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In the following, we present theoretical underpinnings of our main results, thus further strengthening our1

findings. In Supplementary Note 1, we analyze reputation dynamics in a homogeneous population of2

leading eight players using quantitative assessment that start out with a single disagreement among them.3

We model the dynamics as a Markov chain, and show that the expected time to recovery from a single4

disagreement is bounded from above by the corresponding quantity in the binary assessment model.5

In Supplementary Note 2, we give a formal characterization of those social norms that are successful6

by using quantitative assessment under private and imperfect information. This is in analogy to previous7

work that gave such axioms for the case of binary assessment under public information2. With this8

characterization, we can explain why we have identified four leading eight norms that can maintain9

cooperation in the private information setting when players use more nuanced assessment.10

Supplementary Note 1: Recovery analysis11

We can also analyze the recovery from single disagreements when R = 1, in close analogy to previous12

work1. To this end, we consider a setting where observation is perfect (q = 1) and perception errors are13

rare (ε → 0). We then assume an initial configuration where all players perceive everyone else as good14

with the exception of player 1, who perceives player 2 as bad, potentially due to a previous error. That15

is, we have an initial image matrix M(0) with entries16

r0ij =

{
−1 if i = 1, j = 2

0 otherwise.
(1)

The defining feature of this initial configuration is that with the exception of the pair (i, j) = (1, 2),17

all players assign the overall label ”good” to their co-players. Alternatively, we can thus also envision an18

intial configuration of19
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r0ij =

{
−1 if i = 1, j = 2

1 otherwise.
(2)

The defining feature is that with the exception of the pair (i, j) = (1, 2), all players assign the overall20

label ”good” (henceforth denoted G) to their co-players.21

We define as recovery of the population the return to the state where all players have a good reputa-22

tion, starting from M(0). In this context, we are now interested in two quantities, which depend on the23

social norm Li applied in the population: the population’s recovery probability ρi, and the expected time24

till recovery τi, conditioned on recovery actually taking place.25

With the following proposition, we simplify our analysis:26

Proposition 1. Consider the indirect reciprocity game for a population in which everyone applies the27

same leading-eight strategy Li and uses quantitative assessment with R = 1, such that reputation scores28

can take the values rij = {−1, 0, 1}. Moreover, assume that the initial image matrix is M(0) as defined29

either by Eq.(1) or (2), and let M(t) denote the image matrix at some subsequent time t> 0 according30

to the process with perfect observation and no noise, q=1 and ε=0. Then, M(t) ∈M, whereM is the31

set of all image matrices that satisfy the following four conditions32

(i) rii ∈ {0, 1} for all i, (ii) rij = ri′j for i, i′ ≥ 2, j ≥ 1, (iii) rij ∈ {0, 1} for all {i, j} ≥ 2,

(3)

Additionally, we have that33

(iv) rt+1
ij ≥ rtij for all i, j ≥ 2, (4)

and that34

(v) rt+1
ii ≥ rtii for all i. (5)

Proof of Proposition 1. We consider the Markov chain on the space of image matrices H = (hM,M ′),35

in the limiting case of ε = 0 and q = 1. We then show that the setM of image matrices that satisfy the36

properties (i)–(v) is invariant. That is, let M ∈ M be arbitrary and suppose that hM,M ′ > 0 for some37

matrix M ′. Then also M ′ = {r′ij} satisfies all properties.38

(i) r′ii ∈ {0, 1} for all i. Since M ∈ M, initially all players consider themselves as good, i.e. r0ii ∈39

{0, 1}. All leading-eight strategies have the property that the strategy’s action rule prescribes an40

action that lets a good donor maintain her good reputation in her own eyes, independent of which41

reputation she assigns to the recipient. Thus, all players keep considering themselves as good after42

one interaction; either they do not need to make a decision (because they were not chosen to act as43

the donor), or they choose an action they themselves evaluate as good.44

(ii)– (iii) r′ij = ri′j for i, i′ ≥ 2, j ≥ 1 and rij ∈ {0, 1} for all i, j≥2. Since M ∈M, all players i, j≥245

initially agree on the reputations of all population members. Because they all apply the same46
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assessment rule and observation errors are excluded, they also agree on how the donor’s action47

in the subsequent interaction needs to be assessed. This shows r′il = r′jl for all i, j ≥ 1 and all l.48

