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ON FULL ASYMPTOTICS OF REAL ANALYTIC TORSIONS
FOR COMPACT LOCALLY SYMMETRIC ORBIFOLDS

BINGXIAO LIU

We consider a certain sequence of flat vector bundles on a compact locally symmetric orbifold, and
we evaluate explicitly the associated asymptotic Ray–Singer real analytic torsion. The basic idea is to
computing the heat trace via Selberg’s trace formula, so that a key point in this paper is to evaluate the
orbital integrals associated with nontrivial elliptic elements. For that purpose, we deduce a geometric
localization formula, so that we can rewrite an elliptic orbital integral as a sum of certain identity orbital
integrals associated with the centralizer of that elliptic element. The explicit geometric formula of Bismut
for semisimple orbital integrals plays an essential role in these computations.
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1. Introduction

Let .Z; gTZ/ be a closed Riemannian manifold of dimension m, and let F ! Z be a complex vector
bundle equipped with a Hermitian metric hF and a flat connection rF;f . Let .��.Z; F /; dZ;F / be
the associated de Rham complex valued in F. It is equipped with an L2-metric induced by gTZ , hF .
Let DZ;F;2 be the corresponding de Rham–Hodge Laplacian. The real analytic torsion T .Z; F / is a
real-valued (graded) spectral invariant of DZ;F;2 introduced by Ray and Singer [1971; 1973]. When Z
is odd-dimensional and .F;rF;f / is acyclic, this invariant does not depend on the metric data gTZ, hF .
Ray and Singer also conjectured that, for a unitarily flat vector bundle F (i.e., rF;f hF D 0), this invariant
coincides with the Reidemeister torsion, a topological invariant associated with .F;rF;f /!Z. This
conjecture was later proved by Cheeger [1979] and Müller [1978]. Using the Witten deformation, Bismut
and Zhang [1991; 1992] gave an extension of the Cheeger–Müller theorem for arbitrary flat vector bundles.
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If Z is a compact orbifold, and if F is a flat orbifold vector bundle on Z, the Ray–Singer analytic
torsion T .Z; F / extends naturally to this case (see Definition 2.2.3). In particular, if F is acyclic, and
if Z and all the singular strata have odd dimensions, then T .Z; F / is independent of the metric data; see
[Shen and Yu 2022, Corollary 4.9]. We refer to [Ma 2005; Shen and Yu 2022] for more details.

We consider a certain sequence of (acyclic) flat vector bundles fFd gd2N on a compact locally symmetric
space Z, and we study the asymptotic behavior of T .Z; Fd / as d !C1. When Z is a manifold, such
question was already studied by Müller [2012], by Bismut, Ma and Zhang [Bismut et al. 2011; 2017] and
by Müller and Pfaff [2013b; 2013a]. In particular, Bismut, Ma and Zhang [Bismut et al. 2011; 2017]
worked on the manifolds which are more general than locally symmetric manifolds. When Z is a compact
hyperbolic orbifold, such question was studied by Fedosova [2015] using the method of harmonic analysis.
Here, we consider this question for an arbitrary compact locally symmetric orbifold (of noncompact type).

Let G be a connected linear reductive Lie group equipped with a Cartan involution � 2Aut.G/ and an
invariant nondegenerate symmetric bilinear form B . Let K �G be the fixed-point set of � , which is a
maximal compact subgroup of G. Put

X DG=K: (1.0.1)

Then X is a Riemannian symmetric space with the Riemannian metric induced from B . For convenience,
we also assume that G has a compact center; then X is of noncompact type.

Now let � �G be a cocompact discrete subgroup. Set

Z D �nX: (1.0.2)

Then Z is a compact locally symmetric space. In general, Z is an orbifold. Let †Z denote the orbifold
resolution of the singular points in Z whose connected components correspond exactly to the nontrivial
elliptic conjugacy classes of �.

Since G has compact center, the compact form U of G exists and is a connected compact linear
Lie group. If .E; �E ; hE / is a unitary (analytic) representation of U, then it extends uniquely to a
representation of G by a unitary trick. In this way, F DG �K E is a vector bundle on X equipped with
an invariant flat connection rF;f (see Section 3.4 and (4.1.8)) and a unimodular Hermitian metric hF

induced by hE. Moreover, .F;rF;f ; hF / descends to a flat Hermitian orbifold vector bundle on Z, which
is still denoted by .F;rF;f ; hF /. Let DZ;F;2 denote the corresponding de Rham–Hodge Laplacian.

The fundamental rank ı.G/ (or ı.X/) of G (or X) is the difference of the complex ranks of G and
of K. As we will see in Theorem 4.1.4, if ı.G/¤ 1, we always have

T .Z; F /D 0: (1.0.3)

If F is defined instead by a unitary representation of �, this result is obtained by Moscovici and Stanton
[1991, Corollary 2.2]. If � is torsion-free, with F defined via a representation of G as above, (1.0.3)
was proved in [Bismut et al. 2017, Remark 8.7] by using Bismut’s formula for orbital integrals [2011,
Theorem 6.1.1]; see also [Ma 2019, Theorems 5.4 and 5.5]. A new proof was given in [Müller and Pfaff
2013a, Proposition 4.2] (with a correction given in [Matz and Müller 2023, p. 44]). Note that in [Ma
2019, Remark 5.6], it is indicated that, using essentially Theorem 5.4 of that work, the identity (1.0.3)
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still holds if � is not torsion-free (i.e., Z is an orbifold), which gives us exactly Theorem 4.1.4 in this
paper. Due to this vanishing result, we only need to deal with the case ı.G/D 1.

We now describe the sequence of flat vector bundles fFd gd2N which is concerned here. Note that U
contains K as a Lie subgroup. Let T be a maximal torus of K, and let TU be the maximal torus of U
containing T. Let u be the Lie algebra of U, and let tU � u be the Lie algebra of TU . Let R.u; tU /
be the associated real root system with a system of positive roots RC.u; tU /. Then let PCC.U / � t�U
denote the set of (real) dominant weights of U with respect to the above root system. If � 2 PCC.U /,
let .E�; �E�/ be the irreducible unitary representation of U with the highest weight �. We extend it to
a representation of G. We require � to be nondegenerate, i.e., as G-representations, .E�; �E�/ is not
isomorphic to .E�; �E� ı �/. We also take an arbitrary �0 2 PCC.U /. If d 2 N, let .Ed ; �Ed ; hEd / be
the unitary representation of U with highest weight d�C�0. By Weyl’s dimension formula, dimEd is a
polynomial in d . This way, we get a sequence of (unimodular) flat vector bundles f.Fd ;rFd ; hFd /gd2N

on X or on Z.
Note that in Section 8.1 (see also [Bergeron and Venkatesh 2013, Lemma 4.1]), the nondegeneracy of

� implies that, for d large enough,
H �.Z; Fd /D 0: (1.0.4)

Furthermore, dimZ is odd when ı.G/D 1. Then, for any sufficiently large d , T .Z; Fd / is independent
of the different choices of hEd (or hFd ).

Let EŒ�� be the finite set of elliptic classes in �. Set ECŒ��DEŒ��nf1g. The first main result in this
paper is the following theorem.

Theorem 1.0.1. Assume that ı.G/ D 1. There exists a (real) polynomial P.d/ in d , and for each
Œ� 2 ECŒ�� there exists a nice exponential polynomial PEŒ�.d/ in d (i.e., a finite sum of the terms
of the form ˛d j e2�

p
�1ˇd , with ˛ 2 C, j 2 N, ˇ 2 Q; see Definition 7.6.1) such that there exists a

constant c > 0 for d large, we have

T .Z; Fd /D P.d/C
X

Œ�2ECŒ��

PEŒ�.d/CO.e�cd /: (1.0.5)

Moreover, the degrees of P.d/, PEŒ�.d/ can be determined in terms of �, �0.

For a hyperbolic 3-manifold Z, Müller [2012, Theorem 1.1] computed explicitly the leading term
of T .Z; Fd / as d ! C1. In [Bismut et al. 2011; 2017], under a more general setting for a closed
manifold Z, Bismut, Ma and Zhang [Bismut et al. 2017, Remark 7.8] proved that there exists a constant
c > 0 such that

T .Z; Fd /D TL2.Z; Fd /CO.e�cd /; (1.0.6)

where TL2.Z; Fd / denotes the L2-torsion [Lott 1992; Mathai 1992] associated with Fd !Z. Moreover,
they constructed universally an elementW 2��.Z; o.TZ// (where o.TZ/ denotes the orientation bundle
of TZ) such that if n0 D degEd , then

TL2.Z; Fd /D d
n0C1

Z
Z

W CO.dn0/: (1.0.7)
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The integral of W in the right-hand side of (1.0.7) is called a W -invariant. If we specialize (1.0.7) for a
compact locally symmetric manifold Z, we get

TL2.Z; Fd /D d
n0C1 Vol.Z/ŒW �max

CO.dn0/: (1.0.8)

In [Bismut et al. 2017, Section 8.7], the explicit computation on ŒW �max was carried out for G D SL2.C/
to recover [Müller 2012, Theorem 1.1].

We now compare (1.0.5) with (1.0.6). If ignoring that � may act on X noneffectively, we can extend
the notion of L2-torsion to the orbifold Z, so that TL2.Z; Fd / is still defined in terms of the �-trace of
the heat operators on X. Then P.d/ in (1.0.5) is exactly TL2.Z; Fd /. But different from (1.0.6), we still
have the nontrivial terms PEŒ�.d/, Œ� 2ECŒ�� in (1.0.5). We will see, in a refined version of (1.0.5)
stated in Theorem 1.0.2, that PEŒ�.d/ is essentially a linear combination of certain L2-torsions for †Z
associated with Œ� and �, �0. Therefore, we can define an L2-torsion for †Z as

zT L2.†Z;Fd /D
X

Œ�2ECŒ��

PEŒ�.d/: (1.0.9)

Then, as an analogue to (1.0.6), we restate our Theorem 1.0.1 as follows.

