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Abstract. Modeling the interactions between atmosphere and soil at a forest site remains a challenging task.
Using tower measurements from the Amazon Tall Tower Observatory (ATTO) in the rainforest, we evaluated
the performance of the land surface model JSBACH, focusing especially on processes influenced by the forest
canopy.

As a first step, we analyzed whether high-resolution global reanalysis data sets are suitable to be used as
land surface model forcing. Namely, we used data from the fifth-generation ECMWF atmospheric reanalysis
of the global climate (ERA5) and the Modern-Era Retrospective analysis for Research and Applications ver-
sion 2 (MERRA-2). Comparing 5 years of ATTO measurements to near-surface reanalysis data, we found a
substantial underestimation of wind speeds by about 1 m s−1. ERA5 captures monthly mean temperatures quite
well but overestimates annual mean precipitation by 30 %. Contrarily, MERRA-2 overestimates monthly mean
temperatures in the dry season (August–October) by more than 1 K, while mean precipitation biases are small.

To test how much the choice of reanalysis data set and the reanalysis biases affect the results of the land
surface model, we performed spin-up and model runs using either ERA5 or MERRA-2 and with and without
a bias correction for precipitation and wind speed and compared the results. The choice of reanalysis data set
results in large differences of up to 1.3 K for soil temperatures and 20 % for soil water content, which are non-
negligible, especially in the first weeks after spin-up. Correcting wind speed and precipitation biases also notably
changes the land surface model results – especially in the dry season.

Based on these results, we constructed an optimized forcing data set using bias-corrected ERA5 data for the
spin-up period and ATTO measurements for a model run of 2 years and compared the results to observations to
identify model shortcomings. Generally, the shape of the soil water profile is not reproduced correctly, which
might be related to a lack of vertical variability of soil properties or of the root density. The model also shows a
positive soil temperature bias and overestimates the penetration depth of the diurnal cycle. To tackle this issue,
potential improvements can be made by improving the processes related to the storage and vertical transport of
energy. For instance, incorporating a distinct canopy layer into the model could be a viable solution.
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1 Introduction

The presence of vegetation – especially in forest canopies
with tall trees – alters the exchange processes between the
land surface and atmosphere. Forests influence the shape of
the wind profile (Yi, 2008; de Souza et al., 2016; Santana
et al., 2017) and the structure of turbulence within and above
the canopy layer (Chor et al., 2017; Dias-Júnior et al., 2019;
Zahn et al., 2016). In tall forests, the air close to the ground
can even become decoupled from the air above the forest
(Santana et al., 2018). Additional heat storage in trees and in
the air within the canopy changes the surface energy balance
(e.g., Oliphant et al., 2004; Lindroth et al., 2010), and the
transmission of radiation is affected by the leaf area and the
canopy structure (e.g., Hardy et al., 2004). Forests also have
an impact on global carbon and water cycles. Evapotranspira-
tion is particularly enhanced in rainforests (de Oliveira et al.,
2018; Costa et al., 2010), which leads to a moistening of the
atmosphere and increased cloud cover (Wright et al., 2017).

These processes at the canopy scale are very complex and
thus difficult to represent in coupled atmosphere–land mod-
els. A few land surface models (LSMs) – such as CLM (Bo-
nan et al., 2018) or ORCHIDEE (Chen et al., 2016), for ex-
ample – have implemented parameterizations of vertically
resolved processes in forest canopies in the past years. How-
ever, many LSMs still incorporate rather simple parameteri-
zations of canopy effects. The aim of this study is to evaluate
the performance of an LSM without a resolved canopy layer
in a region with a tall forest canopy. For this purpose, we
choose the land surface model JSBACH and compare model
results to measurements from the Amazon Tall Tower Obser-
vatory (ATTO) located at a rainforest site.

Observations from tropical forests have been previously
used to evaluate specific aspects of LSMs, for example to
test different parameterizations of rainfall intercepted by for-
est canopies (Wang et al., 2007; Fan et al., 2019). Anwar
et al. (2022) used measurements from different FLUXNET
sites in the Amazon rainforest to test the performance of two
land surface hydrology schemes in the CLM. They found that
both schemes were able to reproduce the shape of the sea-
sonal cycle of turbulent fluxes but failed in capturing their
correct magnitude. Other studies used measurements from
canopies in the mid-latitudes – which are dominated by de-
ciduous broadleaf and evergreen needleleaf forests – for ex-
ample to evaluate the performance of multi-layer canopy rep-
resentations in LSMs (Ma and Liu, 2019; Bonan et al., 2021).
Studies specifically using the JSBACH model have focused
on calibrating stomatal conductance using FLUXNET data
from evergreen needleleaf forests (Mäkelä et al., 2019) or on
the global evaluation of a canopy heat storage parameteri-
zation (Heidkamp et al., 2018). In this study, we use a site-
level setup of the JSBACH LSM to evaluate the model per-
formance at a rainforest site, with a special focus on canopy
processes.

LSMs are not only used in coupled model setups but can
also be run offline using external data as atmospheric forcing.
Feedbacks between land and atmosphere in coupled models
make it more difficult to assess single processes, and thus it is
beneficial to use offline simulations to isolate processes when
evaluating LSMs (e.g., Decharme et al., 2019). In addition,
uncertainties of the LSM originating from errors in the atmo-
spheric model can be avoided by carefully choosing a forcing
data set. Besides observations, reanalysis data are frequently
used for offline and site-level simulations, which aim to test
the model’s performance with respect to different parameter-
izations (Brun et al., 2013; Knauer et al., 2017) or initializa-
tion data sets (Ardilouze et al., 2017), for example. To min-
imize the impact of forcing data on the model results, some
studies also use bias-corrected reanalysis data sets, such as
the WFDEI meteorological-forcing data set (Weedon et al.,
2014). When evaluating the global performance of the ISBA
land model, Decharme et al. (2019) used atmospheric forc-
ings based on two different reanalysis data sets. The results
showed large differences with respect to hydrological vari-
ables, which underlines the importance of the choice of forc-
ing data sets for the evaluation of land surface models.

After initialization, an LSM undergoes an adjustment pro-
cess until an equilibrium between external forcing and the
simulated land surface fluxes is reached. The length of this
so-called spin-up period can reach several years (Yang et al.,
1995) but requires shorter time spans for locations with large
precipitation amounts (Lim et al., 2012; Yang et al., 2011).
Here, we use a spin-up period of 10 years following the ex-
ample of Heidkamp et al. (2018), who evaluated land sur-
face fluxes in the LSM JSBACH. For our JSBACH site-
level simulations, we also intend to partly use reanalysis data
since ATTO measurements contain many data gaps. We use
two different high-resolution global reanalyses (ERA5 and
MERRA-2) to compare and minimize the impact of the forc-
ing data set on the model results. As a first step, we compare
near-surface meteorological data reanalyses to ATTO mea-
surements to answer the following questions: how well do
the reanalyses reproduce meteorological conditions – rang-
ing from hourly to yearly scales – at the ATTO site? And are
the forcing data thus generally suitable as forcing data sets
for the land surface model? How does the choice of forcing
data set affect the results of the land surface model? For this
purpose, we compare model results using the two different
reanalyses as forcing for the model spin-up run. Also, we test
how a correction of reanalysis biases changes the model re-
sults. Based on the findings from these preparative analyses,
we perform a model run using an optimized forcing data set
(consisting of air temperature and humidity, wind speed, pre-
cipitation, and incoming long- and shortwave radiation) and
compare the results to ATTO measurements, focusing on the
following questions: how well does JSBACH reproduce the
temporal evolution of the model output variables’ soil wa-
ter content, soil temperatures and turbulent heat fluxes? Can

Atmos. Chem. Phys., 23, 9323–9346, 2023 https://doi.org/10.5194/acp-23-9323-2023



A. U. Schmitt et al.: Modeling atmosphere–land interactions at ATTO 9325

Figure 1. Location of the ATTO site (blue triangle) and reanalysis
grid boxes used for comparison in this study. The background shows
GLCC land cover types derived using the Biosphere-Atmosphere
Transfer Scheme (BATS) scheme for 1992 data (Loveland et al.,
2000).

we identify specific model shortcomings, which could be im-
proved in future model versions?

Observations from the ATTO site, data from the ERA5 and
MERRA-2 reanalyses, and the JSBACH land surface model
are described in Sect. 2. Results of the comparison between
reanalysis data and ATTO measurements are presented and
discussed in Sect. 3.1. Section 3.2 contains results and a dis-
cussion of JSBACH model runs, which are used for sensi-
tivity studies (Sect. 3.2.1 and 3.2.2) and to identify model
shortcomings (Sect. 3.2.3), followed by a summary and con-
clusions in Sect. 4.