Moreover, since all players i, j≥ 2 consider each other as good initially, and since their common49

action rule only lets them choose actions that let them keep their good reputation, we conclude50

r′ij ∈ {0, 1} for i, j≥2.51

(iv)– (v) rt+1
ij ≥ rtij for all i, j ≥ 2 and rt+1

ii ≥ rtii for all i. Since M ∈ M, all players i ≥ 2 initially52

agree on the good reputations of all population members. By (ii) and (iii), all players i≥ 2 also53

keep their good image of each other, and only potentially change their opinion about player 1.54

Since they thus never act against their assessment of each other for any reason, their reputation55

scores in each others’ eyes can only increase. Hence r′ij ≥ rij for all i, j ≥ 2. The same reasoning56

applies to all self images, including that of player 1 - due to the lack of observation errors of any57

kind, players never act against their own assessment rule, and can only improve their self image58

over time. This shows r′ii ≥ rii for all i.59

60

Proposition 1 guarantees that when we consider a process with private information, perfect ob-61

servation, and no noise, (i) all players assign themselves a good reputation overall, (ii) all players62

2 ≤ i, j ≤ N assign each other a good reputation overall, (iii) all players 2 ≤ i, j ≤ N assign the same63

reputation to player 1, (iv) the exact reputation scores that players 2 ≤ i, j ≤ N assign to each other at64

time t can not be smaller than in the initial configuration. Furthermore, (v) and (vi) additionally imply65

that the exact reputation scores that players 2 ≤ i, j ≤ N assign to each other are nondecreasing over all66

timesteps t, which means that the overall reputations among these players cannot turn into “bad”.67

Proposition 1 also lets us reduce the state space when we consider a model of private information.68

Instead of tracking entire image matrices M , we can focus on 3-tuples (s, k, l), with s ∈ {−1, 0, 1},69

k ∈ {0, ..., N − 1}, l ∈ {0, ..., N − 1} and 0 ≤ (k + l) ≤ N − 1. We identify s as player 1’s reputation70

score from the perspective of all other players (due to Proposition 1(iii), all other players agree on player71

1’s reputation). The value of k denotes the number of players that player 1 considers to have score72

r1i = 0, whereas l denotes the number of players that 1 considers to have score r1j = 1. The sum of k73

and l thus corresponds to the number of players that player 1 considers to have a good reputation overall.74

We can use this reduction due to Proposition 1(iii), which says that all other players can be considered75

to be equivalent.76

In this reduced state space, the Markov chain has 3(N+1)N
2 states in total. The initial states as defined77

in Eqs.(1) and (2) now correspond to the 3-tuples (0, N − 2, 0) and (1, 0, N − 2). On the other hand, we78

can identify the fully recovered state as a group of configurations A, with79

A = {(x, y, z)|x ∈ {0, 1}, y + z = N − 1} (6)

We can now write down transition probabilities for Li, f i(s, k, l; s′, k′, l′), for the reduced state80
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space. They denote probabilities of the population moving from state (s,k,l) to (s’,k’,l’) in one round.81

There are at most 12 different transitions the population can take in the course of a run of the reputation82

dynamics. Given the nature of the quantitative assessment dynamics we have introduced, many transition83

probabilities are independent of the exact value of s; instead, they depend on whether s ≥ S with S the84

threshold for overall assessment, i.e. whether player 1 has a “good” or “bad” image in the eyes of the85

other players. This means that in these cases f i(1, k, l; 1, k′, l′) = f i(0, k, l; 0, k′, l′) ∀i, k, l, and we86

write them as f i(G, k, l;G, k′, l′). In analogy, we write f i(B, k, l;B, k′, l′) for f i(−1, k, l;−1, k′, l′).87

We can calculate the transition probabilities as follows:88

Transition (G, k, l)→ (G, k+1, l). This case can only occur if a player i > 1 is chosen to be the donor89

who is perceived as bad by player 1. Given that the current state is (G, k, l), it follows from Propo-90

sition 1 that the donor considers everyone as good, and hence they cooperate. If player 1 considers91

the receiver to be good, this leads them to assign a good reputation to the donor, independent92

of the applied leading-eight strategy Li. Otherwise, if player 1 considers the receiver to be bad,93

the donor only obtains a good reputation for L1, L2, L3, and L5. Therefore, the corresponding94

transition probability is95

f i(G, k, l; G, k+1, l) =

{
N−(k+l)−1

N if i ∈ {1, 2, 3, 5}
N−(k+l)−1

N
k+l+1
N−1 if i ∈ {4, 6, 7, 8}.