Theorem 1.0.10. Assume that � acts on X effectively. For Z D �nX, as d !C1, we have

T .Z; Fd /D TL2.Z; Fd /C zT L2.†Z;Fd /CO.e�cd /: (1.0.10)

Moreover, TL2.Z; Fd / is a polynomial in d , and zT L2.†Z;Fd / is a nice exponential polynomial in d .
Their leading terms can be determined in terms of W -invariants as in (1.0.8) .

To understand better on zT L2.†Z;Fd /, we need to recall the results in [Müller and Pfaff 2013a] (also
in [Müller and Pfaff 2013b] for the hyperbolic case) for a compact locally symmetric manifold Z. They
gave a proof to (1.0.6) using Selberg’s trace formula, and then showed that TL2.Z; Fd / is a polynomial
in d . Theorem 1.0.10 here is an extension of their results, which shows a nontrivial contribution from †Z.

Let us give more detail on the results in [Müller and Pfaff 2013a]. Let DX;Fd ;2 be the G-invariant
Laplacian operator on X which is the lift of DZ;Fd ;2. For t > 0, let pX;Fdt .x; x0/ denote the heat kernel
of 1

2
DX;Fd ;2 with respect to the Riemannian volume element on X. For t > 0, the identity orbital integral

IX .Ed ; t / of pX;Fdt is defined as

IX .Fd ; t /D Trƒ
�.T �xX/˝Fd;x

s

h�
Nƒ�.T �xX/�

m

2

�
p
X;Fd
t .x; x/

i
; (1.0.11)

where Nƒ�.T �xX/ is the number operator on ƒ�.T �x X/, and the right-hand side of (1.0.11) is independent
of the choice of x 2X. Let MIX .Fd ; s/, s 2 C, denote the Mellin transform (see (7.2.57)) of IX .Fd ; t /,
which is holomorphic at 0. Set

PIX .Fd /D
@

@s

ˇ̌̌
sD0

MIX .Fd ; s/: (1.0.12)

The L2-torsion is defined as

TL2.Z; Fd /D Vol.Z/PIX .Fd /: (1.0.13)
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Using essentially Harish-Chandra’s Plancherel theorem for IX .Fd ; t /, Müller and Pfaff [2013a]
managed to show that PIX .Fd / is a polynomial in d (for d large enough). Moreover, if �0 D 0, there
exists a constant C� ¤ 0 such that

PIX .Fd /D C�d dimEd CR.d/; (1.0.14)

where R.d/ is a polynomial in d of degree no greater than deg dimEd . They also gave concrete formulae
for C� in some model cases [Müller and Pfaff 2013a, Corollaries 1.4 and 1.5].

In Section 7.4, we use instead an explicit geometric formula of [Bismut 2011, Theorem 6.1.1] for
semisimple orbital integrals to give a different computation on PIX .Fd /. In Section 7.5, we verify that
our computational results coincide with the ones of [Müller and Pfaff 2013a].

For the orbifold case, i.e., � contains nontrivial elliptic elements, a key ingredient to Theorem 1.0.1 is
to evaluate explicitly the elliptic orbital integrals associated with Œ� 2ECŒ��. For that purpose, we make
use of the full power of Bismut’s formula [2011, Theorem 6.1.1]. Note that if Z is a hyperbolic orbifold,
i.e., G D Spin.1; 2nC 1/, the result in Theorem 1.0.1 (or Theorem 1.0.10) was obtained in [Fedosova
2015, Theorem 1.1], where she evaluated the elliptic orbital integrals using Harish-Chandra’s Plancherel
theorem.

In fact, we obtain in this paper a refined version of Theorem 1.0.1, where we give more explicit
descriptions of the exponential polynomials PEŒ�.d/ and zT L2.†Z;Fd /. Before stating this refined
result, we need to introduce some notation and facts.

Fix k 2 T, and let X.k/ denote the fixed-point set of k acting on X. Then X.k/ is a connected
symmetric space with ı.X.k//D 1. Let Z.k/0 be the identity component of the centralizer Z.k/ of k
in G. Then X.k/ D Z.k/0=K.k/0, with K.k/0 D Z.k/0 \K. Let U.k/ denote the centralizer of k
in U with Lie algebra u.k/ � u. Then U.k/0 is naturally a compact form of Z.k/0, and the triplet
.X.k/;Z.k/0; U.k/0/ becomes a smaller version of .X;G;U /, except that Z.k/0 may have noncompact
center. Note that TU is also a maximal torus of U.k/0. We get the splitting of roots

R.u; tU /DR.u.k/; tU /[R.u
?.k/; tU /; (1.0.15)

where u?.k/ is the orthogonal space of u.k/ in u with respect to B . Let RC.u.k/; tU /, RC.u?.k/; tU /
be the induced positive roots, and let �u, �u.k/ denote the half of the sum of the roots in RC.u; tU /,
RC.u.k/; tU / respectively.

Let W.uC; tU;C/ be the Weyl group associated with the pair .u; tU /. Put

W 1
U .k/D f! 2W.uC; tU;C/ j !

�1.RC.u.k/; tU //�R
C.u; tU /g: (1.0.16)

If � 2W 1
U .k/, let ".�/ denote its sign. For � 2 PCC.U /, set

'Uk .�; �/D ".�/
��.�C�u/C�u.k/

…˛2RC.u?.k/;tU /.�˛.k/� 1/
2 C�; (1.0.17)

where �˛ is the character of TU with (dominant) weight 2�
p
�1˛. It is clear that 'U

k
.�; d�C�0/ is an

oscillating term of the form c1e
2�
p
�1c2d , with c1 2 C�, c2 2 R. If k is of finite order, then c2 2Q.
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By an equivalent definition of nondegeneracy in Definition 7.3.1, for � 2W 1
U .k/, �� is a nondegenerate

dominant weight of U.k/0 with respect to � jZ.k/0 . Let Ek
�;d

denote the unitary representations of U.k/0

(up to a finite central extension) with highest weight d��C�.�0C�u/��u.k/, d 2N, and let fF k
�;d
gd2N

be the corresponding sequence of flat vector bundles on X.k/.
Now we state our second main theorem, which refines Theorem 1.0.1.

Theorem 1.0.2. Assume that ı.G/D 1.

(1) If � �G is a cocompact discrete subgroup and  2 � is elliptic, let S./ denote the finite subgroup
of � \Z./ which acts on X./ trivially. Then there exists a constant c > 0, and, for each Œ� 2ECŒ��,
there exists a nice exponential polynomial in d , denoted by PEX; .Fd /, such that, for Z D �nX, as
d !C1, we have

T .Z; Fd /D
Vol.Z/
jS.1/j

PIX .Fd /C
X

Œ�2ECŒ��

Vol.� \Z./nX.//
jS./j

PEX; .Fd /CO.e�cd /: (1.0.18)

(2) Fix an elliptic Œ� 2ECŒ��. Then PEX; .Fd / depends only on the conjugacy class of  in G and is
independent of the lattice �. If  is conjugate to k 2 T by an element in G, then we have the identity

PEX; .Fd /D
X

�2W 1
U .k/

'Uk .�; d�C�0/PIX.k/.F k�;d /; (1.0.19)

Theorem 1.0.1 now is just a consequence of (1.0.18). Note that, for Œ� 2 ECŒ��, the (compact)
orbifold �\Z./nX./ represents an orbifold stratum in †Z (see (3.4.13), Remark 3.4.3). An important
observation on (1.0.18) is that the sequence fT .Z; Fd /gd2N encodes the volume information on Z as well
as on†Z. Moreover, combining (1.0.13), (1.0.18) with (1.0.19), we justify that the quantity zT L2.†Z;Fd /
defined by (1.0.9) is indeed a linear combination of L2-torsions such as TL2.� \Z./nX./; F



�;d
/

for †Z.
Now we explain our approach to Theorem 1.0.2. Let us start with defining PEX; .Fd / and (1.0.18).

In fact, T .Z; Fd / can be rewritten as the derivative at 0 of the Mellin transform of

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;Fd ;2

2

�i
; t > 0; (1.0.20)

where TrsŒ � � denotes the supertrace with respect to the Z2-grading on ƒ�.T �Z/.
If  2G is semisimple, let EX; .Fd ; t / denote the orbital integral (see Section 3.3) of the Schwartz

kernel of .Nƒ�.T �X/�m=2/ exp.�tDX;Fd ;2=2/ associated with  . Note that in EX; .Fd ; t /, we take the
supertrace of the endomorphism on ƒ�.T �X/˝F (see (4.1.16)). Moreover, EX; .Fd ; t / depends only
on the conjugacy class of  in G. Let MEX; .Fd ; s/ denote the Mellin transform of EX; .Fd ; t /, t > 0
with appropriate s 2 C. If  D 1, they are just IX .Fd ; t /, MIX .Fd ; s/ introduced in (1.0.11)–(1.0.12).

We use the notation in Section 3.5. Let Œ�� denote the set of the conjugacy classes in �. By applying
Selberg’s trace formula to Z D �nX, we get

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;Fd ;2

2

�i
D

X
Œ�2Œ��

Vol.� \Z./nX.//
jS./j

EX; .Fd ; t /: (1.0.21)
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Now we compare (1.0.18) with (1.0.21). Then a proof to (1.0.18) mainly includes the following three parts:

(1) We show that if Œ� 2EŒ��, then MEX; .Fd ; s/ admits a meromorphic extension to s 2 C which is
holomorphic at s D 0. Thus we define

PEX; .Fd /D
@

@s

ˇ̌̌
sD0

MEX; .Fd ; s/: (1.0.22)

Such consideration also holds for an arbitrary elliptic element  2G.

(2) If  2 � is elliptic, then it is of finite order, and from (1.0.19), we get that PEX; .Fd / is a nice
exponential polynomial in d for d large enough.

