PN adiabatic

effective Hamiltonian. However, one can easily show that all the Feynman diagrams appearing in the

calculation would be factorizable due to the E2 term. This means that all Feynman integrals that

would appear in this calculation would also be factorizable into two-loop master integrals. This reveals

an advantage of computing the adiabatic limit from the dynamical case: we have to compute one less

loop integral to obtain the same result at a given PN order.

5.1 The effective Hamiltonian for adiabatic tides

Similar to the dynamical case, we first rescale all the variables to write the expressions for the

Hamiltonian in terms of the dimensionless parameters given in Eq. (4.3) and we also introduce

λ̃(a) =
c10

G4
N

λ(a)

M5
. (5.3)

The adiabatic effective Hamiltonian in the dimensionless form can be written as4

H̃ = H̃pp + H̃AT , (5.4)

where

H̃pp = H̃0PN +

(
1

c2

)
H̃1PN +

(
1

c4

)
H̃2PN +O

(
1

c6

)
, (5.5a)

4At leading order, adiabatic tides contributes at 5PN which can be easily seen writing the Hamiltonian in the form of

the dimensional Love number as shown in Eq. (5.3). We show here the relative scaling with respect to the 5PN order

contribution.
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H̃AT = H̃AT
0PN +

(
1

c2

)
H̃AT

1PN +

(
1

c4

)
H̃AT

2PN +O
(

1

c6

)
, (5.5b)

The point particle result is known and is also presented in the same gauge in Ref. [54]. The tidal sector

of the Hamiltonian is given as

H̃AT
0PN = λ̃(1)

1

q

(
− 3

2r̃6

)
+ (1↔ 2) , (5.6a)

H̃AT
1PN = λ̃(1)

{
−3ν

r̃7
+ p̃2

r

(
15ν

4r̃6

)
+ L̃2

(
− 3ν

4r̃8

)
+

1

q

[
21

2r̃7
− 3ν

r̃7
+ p̃2

r

(
3

4r̃6
− 3ν

2r̃6

)
+ L̃2

(
− 3ν

2r̃8
− 15

4r̃8

)]}
+ (1↔ 2) , (5.6b)

H̃AT
2PN = λ̃(1)

{
1215ν

56r̃8
+ p̃2

r

(
−15ν2

r̃7
− 18ν

r̃7

)
+ p̃4

r

(
135ν2

8r̃6
− 135ν

16r̃6

)
+ L̃2

[
p̃2
r

(
135ν

8r̃8
− 9ν2

4r̃8

)
− 3ν2

4r̃9
− 117ν

8r̃9

]
+ L̃4

(
− 9ν2

8r̃10
− 27ν

16r̃10

)
+

1

q

[
21ν

2r̃8
− 165

4r̃8
+ p̃2

r

(
−15ν2

r̃7
+

81ν

4r̃7
− 27

4r̃7

)
+ p̃4

r

(
81ν2

16r̃6
+

9ν

4r̃6
− 9

16r̃6

)
+ L̃2

(
p̃2
r

(
−45ν2

8r̃8
− 9ν

2r̃8
+

9

8r̃8

)
− 3ν2

4r̃9
+

6ν

r̃9
+

135

4r̃9

)
+ L̃4

(
− 27ν2

16r̃10
− 27ν

4r̃10
− 45

16r̃10

)]}
+ (1↔ 2) . (5.6c)

This Hamiltonian in a general reference frame is provided by us in the ancillary file Hamiltonian-AT.m.

We were also able to find a canonical transformation from the Hamiltonian in the generic frame in

Eq. (5.4) to the Hamiltonian found in Ref. [35], which validates our result.