(7)

Transition (G, k, l)→ (G, k−1, l). This case can only occur if a player i>1 is randomly chosen to act as96

the donor who is perceived to have reputation score r1i = 0 by player 1. Similar to before, player97

i will always cooperate, which is only considered as bad by player 1 if the receiver is considered98

as bad by player 1 and if the applied strategy is either L2, L5, L6, or L8. Therefore, the transition99

probability is100

f i(G, k, l; G, k−1, l) =

{
0 if i ∈ {1, 3, 4, 7}

k
N

N−(k+l)−1
N−1 if i ∈ {2, 5, 6, 8}.

(8)

Transition (G, k, l)→ (B, k, l). This corresponds to the probability f i(0, k, l;−1, k, l). The transition101

can only occur if player 1 is chosen to be the donor, and if player 1 defects against the receiver102

(which in turn requires player 1 to consider the receiver as bad). The corresponding transition103

probability is104

f i(0, k, l; − 1, k, l) =
1

N

N − (k + l)− 1

N − 1
. (9)

Transition (B, k, l)→ (B, k+1, l). This case requires that a player i> 1 is chosen to be the donor who105

is considered as bad by player 1. This donor cooperates, unless the randomly chosen receiver106

happens to be player 1 (who is bad from the perspective of all other players). Thus, player 1107

considers the donor as good after this round unless the receiver is player 1, or the receiver is108

a group member that is considered as bad by player 1 and the applied leading-eight strategy is109
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L4, L6, L7, or L8. Hence, we obtain110

f i(B, k, l; B, k+1, l) =

{
N−(k+l)−1

N
N−2
N−1 if i ∈ {1, 2, 3, 5}

N−(k+l)−1
N

(k+l)
N−1 if i ∈ {4, 6, 7, 8}.

(10)

Transition (B, k, l)→ (B, k−1, l). This case requires that a player i> 1 is chosen to be the donor who111

player 1 considers to have reputation score r1i = 0. To become bad in player 1’s eyes, this donor112

then either needs to defect against player 1, or he needs to cooperate against a receiver who is113

considered as bad by player 1 (provided that the applied leading-eight strategy is L2, L5, L6, or114

L8). The transition probability becomes115

f i(B, k, l; B, k−1, l) =

{
k
N

1
N−1 if i ∈ {1, 3, 4, 7}

k
N

N−(k+l)
N−1 if i ∈ {2, 5, 6, 8}.

(11)

Transition (B, k, l)→ (G, k, l). This corresponds to the probability f i(−1, k, l; 0, k, l). It requires player116

1 to be the donor, and that player 1 cooperates with her co-player. The probability is117

f i(−1, k, l; 0, k, l) =
1

N

(k + l)

N − 1
. (12)

Transition (G, k, l)→ (G, k − 1, l + 1). This case requires that a player i> 1 is chosen to be the donor118

who is considered to have reputation score r1i = 0 by player 1. This player cooperates with119

probability 1, since they consider everyone to be good. Player 1 will increment the reputation120

score of the donor unless the social norm applied is L4, L6, L7, L8 and the receiver is considered121

to be bad by player 1.122

f i(G, k, l;G, k − 1, l + 1) =

{
k
N if i ∈ {1, 3, 4, 7}

k
N

(k+l)
N−1 if i ∈ {2, 5, 7, 8}.

(13)

Transition (G, k, l)→ (G, k + 1, l − 1). This case requires that a player i> 1 is chosen to be the donor123

who is considered to have reputation score r1i = 1 by player 1. This player cooperates with124

probability 1, since they consider everyone to be good. Player 1 will decrement the reputation125

score of the donor only if the social norm applied is L2, L5, L6, L8 and the receiver is considered126

to be bad by player 1.127

f i(G, k, l;G, k + 1, l − 1) =

{
0 if i ∈ {1, 3, 4, 7}

l
N

N−(k+l)−1
N−1 if i ∈ {2, 5, 6, 8}.