(3) We prove that all the terms in the sum of (1.0.21) associated with nonelliptic Œ� 2 Œ�� contribute as
O.e�cd / in T .Z; Fd /.

Indeed, to handle the contribution of the nonelliptic Œ� 2 Œ��, we use a spectral gap of DZ;Fd ;2 due to
the nondegeneracy of �. By [Bismut et al. 2011, Théorème 3.2], and [Bismut et al. 2017, Theorem 4.4]
which holds for a more general setting (see also [Müller and Pfaff 2013a, Proposition 7.5, Corollary 7.6]
for a proof by using representation theory for symmetric spaces), there exist constants C > 0, c > 0 such
that, for d 2 N,

DZ;Fd ;2 � cd2�C: (1.0.23)

That also explains (1.0.4) for large d . Part (3) follows essentially from the same arguments as in [Müller
and Pfaff 2013a, Section 8] and [Bismut et al. 2017, Sections 6.6, 7.2, Remarks 7.8, 8.15] which makes
good use of (1.0.23) and the fact that nonelliptic elements in � admit a uniform strictly positive lower
bound for their displacement distances on X.

For elliptic  2 �, we apply Bismut’s formula [2011, Theorem 6.1.1] to evaluate EX; .Fd ; t /. Then
we can write EX; .Fd ; t / as a Gaussian-like integral with the integrand given as a product of an analytic
function determined by the adjoint action of  on Lie algebras and the character �Ed of the representa-
tion Ed . By coordinating these two factors, especially using all sorts of character formulae for �Ed , we
can integrate it out. We show that EX; .Fd ; t / is a finite sum of the terms

t�j�
1
2 e�t.cdCb/

2

Q.d/; (1.0.24)

where j 2 N, c ¤ 0, b are real constants, and Q.d/ is a nice exponential polynomial in d . It is crucial
that c ¤ 0. Indeed, we will see in Section 7.3 that this quantity c measures the difference between the
representations .E�; �E�/ and .E�; �E� ı �/.

As a consequence of (1.0.24), PEX; .Fd / in (1.0.22) is well-defined, which is clearly a nice exponential
polynomial in d (for d large enough). The details on these computations are carried out in Section 7.2,
where we apply the techniques inspired by the computations in Shen’s approach [2018, Section 7] to the
Fried conjecture and also in its extension to orbifold case in [Shen and Yu 2022].

The formula (1.0.19) gives a new and geometric approach to the above results on PEX; .Fd /. It is
nicer in the sense that each PIX.k/.F k�;d / is already well understood and related to the L2-torsions for the
singular stratum ofZ. For proving it, we apply a geometric localization formula for EX; .Fd ; t / as follows.
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Theorem 1.0.3. Assume that ı.G/D 1. We use the same notation as in Theorem 1.0.2. Let  D k 2 T.
Then, for t > 0, d 2 N,

EX; .Fd ; t /D
X

�2W 1
U .k/

'Uk .�; d�C�0/IX.k/.F
k
�;d ; t /: (1.0.25)

After taking the Mellin transform on both sides of (1.0.25), we get exactly (1.0.19). In Theorem 6.0.1,
we will show a general version of the above geometric localization formula for EX; .Fd ; t / associated
with any semisimple element  2G.

Our approach to Theorem 1.0.3 is a more delicate application of Bismut’s formula [2011, Theorem 6.1.1].
As we said, EX; .Fd ; t /, IX.k/.F k�;d ; t / are equal to integrals of some integrands involving �Ed , �Ek

�;d

respectively. To relate the two sides of (1.0.25), we employ a generalized version of the Kirillov character
formula (see Theorem 5.4.4), which gives an explicit way of decomposing �Ed jU.k/0 into a sum of �Ek

�;d
,

� 2W 1
U .k/. This character formula was proved by Duflo, Heckman and Vergne [Duflo et al. 1984, II.3,

Theorem (7)] under a general setting, and we will recall its special case for our need in Section 5.4. Then
we expand the integral formula for EX; .Fd ; t / carefully into a sum of certain integrals involving �Ek

�;d
,

� 2W 1
U .k/, which correspond to IX.k/.F k�;d ; t / via Bismut’s formula. This way, we prove (1.0.25).

Theorem 1.0.3 can be interpreted as follows: the action of elliptic element  on X could lead to a
geometric localization onto its fixed-point set X.k/ when we evaluate the orbital integrals. Even though
we only prove it for a very restrictive situation, we still expect such phenomenon in general due to a
geometric formulation for the semisimple orbital integrals; see [Bismut 2011, Chapter 4].

Finally, we note that in [Bismut et al. 2017, Section 8], the authors explained well how to use Bismut’s
formula for semisimple orbital integrals to study the asymptotic analytic torsion. Here, we go one step fur-
ther in that direction to get a refined evaluation on it. Bergeron and Venkatesh [2013] also studied the asymp-
totic analytic torsion but under a totally different setting. In [Liu 2018; 2021], the asymptotic equivariant
analytic torsion for a locally symmetric space was studied, and the oscillating terms also appeared naturally
in that case. Moreover, Finski [2018, Theorem 1.5] obtained the full asymptotic expansion of the holomor-
phic analytic torsions for the tensor powers of a given positive line bundle over a compact complex orbifold.

This paper is organized as follows. In Section 2, we recall the definition of Ray–Singer analytic torsion
for compact orbifolds. We also include a brief introduction to the orbifolds at beginning.

In Section 3, we introduce the explicit geometric formula of Bismut for semisimple orbital integrals
and the Selberg’s trace formula for compact locally symmetric orbifolds. They are the main tools to study
the analytic torsions in this paper.

In Section 4, we give a vanishing theorem for T .Z; F /, so that we only need to focus on the case
ı.G/D 1.

In Section 5, we study the Lie algebra ofG provided ı.G/D1. Furthermore, we introduce a generalized
Kirillov formula for compact Lie groups.

In Section 6, we prove a general version of Theorem 1.0.3.
In Section 7, given the sequence fFd gd2N, we compute explicitly EX; .Fd ; t / in terms of root systems

for elliptic  ; in particular, we prove (1.0.24). Then we give the formulae for PIX .Fd /, PEX; .Fd /.
Finally, in Section 8, we introduce the spectral gap (1.0.23) and we give a proof of Theorem 1.0.2.
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In this paper, if V is a real vector space and if E is a complex vector space, we will use the symbol
V ˝E to denote the complex vector space V ˝RE. If both V and E are complex vector spaces, then
V ˝E is just the usual tensor over C.

2. Ray–Singer analytic torsion

In this section, we recall the definitions of the orbifold and the orbifold vector bundle. We also refer
to [Satake 1956; 1957; Adem et al. 2007, Chapter 1] for more details. Then we recall the definition of
Ray–Singer analytic torsion for compact orbifolds, where we refer to [Ma 2005; Shen and Yu 2022] for
more details. In particular, Shen and Yu [2022] extended many important results on real analytic torsion
from the manifold setting to the orbifold setting.

2.1. Orbifolds and orbifold vector bundles. Let Z be a topological space.

Definition 2.1.1. If U is a connected open subset of Z, an orbifold chart for U is a triple . zU ; �U ; GU /
such that

� zU is a connected open set of some Rm and GU is a finite group acting smoothly and effectively on
zU on the left;

� �U is a continuous surjective zU ! U, which is invariant by a GU -action;

� �U induces a homeomorphism between GU n zU and U.

If V � U is a connected open subset, an embedding of orbifold chart for the inclusion i W V ! U is
an orbifold chart . zV ; �V ; GV / for V and an orbifold chart . zU ; �U ; GU / for U together with a smooth
embedding �UV W zV ! zU such that the following diagram commutes:

zV�V
�UV //

��

zU

�U

��
V

i // U

(2.1.1)

If U1, U2 are two connected open subsets of Z with the charts . zU1; �U1 ; GU1/, . zU2; �U2 ; GU2/
respectively, we say that these two orbifold charts are compatible if, for any point z 2U1\U2, there exists
an open connected neighborhood V � U1\U2 of z with an orbifold chart . zV ; �V ; GV / such that there
exist two embeddings of orbifold charts �U1V W . zV ; �V ; GV /! . zU1; �U1 ; GU1/, �U2V W . zV ; �V ; GV /!
. zU2; �U2 ; GU2/. In this case, the diffeomorphism �U2V ı �

�1
U1V
W �U1V .

zV / ! �U2V .
zV / is called a

coordinate transformation.

Definition 2.1.2. An orbifold atlas on Z is couple .U ; zU/ consisting of a cover U of open connected
subsets of Z and a family of compatible orbifold charts zU D f. zU ; �U ; GU /gU2U .

An orbifold atlas .V; zV/ is called a refinement of .U ; zU/ if V is a refinement of U and if every
orbifold chart in zV has an embedding into some orbifold chart in zU . Two orbifold atlas are said to be
equivalent if they have a common refinement, and the equivalent class of an orbifold atlas is called an
orbifold structure on Z.
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An orbifold is a second countable Hausdorff space equipped with an orbifold structure. It is said to
have dimension m if all the orbifold charts which define the orbifold structure are of dimension m.

If Z; Y are two orbifolds, a smooth map f WZ! Y is a continuous map from Z to Y such that it lifts
locally to an equivariant smooth map from an orbifold chart of Z to any orbifold chart of Y . In this way,
we can define the notion of smooth functions and the smooth action of Lie groups.

By [Shen and Yu 2022, Proposition 2.12], if � is discrete group acting smoothly and properly dis-
continuously on the left on an orbifold X, then Z D �nX has a canonical orbifold structure induced
from X.