5.2 The Poincaré algebra

In this section, we validate the adiabatic effective Hamiltonian (5.4) by deriving the complete Poincaré

algebra [85, 86]. This amounts to computing all the generators of the Poincaré algebra given by

{Pµ, P ν} = 0 , (5.7a)

{Pµ, Jρσ} = −ηµρPσ + ηµσP ρ , (5.7b)

{Jµν , Jρσ} = −ηνρJµσ + ηµρJνσ + ηµσJρν − ησνJµρ , (5.7c)

where Pµ is the linear momentum and Jµν is the angular momentum. These Poisson brackets can be

decomposed into spatial and temporal parts. For later convenience, we separate them into two sets,

{P i,H} = 0 , {J i,H} = 0 , {J i,P j} = εijkP k , {J i,P j} = δijH , {J i,J j} = εijkJk , (5.8)

and

{J i,Gj} = εijkGk , {Gi,P j} =
1

c2
δijH , {Gi,H} = P k , {Gi,Gj} = − 1

c2
εijkJk , (5.9)

where P i are spatial components of the linear momentum, J i are spatial components of the angular

momentum, H is the Hamiltonian, and the boost generator is written as Ki = Gi − tP i, where Gi is

the COM vector.
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We begin by writing the linear momentum and angular momentum of the system as

P i = pi(1) + pi(2) , and J i = εijkxj(1)p
j
(1) + εijkxj(2)p

k
(2) . (5.10)

This ensures that the first set of Poisson brackets in Eq. (5.8) is satisfied. Now our goal is to come

up with an expression for the COM vector Gi such that the second set of Poisson brackets (5.9) is

also satisfied. To do so, we use the first two Poisson brackets in Eq. (5.9), i.e., {J i,Gj} = εijkGk and

{Gi,P j} = (1/c2)δijH, to make an ansatz for G. This suggests that we should make the following

ansatz for the COM vector,

Gi =

(
1

c2

)
H
2

(xi(1) + xi(2)) + hri + Y i , (5.11)

where h is antisymmetric in 1↔ 2, while Y is symmetric in 1↔ 2. We can now fix uniquely the above

ansatz, in other words, we can determine h and Y , by using the third Poisson bracket of Eq. (5.9), i.e.,

{Gi,H} = P k. Once we have the ansatz is uniquely fixed, we can check its validity by verifying that

it does satisfy the last Poisson bracket in Eq. (5.9), i.e., {Gi,Gj} = −(1/c2)εijkJk. Following this

procedure, we can determine uniquely h and Y i appearing in the COM vector Gi, up to 2PN order:

h =
m(1)

2
+

(
1

c2

){
p2

(1)

4m(1)
+ λ(1)

(
−G2

3m2
(2)

4r6

)}
+

(
1

c4

){
G2

m2
(1)m(2)

4r2
−

p4
(1)

16m3
(1)

+ λ(1)

[
3G3m2

(2)

(
5m(1) + 7m(2)

)
4r7

+G2

(
−

9m(2)(p(1) · n)(p(2) · n)

2m(1)r6
+

9m2
(2)

(
p(1) · n

)
2

4m2
(1)r

6

+
9m(2)(p(1) · p(2))

2m(1)r6
−

15m2
(2)p

2
(1)

8m2
(1)r

6
+

9
(
p(2) · n

)
2

2r6
−

9p2
(2)

4r6

)]}
− (1↔ 2) , (5.12)

and

Y i =
1

c4

[
−1

4
G(p(2) · n)

]
+ (1↔ 2) . (5.13)

The existence of this unique vector G provides us with a stringent consistency check on the adiabatic

tidal Hamiltonian we derived.

5.3 Binding energy for circular binaries

In this section, we compute the binding energy in the COM frame for circular orbits. The gauge

invariant relation between the binding energy and the orbital frequency for circular orbits (pr = 0)

is obtained by eliminating the dependence on the radial coordinate. For circular orbits we have

∂H̃(r̃, L̃)/∂r̃ = 0 . We then proceed as follows. First, we invert this relation to express r̃ as a function

of L̃. Next, we substitute L̃, written as a function of the orbital frequency ω̃ = ∂H̃(L̃)/∂L̃, in the

Hamiltonian (5.4). Following this procedure we obtain the binding energy E as,

E(x, λ̃(a)) = Epp(x) + EAT(x, λ̃(a)) , (5.14)

where we introduced x = ω̃2/3, Epp can be found in Ref. [54], and

EAT(x, λ̃(a)) = −x6
(

9λ̃(+)

)
+ x7

[(
33

4
ν − 121

8

)
λ̃(+) −

(
55

8

)
δλ̃(−)

]
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+ x8

[(
−91

16
ν2 +

2717

42
ν − 20865

224

)
λ̃(+) +

(
715

48
ν − 11583

224

)
δλ̃(−)

]
, (5.15)

where

λ̃(±) =
m(2)

m(1)
λ̃(1) ±

m(1)

m(2)
λ̃(2) , (5.16)

This expression for the binding energy agrees with the previously known result of Ref. [35], Eq. (6.5b),

derived using classical PN techniques [87, 88].