2 Data and model description

2.1 Amazon Tall Tower Observatory

2.1.1 Measurements at the ATTO site

The Amazon Tall Tower Observatory (ATTO) is a scientific
research facility in Brazil with a focus on interactions be-
tween the rainforest and the atmosphere. An extensive de-
scription of the characteristics of the ATTO site can be found
in Andreae et al. (2015). Here, we summarize the most im-
portant aspects. The ATTO site is located in the central Ama-
zon at an altitude of 130 m, roughly 150 km northeast of
Manaus (Fig. 1). The area is covered by terra firme forest
with an average canopy height of about 37.5 m. In this study,
we use measurements from the 81 m high walk-up tower,
which is located at 2.144◦ S, 59.002◦W.

We use 5 years of ATTO measurements from 2014 to
2018. For an overview of the measurements used in this
study; see Table A1. Incoming shortwave and longwave ra-
diation, precipitation, pressure, and turbulent sensible and la-
tent heat fluxes are measured at the top part of the tower. Air
temperature, relative humidity and wind speed are measured
at several heights above and within the forest canopy. Since
the reanalyses used for comparison in Sect. 3.1 do not have a
separate resolved canopy layer, we use only measurements
above the canopy top (≥ 36 m) for the comparison. Addi-
tionally, air temperatures within the canopy at 1.5 m above
the ground are used to calculate temperature differences be-
tween the soil and atmosphere (see Sect. 3.2.3). Measure-
ments of soil moisture and temperature are conducted close
to the walk-up tower and are available at several depths (see
Table A1).

2.1.2 Data preparation

For comparison with reanalysis data and for model forcing,
ATTO measurements are aggregated to hourly values. We
apply a linear interpolation to fill small data gaps of up to
10 min for temperature, humidity, wind, pressure and radia-
tion and up to 1 min for precipitation. Larger data gaps were
caused by interruptions of the power supply or by general
sensors issues. To account for these gaps, we mask out times
when any of the considered ATTO data are missing in the
reanalysis data as well (Sect. 3.1). Wind measurements at
43.1 m height are only available for the years 2014 and 2015
and were therefore not used for the general statistical anal-
ysis. We convert the measured relative humidity to specific
humidity and the air pressure measured at 81 m height to sur-
face pressure. More details are presented in Appendix B.

2.1.3 Seasonality

Being located at around 2◦ S, the climate at ATTO is trop-
ical, humid and strongly influenced by the location of the
Intertropical Convergence Zone, leading to pronounced wet
and dry seasons. While Andreae et al. (2015) strictly divide
the year into a wet and a dry season, Saturno et al. (2018)
also consider transition zones between the seasons.

In this study, we calculate seasonal means and thus aim for
relatively homogeneous meteorological conditions within a
season. Average annual cycles of air temperature, incoming
shortwave radiation and precipitation are shown in Fig. 2.
For our purposes, we define the wet season as the months
from January to April, which are characterized by large pre-
cipitation sums exceeding 200 mm per month, as well as by
monthly mean temperatures and shortwave radiation below
the annual means. Accordingly, the dry season is defined as
the months from August to October, with precipitation sums
below 100 mm per month. Air temperatures in the dry season
are, on average, more than 2 K higher than in the wet season.
The wind speed shows no distinct annual cycle, and seasonal
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Figure 2. Average annual cycles based on ATTO measurements of
the years 2014 to 2018. (a) Mean temperature and average daily
maximum and minimum temperatures measured at 36 m height
(blue) and incoming shortwave radiation (red). (b) Precipitation
(dark green) and fraction of missing data for all parameters dis-
played in this figure (bars). Shaded areas denote the wet (blue) and
dry (yellow) seasons.

changes are small. Due to the latitude, there are only small
variations of less than 15 min in terms of the day length,
which facilitates the interpretation and comparison of aver-
age diurnal cycles.

2.2 Reanalysis data

We utilize only those global reanalysis data sets that pro-
vide data at least hourly, which enables us to analyze diur-
nal cycles. Specifically, the selected data sets include ERA5
(Sect. 2.2.1) and MERRA-2 (Sect. 2.2.2), which also have a
relatively high spatial resolution of less than 70 km.

2.2.1 ERA5

ERA5 is the fifth-generation reanalysis produced by
ECMWF based on version Cy41r2 of the IFS model (Hers-
bach et al., 2020). Model output is available every hour on a
0.25◦×0.25◦ grid with 137 vertical levels. Mean total precip-
itation rate, incoming longwave and shortwave radiation, and
sensible and latent heat flux from the ERA5 surface data set
(Hersbach et al., 2018) and air temperature, specific humid-
ity, horizontal wind components and pressure from ERA5 on

model levels (Hersbach et al., 2017) for the years 2007 to
2018 were downloaded from the Copernicus Climate Change
Service (C3S) Climate Data Store. Since ATTO is located
close to the border of two intersecting ERA5 grid boxes (see
Fig. 1), we average the values of those grid boxes using in-
verse distance squared weighting.

The IFS model calculates exchange processes at the land
surface using the Tiled ECMWF Scheme for Surface Ex-
changes over Land with a revised hydrology component
(HTESSEL; e.g., van den Hurk et al., 2000; Balsamo et al.,
2009). Each grid box consists of separate tiles – e.g., for
water, bare ground, and high and low vegetation (ECMWF,
2016b). The tile fractions are based on the USGS Global
Land Cover Characteristics (GLCC) data set with a 1 km
resolution, which is derived from 1 year of remote sensing
data from the Advanced Very High Resolution Radiometer
(AVHRR) for the year 1992 (Loveland et al., 2000). The
GLCC data are shown as a background in Fig. 1. The grid
boxes used for comparison with ATTO measurements are
mostly covered by evergreen broadleaf trees with fractions
of 97.5 % and 99.6 % for the northern and southern grid box,
respectively.

We calculate the geometrical height of the model levels
using the surface pressure, as well as temperature and spe-
cific humidity, according to Eq. (2.22) of the IFS model doc-
umentation (ECMWF, 2016a). For the study period and lo-
cation, the heights of the lowest model levels are approxi-
mately 10, 32 and 57 m. Some of the ERA5 variables are pro-
vided as instantaneous values. For comparison with ATTO
and MERRA-2, we average two successive values to obtain
an estimate of the hourly mean.

2.2.2 MERRA-2

MERRA-2 is the second version of the Modern-Era Ret-
rospective analysis for Research and Applications (Gelaro
et al., 2017) produced using the GEOS-5 atmospheric general
circulation model by GMAO (NASA’s Global Modeling and
Assimilation Office). Model output is available every hour
on a 0.5◦ latitude and 0.625◦ longitude grid with 72 vertical
levels. The following variables from MERRA-2 for the years
2007 to 2018 were obtained from GMAO (2015b, c, a, d):
incoming longwave and shortwave radiation; sensible and
latent heat flux; pressure; air temperature, specific humidity
and horizontal wind components at 10 and 50 m height; and
bias-corrected precipitation.

The location of the MERRA-2 model grid box used for
comparison with ATTO measurements is displayed in Fig. 1.
As for ERA5, MERRA-2 land cover is based on the GLCC
data set (Loveland et al., 2000). We calculate the pressure at
model levels using the pressure thickness variable and apply
the same method as for ERA5 to calculate the geometrical
height of the model levels. For the study period and location,
the height of the lowest model levels is approximately 68 m.
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To improve the soil moisture calculations in MERRA-2,
the model-generated precipitation is corrected using obser-
vations (Reichle et al., 2017). In the ATTO region, gauge-
based precipitation estimates from the CPCU data set (Uni-
fied Gauge-Based Analysis of Global Daily Precipitation) are
used to replace the model precipitation. However, the num-
ber of rain gauges in the Amazon region has decreased in the
last decades, resulting in an uncertainty increase in the CPCU
data set (Reichle et al., 2017).

2.3 Modeling setup

2.3.1 The land surface model JSBACH

We use the land surface model JSBACH (Giorgetta et al.,
2013) to simulate fluxes of energy, water and momentum be-
tween the land surface and the atmosphere. We perform our
model simulations using JSBACH4, which is a more flexi-
ble re-implementation of JSBACH3 and can be used within
the global models MPI-ESM1.2 (Mauritsen et al., 2019) or
ICON-A (Giorgetta et al., 2018; Jungclaus et al., 2022), as
well as as a stand-alone model forced by external data (e.g.,
Nabel et al., 2020).

JSBACH uses a fractional approach to represent vegeta-
tion classes. Each grid cell is divided into tiles with 11 dif-
ferent vegetation classes. The grid box used for the model
simulations at the ATTO location contains 5.6 % lake and
river areas, and the remaining land fraction is covered by
99.3 % tropical evergreen trees with a root depth of 1.95 m.
The soil depth of this grid box is 2.23 m, covering the upper
four of the five model layers. These characteristics are based
on the data set of land surface parameters derived by Hage-
mann (2002) on a T63 spectral grid with 192× 98 (long, lat)
grid points, which corresponds to a grid cell size of about
200 km at the considered latitude.

Vertical soil water transport within the model is calcu-
lated using the one-dimensional Richards equation; (Ekici
et al., 2014, see, e.g., Eq. 2), which incorporates vertical dif-
fusion, percolation from gravitational drainage, and sources
and sinks. The only depth-dependent sink term is transpira-
tion, which depends on the root density. The surface energy
balance in JSBACH is closed within the uppermost soil layer,
meaning that the soil temperature between 0 and 6.5 cm is
considered to be the surface temperature.