In the sequel, let Z be an orbifold with an orbifold structure given by .U ; zU/. If z 2Z, there exists an
open connected neighborhood Uz of z with a compatible orbifold chart . zUz; Gz; �z/ such that ��1z .z/

contains only one point x 2 zUz . Then Gz does not depend on the choice of such open connected
neighborhood (up to canonical isomorphisms compatible with the orbifold structure), and Gz is called
the local group at z.

Put
Zreg D fz 2Z jGz D f1gg; Zsing D fz 2Z jGz ¤ f1gg: (2.1.2)

Then Zreg is naturally a smooth manifold. But Zsing is not necessarily an orbifold. Kawasaki [1978,
Section 2] explained two different methods to view Zsing as an immersed image of a disjoint union of
orbifolds. We just recall that method which appears naturally in Kawasaki’s local index theorems for
orbifolds [1978; 1979].

If z 2Zsing, let 1D .h0z/; .h
1
z/; : : : ; .h

lz
z / be the conjugacy classes in Gz . Put

†Z D f.z; .hjz // j z 2Zsing; j D 1; : : : ; lzg: (2.1.3)

Let . zUz; Gz; �z/ be the local orbifold chart for z 2Zsing such that ��1z .z/ contains only one point. For
j D 1; : : : ; lz , let zU h

j
z

z � zUz be the fixed-point set of hjz , which is a submanifold of zUz . Note that
zU
h
j
z

z �Zsing. Let ZGz .h
j
z / be the centralizer of hjz in Gz . Then ZGz .h

j
z / acts smoothly on zU h

j
z

z . Put

Kjz D ker.ZGz .h
j
z /! Aut. zU h

j
z

z //: (2.1.4)

Then . zU h
j
z

z ; ZGz .h
j
z /=K

j
z ; �

j
z W
zU
h
j
z

z !
zU
h
j
z

z =ZGz .h
j
z // defines an orbifold chart near .z; .hjz // 2†Z.

They form an orbifold structure for †Z. Let Zi , i D 1; : : : ; l , denote the connected components of the
orbifold †Z.

The integer mjz D jK
j
z j is called the multiplicity of †Z in Z at .z; .hjz //. This defines a function

m W †Z ! ZC. As explained in [Kawasaki 1978, Section 1], m is locally constant on †Z, and let
mi 2 ZC be the value of m on Zi for i D 1; : : : ; l . We call mi the multiplicity of Zi in Z. We will put

Z0 DZ; m0 D 1: (2.1.5)

Remark 2.1.3. In Definition 2.1.1, for an orbifold chart, we require the action GU on zU to be effective.
To emphasize this condition, the orbifold defined above is often called an effective orbifold. In fact,
we can drop this effectiveness; then we get a general version of the (possibly ineffective) orbifold, for
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example, using the orbifold groupoid; see [Adem et al. 2007, Definition 1.38]. The point-view of orbifold
groupoid provides a unified way to deal with effective and ineffective orbifolds.

As explained in [Adem et al. 2007, Example 2.5], for global quotient groupoids (including all the
effective orbifolds and certain ineffective orbifolds), a natural stratification called the inertia groupoid
was introduced as an extension of the one

Sl
iD0Z

i defined in (2.1.3)–(2.1.5). It plays a key role in the
study of the geometry of orbifolds. We will go back to this point in Sections 3.4 and 3.5. Through this
paper, the terminology orbifold will always refer to the effective one unless otherwise stated.

We sayE is an orbifold vector bundle of rank r onZ if there exists a smooth map of orbifolds � WE!Z

such that, for any U 2 U and . zU ;GU ; �U / 2 zU , there exists an orbifold chart . zUE ; GEU ; �
E
U / of E such

that zUE is an vector bundle on zU of rank r equipped an effective action of GEU and �EU . zU
E /D ��1.U /.

Moreover, there exists a surjective group morphism  U WG
E
U !GU such that the action of GEU on zU is

identified via  U with the action of GU on zU. If we have an open embedding �UV W . zV ; �V ; GV /!
. zU ; �U ; GU /, we require that it lifts to the open embedding �EUV W . zV

E ; �EV ; G
E
V /! . zUE ; �EU ; G

E
U / of

the orbifold charts of E such that �EUV W zV
E ! zUE is a morphism of vector bundles associated with

the open embedding �UV W zV ! zU. If every  U WGEU !GU is an isomorphism of groups, we call E a
proper orbifold vector bundle on Z.

Note that if E is proper, then the rank of E can be extended to a locally constant function � on †Z.
The orbifold chart of Zi is given by the triples such as

. zU h
j
z

z ; ZGz .h
j
z /=K

j
z ; �

j
z W
zU h

j
z

z !
zU h

j
z

z =ZGz .h
j
z //:

By the above definition of E, we have an orbifold chart . zUE ; GEU D GU ; �
E
U / such that zUE is a GU -

equivariant vector bundle on zU. Then, for x 2 zU h
j
z

z , hjz acts on the fibers zUEz linearly, so that we can set
�.z; .h

j
z //D Tr zU

E
z Œh

j
z �. Then � is really a locally constant function on †Z. For i D 1; : : : ; l , let �i be

the value of � on the component Zi . We also put �0 D r .
We call s WZ! E a smooth section of E over Z if it is a smooth map between orbifolds such that

� ı s D IdZ . We will use C1.Z;E/ to denote the vector space of smooth sections of E over Z.
Take an orbifold chart . zU ;GU ; �U / 2 zU of Z. Then GU acts canonically on the tangent vector

bundle T zU of zU. The open embeddings of orbifold charts of Z also lift to the open embeddings of their
tangent vector bundles. This way, we get a proper orbifold vector bundle TZ on Z, and the projection
� W TZ! Z is just given by the obvious projection T zU ! zU. We call TZ the tangent vector bundle
of Z. If we equipped TZ with Euclidean metric gTZ, we will call Z a Riemannian orbifold and call
gTZ a Riemannian metric of Z.

Let ��.Z/ denote the set of smooth differential forms of Z, which has a Z-graded structure by degrees.
The de Rham differential dZ W��.Z/!��C1.Z/ is given by the family of de Rham differential operators
d
zU W��. zU/!��C1. zU/. Then we can define the de Rham complex .��.Z/; dZ/ ofZ and the associated

de Rham cohomology H �.Z;R/. By [Kawasaki 1978, Section 1], there is a natural isomorphism between
H �.Z;R/ and the singular cohomology of the underlying topological space Z.

Now let us recall the integrals on Z. Assume that Z is compact. We may take a finite open covering
fUigi2I of the precompact orbifold charts for Z. Since Z is Hausdorff, there exists a partition of unity
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subordinate to this open cover. We can find a family of smooth functions f�i 2 C1c .Z/gi2I with values
in Œ0; 1� such that Supp.�i /� Ui , and that X

i2I

�i D 1: (2.1.6)

Take Q�i D ��Ui .�i / 2 C
1
c .
zUi /

GUi .
If ˛ 2�m.Z; o.TZ//, let Q̨Ui be its lift on the chart . zUi ; �Ui ; GUi /. We defineZ

Z

˛ D
X
i

1

jGUi j

Z
zUi

Q�i Q̨Ui : (2.1.7)

By [Shen and Yu 2022, Section 3.2], if ˛ 2�m.Z; o.TZ//, then ˛ is also integrable on Zreg, so thatZ
Z

˛ D

Z
Zreg

˛: (2.1.8)

Also if ˛ 2��.Z; o.TZ//, we have Z
Z

dZ˛ D 0: (2.1.9)

If .Z; gTZ/ is a Riemannian orbifold, we can define the integration of functions on Z with respect to
the Riemannian volume element. If we have a Hermitian orbifold vector bundle .F; hF /! .Z; gTZ/,
one can define the L2 scalar product for the space of continuous sections of F as usual. Then, after
completion, we get the Hilbert space L2.Z; F /.

Chern–Weil theory on the characteristic forms extends to orbifolds, where their constructions are
parallel to the case of smooth manifolds. We refer to [Shen and Yu 2022, Section 3.4] for more details.
Note that the characteristic forms are not only defined on Z but also defined on †Z. The part †Z has a
nontrivial contribution in Kawasaki’s local index theorems for orbifolds [1978; 1979].

Finally, we introduce the orbifold Euler characteristic number of .Z; gTZ/ [Satake 1957]. Let rTZ D
frT

zUi gUi2U be the Levi-Civita connection on TZ associated with gTZ. The Euler form e.TZ;rTZ/ 2

�m.Z; o.TZ// is given by the family of closed forms

fe. zUi ;r
T zUi / 2�m. zUi ; o.T zUi //

GUi gUi2U : (2.1.10)

If Z is oriented, then we can view e.TZ;rTZ/ as a differential form on Z.
If Z is compact, set

�orb.Z/D

Z
Z

e.TZ;rTZ/: (2.1.11)

By [Satake 1957, Section 3], �orb.Z/ is a rational number, and it vanishes when Z is odd-dimensional.

2.2. Flat vector bundles and analytic torsions of orbifolds. If .F;rF / is an orbifold vector bundle
over Z with a connection rF , we call .F;rF / a flat vector bundle if the curvature RF DrF;2 vanishes
identically on Z. A detailed discussion for the flat vector bundles on Z is given in [Shen and Yu 2022,
Sections 2.3–2.5].

Let .Z; gTZ/ be a compact Riemannian orbifold of dimension m. Let .F;rF / be a flat complex orb-
ifold vector bundle of rank r on Z with Hermitian metric hF . Note that we do not assume that F is proper.
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Let ��.Z; F / be the set of smooth sections of ƒ�.T �Z/˝F on Z. Let dZ be the exterior differential
acting on ��.Z;R/.

Definition 2.2.1. For i D 0; 1; : : : ; m, if ˛ 2 �i .Z;R/, s 2 C1.Z; F /, the operator dZ;F acting on
�i .Z; F / is defined by

dZ;F .˛˝ s/D .dZ˛/˝ sC .�1/i˛^rF s 2�iC1.Z; F /: (2.2.1)

Since rF;2 D 0, then .��.Z; F /; dZ;F / is a complex, which is called the de Rham complex for the
flat orbifold vector bundle .F;rF / on Z. Let H �.Z; F / denote the corresponding de Rham cohomology
group of Z valued in F, as in the case of closed manifolds, H �.Z; F / is always finite-dimensional.