5.4 Scattering angle for hyperbolic encounters

As a second application, we now compute the scattering angle χ in the COM frame for the hyperbolic

encounter of two stars. To do this calculation we as follows. First, we re-express the Hamiltonian H
(which is a function of pr, L and r) to obtain pr = pr(H, L, r). Next, we use relation between the

Lorentz factor γ and the total energy per total rest mass Γ = H/(Mc2) given by

γ =
1√

1− v2/c2
= 1 +

Γ2 − 1

2ν
, (5.17)

where v ≡ |ṙ| is the relative velocity of the compact objects, and the total angular momentum L and

the impact parameter b are related by L = (µγvb)/Γ. This allows us to exchange H for v and L for b.

Put together, we can then write the scattering angle as

χ(v, b) = − γ

µγv

∫
dr

∂pr(v, b, r)

∂b
− π . (5.18)

Performing this procedure with the Hamiltonian (5.4) yields the scattering angle computed in the

COM frame, which we write as

χ(v, b) = χpp(v, b) + χAT(v, b) , (5.19)

with the following adiabatic tidal contribution

χAT

Γ
=

1

Mb4
[
λ(+) δλ(−)

]
·

{
π

(
GNM

v2b

)2 [
1

0

]{
45

16
+

135

32

(
v2

c2

)
+

1575

256

(
v4

c4

)}

+

(
GNM

v2b

)3{
48

[
1

0

]
+

[
732/5

12

](
v2

c2

)
+

3

35

[
3073

593

](
v4

c4

)}
+π

(
GNM

v2b

)4{
315

8

[
1

0

]
+

315

64

[
51− 2ν

5

](
v2

c2

)
+

15

128

[
5331− 274ν

1383

](
v4

c4

)}}

+O
(
G5
N ,

v6

c6

)
, (5.20)

where we introduced

λ(±) =
m(2)

m(1)
λ(1) ±

m(1)

m(2)
λ(2) , (5.21)

and χpp is reported in Ref. [54], Section 6.2. Notice that we use a matrix notation in Eq. (5.20)

to make the expression shorter. Equation (5.20) agrees to 3PM (i.e., G3
N ) with the result reported

by Ref. [64, 65], obtained using techniques of worldline QFT [89] and the EFT developed for PM

calculations [66], respectively.
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6 Conclusions

In this work, we derived an effective Hamiltonian that describes the dynamical gravitoelectric tidal

interaction between two nonspinning compact objects up to the 2PN order. We also computed the

effective Hamiltonian in the adiabatic limit, which we used to calculate two gauge-invariant quantities,

namely, the binding energy of a circular binary and the scattering angle for a hyperbolic scattering.

These result extend previous results in the literature and agree in their particular limits. We expect

our result to be used to improve accuracy of gravitational waveform models, for applications to present

and future ground-based GW observatories.

Our work can be extended in several directions. One possibility is to compute the next higher-order

corrections to the dynamic and adiabatic Hamiltonians. This would be important to further improve

GW models for NS binaries. Here, we focused on the dynamical gravitoelectric quadrupolar tides, but

our framework is general enough to be extended to obtain higher-order corrections for the dynamical

gravitomagnetic tides [43, 60], as well as to incorporate higher order multipolar tides. It could also be

interesting to work at lower PN order, but including additional physics to the model. For example, the

coupling of the oscillation modes of the NS with other degrees of freedom, such as its spin [21, 59, 90],

or other oscillation modes [91–96] could also be incorporated to improve the model’s level of physical

realism. Finally, we could follow Refs. [29, 45] and add our 2PN Hamiltonians into time-domain

effective-one-body waveform models to improve their agreement with numerical relativity simulations.
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