(14)

Transition (B, k, l)→ (B, k − 1, l + 1). This case requires that a player i>1 is chosen to be the donor128

who is considered to have reputation score r1i = 0 by player 1. This player then has to cooperate,129

which means that player 1 cannot be the receiver. Player 1 will increment the reputation score of130
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the donor unless the social norm applied is L4, L6, L7, L8 and the receiver is considered to be bad131

by player 1.132

f i(B, k, l;B, k − 1, l + 1) =

{
k
N

N−2
N−1 if i ∈ {1, 3, 4, 7}

k
N

(k+l)−1
N−1 if i ∈ {2, 5, 6, 8}.

(15)

Transition (B, k, l)→ (B, k + 1, l − 1). This case requires that a player i>1 is chosen to be the donor133

who is considered to have reputation score r1i = 1 by player 1. The receiver then has to be either134

player 1, against who the donor will defect, or someone player 1 assigns a bad reputation to in case135

the applied norm is L2, L5, L6, L8.136

f i(B, k, l;B, k + 1, l − 1) =

{
l
N

1
N−1 if i ∈ {1, 3, 4, 7}

l
N

N−(k+l)
N−1 if i ∈ {2, 5, 6, 8}.

(16)

Transition (0, k, l)→ (1, k, l). This case requires player 1 to be the donor, and that player 1 cooperates137

with their co-player. The probability is138

f i(0, k, l; 1, k, l) =
1

N

(k + l)

N − 1
. (17)

It is equal to f i(−1, k, l; 0, k, l).139

Transition (1, k, l)→ (0, k, l). This case requires player 1 to be the donor, and that player 1 defects140

against their co-player. The probability is141

f i(1, k, l; 0, k, l) =
1

N

N − (k + l)− 1

N − 1
. (18)

It is equal to f i(0, k, l; − 1, k, l) in (9).142

All other transitions from (s, k, l) to (s′, k′, l′) have transition probability f i(s, k, l; s′, k′, l′) = 0.143

We observe that for this reduced Markov chain, the set of recovery states A is absorbing. As can be144

verified by looking at the corresponding transition probabilities, leaving this set is impossible: for all i145

f i(G, k, l;G, k′, l′) = 0 for k+ l = N−1 and k′+ l′ = N−2, as well as f i(G, k, l;B, k′, l′) = 0 for146

k + l = k′ + l′ = N − 1. However, in the cases where one of the four social norms L4, L6, L7, L8 is147

employed by the population, there is another absorbing state, namely (−1, 0, 0) - a full segregation state148

where player 1 considers everyone else as bad, whereas the remaining players consider player 1 to be149

bad. Note that (G, 0, 0) is never an absorbing state.150

In the following we will show that for all Li, both the recovery probability and the expected time to151

recovery are bounded from above by the corresponding quantitites for the binary reputation case. In anal-152

ogy to the analysis of the dynamics when reputations are binary, we first visualize the Markov chains Mi153

(now with quantitative assessment) for the four different cases: {L1, L3}, {L2, L5}, {L4, L7}, {L6, L8}154
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(Supplementary Figure 2– Supplementary Figure 5). We can then make use of a simple coupling155

argument to show that these chains will perform better or equal compared to the binary assessment sce-156

nario.157

We visualize the Markov chains with quantitative assessment by first noting that the transitions of158

type (s, k, l) → (s, k ± 1, l ∓ 1) do not change the overall reputations, i.e. the labels “good” and “bad”159

of any players. We can identify them with internal transitions inside the 3N “aggregated” states of160

type (s, k + l = t) (Supplementary Figure 1a), where t is the overall number of players that player161

1 considers to be “good”. In our illustrations of the chains, we will omit these internal transitions for162

ease of visualization (Supplementary Figure 1b). We note however that some of the remaining state163

transitions that change the value of s or t are in fact dependent on the value of k, the number of players164

that player 1 considers to have reputation score k = 0. This will become crucial when we compare our165

model with the case of binary assessment.166

First, we consider the case of L1 and L3 (Supplementary Figure 2a), which have found to be167

most robust already in the binary case. Both have A as their only set of absorbing states, and thus a168

probability of ρ1 = 1 to recover from a single disagreement. When we consider the average steps to169

absorption, τ1, we find that the lower bound is unchanged from the binary case: it assumes that we start170

in state (1, 0, N − 2). The expected time until a transition is taken that is not a self loop within the171