For comparison with point measurements at ATTO, we use
a site-level setup of JSBACH consisting of a single grid box.
The required meteorological variables for model forcing are
air temperature, specific or relative humidity, precipitation,
wind speed, and incoming longwave and shortwave radia-
tion. We use ATTO measurements, as well as reanalysis data
from ERA5 and MERRA-2, as forcing data sets to obtain the
results in Sect. 3.2. The forcing is applied at each model time
step of 1 h.

2.3.2 Preparation of model forcing data

We perform two separate 10-year model spin-up runs using
ERA5 data from the lowest model level of about 10 m height
and MERRA-2 data from 10 m height for the years 2007
to 2016. After the spin-up, we perform model runs for the
years 2017 and 2018 using forcing data from either ERA5,
MERRA-2 or ATTO measurements from 4 m (temperature
and specific humidity), 13 m (wind) and roughly 40 m (radi-
ation and precipitation) above the forest top.

ATTO measurements contain data gaps that need to be
filled before the data can be used as model forcing. We ap-
ply the following steps: (1) small gaps of up to 4 h (2 h for
precipitation and shortwave radiation) are filled by linear in-
terpolation. (2) Medium-sized gaps of up to 6 d are filled
with data from the day before and after the gap. Only days
with at least 12 h of valid measurements are used for filling.
(3) Large gaps are filled with a monthly mean diurnal cycle,
which we calculate by averaging only days without missing
values for each calendar month of the years 2017 and 2018.
Time periods during which missing data have been interpo-
lated are masked out in the interpretation of the model results
in Sect. 3.2.

3 Results and discussion

3.1 Comparison of reanalysis data to ATTO
measurements

To evaluate whether reanalysis data are suitable forcing data
sets for a land surface model, we compare ATTO measure-
ments closely above the forest top to reanalysis data at the
corresponding heights. For this purpose, ATTO measurement
heights are specified as heights above forest (a.f.) relative
to the forest top of about 37.5 m height. Here, we focus on
the forcing data required for JSBACH, which are air temper-
ature, specific humidity, wind speed, precipitation, and in-
coming shortwave and longwave radiation. As described in
Sect. 2.1.2, hours with measurement gaps are also masked
out in the reanalysis data sets.

As a first step, we consider annual mean temperatures and
precipitation sums, which are widely used to characterize lo-
cal climates. ERA5 annual mean temperatures at 10 m height
between 2014 and 2018 agree almost perfectly with the
ATTO values measured at 18 m above the forest – both with
mean values of 26.1 ◦C and an RMSD (root mean squared
difference) of 1.4 K. Compared with ATTO measurements,
MERRA-2 is generally too warm, with annual average tem-
peratures of 26.9 ◦C and a larger RMSD of 2.0 K. For annual
precipitation sums we see the opposite, with very good agree-
ment between ATTO (1560 mm) and MERRA-2 (1540 mm)
and a strong overestimation of ERA5 with 2030 mm per year.
A more detailed comparison of average annual and diurnal
cycles is presented in Sect. 3.1.1 for wind, in Sect. 3.1.2 for
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precipitation and radiation, and in Sect. 3.1.3 for temperature
and humidity.

3.1.1 Wind

The most apparent feature of the wind speed annual cy-
cle is the large underestimation by both reanalysis data sets
(Fig. 3a). Averaged over the years 2014 to 2018, ERA5
shows a negative bias of about −0.8 m s−1, and MERRA-2
shows an even larger one of −1.2 m s−1. The bias does not
change significantly during the course of the day (Fig. 3b).
The shape of the diurnal cycle is well reproduced by both
reanalyses, while ERA5 does a better job at capturing the
shape of the annual cycle. Average wind profiles indicate that
the bias also prevails for larger heights up to 36 m above the
forest (Fig. 3c).

Our results indicate large biases at heights close to the
forest canopy and could thus simply be related to the shape
of the wind profile at these heights. To analyze whether the
bias extends to larger heights, we examined measurements
from the top of the ATTO tall tower at 285 m above the
forest top, which are available from the ATTO data por-
tal (http://attodata.org/, last access: 5 October 2021) for the
time period from March 2018 to the end of 2019. At this
higher altitude, we also found negative biases on the order
of −1 m s−1 for both reanalyses (not shown), indicating that
wind speed biases are a significant issue within the lower
parts of the atmospheric boundary layer (ABL) in this region.

Using these reanalysis data, which underestimate the ob-
served wind speed, to force a land surface model, we expect
to see an impact on turbulent fluxes and thus also on related
soil quantities. Since turbulent heat fluxes scale with wind
speed, an underestimation of the latter would initially result
in a decrease of sensible and latent heat fluxes, which then
increases the surface temperature. However, a higher surface
temperature increases sensible heat fluxes, and thus, the over-
all impact on surface and soil temperatures is difficult to es-
timate.

Wind speed biases with the same order of magnitude as
our results have also been found in various previous stud-
ies. Jourdier (2020) compared ERA5 and MERRA-2 wind
speeds to measurements between 55 and 100 m height at
eight locations in France. They found that ERA5 wind speeds
were generally about 1 to 1.5 m s−1 lower than those from
MERRA-2. ERA5 wind speeds agreed better with mea-
surements from the northern flat terrain, while those from
MERRA-2 agreed better in southern mountainous regions.
The dependence of the sign of the wind speed bias on the re-
gion has also been found in a study by Staffell and Pfenninger
(2016). Their results for MERRA-2 indicate a line dividing
Europe with negative wind speed biases in the Mediterranean
region and positive biases around the North and Baltic seas.
Carvalho (2019) compared MERRA-2 to wind speed mea-
surements all over the globe and also found that the sign
of the 10-year mean bias over land varied for different re-

Figure 3. Average annual (a) and diurnal (b) cycles of wind
speed averaged over the years 2014 to 2018 based on ERA5 (red)
and MERRA-2 (yellow) reanalysis data and ATTO measurements
(blue). Gray vertical lines mark the times of sunrise and sunset, re-
spectively. Wind speed profiles based on the same data are shown in
panel (c). The gray line shows a profile with additional heights, in-
cluding wind measurements at 6 m above the forest, which are only
available for the years 2014 and 2015. Measurement uncertainty in
all panels is denoted as blue shading and error bars, respectively.

gions. In the northern Amazon region, they found a general
underestimation of about −1 m s−1, which is in line with
our results. Gualtieri (2021) compared mast measurements
to ERA5 wind speeds and found large negative biases of up
to −3 m s−1 at mountain sites and a positive bias in a forest
site. They concluded that reanalyses with a spatial resolution
of several tens of kilometers have problems accurately repro-
ducing wind speeds at sites with high variation in terms of
topography and land use.
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3.1.2 Precipitation and radiation

Both ERA5 and MERRA-2 are able to reproduce the sea-
sonality of precipitation and incoming shortwave radiation
(Fig. 4a and b). The amplitude of the annual cycle of long-
wave radiation is small, and biases for both reanalyses are
within the ATTO measurement uncertainty (Fig. 4c). Precip-
itation sums from ERA5 are too large in all seasons, with
an overestimation of about 20 % in the wet season and 45 %
in the dry season. MERRA-2 captures monthly precipitation
sums quite well, which can be attributed to the correction
of precipitation biases over land within the model using a
gauge-based data set (see Sect. 2.2.2).

The diurnal cycle of precipitation measured at ATTO in
the wet season (Fig. 4d) shows two distinct maxima – one
shortly after sunrise and one in the afternoon around the
time of the temperature maximum. A similar shape can be
found in the dry season but with much smaller amplitudes
(not shown). MERRA-2 captures the amplitude of the after-
noon peak quite well, while ERA5 overestimates the maxi-
mum rain rate by about 40 %. ERA5 also shows a negative
shortwave radiation bias during the day (Fig. 4e), which in-
dicates an overestimation of the cloud cover. MERRA-2 fails
to reproduce this early-morning peak. ERA5 does produce
a secondary rainfall maximum; however, it occurs earlier in
the night between 02:00 and 06:00 LT (local time).

The afternoon peak in continental rainfall is related to the
diurnal cycle of solar forcing, with land surface heating caus-
ing an ABL growth and the formation of convective clouds
(see, e.g., Yang and Smith, 2006). The early-morning pre-
cipitation peak can be observed more frequently over ocean
regions. A common explanation is that nighttime cooling
of the cloud top causes a thermal destabilization of the up-
per cloud, which then increases convection and precipitation
(see, e.g., Randall et al., 1991). To further analyze the occur-
rence of the early-morning peak we evaluated rainfall data
from the IMERG (Integrated Multi-satellitE REtrievals for
GPM) data set in a larger region around ATTO (for details,
see Appendix C) and compared the results to data from the
two reanalyses. The IMERG results indicate that nighttime
precipitation occurs more frequently in the region northeast
of ATTO, while precipitation after sunrise between 06:00 and
08:00 LT is more patchy. The location of the morning max-
imum is also quite variable between the considered years
(not shown). For MERRA-2, the analysis of regional patterns
of early-morning precipitation reveals that a morning maxi-
mum can be found at grid points located about 100 km to
the east. This gives a hint that MERRA-2 might just produce
early-morning precipitation at a slightly wrong location. Fur-
ther evidence can be found in a study by Sato et al. (2009),
who showed that the timing of local precipitation maxima
strongly depends on the model resolution.