Let h � ; � iƒ�.T �Z/˝F;z be the Hermitian metric on ƒ�.T �z Z/˝Fz , z 2 Z induced by gTZz and hFz .
Let dv be the Riemannian volume element on Z induced by gTZ. The L2-scalar product on ��.Z; F /
is given as follows: if s; s0 2��.Z; F /, then

hs; s0iL2 D

Z
Z

hs.z/; s.z0/iƒ�.T �Z/˝F;z dv.z/: (2.2.2)

By (2.1.8), it will be the same if we take the integrals on Zreg.
Let dZ;F;� be the formal adjoint of dZ;F with respect to the above L2-metric on ��.Z; F /; i.e., for

s; s0 2��.Z; F /,
hdZ;F;�s; s0iL2 D hs; d

Z;F s0iL2 : (2.2.3)

Then dZ;F;� is a first-order differential operator acting ��.Z; F / on which decreases the degree by 1.

Definition 2.2.2. The de Rham–Hodge operator DZ;F of ��.Z; F / is defined as

DZ;F
D dZ;F C dZ;F;�: (2.2.4)

It is a first-order self-adjoint elliptic differential operator acting on ��.Z; F /.

The Hodge Laplacian is

DF;Z;2
D ŒdZ;F ; dZ;F;��D dZ;F dZ;F;�C dZ;F;�dZ;F : (2.2.5)

Here, Œ � ; � � denotes the supercommutator. Then DZ;F;2 is a second-order essentially self-adjoint nonneg-
ative elliptic operator, which preserves the degree.

The Hodge decomposition for ��.Z; F / still holds in this case (see [Ma 2005, Proposition 2.2; Dai
and Yu 2017, Proposition 2.1]),

��.Z; F /D ker.DZ;F;2
j��.Z;F //˚ Im.dZ;F j���1.Z;F //˚ Im.dZ;F;�j��C1.Z;F //: (2.2.6)

Then we have the canonical identification of vector spaces,

H�.Z; F / WD kerDZ;F;2
'H �.Z; F /: (2.2.7)

Put

�.Z; F /D

mX
jD0

.�1/j dimH j .Z; F /: (2.2.8)
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If F is proper, recall that the numbers �i , i D 0; : : : ; l , are defined in previous subsection as the
extension of the rank of F. Then by [Shen and Yu 2022, Theorem 4.3], we have

�.Z; F /D

lX
iD0

�i
�orb.Zi /

mi
: (2.2.9)

The right-hand side of (2.2.9) contains the nontrivial contributions from †Z.
Let P denote the orthogonal projection from ��.Z; F / to H�.Z; F /. Let H? denote the orthogonal

subspace of H�.Z; F / in ��.Z; F /, and let .DZ;F;2/�1 be the inverse of DZ;F;2 acting on H?. Let
Nƒ�.T �Z/ be the number operator on ƒ�.T �Z/ which acts on ƒj .T �Z/ by multiplication of j .

For s 2 C, <.s/ is large enough; set

#.F /.s/D�TrsŒNƒ�.T �Z/.DZ;F;2/�s�

D�
1

�.s/

Z C1
0

TrsŒNƒ�.T �Z/ exp.�tDZ;F;2/.1�P /�ts�1 dt; (2.2.10)

where �.s/ is the gamma function for s 2 C. By the short time asymptotic expansions of the heat trace
(see [Ma 2005, Proposition 2.1]), #.F /.s/ admits a unique meromorphic extension to s 2 C which is
holomorphic at s D 0.

Definition 2.2.3. Let T .gTZ ;rF ; hF / 2 R be given by

T .gTZ ;rF ; hF /D d

ds

ˇ̌̌
sD0

#.F /.s/: (2.2.11)

The quantity T .gTZ ;rF ; hF / is called Ray–Singer analytic torsion associated with .F;rF ; hF /.

By [Shen and Yu 2022, Proposition 4.6, Corollary 4.9], for an orientable closed orbifold Z, ifm is even
and F is unitarily flat, then T .gTZ ;rF ; hF /D 0; if m is odd and F is acyclic, then T .gTZ ;rF ; hF / is
independent of the metrics gTZ and hF .

Now we explain how to evaluate T .gTZ ;rF ; hF / in practice when F is acyclic. Using the analogous
arguments in [Bismut and Zhang 1992, Theorem 7.10, Section XI], as t ! 0C, the heat supertrace
TrsŒ.Nƒ�.T �Z/�m=2/ exp.�tDZ;F;2=2/� either has a leading term as a multiple of 1=

p
t or is a small

quantity as O.
p
t /; see [Shen and Yu 2022, equation (4.37)]. To deal with this possible divergent term

1=
p
t in the integral of (2.2.10), we proceed as in the proof of [Bismut and Lott 1995, Theorem 3.29].

For t > 0, put

bt .g
TZ ; F /D

�
1C 2t

@

@t

�
Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;F;2

2

�i
: (2.2.12)

By [Bismut and Zhang 1992, Theorem 7.10; Bismut and Lott 1995, Theorem 2.13; Shen and Yu 2022,
Section 4.3] and since F is acyclic, as t ! 0,

bt .g
TZ ; F /DO.

p
t /I (2.2.13)

as t !C1,

bt .g
TZ ; F /DO

�
1
p
t

�
: (2.2.14)
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By [Bismut and Lott 1995, Theorem 3.29; Shen and Yu 2022, Corollary 4.14], we have

T .gTZ ;rF ; hF /D�
Z C1
0

bt .g
TZ ; F /

dt

t
: (2.2.15)

One particular case is that if, for t > 0, we always have

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;F;2

2

�i
D 0; (2.2.16)

then T .gTZ ;rF ; hF /D 0. This holds even for nonacyclic F.

3. Orbital integrals and locally symmetric spaces

In this section, we recall the geometry of the symmetric space X, and we recall an explicit geometric
formula for semisimple orbital integrals obtained in [Bismut 2011, Chapter 6] . Then, given a cocompact
discrete subgroup � �G, we describe the orbifold structure on Z D �nX, and we give Selberg’s trace
formula for Z.

In this section, G is taken to be a connected linear real reductive Lie group; we do not require that
it has a compact center. Then X is a symmetric space which may have de Rham components of both
noncompact type and Euclidean type.

3.1. Real reductive Lie group. Let G be a connected linear real reductive Lie group with Lie algebra g,
and let � 2 Aut.G/ be a Cartan involution. Let K be the fixed-point set of � in G. Then K is a maximal
compact subgroup of G, and let k be its Lie algebra. Let p� g be the eigenspace of � associated with the
eigenvalue �1. The Cartan decomposition of g is given by

gD p˚ k: (3.1.1)
Put mD dim p, nD dim k.

Let B be a G- and � -invariant nondegenerate symmetric bilinear form on g, which is positive on p and
negative on k. It induces a symmetric bilinear form B� on g�, which extends to a symmetric bilinear form
on ƒ�.g�/. The K-invariant bilinear form h � ; � i D �B. � ; � � / is a scalar product on g, which extends to
a scalar product on ƒ�.g�/. We will use j � j to denote the norm under this scalar product.

LetU g be the universal enveloping algebra of g. LetC g2U g be the Casimir element associated withB;
i.e., if feigiD1;:::;mCn is a basis of g, and if fe�i giD1;:::;mCn is the dual basis of g with respect to B , then

C g
D�

X
e�i ei : (3.1.2)

We can identify U g with the algebra of left-invariant differential operators over G; then C g is a second-
order differential operator, which is Ad.G/-invariant. Similarly, let C k 2 U k denote the Casimir operator
associated with .k; Bjk/.

Let zg � g be the center of g. Put
gss D Œg; g�: (3.1.3)

Then
gD zg˚ gss: (3.1.4)

They are orthogonal with respect to B .
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Let ZG be the center of G, and let Gss be the closed analytic subgroup of G associated with gss; see
[Knapp 2002, Corollary 7.11]. Then G is the commutative product of ZG and Gss; in particular,

G DZ0GGss: (3.1.5)

Let i D
p
�1 denote one square root of �1. Put

uD
p
�1p˚ k: (3.1.6)

For simplicity, if a 2 p, we write ia or
p
�1a 2

p
�1p� u to denote the corresponding vector.

Then u is a (real) Lie algebra, which is called the compact form of g. Then

gC D uC: (3.1.7)

Let GC be the complexification of G with Lie algebra gC, which is closed and linear reductive [Knapp
1986, Proposition 5.6]. Then G is the analytic subgroup of GC with Lie algebra g. Let U �GC be the
analytic subgroup associated with u. If G has compact center, i.e., zg\ pD f0g, then by [Knapp 1986,
Proposition 5.3], U is compact; since GC is closed, U is a maximal compact subgroup of GC.

Definition 3.1.1. An element  2G is said to be semisimple if there exists g 2G such that

 D g.eak/g�1; a 2 p; k 2K; Ad.k/aD a: (3.1.8)

We call hD geag�1 and eD gkg�1 the hyperbolic and elliptic parts of  . These two parts are uniquely
determined by  . If h D 1, we say  is elliptic, and if e D 1 and h ¤ 1, we say  is hyperbolic.