“aggregated” state is 1
1
N
+ 1

N(N−1)

= N − 1 + 1 = N − 1. For the upper bound, we can use a coupling172

argument. We consider a simplified Markov chain M ′1 where we replace the transition probabilities173

depending on k with their upper bounds obtained by k = t, l = 0, and where we erase the states with174

s = 0. As is straightforward to check, this corresponds to the original chain of binary assessment175

dynamics (Supplementary Figure 2a). Intuitively, our argument works by considering that all “bad”176

moves (i.e., moving downwards or right in the chain) in the quantitative case always have smaller or177

equal probabilities than the corresponding “bad” moves in the binary case.178

More specifically, consider an arbitrary trace T in M1. If T never takes a transition that changes the179

value of s, we can associate the identical trace T ′ in M ′1 that never leaves the level s = G, since the180

levels s = 0 and s = 1 in M1 are indistinguishable in this case. Otherwise, there is a moment where181

T has a transition into a state with s′ = s + 1 or s′ = s − 1. In these cases, depending on whether T182

is in s = 0 or s = 1, the two traces either both take a step into the state where player 1 is considered183

to be bad, or T remains in a state where player 1 is considered good, whereas he is considered bad in184

the state that T ′ reaches (i.e., the middle layer (s = 0) of M1 can act as a buffer). In both cases, we can185

couple the traces such that T is never below or to the right of T ′. The latter holds due to how the “lateral”186

transition probabilities in the bottom layer (s = −1 for M1 and s = B for M ′1) compare. The transition187

probabilities to the right f ′1(B, t;B, t − 1) in the bottom level of M ′1 are larger than the corresponding188

transition probabilities f1(−1, k, l;−1, k − 1, l) in M1. Additionally, the transition probabilities to the189

left are the same both in the bottom levels of both chains, as well as in the top level of M ′1 and the190

two top levels in M1. Finally, the transition probabilities to the left in the bottom level of both chains,191

f1(−1, k, l;−1, k + 1, l) and f ′1(B, t;B, t + 1), are always smaller than those in the upper layer(s)192
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f1(G, k, l;−1, k + 1, l) and f1(G, t;G, t+ 1), respectively. Therefore, it follows that if T ′ has reached193

the absorbing state A′ in n steps, T has reached it in n steps with at least the same probability. Thus, we194

get an upper bound for the number of steps required to reach the absorbing set of states A in M1, which195

is equivalent to the bound calculated for the chain in the binary assessment scenario. Since this bound196

was found to be τ ′1 = N + 7, and the lower bound is τ = N − 1, we also find that the tight bound of197

τ1 = Θ(N) holds in the quantitative assessment case.198

We can use similar coupling arguments as we look at the remaining cases as well. We proceed with199

the case of L2 and L5 (Supplementary Figure 3a), which differs from the previous chain in the positive200

probability to make a step to the right in an upper level of the chain (f2(G, k, l;G, k − 1, l) > 0). Here,201

the recovery probability is again ρ2 = 1. For the upper bound, we can again look at the Markov chain202

M ′2, which is equivalent to the chain of binary assessment for L2 and L5. Following the same arguments203

as before, we can see that the upper bound on the recovery time again corresponds to the upper bound204

of the recovery time in the binary case (Supplementary Figure 3b), with τ2 ≤ τ ′2 and τ ′2 of order205

Θ(N logN). If we again consider two arbitrary traces T and T ′, T ′ can not be in a state with a higher206

value of s than T (it cannot be “above” T ) given that one step downwards is always more detrimental in207

M ′2 . Also, T ′ cannot be left to T , as the probabilities to move right (i.e. away from the absorbing state)208

are larger in M ′2 than in M2, and are additionally smaller in the upper level(s) of the chain than in the209

lower level.210

For the remaining cases of {L4, L7} (Supplementary Figure 4) and {L6, L8} (Supplementary211