3.1.3 Temperature and humidity

Monthly mean annual cycles of near-surface air temperature
based on ATTO measurements and reanalysis data are shown
in Fig. 5a. The comparison reveals that ERA5 accurately cap-
tures the shape of the annual cycle with a negligible bias.
However, MERRA-2 shows a good agreement only during
the wet season, while model results in the dry season are
too warm (+1.1 K). It is evident from the diurnal cycles in
Fig. 5b that the positive temperature bias for MERRA-2 in
the dry season is mainly driven by too-high daily maximum
temperatures. MERRA-2 maximum temperatures exceed the
measurements by about 2.5 K, while nighttime temperatures
agree well with measurements. Also, MERRA-2 maximum
temperatures in the wet season show a much better agreement
with ATTO measurements (Fig. 5c), which is in line with the
smaller differences in terms of monthly means (Fig. 5a) in
this season.

The shape of the annual cycle of specific humidity is
reproduced well by ERA5 but with an underestimation of
roughly 1 g kg−1 in all months (Fig. 5d). Similarly to temper-
ature, MERRA-2 shows good agreement in terms of monthly
mean specific humidity, with small biases in the wet season
only. In the dry season, values are underestimated by about
−0.9 g kg−1. We further examine the humidity biases by an-
alyzing diurnal cycles for the dry and wet seasons separately
(Fig. 5e and f). It is most striking that the diurnal cycles
show distinctly different shapes, with a maximum in terms
of humidity measured at ATTO in the late morning in the
dry season and later in the afternoon in the wet season. In
contrast, the specific humidity values of both reanalyses start
to decrease in the morning, with a (local) minimum in the
early afternoon. For ERA5, this general underestimation of
daytime specific humidity is the reason for the underestima-
tion of monthly means in all months observed in Fig. 5d. For
the same reason, MERRA-2 underestimates monthly mean
humidity in the dry season. However, the diurnal cycle in
the wet season indicates that MERRA-2 humidity is always
about 0.9 g kg−1 larger than ERA5 humidity. Thus, the over-
estimation of nighttime humidity values compared to ATTO
measurements compensates for the underestimation in the
afternoon, resulting in a negligible overall bias of monthly
means in the wet season.

In the following, we discuss possible reasons for the dif-
ferences between observed and modeled temperature and hu-
midity. The overestimation of the daily maximum tempera-
tures in the dry season by MERRA-2 could be related to an
underestimation of cloud cover. However, incoming short-
wave radiation from MERRA-2 does not show a consider-
able bias in the dry season (Fig. 4b). Another hypothesis is
that the bias of daily maximum temperature is related to the
vertical structure of the ABL, i.e., vertical mixing and sta-
bility. Testing this hypothesis, however, would require more
investigations with measurements spanning the whole ABL
column, e.g., radiosonde measurements. Such measurements

https://doi.org/10.5194/acp-23-9323-2023 Atmos. Chem. Phys., 23, 9323–9346, 2023



9330 A. U. Schmitt et al.: Modeling atmosphere–land interactions at ATTO

Figure 4. Average annual cycles of precipitation (a) and downward shortwave (b) and longwave radiation (c) averaged over the years 2014
to 2018 based on ERA5 (red) and MERRA-2 (yellow) reanalysis data and ATTO measurements (blue). Average diurnal cycles for (d) rain
rate and (e) incoming shortwave radiation bias. The curves represent hourly means from the wet season (JFMA) of the years 2014 to 2018.
Gray vertical lines mark the times of sunrise and sunset, respectively. Shaded areas in all panels denote the ATTO measurement uncertainty.

Figure 5. Average annual cycles of the years 2014 to 2018 for air temperature (a) and specific humidity (d) closely above the forest top
and average diurnal cycles for temperatures (b, c) and humidity (e, f). The diurnal cycles are based on hourly means from the dry (b, e) and
the wet (c, f) seasons. Shaded areas denote the ATTO measurement uncertainties. Gray vertical lines mark the times of sunrise and sunset,
respectively.

are unfortunately not a part of regular measurements con-
ducted at the ATTO site.

The diurnal cycles of specific humidity showed a maxi-
mum at midday for ATTO measurements but a minimum for
both reanalyses. The processes leading to such a humidity
minimum at midday have been described in detail by Brüm-

mer et al. (2012), for example. Evaporation starting in the
morning leads to an increase of the absolute humidity. How-
ever, when the atmospheric boundary layer (ABL) grows
during the day, entrainment and downward mixing of dryer
air from above cause a decrease in humidity. These mixing
processes lead to a humidity minimum that coincides with
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the time of the temperature maximum. This process is mod-
eled by the reanalyses, but it appears that this is not what hap-
pens in reality at the ATTO site. The different observed shape
of the diurnal cycle with a maximum at midday could have
two possible reasons: (1) evapotranspiration is stronger than
what is modeled by the two reanalyses, or (2) vertical mixing
processes within the ABL are weaker than in the reanalyses.
To test the first hypothesis we analyzed the diurnal cycles of
latent heat fluxes (not shown) and found that, during the dry
season, maximum measured latent heat fluxes were indeed
larger than those modeled by the two reanalyses. However,
during the wet season, ERA5 underestimates the measured
fluxes, while MERRA-2 shows a strong overestimation of
the latent heat fluxes. Since the two reanalyses do not agree
on the sign of the flux bias, it is unlikely that the different
shapes of the humidity diurnal cycles are mainly related to
evapotranspiration.

The shape of the humidity diurnal cycles is also related
to the ABL growth. It is possible that vertical mixing within
the ABL or entrainment at the ABL top in the reanalyses is
too strong; thus, the ABL grows too quickly in the morning.
Testing this hypothesis would require measurements span-
ning the whole boundary layer depth. In a study conducted
by Dias-Júnior et al. (2022), data from a campaign at ATTO
in November 2015 were used to compare ABL heights de-
rived from ERA5 with those obtained from radiosonde and
ceilometer measurements. Their findings indicate that the
ERA5 ABL grows faster in the morning and is larger than the
measured values after 09:00 LT. The average maximum ABL
height from ERA5 exceeds the measured values by more than
200 m. We checked MERRA-2 ABL heights for the corre-
sponding periods and found an almost identical ABL growth
rate in the morning, with an even larger maximum exceeding
ERA5 by about 200 m. These results are well in line with our
second hypothesis, and thus, observed humidity biases are
probably related to the growth rates of the ABL.

3.2 JSBACH model simulations

The comparison of near-surface atmospheric variables in the
previous section revealed a mostly good agreement between
reanalysis data and measurements at the ATTO site but also
notable biases for certain variables. In this section, we exam-
ine the impact of these biases on JSBACH model results if
reanalysis data are used for model spin-up (Sect. 3.2.1) or as
forcing of the subsequent model run (Sect. 3.2.2). Based on
the conclusions of these two sections we then set up a model
run with optimized forcing, which is based on bias-corrected
ERA5 data and ATTO measurements (see Sect. 3.2.3 for de-
tails). By comparing model results to ATTO measurements
of soil variables and surface fluxes, we then aim to identify
possible model shortcomings (Sect. 3.2.3).

3.2.1 Impact of the choice of spin-up data set

Land surface models require a spin-up period of several years
to reach an equilibrium state for the soil water content. Since
on-site measurements are not always available for such an
extended time period, a solution is to use output from other
atmospheric models or reanalysis data as spin-up forcing.
Here, we evaluate how the choice of spin-up data set affects
the subsequent model run. For this purpose, we perform two
separate model experiments with a 10-year spin-up of the JS-
BACH model from to 2007 to 2016 using either data from
the ERA5 or the MERRA-2 reanalyses as spin-up forcing.
For the following model run, we use ATTO data from 2017
and 2018 as model forcing. Since the impact of the spin-up
data set might vary by season, we choose two separate start-
ing times for the model run – one in the wet season starting
in January 2017 and one in the dry season starting in Septem-
ber 2017.

The largest differences occur in the deeper soil layers,
which is expected considering the longer adaptation time re-
quired for deeper soil layers to respond to changes in surface
forcing. During the first week of the model run, soil tem-
perature differences are 0.4 K in the layer between 0.07 and
0.32 m depth and even 1.3 K at about 2 m depth (Fig. 6a).
While the temperature differences in the upper layers decay
within a few months, there is still a difference of 0.6 K in the
deepest layer after 12 months of model run time.