Let Z./ be the centralizer of  in G. If v 2 g, let Z.v/�G be the stabilizer of v in G via the adjoint
action. Let z./, z.v/ be the Lie algebras of Z./, Z.v/ respectively. If  D he is semisimple as above,
by [Eberlein 1996, Theorem 2.19.23; Knapp 2002, Lemma 7.36],

Z./DZ.h/\Z.e/; Z.h/DZ.Ad.g/a/: (3.1.9)

By [Knapp 2002, Proposition 7.25], Z./ is reductive (possibly with several connected components).
Set

�g D C.g/�C.g
�1/: (3.1.10)

Then �g defines a Cartan involution on Z./. Let K./ be the fixed-point set of �g in Z./; then

K./DZ./\gKg�1: (3.1.11)

Let Z./0, K./0 be the connected components of the identities of Z./, K./ respectively. By
[Bismut 2011, Theorem 3.3.1],

Z./

K./
D
Z./0

K./0
: (3.1.12)

Moreover, K./, K./0 are maximal compact subgroups of Z./, Z./0 respectively.
Taking the corresponding Lie algebras in (3.1.9), we have

z./D z.h/\ z.e/; z.h/D z.Ad.g/a/: (3.1.13)
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Let k./� z./ be the Lie algebra of K./. Put

p./D z./\Ad.g/p: (3.1.14)

Then the Cartan decomposition of z./ with respect to �g is given by

z./D k./˚ p./: (3.1.15)

Let Bz./ denote the restriction of B on z./� z./. Then Bz./ is invariant under the adjoint action of �g
on z./. Moreover, Bz./ is positive on p./ and negative on k./. The splitting in (3.1.15) is orthogonal
with respect to Bz./.

3.2. Symmetric space. Set
X DG=K: (3.2.1)

Then X is a smooth manifold with the smooth structure induced by G. By definition, X is diffeomorphic
to p.

Let !g 2�1.G; g/ be the canonical left-invariant 1-form on G. Then by (3.1.1),

!g
D !p

C!k: (3.2.2)

Let p WG!X denote the obvious projection. Then p is a K-principal bundle over X. Then !k is a
connection form of this principal bundle. The associated curvature form

�k
D d!k

C
1
2
Œ!k; !k�D�1

2
Œ!p; !p�: (3.2.3)

If .E; �E ; hE / is a finite-dimensional unitary or Euclidean representation of K, then F D G �K E
defines a vector bundle over X equipped with a metric hF induced by hE and a unitary or a Euclidean
connection rF induced by !k. Note that G acts on .F; hF ;rF /! X equivariantly on the left; more
precisely, for  2G, .g; v/ 2G �K E, the action of  on F is represented by

.g; v/D .g; v/ 2G �K E: (3.2.4)

In particular, we have the identification
TX DG �K p; (3.2.5)

where the right-hand side is defined by the adjoint action of K on p. The bilinear form B restricting to p

gives a Riemannian metric gTX, and !k induces the associated Levi-Civita connection rTX. Then G
acts on .X; gTX / isometrically. Let d. � ; � / denote the Riemannian distance on X.

Let C.G;E/ denote the set of continuous map from G into E. If k 2K, s 2 C.G;E/, put

.k:s/.g/D �E .k/s.gk/: (3.2.6)

Let CK.G;E/ be the set of K-invariant maps in C.G;E/. Let C.X;F / denote the continuous sections
of F over X. Then

CK.G;E/D C.X;F /: (3.2.7)

Also C1K .G;E/D C1.X; F /.
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The Casimir operator C g acting on C1.G;E/ preserves C1K .G;E/, so it induces an operator C g;X

acting on C1.X; F /. Let �H;X be the Bochner Laplacian acting on C1.X; F / given by rF , and let
C k;E 2 End.E/ be the action of the Casimir C k on E via �E. The element C k;E induces a self-adjoint
section of End.F / over X. Then

C g;X
D��H;X CC k;E : (3.2.8)

Let C k;p 2 End.p/, C k;k 2 End.k/ be the actions of C k acting on p, k via the adjoint actions. Moreover,
we can also view C k;p as a parallel section of End.TX/.

If A 2 End.E/ commutes with K, then it can be viewed a parallel section of End.F / over X. Let dx
be the Riemannian volume element of .X; gTX /.

Definition 3.2.1. Let LXA be the Bochner-like Laplacian acting on C1.X; F / given by

LXA D
1
2
C g;X

C
1
16

TrpŒC k;p�C 1
48

TrkŒC k;k�CA: (3.2.9)

For t > 0, x; x0 2X, let pXt .x; x
0/ denote its heat kernel with respect to dx0.

Since LXA is G-invariant, pXt .x; x
0/ lifts to a function pXt .g; g

0/ on G�G valued in End.E/ such that,
for g00 2G, k; k0 2K,

pXt .g
00g; g00g0/D pXt .g; g

0/; pXt .gk; g
0k0/D �E .k�1/pXt .g; g

0/�E .k0/: (3.2.10)

We set

pXt .g/D p
X
t .1; g/: (3.2.11)

Then pXt is a K �K-invariant smooth function on G valued in End.E/. We will not distinguish the heat
kernel pXt .x; x

0/ and the function pXt .g/ in the sequel.

3.3. Bismut’s formula for semisimple orbital integrals. Let dg be the left-invariant Haar measure on G
induced by .g; h � ; � i/. Since G is unimodular, dg is also right-invariant. Let dk be the Haar measure
on K induced by �Bjk; then

dg D dx dk: (3.3.1)

Now let  2G be a semisimple element given as in (3.1.8).
By [Eberlein 1996, Definition 2.19.21; Bismut 2011, Theorem 3.1.2],  2 G is semisimple if and

only if the displacement function X 3 x 7! d.x; x/ on X associated with  can reach its minimum
m � 0 in X. In this case, the minimizing set X./ of this displacement function is a geodesically convex
submanifold of X, and by [Bismut 2011, Theorem 3.3.1],

X./'
Z./0

K./0
D
Z./

K./
: (3.3.2)

Moreover, we have

m D jaj: (3.3.3)
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Let dy be the Riemannian volume element of X./, and let dz be the bi-invariant Haar measure on
Z./ induced by Bz./. Let dk./ be the Haar measure on K./ such that

dz D dy dk./: (3.3.4)

Let Vol.K./nK/ be the volume of K./nK with respect to dk; dk./. Then we have

Vol.K./nK/D
Vol.K/

Vol.K.//
: (3.3.5)

Let dv be the G-left invariant measure on Z./nG such that

dg D dz dv: (3.3.6)

By [Bismut 2011, Definition 4.2.2, Proposition 4.4.2], for t > 0, the orbital integral

TrŒ�Œexp.�tLXA /�D
1

Vol.K./nK/

Z
Z./nG

TrE ŒpXt .v
�1v/� dv (3.3.7)

is well-defined. As indicated by the notation, it only depends on the conjugacy class Œ� of  in G.
Using the theory of hypoelliptic Laplacian and the techniques from local index theory, Bismut obtained

an explicit geometric formula for TrŒ�Œexp.�tLXA /� in [Bismut 2011, Theorem 6.1.1] as well as its
extension to the wave operators of LXA [Bismut 2011, Section 6.3]. Now we describe in detail this formula.
We may and we will assume that

 D eak; a 2 p; k 2K; Ad.k/aD a: (3.3.8)

Put
z0 D z.a/; p0 D ker ad.a/\ p; k0 D ker ad.a/\ k: (3.3.9)

Let z?0 , p?0 , k?0 be the orthogonal vector spaces to z0, p0, k0 in g; p; k with respect to B . Then

z0 D p0˚ k0; z?0 D p?0 ˚ k?0 : (3.3.10)

By [Bismut 2011, equation (3.3.6)],
z./D z0\ z.k/: (3.3.11)

Also p./, k./ are subspaces of p0, k0 respectively. Let z?0 ./, p
?
0 ./, k

?
0 ./ be the orthogonal spaces

to z./, p./, k./ in z0, p0, k0. Then

z?0 ./D p?0 ./˚ k?0 ./: (3.3.12)

Also the action ad.a/ gives an isomorphism between p?0 and k?0 .
For Y k

0 2 k./, ad.Y k
0/ preserves p./; k./; p?0 ./; k

?
0 ./, and it is an antisymmetric endomorphism

with respect to the scalar product.
Recall that the function yA is given by

yA.x/D
x=2

sinh.x=2/
: (3.3.13)
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Let H be a finite-dimensional Hermitian vector space. If B 2 End.H/ is self-adjoint, then

B=2

sinh.B=2/

is a self-adjoint positive endomorphism. Put

yA.B/D det
1
2

�
B=2

sinh.B=2/

�
: (3.3.14)

In (3.3.14), the square root is taken to be the positive square root.
If Y k

0 2 k./, as explained in [Bismut 2011, p. 105], the following function A.Y k
0/ has a natural square

root that is analytic in Y k
0 2 k./:

A.Y k
0/D

1

det.1�Ad.k//jz?0 ./
�

det.1� exp.�i ad.Y k
0//Ad.k//jk?0 ./

det.1� exp.�i ad.Y k
0//Ad.k//jp?0 ./

: (3.3.15)

Its square root is denoted by�
1

det.1�Ad.k//jz?0 ./
�

det.1� exp.�i ad.Y k
0//Ad.k//jk?0 ./

det.1� exp.�i ad.Y k
0//Ad.k//jp?0 ./

� 1
2

: (3.3.16)

The value of (3.3.16) at Y k
0 D 0 is taken to be such that

1

det.1�Ad.k//jp?0 ./
: (3.3.17)

We recall an important function J defined in [Bismut 2011, equation (5.5.5)].