Figure 5), we note that we have a second absorbing state that corresponds to a full segregation state:212

(−1, 0, 0). In this state, all other players regard player 1 as bad, whereas player 1 themselves regards213

all other players as bad. Thus, there is a positive probability of not reaching the set A. However, since214

the binary assessment chains M ′4 and M ′6 again feature higher probabilities of “bad” moves as defined215

above, we can still use the same coupling argument as in the two cases before. Both the recovery216

probability and expected time to recovery of the quantitative chain M4 (Supplementary Figure 4) are217

bounded by the corresponding properties in M ′4 by way of ρ4 ≥ ρ′4 ≥ 1 − 2/(N − 1)! and τ4 ≤ τ ′4 ≤218

2(N − 1) · (e− 1) + o(1). The lower bound for τ4 remains the same as in the binary case and is identical219

to the lower bound in the first case, with τ4 ≤ N − 1, such that we again get τ4 = Θ(N).220

The same reasoning holds for M6 (Supplementary Figure 5), which differs from M4 again in the221

positive probability to make a step to the right in an upper level of the chain (f6(G, k, l;G, k−1, l) > 0).222

We get, by comparing with the bounds for the binary case, that ρ6 ≥ 1− 1
N and τ6 ≤ N ·HN −N , with223

HN the N-th harmonic number
∑N

n=1
1
n .224

These are very rough upper bounds. In fact, when we take a look at the actual recovery times of the225

system, we find that in all eight cases, τ = O(n), i.e. that recovery time is approximately linear for all226

leading eight norms. We show the resulting plot in Figure S3a. When we do linear regression on these227

curves, τi ≈ N for i ∈ {1, 3, 4, 7} and τi ≈ 1.3N for i ∈ {2, 5, 6, 8}. This is a substantial improvement228

over the recovery times for the case of binary reputations. We additionally find that the expected number229

of defections until recovery goes towards zero as the population becomes large: a single perception error230
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typically triggers no further defection (Figure S3b). We note that these results are obtained when the231

population starts in the state (0, N − 2, 0), i.e. the state where all entries of the starting image matrix are232

zero except for one negative entry. This corresponds to the starting state of our simulations in the main233

text. Alternatively, if we let our system start in the state (1, 0, N − 2), recovery occurs at τ ≈ N for all234

leading eight strategies, including L2, L5, L6, L8.235

Supplementary Note 2: Characterization of successful strategies236

In analogy to the work of Ohtsuki and Iwasa2, we now explain the characteristics of those third-order237

strategies that are successful both under public information as well as private and noisy information. For238

this axiomatic approach, we now assume that players use quantitative assessment, since binary assess-239

ment does not lead to the evolution of cooperation once information is not public.240

In the following, we use notation similar to previous work, adapted to our model of quantitative as-241

sessment. We again distinguish between reputation scores rij ∈ [−R,R], and the corresponding overall242

judgments (labels) as “good” or “bad”, which arise from comparing these scores with the threshold S.243

The assessment (i.e. adding or subtracting from the score) of an action X by a donor with label A to-244

wards a recipient with label B according to the social norm is denoted by d(AB,X) ∈ {−1,+1}. The245

action (i.e. to cooperate or to defect) prescribed by the social norm for a donor with overall label A and246

a recipient with label B is denoted as p(AB) ∈ {C,D}.247

In the public information scenario, Ohtsuki and Iwasa identified the following four properties that a248

third order strategy needs to fulfill to be successful in letting cooperation evolve.249

1. Maintenance of cooperation. Assuming that a high reputation leads to a benefit that is higher than250

the cost of help, most players should cooperate with each other for a norm to be successful. This251

requires252

p(GG) = C and d(GG,C) = +1 (19)

2. Identification of defectors. Players using the social norm need to be able to identify defectors. An253

ALLD player should not get the chance to improve their reputation, and should instead be labeled254

as “bad” as soon as possible. Thus, the following condition that decreases the reputation score of255

a player who defects against a good opponent must hold:256

d(GG,D) = −1 and d(BG,D) = −1 (20)

3. Justified punishment. A player who defects against an opponent judged as bad should refuse257

cooperation, and not be punished for it themselves. This means258

p(GB) = D and d(GB,D) = +1 (21)