For soil water, differences are also largest in the deeper
layers, with values exceeding 5 % between 0.32 and 1.23 m
and being up to 20 % at about 2 m depth in the first month af-
ter spin-up (Fig. 6b). Differences for soil water and also for
sensible and latent fluxes (Fig. 6c) decrease much quicker
than for soil temperature and reach negligible values after
about 2 months. When the model run is started in the dry
season, there is a longer impact on soil water and fluxes of
about 6 months (not shown). This rather quick decay of the
soil water differences is probably specific to the ATTO site,
where a relatively shallow soil layer and large precipitation
sums in the wet season often cause a saturation of the soil
layers with water. Consequently, this finding cannot be trans-
ferred a priori to other sites and model grid points.

As a second step, we aim to evaluate whether the sizes
of the biases induced by the different spin-up data sets are
relevant compared to general model biases. We quantify the
model biases by comparing model runs with an optimized
spin-up data set (for details see Sect. 3.2.3) to measurements
from the ATTO site. The relative bias is then calculated as
the fraction between spin-up bias and model bias. For both
soil temperature and water (Fig. 6d and e) the choice of the
spin-up data set has a larger impact in the wet season than
in the dry season. For soil temperature, values are larger in
the layer around 0.7 m depth, with spin-up biases in the wet
season amounting to up to 75 % of the model bias in the first
month after spin-up and up to 20 % after 7 months. In the
layer above, at around 0.2 m, spin-up biases are only relevant
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Figure 6. Consequences of different spin-up data sets for soil conditions: model results using ERA5 data for spin-up minus those using
MERRA-2. Time series of differences for (a) soil temperature, (b) soil water content at different depths and (c) RMSD for turbulent fluxes.
Corresponding differences between ERA5 and MERRA-2 spin-up relative to model biases (differences between model results and measured
ATTO data; see also Sect. 3.2.3) are shown in panels (d) for soil temperature and (e) for soil water. Results are presented for two different
starting times of the model run after spin-up in the wet (S1 – January 2017) and dry (S2 – September 2017) seasons. Empty symbols in (d)
and (e) indicate that differences between ERA5 and MERRA-2 spin-up are below 0.2 K for soil temperature or below 0.7 % for soil water
content (for S1 compare values in a and b, respectively).

in the first month. Model biases for soil water in the wet sea-
son are slightly distorted since the soil is often saturated with
water (see also Sect. 3.2.3). Results are more meaningful in
the dry season, where spin-up biases amount to up to 25 % of
the observed model biases.

As a next step, we analyze the impact of the choice of
forcing data set on variables associated with plant growth.
Figure 7a and b show the differences observed in gross and
net primary productivity (GPP and NPP), respectively. Since
the diurnal cycles of these variables contribute significantly
to their overall variability, we focus on cumulative values to
minimize the impact of these cycles. The cumulated differ-
ences amount to more than 0.1 g m−2 for GPP, accounting
for about 1.5 % of the average annual sums. For NPP, the cu-
mulative differences vary depending on the starting time of
the model run. For instance, when the run starts during the
dry season (S2), the differences are substantially larger, ex-
ceeding 4 % of the average annual sums, while for the run
started in the wet season (S1), the differences are less than
1 %. This discrepancy can be attributed to the fact that the
differences persist for twice as long for S2 compared to S1.

The differences in canopy conductance (Fig. 7c), a pa-
rameter associated with photosynthesis and transpiration, re-
inforce the same conclusions. The largest differences for
canopy conductance occur for S1 within the first month,
which is also the time of the largest soil water differences
(Fig. 6). The MERRA-2 spin-up leads to a drier soil, which

subsequently restricts stomatal opening and thereby limits
the rate of photosynthesis and transpiration. Consequently,
the reduced photosynthesis results in a smaller green car-
bon pool for the MERRA-2 spin-up (Fig. 7d). In the first 2
months after the start of the model run in January 2017, the
differences in the green carbon pool amount to more than
80 % of the annual average, with values remaining above
10 % even after 2 years for S1. On the other hand, changes
in the wood carbon pool occur over much longer timescales
and may not reach equilibrium even after a 10-year spin-up;
therefore, the results should be interpreted with care. It is
worth noting that the choice of spin-up data set causes dif-
ferences on the order of 5 % of the annual means, and these
differences only slightly decrease throughout the 2 years of
the model run (not shown).

Taken together, these findings highlight that the choice of
the spin-up data set significantly impacts the model results,
particularly for shorter model runs spanning only a few days
or weeks. This influence cannot be overlooked and should be
considered when setting up a simulation with a land surface
model.

3.2.2 Sensitivity to wind speed and precipitation biases

The comparisons in Sect. 3.1 revealed significant biases be-
tween reanalysis data and ATTO measurements. Here, we
quantify the impact of these biases on the JSBACH model
results when reanalysis data are used as model forcing. We
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Figure 7. Consequences of different spin-up data sets for plant activity: model results using ERA5 data for spin-up minus those us-
ing MERRA-2. Solid lines represent the model run started in January 2017 (S1), and dashed lines represent the one started in Septem-
ber 2017 (S2). Absolute differences (left y axes) are shown for the cumulative differences of gross primary production (a), net primary
production (b), the daily maximum differences of the canopy conductivity (c) and the green carbon pool (d). The right y axes represent rela-
tive differences with respect to average annual sums of GPP (a) and NPP (b) and the overall maximum of modeled canopy conductivity (c)
and the green carbon pool (d) in the years 2017 and 2018.

found the largest annual mean biases for MERRA-2 wind
speed and ERA5 precipitation. For the sensitivity tests, we
set up a JSBACH model run with a 10-year spin-up period
and a model run of 1 year in 2017. The results presented
in Sect. 3.1.1 indicate that the underestimation of the wind
speed by the two reanalyses is a complex issue. For simplic-
ity, we apply a very simple bias correction in this sensitivity
study by adding an offset of the annual mean wind speed
bias of−1.2 m s−1 between 2014 and 2018 to the MERRA-2
data. The results are then compared to those using the origi-
nal MERRA-2 forcing. In a second sensitivity study, we use
a factor to adjust the ERA5 maximum annual precipitation
bias of 44 % and compare the results to those using original
ERA5 forcing. Figure 8 shows the monthly mean differences
between the original and the adjusted model results.

The wind sensitivity runs show the largest soil water dif-
ferences in the dry season. In the original run, monthly mean
soil water content at all depths is overestimated by up to 5 %
(Fig. 8a), and in the upper two layers, daily mean soil wa-
ter content is overestimated by up to 10 % (not shown). Soil
temperatures of the original run are also slightly too high in
the dry season (Fig. 8b). These differences are also related to
the turbulent exchange at the surface. Correction of the wind
speed bias results in an increase of the forcing wind speed
in the adjusted run, which causes an increase of the abso-
lute value of both turbulent latent and sensible heat fluxes.
However, in the dry season, these flux changes counteract
each other, and the resulting net turbulent flux bias is close
to zero (Fig. 8c). In the wet season, the largest differences
occur for soil temperatures down to a depth of 1.23 m. The

original run overestimates monthly mean soil temperatures
by about 0.5 K (Fig. 8b) and daily mean temperatures by up
to 1.2 K in the upper two layers (not shown). Other than in
the dry season, an increased wind speed in the adjusted run
and the resulting stronger evaporation do not decrease the
soil water content since the soil is mostly saturated with wa-
ter in the wet season. As a result, changed latent and sensible
heat fluxes do not fully counteract each other, resulting in
an underestimation of the net turbulent heat fluxes of about
4 W m−2 by the original run.

For the precipitation sensitivity run, all changes in the wet
season are negligible. This means that – even by decreasing
precipitation sums by 44 % in the adjusted run – the soil is
still mostly saturated with water. Changes are more notable
in the dry season. The original run overestimates the monthly
mean soil water content in the upper two layers by up to 5 %
(Fig. 8d), which is the same order of magnitude as in the
wind sensitivity run. An overestimated soil water content re-
sults in increased latent heat fluxes, which in turn cool the
surface. This is evident from an underestimation of the soil
temperatures in the upper three layers of up to 0.3 K (Fig. 8e)
and also from the differences of the net turbulent heat fluxes
in the dry season of about 2 W m−2. Overall, these sensitiv-
ity studies demonstrate that biases of the forcing data sets
can have a non-negligible impact on the model results – at
the ATTO site especially in the dry season – and should be
corrected if possible.
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Figure 8. Monthly mean differences between the original and the adjusted JSBACH model runs for the MERRA-2 wind (a–c) and ERA5
precipitation (d–f) sensitivity runs. Differences for soil water content (a, d) and soil temperatures (b, e) are presented for different vertical
soil layers of the model. Panels (c) and (f) show root mean squared differences (RMSDs) for sensible (SH) and latent (LH) heat fluxes and
biases of net turbulent fluxes.