Definition 3.3.1. Let J .Y k
0/ be the analytic function of Y k

0 2 k./ given by

J .Y
k
0/D

1

jdet.1�Ad.//jz?0 j
1
2

yA.i ad.Y k
0/jp.//

yA.i ad.Y k
0/jk.//

�

�
1

det.1�Ad.k//jz?0 ./

det.1� exp.�i ad.Y k
0//Ad.k//jk?0 ./

det.1� exp.�i ad.Y k
0//Ad.k//jp?0 ./

� 1
2

: (3.3.18)

By [Bismut 2011, equation (6.1.1)], there exist C > 0, c > 0 such that, if Y k
0 2 k./,

jJ .Y
k
0/j � Ce

c jY
k
0 j: (3.3.19)

Put p D dim p./, q D dim k./. Then r D dim z./D pC q. By [Bismut 2011, Theorem 6.1.1], for
t > 0, we have

TrŒ�Œexp.�tLXA /�D
e�
jaj2

2t

.2�t/
p
2

Z
k./

J .Y
k
0/TrE Œ�E .k/ exp.�i�E .Y k

0/� tA/�e
�
jY k
0
j2

2t
dY k

0

.2�t/
q
2

: (3.3.20)

Remark 3.3.2. A generalization of Bismut’s formula (3.3.20) to the twisted case is obtained in [Liu 2018;
2019]. An extension of this formula for considering arbitrary elements in the center of an enveloping
algebra instead of the Casimir operator (3.2.8) was obtained in [Bismut and Shen 2022].
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3.4. Compact locally symmetric spaces. Let � be a cocompact discrete subgroup ofG. Then � acts onX
isometrically and properly discontinuously. Then ZD�nX is compact second countable Hausdorff space.

If x 2X, put
�x D f 2 � j x D xg: (3.4.1)

Then �x is a finite subgroup of �. Put

rx D inf
2���x

d.x; x/: (3.4.2)

Then we always have rx > 0. Set

Ux D B

�
x;
rx

4

�
�X: (3.4.3)

If x 2X,  2 �, we have
rx D rx; Ux D Ux : (3.4.4)

It is clear that �xnUx can identified with a connected open subset of Z.
Set

S D ker.�! Diffeo.X//D � \ ker.K Ad
�! Aut.p//: (3.4.5)

Then S is a finite subgroup of � \K and a normal subgroup of �.

Remark 3.4.1. Note that Gss is a connected noncompact simple linear Lie group. Then

S DZG \� \K: (3.4.6)

Put
� 0 D �=S: (3.4.7)

Then � 0 acts on X effectively and we have Z D � 0nX.
If x 2X, we have

S � �x; � 0x D �x=S: (3.4.8)

Then the orbifold charts .Ux; � 0x; �x W Ux! � 0xnUx/x2X together with the action of � 0 on these charts
give an (effective) orbifold structure for Z, so that Z D �nX is a compact orbifold with a Riemannian
metric gTZ induced by gTX.

By [Selberg 1960, Lemma 1], if  2 �, then  is semisimple. Let Œ�� denote the set of the conjugacy
classes of �. If  2 �, we say Œ� 2 Œ�� is an elliptic class if  is elliptic. Let EŒ�� � Œ�� be the set of
elliptic classes. Then EŒ�� is always a finite set. If EŒ�� only contains the trivial conjugacy class Œ1�; i.e.,
� is torsion free, then Z is compact smooth manifold.

Let Œ� 0� be the set of conjugacy classes in � 0, and let EŒ� 0� denote the set of elliptic classes in Œ� 0�. If
 0 2 � 0, let Z� 0. 0/ denote the centralizer of  0 in � 0, and let Œ 0�0 denote the conjugacy class of  0 in � 0.
If  0 2� 0 is elliptic, let X. 0/ be its fixed-point set in X on which Z� 0. 0/ acts isometrically and properly
discontinuously; see [Selberg 1960, Lemma 2]. Note that if  2 � is a lift of  0 2 � 0, then X./DX. 0/,
and  is elliptic if and only if  0 is elliptic.
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Proposition 3.4.2. We have

Zsing D �
0
n� 0

� [
Œ 0�02EŒ� 0�nf1g

X. 0/

�
�Z: (3.4.9)

Moreover, we have
†Z D

[
Œ 0�02EŒ� 0�nf1g

Z� 0.
0/nX. 0/: (3.4.10)

Note that the right-hand side of (3.4.10) is a disjoint union of compact orbifolds.
If  0 2 � 0, put

S 0. 0/D ker.Z� 0. 0/! Diffeo.X. 0///: (3.4.11)

Then jS 0. 0/j is the multiplicity of the connected component Z� 0. 0/nX. 0/ in †Z.

Proof. Note that z 2 Z with a lift x 2 X belongs to Zsing if and only if the stabilizer � 0x is nontrivial.
Thus x is a fixed point of some  0 2 � 0, from which (3.4.9) follows. By definition in Section 2.1, we get
the rest of this proposition. �

Note that �nG is a compact smooth homogeneous space equipped with a right action of K. Moreover,
the action of K is almost free; i.e., for each Ng 2 �nG, the stabilizer K Ng is finite. Then the quotient space
.�nG/=K also has a natural orbifold structure, which, after examining the local charts, is equivalent to Z.

Let d Ng be the volume element on �nG induced by dg. By (3.3.1), we get

Vol.�nG/D
Vol.K/
jS j

Vol.Z/: (3.4.12)

In the context of geometry, we have many interesting cases where S D f1g. For instance, given
a Riemannian symmetric space .X; gTX / of noncompact type, let G D Isom.X/0 be the connected
component of identity of the Lie group of isometries of X. By [Eberlein 1996, Proposition 2.1.1], G is a
semisimple Lie group with trivial center (which might not be linear, but we do not need that linearity for
the geometry ofZ). We refer to [Eberlein 1996, Chapter 2; Bismut 2011, Chapter 3] for more details. This
way, any subgroup of G acts on X effectively. In particular, if � is a cocompact discrete subgroup of G,
then Z D �nX is a compact good orbifold with the orbifold fundamental group �. By (3.4.10), we have

†Z D
[

Œ�2EŒ��nf1g

� \Z./nX./: (3.4.13)

In general, by [Helgason 1978, Chapter V, §4, Theorem 4.1], G D Isom.X DG=K/0 if and only if K
acts on p effectively.

Remark 3.4.3. Note that, as mentioned in Remark 2.1.3, when S ¤ f1g, we can also consider Z D �nX
as an ineffective orbifold by taking the action of � instead of � 0 on the local charts. This way, the role of
the above Z[†Z is replaced by the inertia groupoid defined in [Adem et al. 2007, Example 2.5], which
is exactly [

Œ�2EŒ��

� \Z./nX./: (3.4.14)
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It is a very natural object to use in the context here, for instance, for the Selberg’s trace formula in the
next subsection. In the problems we are concerned with, these two point-views on Z are equivalent.

If � W � 0! GL.Ck/ is a representation of � 0, which can be viewed as a representation of � via the
projection �! � 0 D �=S , then F D � 0n.X �Ck/ is a proper flat orbifold vector bundle on Z with the
flat connection rF;f induced from the exterior differential dX on Ck-valued functions. By [Shen and
Yu 2022, Theorem 2.35], all the proper orbifold vector bundles on Z of rank k come from this.

Now let � W�!GL.Ck/ be a representation of �; we do not assume that it comes from a representation
of � 0. We still have a flat orbifold vector bundle .F D �n.X �Ck/;rF;f / on Z, which may not be
proper in general. Note that � acts on C1.X;Ck/ so that if ' 2 C1.X;Ck/,  2 �, then

.'/.x/D �./'.�1x/: (3.4.15)

Let C1.X;Ck/� denote the �-invariant sections in C1.X;Ck/. Then

C1.Z; F /D C1.X;Ck/� : (3.4.16)

Definition 3.4.4. Let .V; �V / be the isotypic component of .Ck; �jS / corresponding to the trivial repre-
sentation of S on C, i.e., the maximal S -invariant subspace of Ck via �. Set

F pr
D �n.X �V /: (3.4.17)

It is clear that F pr is a proper flat orbifold vector bundle on Z.

Proposition 3.4.5. We have

C1.Z; F /D C1.Z; F pr/: (3.4.18)

In particular, if �jS W S ! GL.Ck/ does not have the isotypic component of the trivial representation
of S on C, then

C1.Z; F /D f0g: (3.4.19)

Let .E; �E / be a finite-dimensional complex representation of G. When restricting to �, K, we get
the corresponding representations of �, K respectively, which are still denoted by �E. As discussed
in Section 3.2, associated with the K-representation .E; �E / we define a homogeneous vector bundle
F DG �K E on X. Moreover, G acts on F equivariantly. By taking a �-quotient on the left, it descends
to an orbifold vector bundle on Z, which we still denote by the same notation.

The map .g; v/ 2G�KE! .pg; �E .g/v/ 2X �E gives a canonical trivialization of F over X. This
trivialization provides a flat connection rX;F;f for F !X, which is G-invariant. Then it descends to a
flat connection rZ;F;f on the orbifold vector bundle F over Z. Moreover, the above trivialization of
F !X implies that the flat orbifold vector bundle .F;rZ;F;f / is exactly the one given by �n.X �E/
with the flat connection rF;f induced by dX. We will always use the notation rF;f for the above flat
connection. By (3.2.7), (3.4.16), we get

C1.Z; F /D C1K .G;E/� : (3.4.20)
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3.5. Selberg’s trace formula. Let Z be the compact locally symmetric space discussed in Section 3.4,
and let .F; hF ;rF / be a Hermitian vector bundle on X defined by a unitary representation .E; �E /
of K. As said before, .F; hF ;rF / descends to a Hermitian orbifold vector bundle on Z. Recall the
Bochner-like Laplacian LXA is defined by (3.2.9). Since it commutes with G, it descends to a Bochner-like
Laplacian LZA acting on C1.Z; F /.

Here the convergences of the integrals and infinite sums are already guaranteed by the results in [Bismut
2011, Chapters 2, 4; Shen 2018, Section 4D].