4. Apology and forgiveness. A player who erroneously defected against an opponent should be able259
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to regain their lost reputation once they demonstrate their goodwill by cooperating with a good260

opponent. This gives261

p(BG) = C and d(BG,C) = +1 (22)

We note that these four required properties are independent of whether players use binary or quan-262

titative assessment. These conditions fix five elements (bits) of a successful norm’s assessment rule. In263

Ohtsuki and Iwasa’s original work, three bits were then left unspecified, giving the leading eight. How-264

ever, if we consider the setting where information is private and noisy, we need to specify one more bit265

with the following condition:266

5. Suspicion. To be successful under private and noisy information, norms need to be less gullible267

than in the case of public information, and need to be more suspicious of known defectors. In268

particular, they cannot allow defectors to gain an improved reputation score when they defect269

against another defector, since this would allow ALLD to invade. Rather, repeated defectors270

should continously lose reputation. This requires271

d(BB,D) = −1 (23)

With these requirements, four of the leading eight norms remain: L1, L2, L7, L8. They are exactly272

the four norms that we see being able to evolve under private and noisy information, as long as they use273

quantitative assessment. The norms L3, L4, L5, L6 in contrast are more gullible, and let defectors regain274

some of their reputation by defecting against another of their kind.275

We note however that among the successful norms, L8 has the fewest opportunities for a player276

labeled as bad to improve his score and be labeled good (Fig. 1a). For example, an unconditional277

cooperator easily gets a bad label in the eyes of an L8 player. This explains why we see the lowest278

abundance and cooperation rate in equilibrium in L8 out of all four successful norms, and why the279

success of L8 is also more sensitive to an increased number of reputation ranks (Fig. 5).280
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Supplementary Figure 1: The states of the reduced Markov chains modeling assessment dynamics.
a, Aggregated states of the type (s, k + l), with s the assessment of player 1 in the eyes of the other
players, and k + l the number of players that player 1 assesses as good. They aggregate states (s, k′, l′)
with k′ + l′ = k + l), with internal (“hidden”) transitions that change the value of k and l while keeping
their sum constant. b, For ease of visualization, we only show the aggregated states and omit the internal
states when we illustrate the Markov chains in the following. Note however that the internal state can
determine the transitions out of a state.

11



+1, N–1

0, N–1 0, N–2 0, N–3

+1, N–2 +1, N–3

-1, N–1 -1, N–2 -1, N–3

G, N–1

B, N–1 B, N–2 B, N–3

G, N–1 G, N–2 G, N–3

a

b

B, 0

G, 0

0, 0

+1, 0

-1, 0

...

...

...

...

...

Supplementary Figure 2: Markov chain modeling the dynamics of L1 and L3 for recovery. a, The
full Markov chain M1 has three “levels” corresponding to the three different values that s can take. b,
For the upper bound, we consider a chain where states with s = 0 are erased and transition probabilities
to the right that are proportional to k are upper bounded by k + l. This is equivalent to the chain for the
binary assessment case, M ′1.
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Supplementary Figure 3: Markov chain modeling the dynamics of L2 and L5 for recovery. a,
The full Markov chain M2 has three “levels” corresponding to the three different values that s can take.
b, For the upper bound, we again consider a chain where states with s = 0 are erased and transition
probabilities to the right that are proportional to k are upper bounded by k + l. This is equivalent to the
chain for the binary assessment case, M ′2.
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Supplementary Figure 4: Markov chain modeling the dynamics of L4 and L7 for recovery. a, The
full Markov chain M4 has three “levels” corresponding to the three different values that s can take. b,
For the upper bound, we consider a chain where states with s = 0 are erased and transition probabilities
to the right that are proportional to k are upper bounded by k + l. This is equivalent to the chain for the
binary assessment case, M ′4.
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Supplementary Figure 5: Markov chain modeling the dynamics of L6 and L8 for recovery. a, The
full Markov chain M6 has three “levels” corresponding to the three different values that s can take. b,
For the upper bound, we consider a chain where states with s = 0 are erased and transition probabilities
to the right that are proportional to k are upper bounded by k + l. This is equivalent to the chain for the
binary assessment case, M ′6.
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