3.2.3 Comparison of model results to ATTO
measurements

In this section, we compare ATTO measurements to model
results to identify possible shortcomings of the JSBACH land
surface model. Based on the results of the previous sections,
we construct an optimized version of the spin-up run. The
findings from Sect. 3.2.1 indicate that the duration during
which the choice of spin-up forcing data set has a significant
impact on most variables is less than 1 year. As a result, a
spin-up period of 2 or 3 years would be sufficient to reach an
equilibrium state for soil water content and soil temperatures
in the upper layers at this specific site. However, variables
like temperatures of the deeper soil layers or the green car-
bon pool require a longer spin-up duration. Therefore, when
employing a stand-alone land surface model, the selection of
the spin-up period should be determined by the specific pro-
cesses of interest. In our case, we adopt a cautious approach
and use a 10-year spin-up period for the model, which has
the following characteristics: we use ERA5 because, for most
forcing variables, the shapes of the annual cycles agree bet-
ter with measurements. Wind speed bias (−0.8 m s−1) and
mean precipitation bias (+32 %) are corrected, and 9 years
of model spin-up is performed (2007–2015). The last spin-
up year is performed using ATTO data; 2 years of model
results forced by ATTO data is then compared to measure-
ments. By using this setup, we can minimize the impact of
the choice of spin-up forcing data set on the results and thus
focus mainly on uncertainties caused by model physics. For
the comparisons, missing values of the measurement data are
also flagged in the model results. We evaluate the model per-
formance based on average annual cycles of soil water and
temperature and seasonally averaged soil profiles and turbu-
lent fluxes.

ATTO soil measurements are only available for certain
model soil layers (see also Table A1). Therefore, we com-
pare model results from the second (0.07 to 0.32 m) and
third (0.32–1.23 m) soil layers and average the correspond-
ing ATTO measurements, which are 0.1 to 0.3 m and 0.4 to
1.0 m, respectively. Please note that soil water measurements
reach deeper than soil temperature measurements, which are
only available at 0.1, 0.2 and 0.4 m. Figure 9 shows annual
cycles of soil water content and temperature averaged over
the 2 years of the model run from 2017 to 2018. It is evident
that soil temperatures are overestimated in the model in all
months and for both considered depths (Fig. 9a), with large
annual mean biases of −1.1 K in the upper layer and −1.3 K
in the lower layer.

To identify possible reasons for this bias we analyzed
temperature differences between the soil and the air above.
The land surface model is forced by air temperatures mea-
sured roughly 4 m above the forest canopy. It is evident from
Fig. 9b that soil temperatures in the model are always higher
than air temperatures, with a difference of about 0.6 K, which
remains almost constant throughout the year. In contrast,
measured soil temperatures are always lower than air temper-
atures 4 m above the forest, with larger differences in the dry
season. However, in reality, soil temperature is more likely to
depend on air temperatures close to the ground and within the
canopy layer than on temperatures above the forest. We thus
also analyzed differences between ATTO soil temperatures
and air temperatures measured at 1.5 m above the ground.
Here, we find a much better agreement with the modeled
temperature differences throughout the year and even an al-
most perfect match in the wet season. This indicates that the
observed bias between measured and modeled soil tempera-
tures is likely caused by a cooling effect within the canopy
layer, which is not included in the land surface model – such
as from evaporation of rain from stems and leaves.
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Figure 9. Annual cycle of soil temperatures (a) averaged over
the years 2017 and 2018 from ATTO measurements and the JS-
BACH model. Solid lines represent the second and dashed lines the
third model soil layer and the corresponding ATTO measurement
heights, respectively. (b) Annual cycles of temperature differences
between soil layers L1 in (a) and air temperatures measured about
4 m above the forest (a.f.) or within the forest canopy at 1.5 m above
the ground (a.g.). Empty symbols represent months with more than
30 % missing data. (c) As in panel (a) but for soil water content.
Shading in all panels denotes the measurement uncertainty.

In contrast, differences between modeled and measured
soil water content show larger seasonal dependence (Fig. 9c).
In the upper layer, the model overestimates the soil water
content with an almost constant monthly bias of about 11 %.
In the lower layer, modeled soil water agrees very well with
measurements in the wetter season from February to July.
However, in the dry months from September to December,
the model underestimates soil water content – also by about
11 %. The fact that different soil layers exhibit different bias
signs hints towards problems of vertical soil water transport
in the model. To analyze vertical dynamics more deeply, we
look at soil profiles in the following.

Figure 10 shows boxplots of daily mean soil temperature
and water content for different depths. For soil water content,
ATTO measurements show very similar profile shapes for the
wet and dry seasons, with lower values in the upper soil lay-
ers and higher values in deeper layers. The minimum and
maximum can be found at 0.2 and 0.6 m depth, respectively.
However, the JSBACH model produces different profiles in

Figure 10. Vertical profiles of soil water content (a, b) and soil
temperatures (c, d) during the wet (a, c) and dry seasons (b, d) in
2017 and 2018. Vertical lines denote the median values of daily
means for the respective heights, and boxplots – showing quartiles
(box) and 10th and 90th percentiles (whiskers) – are centered at the
ATTO measurement depths (blue) and the center of the JSBACH
model layer (purple).

the wet and dry seasons. In the wet season, all soil layers ap-
proach a constant value of about 35 % (Fig. 10a), which is
close to the field capacity of the soil. This indicates that the
soil water content approaches saturation levels during rainfall
events. In the dry season, the maximum soil water content is
found in the uppermost two layers until 0.32 m, which is in
contrast to the measurements, for which a minimum is found
at these depths (Fig. 10b).

A possible reason for the discrepancies of the soil water
profiles between model and measurements in both seasons
could be an overestimation of the soil water storage capac-
ity in the upper two layers. This could mean that boundary
conditions of the soil properties do not represent the actual
conditions at ATTO properly, or – since JSBACH prescribes
the same soil properties in all model layers – the soil at the
ATTO site might actually be heterogeneous and consist of
different soil textures at different depths. Another relevant
process could be transpiration, which is a sink term in the
soil water balance equation and is constant with depth in JS-
BACH. However, it is well known that root density – and thus
water extraction from the soil by plants – varies with depth
(e.g., Feddes, 1982; Perrochet, 1987). Improving the repre-
sentation of roots in JSBACH (based on common approaches
used in other land surface models; see, e.g., Zheng and Wang,
2007) would potentially change the soil water profile, which
we suggest should be investigated further in the future. Other
studies indicated that it is beneficial to adopt an exponen-
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Figure 11. (a) Diurnal cycle of soil temperatures averaged over the
years 2017 and 2018 in the second JSBACH model layer and the
corresponding ATTO measurement depths. (b) Corresponding am-
plitudes and times of minimum and maximum of the curves in (a).

tial root profile assumption (e.g., Jackson et al., 1996; Zeng,
2001).

Profiles of soil temperature also show larger seasonal dif-
ferences in the model results than in the observations. In
the wet season, the shapes of the profiles agree reasonably
well, with slightly increasing temperatures with depth in both
the model and observations (Fig. 10c) and biases below 1 K.
However, in the dry season, model temperatures are higher in
the upper two layers until 0.32 m compared to below, while
the measured temperature profile has, on average, nearly con-
stant temperatures (Fig. 10d), with biases exceeding 1.5 K at
all depths. The whiskers of the boxplots (10th and 90th per-
centiles) also indicate that the day-to-day variability is over-
estimated in the model.

To get more insight into the temperature variability with
depth, we look at average diurnal cycles of soil tempera-
ture. Since the changes of the overall characteristics with sea-
sons are small, we only present annual mean diurnal cycles
in Fig. 11a. We focus on model layer 2 between 0.07 and
0.32 m, for which observation depths show the best match.
We would expect the best agreement with the observations at
0.2 m depth. However, the amplitude of the diurnal cycle is
strongly overestimated, and the model agrees better with the
amplitude measured at 0.1 m depth (Fig. 11b).

Typically, diurnal and annual soil temperatures have a si-
nusoidal shape with decreasing amplitude with depth and a
phase shift, both depending on the heat conductivity of the
soil. Our results indicate that the penetration depth of the di-
urnal cycle is overestimated in the model, which might be

related to an overestimation of the heat conductivity of the
soil. This is also in line with our findings of an overestimated
soil water content (see above) since wet soil has a larger heat
conductivity than dry soil. To further test this hypothesis,
we make use of the formula describing the exponentially de-
creasing soil temperature amplitude A with depth (see, e.g.,
Moene and Dam, 2014):

A(z)= A0 exp
(
−

z

d

)
, (1)

where A0 is the amplitude at the surface, and d is the damp-
ing depth, which is a function of the heat conductivity of the
soil. Using the amplitudes of the diurnal temperature varia-
tions from the two uppermost layers z1 and z2, we can deter-
mine the damping depth as follows:

d =
z2− z1

ln (A (z1)/A (z2))
. (2)

For both the ATTO measurements (at 0.1 and 0.2 m) and the
model results (layers centered at 0.03 and 0.19 m), we obtain
a damping depth of about 7 cm. This good agreement indi-
cates that properties concerning heat transport in the soil are
well represented in the model, which counteracts the above
hypothesis.

The overestimation of the penetration depth could also be
related to the amplitude of the temperature at the soil surface
A0. Using the value of d = 0.07 m, we obtain A0 = 3.0 K us-
ing ATTO measurements at 0.1 m depth but a much larger
value of A0 = 8.5 K using model results from the uppermost
model layer. This gives a hint that the forest canopy dampens
the soil surface temperature. However, JSBACH (version 4)
does not include an explicit canopy layer or a parametrization
of the canopy heat storage effect. Consequently, the model is
not able to capture this dampening effect.

As a final step, we compared measured turbulent heat
fluxes to those from the model. Two major aspects had to
be considered before the comparison. First, time series of
measured turbulent fluxes contain many gaps, mostly due to
rain, and in 2017 and 2018 there is not a single day with full
data coverage. Since the model is forced with ATTO mea-
surements, rain occurs at the same time in the model and
in reality, and those cases can therefore be masked simulta-
neously. It needs to be kept in mind that data availability is
much lower during the day (30 % to 40 % at midday) than at
night (about 80 %), and thus, the diurnal cycles should be in-
terpreted with care. To obtain more representative monthly
means, we first calculated average diurnal cycles for each
month, which were then averaged to obtain monthly values.
By doing so, we reduce the impact of a higher data availabil-
ity at night on the overall monthly values. The second issue
concerns the height differences between the ATTO measure-
ments at about 44 m above the forest and the model results
at the surface. In a well-mixed atmospheric boundary layer,
turbulent fluxes typically decrease linearly with height, with
a zero crossing at the height of the boundary layer depth. To

Atmos. Chem. Phys., 23, 9323–9346, 2023 https://doi.org/10.5194/acp-23-9323-2023



A. U. Schmitt et al.: Modeling atmosphere–land interactions at ATTO 9337

Figure 12. Annual cycles of turbulent sensible (SH) and latent (LH)
heat fluxes (a) and net fluxes (b) averaged over the years 2017 and
2018 from ATTO measurements and the JSBACH model. A positive
sign denotes upward fluxes from the soil to the atmosphere.

get a rough estimate, we calculated a height correction fac-
tor for the measurements using boundary layer heights from
ERA5 and MERRA-2. However, this correction only had a
notable impact on a few days but did not change the over-
all conclusions drawn from the analysis of flux differences
between model and measurements, and thus, the corrected
results are not shown here.

Figure 12 shows average annual cycles of sensible (SH)
and latent (LH) heat fluxes and the sums of the two. It is
evident that measured LH fluxes are larger than SH fluxes
by a factor of about 3 to 4. Generally, modeled and mea-
sured fluxes agree quite well. In the dry season, LH fluxes
are slightly overestimated by the model, which is, however,
counteracted by underestimated SH fluxes, and thus, net
fluxes show a good agreement.

Diurnal cycles of turbulent heat fluxes are presented in
Fig. 13. It is notable that LH fluxes in the model show a time
shift compared to the measurements, with fluxes increasing
and decreasing about 2 to 3 h later in the day (Fig. 13b). On
the one hand, this results in an underestimation of LH fluxes
in the morning of up to 100 W m−2. As a consequence, the
surface warms up too quickly, causing an overestimation of
the SH fluxes – which does, however, not fully compensate
for the overestimation of LH fluxes, resulting in a net bias
of about −50 to −100 W m−2. On the other hand, LH fluxes
are overestimated in the afternoon, with the largest values
during the hours before sunset. The impact is most notable
in the dry season (Fig. 13d). Median LH fluxes are overesti-
mated by more than 200 W m−2 in the model, which leads to
an increased cooling of the surface and resulting decreasing
SH fluxes. Net turbulent fluxes are overestimated by about
100 W m−2 in the afternoon. Due to the considerable num-
ber of missing measurements, however, it remains difficult to

determine whether these biases have a significant impact on
longer time periods.

To summarize, our comparison of JSBACH model results
with soil and surface measurements at the ATTO site indi-
cates that the following model processes should be evaluated
more carefully in the future: firstly, the model performance
could possibly be improved with a better representation of
the vertical structure of the soil. It would be useful to allow
for different soil textures in different model layers, and addi-
tionally, more detailed knowledge of soil properties – either
from field measurements at the considered site or from high-
resolution data sets of soil textures – could be used as bound-
ary conditions. Furthermore, the vertical distribution of the
root density should be considered to allow for a varying soil
water sink with depth due to transpiration. Secondly, it would
be beneficial to include a representation of the canopy heat
storage effect into the model. This could be accomplished
by modeling the processes in a separate canopy layer ex-
plicitly or by adopting a simpler approach that parameter-
izes the heat storage by the canopy. Heidkamp et al. (2018)
and Schulz and Vogel (2020) demonstrated that a simple ap-
proach, which is based on a skin temperature formulation,
reduces the underestimation of the amplitude of the diurnal
cycle of surface and soil temperatures and the corresponding
incorrect phase shifts. Moreover, the skin temperature for-
mulation improves biases in latent and sensible heat fluxes
(Schulz and Vogel, 2020; Renner et al., 2021). To reduce the
soil temperature bias of the model, it might also be beneficial
to re-evaluate the representation of additional cooling terms
within the canopy layer. For example, evaporation of dew or
of rainfall intercepted by the vegetation impacts near-surface
air temperatures, which then in turn influence soil tempera-
tures.

4 Summary and conclusions

In this study, we used the land surface model JSBACH in a
site-level setup to study its performance at a rainforest site
– hereby focusing especially on processes influenced by the
forest canopy. Observations at the Amazon Tall Tower Ob-
servatory were used to evaluate the model performance and,
as a first step, to optimize the external forcing data of the land
surface model.

First, we compared near-surface atmospheric variables
from ERA5 and MERRA-2 to 5 years of ATTO measure-
ments to determine whether reanalysis data are generally
suitable to be used as forcing data for the land surface model.
For wind, both reanalyses were able to simulate the shape of
the diurnal cycle correctly but strongly underestimated wind
speeds at all heights by about 1 m s−1. Biases on the same
order of magnitude have been found in other studies, which
also report that the sign of the bias varies with region (Jour-
dier, 2020; Staffell and Pfenninger, 2016; Carvalho, 2019)
and terrain (Gualtieri, 2021).
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Figure 13. Top: annual median diurnal cycles of sensible (a) and latent (b) heat fluxes from the JSBACH model and measurements at ATTO
in 2017 and 2018. Boxplots display differences between the model and the measurements, with quartiles as boxes and the 10th and 90th
percentiles as whiskers. Light-blue bars indicate the fraction of available measurements. Bottom: median diurnal cycles of flux differences
between model and measurements for sensible and latent heat flux and their sum for the wet (c) and dry (d) seasons. Gray vertical lines mark
the times of sunrise and sunset, respectively.

MERRA-2 reproduced the annual cycle of precipitation
quite well, while ERA5 overestimated annual mean precipi-
tation by 30 %. Since the amount of incoming shortwave ra-
diation was also underestimated, it is likely that the cloud
cover in ERA5 was too large. ATTO measurements showed
a bimodal distribution of diurnal precipitation, with a sec-
ond peak around the time of sunrise. ERA5 also produced
early-morning precipitation but was too early at night, and
MERRA-2 completely failed to capture the second peak.

Contrarily to precipitation, ERA5 captured the annual cy-
cle of temperature better than MERRA-2. In the dry sea-
son, MERRA-2 overestimated monthly mean temperatures
by more than 1 K, which is related to too-large daily maxi-
mum temperatures in this season. For specific humidity, nei-
ther of the reanalyses reproduced the shape of the diurnal cy-
cle correctly. While ATTO measurements showed increasing
humidity in the morning with a maximum around midday,
both reanalyses produced a local minimum of humidity dur-
ing this time, which is possibly caused by an overestimated
growth rate of the atmospheric boundary layer.

Next, we tested how much these biases of the reanalysis
data affect the results of the land surface model. Compar-
ing different model simulations, which use either ERA5 or
MERRA-2 as forcing for the spin-up period, we found the
largest differences of up to 20 % for soil water content and up
to 1.3 K for soil temperatures in the deepest soil layers. The
differences for deeper soil temperatures and the green car-
bon pool remained non-negligible even after 1 year. For other

variables associated with plant growth (GPP, NPP, canopy
conductance), noticeable differences were observed for up
to 6 months after the start of the model run. For both soil
temperature and water, the choice of the spin-up data set ac-
counted for more than 10 % of the observed model biases
during the first 3 months after spin-up at 0.7 m depth and for
more than 50 % closer to the surface. Thus – especially for
shorter model runs of only a few days or weeks – the choice
of spin-up data set is not negligible and can have a large im-
pact on the model results.

Correcting biases of the forcing data also changes the land
surface model results. We conducted sensitivity runs for wind
speed and precipitation and found the largest changes in the
dry season, when the soil is not saturated with water. For
both variables, soil water differences amounted to up to 5 %
for monthly means and 10 % for daily means in all depths.
Too-low wind speeds caused an overestimation of soil tem-
peratures by about 0.5 K in all months. These results indicate
that biases of the forcing data sets can have a notable impact
on the model results and should be checked and corrected
beforehand if possible.

Based on these results, we performed a model run with
optimized forcing. The spin-up consists of 9 years of ERA5
data (with corrected wind speed and precipitation biases),
followed by 1 year of ATTO data. Results from a 2-year
model run forced by ATTO measurements were then com-
pared to the observations of soil water content, soil temper-
atures and turbulent heat fluxes to identify possible model
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shortcomings. Comparing profiles of soil water, we found
that the model generally overestimates the water content in
the upper layers until 0.32 m. On the one hand, this could be
related to the choice of boundary conditions, like the overall
soil type. It could also be caused by a lack of vertical differ-
ences in terms of soil textures or of the root density, which
impacts transpiration.

We also found that the model overestimates soil tempera-
tures by about 1 K, with a slightly larger bias in the dry sea-
son. Comparisons with measured air temperatures above and
within the canopy suggest that this is most likely caused by
additional cooling within the canopy layer, e.g., by evapora-
tion of rainfall intercepted by the vegetation, which is not suf-
ficiently accounted for in the model. Furthermore, the pene-
tration depth of the diurnal cycle of temperatures is overesti-
mated. A more detailed analysis of the change of temperature
amplitude with depth indicates that this is likely related to the
temperature-dampening effect of the forest canopy, which
has not been incorporated into the JSBACH model yet. The
analysis of turbulent fluxes revealed a timing mismatch of
the diurnal cycles of latent and sensible heat fluxes. ATTO
flux measurements contain a large amount of missing data,
however, and thus, further analysis of longer and more com-
plete time series would be required to examine the underlying
causes in more detail.

To conclude, we suggest that future improvements of the
JSBACH model could possibly focus on allowing more ver-
tical variability – both of soil texture and root density –
within the soil column. Furthermore, a separate canopy layer
would likely improve processes related to the energy trans-
port within the soil. When implementing and evaluating fu-
ture improvements to the canopy scheme, we suggest that
one should especially consider the bias and phase shift of
the soil temperature. Finally, we showed that the ATTO site
provides an ideal framework for testing canopy-related pro-
cesses in LSMs and will certainly be useful in future model-
ing studies.
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Appendix A: Meteorological instrumentation at the
ATTO site

In this study, we used measurements of various meteorologi-
cal variables from the ATTO site. Details about instruments,
measurement heights and measurement uncertainties are pre-
sented in Table A1.

Table A1. Observations at the ATTO site used in this study.

Variables Instruments Measurement Accuracy
heights (m)

Air temperature and Thermohygrometer (CS215, Rotronic 1.5, 36.3, 40.2, Temperature: 0.3 ◦C (at 25 ◦C),
relative humidity Measurement Solutions, UK) 55.3 0.4 ◦C (5 to 40 ◦C); relative

humidity: 4 % (0 %–100 %
range), 2 % (10 %–90 % range) at 25 ◦C

Wind speed and direction 2D sonic anemometer (WindSonic, 43.1∗, 50.8, 66.0, Wind speed uncertainty: 2 % at
Gill Instruments Ltd., UK) 73.7 12 m s−1

Turbulent sensible and Wind, temperature – 2014–2017: 3D 82.0 WindMaster – wind speed: < 1.5 %
latent heat flux sonic anemometer (WindMaster, Gill rms at 12 m s−1

Instruments Ltd., UK); CSAT3: wind speed < 2 % (wind
2017–2018: 3D sonic anemometer vector within ±5◦ of horizontal)
(CSAT3, Campbell Scientific Inc., temperature: 0.01 K
USA) H2O content: < 2 %
Humidity – infrared gas analyzer
(IRGA LI-7500A, LI-COR Inc., USA)

Precipitation Rain gauge (TB4, Hydrological 81.3 Rainfall per tip: 0.254 mm;
Services Pty. Ltd., Australia) uncertainty: 2 % (< 250 mm h−1),

3 % (250–500 mm h−1)

Atmospheric pressure Barometer (PTB101B, Vaisala, 81.0 0.5 hPa at 20 ◦C; 1.5 hPa (0–40 ◦C)
Finland)

Shortwave radiation Pyranometer (CMP21, Kipp & Zonen, 75.6 Expected daily uncertainty < 2 %
the Netherlands)

Longwave radiation Pyrgeometer (CGR4, Kipp & Zonen, 75.6 Uncertainty < 3 % for daily totals
the Netherlands)

Soil water content Water content reflectometer (CS615, −0.1, −0.2, −0.3, 2 % manufacturers standard
Campbell Scientific Inc., USA) −0.4, −0.6, −1.0 calibration

Soil temperature Thermistor (108, Campbell Scientific −0.1, −0.2, −0.4 0.2 K
Inc., USA)

∗ Wind measurements at 43.1 m height are only available for the years 2014 and 2015.

Appendix B: Humidity conversion

For comparison of the humidity with reanalysis data, we con-
vert the relative humidity (RH) to specific humidity q with

q =
0.622Pa

p

(
RH

100 %
esat(ϑ)

)
, (B1)

where p is the air pressure (in Pa), and esat is the saturation
water vapor pressure calculated using the Magnus equation,

with ϑ being the air temperature (in ◦C). Since air pressure
is only measured at 81 m height, we extrapolate the values
downwards to the measurement heights of humidity using
the barometric formula:

p2 = p1 · exp
(
−

g (z1− z2)
RlTv

)
. (B2)

In the above equation, pi is the pressure at height zi , g =

9.81 m s−1 is the gravity of Earth, Rl = 287.1 J kg−1 K−1 is
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the specific gas constant for dry air, and the virtual tempera-
ture is calculated as Tv = T (1+ 0.61q). Air pressure is cal-
culated stepwise downwards, and if data required for the cal-
culations are missing at the considered height, values are re-
placed by applying Eq. (B2) to the levels above.

Appendix C: Early-morning precipitation

To study the regional distribution of average precipitation
patterns, we use the IMERG data set (Integrated Multi-
satellitE REtrievals for GPM from the NASA-JAXA Global
Precipitation Measurement mission; Huffman et al., 2019)
as a reference. The data set provides half-hourly estimates
of surface precipitation rates on a 0.1◦ grid. More details
can be found in Tan et al. (2019). We calculate the wet-
season (JFMA) average early-morning precipitation sums for
the years 2014 to 2018 based on IMERG data and compare
them to results from ERA5 and MERRA-2. The top row in
Fig. C1 shows late-night–early-morning (LN–EM) precipita-
tion sums for the period between 00:00 and 08:00 LT, and the
bottom row shows early-morning (EM) precipitation sums
after sunrise between 06:00 and 08:00 LT as a fraction of to-
tal daily precipitation.

LN–EM precipitation shows strong local gradients, with
up to 50 % of daily precipitation falling between 00:00 and
08:00 LT in the region about 200 km northeast of ATTO
(Fig. C1a). Northeast was also the most common wind direc-
tion for this time period, with atmospheric flow coming from
the 30–105◦ sector more than half of the time (not shown).
The fraction of LN–EM precipitation decreases toward the
southeast to only around 25 % in the region around Manaus.
EM precipitation shows a band with a local maximum from
northwest to southeast of about 50 km width, where precipi-
tation after sunrise accounts for up to 9 % of the daily precip-
itation (Fig. C1d). The ATTO location receives about 30 % of
its precipitation between 00:00 and 08:00 LT and about 6 %
in the early morning. Even though the IMERG data set does
not fully reproduce the early-morning precipitation maxi-
mum measured at ATTO between 07:00 and 08:00 LT (see
Fig. 4d), it clearly shows that there is a significant amount of
EM precipitation in this region, with fractions changing sig-
nificantly within a few hundred kilometers, i.e., within a only
a few reanalysis grid cells.

While there are notable differences between LN–EM and
EM precipitation (Fig. C1a and d) for IMERG, the patterns
for the two reanalysis data sets stay roughly the same be-
fore and after sunrise. Figure 4d indicates that MERRA-2
does not capture the second EM maximum of precipitation,
which is observed in the ATTO measurements. It is also evi-
dent from Fig. 4c and f that ATTO is located in an area with
relatively low fractions of nighttime precipitation. Fractions
are much larger at about 100 km further to the east. There,
the maximum of the diurnal cycle of precipitation is between
07:00 and 10:00 LT (not shown), which agrees better with
the observed ATTO results. This gives a hint that MERRA-2
does not generally fail to reproduce early-morning precipita-
tion but partly produces it at the wrong location.
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Figure C1. Fraction of nighttime precipitation between (a–c) 00:00 and 08:00 LT and (d–f) 06:00 and 08:00 LT averaged over the wet season
(JFMA) from 2014 to 2018 based on the IMERG precipitation data set (a, d) and MERRA-2 (b, e) and ERA5 (c, f) data. The circle marks
the ATTO location. Red and orange boxes denote the considered grid boxes for ERA5 and MERRA-2, respectively (see also Fig. 1).
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