For t > 0, let pZt .z; z
0/, z; z0 2 Z, be the heat kernel of LZA over Z with respect to dz0. If z; z0 are

identified with their lifts in X, then

pZt .z; z
0/D

1

jS j

X
2�

pXt .
�1z; z0/D

1

jS j

X
2�

pXt .z; z
0/: (3.5.1)

Note that the action of  on F�1z or on the metric dual of Fz0 is given as in (3.2.4).
Since Z is compact, for t > 0, exp.�tLZA / is trace class. We have

TrŒexp.�tLZA /�D
Z
Z

TrF ŒpZt .z; z/� dz: (3.5.2)

Combining (3.2.10), (3.2.11), (3.4.12) and (3.5.1), (3.5.2), and proceeding as in [Bismut 2011, equa-
tions (4.8.8)–(4.8.12)], we get

TrŒexp.�tLZA /�D
1

Vol.K/

Z
�nG

X
2�

TrE ŒpXt . Ng
�1 Ng/� d Ng

D

X
Œ�2Œ��

Vol.� \Z./nZ.//
Vol.K.//

TrŒ�Œexp.�tLXA /�: (3.5.3)

Take  2 �. Recall that X./DZ./=K./ defined in Section 3.3. Then K./ acts on Z./ on the
right, which induces an action on � \Z./nZ./ on the right. Set

S./D ker.� \Z./! Diffeo.X.///: (3.5.4)

Then S./ represents the isotropy group of the principal orbit type for the right action of K./ on
� \Z./nZ./. As in (3.4.12), we have

Vol.� \Z./nZ.//D
Vol.K.//
jS./j

Vol.� \Z./nX.//: (3.5.5)

Theorem 3.5.1. For t > 0, we have the identity

TrŒexp.�tLZA /�D
X
Œ�2Œ��

Vol.� \Z./nX.//
jS./j

TrŒ�Œexp.�tLXA /�: (3.5.6)

Proof. This is a direct consequence of (3.5.3) and (3.5.5). �

In the case where S D 1, the trace formula (3.5.6) shows clearly the different contributions from Z

and from each components of †Z. Then combining (3.4.10), (3.5.6) with the results in [Bismut 2011,
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Theorem 7.8.2; Liu 2018, Theorem 7.7.1], we can recover (2.2.9) for Z. If we use the same settings as in
[Bismut 2011, Sections 7.1, 7.2] and we use instead the results in Theorem 7.7.1 of that work, then we
can recover the Kawasaki’s local index theorem [1979] for Z. By taking account of Remarks 2.1.3 and
3.4.3, the above considerations also hold even for S ¤ f1g.

4. Analytic torsions for compact locally symmetric spaces

In this section, we explain how to make use of Bismut’s formula (3.3.20) and Selberg’s trace formula
(3.5.6) to study the analytic torsions of Z. We continue using the same settings as in Section 3. We will
see that by a vanishing result on the analytic torsion, only the case ı.G/D 1 remains interesting. For
studying this case, more tools will be introduced in Sections 5 and 6.

4.1. A vanishing result on the analytic torsions. Recall that G is a connected linear real reductive Lie
group. Recall that zg is the center of g. Set

zp D zg\ p; zk D zg\ k: (4.1.1)

Then

zg D zp˚ zk; ZG D exp.zp/.ZG \K/: (4.1.2)

Let T be a maximal torus of K with Lie algebra t; put

bD ff 2 p j Œf; t�D 0g: (4.1.3)

It is clear that

zp � b: (4.1.4)

Put hD b˚ t. Then h is a Cartan subalgebra of g. Let H be analytic subgroup of G associated with h.
Then it is also a Cartan subgroup of G; see [Knapp 1986, p. 129 and Theorem 5.22(b)]. Moreover, dim t

is just the complex rank of K, and dim h is the complex rank of G.

Definition 4.1.1. Using the above notation, the deficiency ofG, or the fundamental rank ofG is defined as

ı.G/D rkCG � rkCK D dimR b: (4.1.5)

The number m� ı.G/ is even.

The following result was proved in [Shen 2018, Proposition 3.3].

Proposition 4.1.2. If  2G is semisimple, then

ı.G/� ı.Z./0/: (4.1.6)

The two sides of (4.1.6) are equal if and only if  can be conjugated into H.

Recall that uD
p
�1p˚ k is the compact form of G, and that U �GC is the analytic subgroup with

Lie algebra u. Let U u, U gC be the enveloping algebras of u, gC respectively. Then U gC can be identified



1286 BINGXIAO LIU

with the left-invariant holomorphic differential operators on GC. Let C u 2 U u be the Casimir operator of
u associated with B . Then

C u
D C g

2 U g\U u� U gC: (4.1.7)

In the sequel, we always assume that U is compact; this is the case when G has compact center.

Proposition 4.1.3 (unitary trick). Assume that U is compact. Then any irreducible finite-dimensional
(analytic) complex representation of U extends uniquely to an irreducible finite-dimensional complex
representation of G such that their induced representations of Lie algebras are compatible.

We now fix a unitary representation .E; �E ; hE / of U, and we extend it to a representation of G,
whose restriction to K is still unitary. Put F DG �K E, with the Hermitian metric hF induced by hE.
Let rF be the Hermitian connection induced by the connection form !k.

Furthermore, as explained in the last part of Section 3.4, F is equipped with a canonical flat connec-
tion rF;f as follows:

r
F;f
Dr

F
C �E .!p/: (4.1.8)

If G has compact center, then .F; hF ;rF;f / is a unimodular flat vector bundle.
Let .��c.X; F /; d

X;F / be the (compactly supported) de Rham complex twisted by F. Let dX;F;�

be the adjoint operator of dX;F with respect to the L2 metric on ��c.X; F /. The de Rham–Hodge
operator DX;F of this de Rham complex is given by

DX;F
D dX;F C dX;F;�: (4.1.9)

The Clifford algebras c.TX/, Oc.TX/ act onƒ�.T �X/. We still use e1, : : : , em to denote an orthonormal
basis of p or TX, and let e1, : : : , em be the corresponding dual basis of p� or T �X.

Let rƒ
�.T �X/˝F;u be the unitary connection on ƒ�.T �X/˝F induced by rTX and rF . Then the

standard Dirac operator is given by

DX;F D

mX
jD1

c.ej /r
ƒ�.T �X/˝F;u
ej

: (4.1.10)

By [Bismut et al. 2017, equation (8.42)], we have

DX;F
DDX;F C

mX
jD1

Oc.ej /�
E .ej /: (4.1.11)

At the same time, as explained in Section 3.2, C g descends to an elliptic differential operator C g;X

acting on C1.X;ƒ�.T �X/˝F /. As in (3.2.9), we put

LX;F D 1
2
C g;X

C
1
16

TrpŒC k;p�C 1
48

TrkŒC k;k�: (4.1.12)

For simplicity, we will always put

ˇg D
1
16

TrpŒC k;p�C 1
48

TrkŒC k;k� 2 R: (4.1.13)
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By [Bismut et al. 2017, Proposition 8.4], we have

1
2
DX;F;2

D LX;F � 1
2
C g;E

�ˇg DW LX;FA ; (4.1.14)
where AD�1

2
C g;E �ˇg.

Let  2G be a semisimple element. In the sequel, we may assume that

 D eak; a 2 p; k 2K; Ad.k/aD a: (4.1.15)

We also use the same notation as in Section 3.3.
Recall that p D dim p./, q D dim k./. By (3.3.20) and (4.1.14), we have

TrŒ�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D

e�
jaj2

2t

.2�t/
p
2

exp.tˇ/
Z
k./

J .Y
k
0/Trƒ

�.p�/
s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.Y k

0//
i

�TrE
h
�E .k/ exp

�
�i�E .Y k

0/C
t

2
C u;E

�i
e�
jY k
0
j2

2t
dY k

0

.2�t/
q
2

: (4.1.16)

Now we take a cocompact discrete subgroup � �G. Then Z D �nX is a compact locally symmetric
orbifold. We use the same notation as in Sections 3.4 and 3.5. Then we get a flat orbifold vector bundle
.F;rF;f ; hF / onZ. Furthermore,DX;F descends to the corresponding de Rham–Hodge operatorDZ;F

acting on ��.Z; F /. Let T .Z; F / denote the associated analytic torsion as in Definition 2.2.3, i.e.,

T .Z; F /D T .gTZ ;rF;f ; hF /: (4.1.17)

As explained in Section 2.2, for computing T .Z; F /, it is enough to evaluate

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;F;2

2

�i
; t > 0: (4.1.18)

Then we apply Selberg’s trace formula in Theorem 3.5.1. We get

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;F;2

2

�i
D

X
Œ�2Œ��

Vol.� \Z./nX.//
jS./j

TrŒ�
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
: (4.1.19)

As in [Bismut et al. 2017, Remark 8.7], by [Ma 2019, Theorems 5.4, 5.5, Remark 5.6], we have the
following vanishing theorem on T .Z; F /.

Theorem 4.1.4. If m is even, or if m is odd and ı.G/� 3, then

T .Z; F /D 0: (4.1.20)

Proof. By [Bismut 2011, Theorem 7.9.1; Ma 2019, Theorem 5.4], and using instead (4.1.19), we get that
under the assumptions in this theorem, for t > 0,

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp.�tDZ;F;2/

i
D 0: (4.1.21)

Then (4.1.20) follows from the definition of T .Z; F /. �
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Therefore, the only nontrivial case is that ı.G/D 1, so that m is odd. If  2G is of the form (4.1.15),
let t./� k./ be a Cartan subalgebra. Put

b./D fv 2 p.k/ j Œv; t./�D 0g; h./p D b./\ p./: (4.1.22)

In particular, a 2 b./. Then h./D h./p˚ t./ is a Cartan subalgebra of z./.
Recall that H is a maximally compact Cartan subgroup of G. The following result is just an analogue

of [Shen 2018, Theorem 4.12; Bismut 2011, Theorem 7.9.1].

Proposition 4.1.5. If ı.G/D 1, if  is semisimple and cannot be conjugated into H by an element in G,
then

TrŒ�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D 0: (4.1.23)

Proof. Let t be a Cartan subalgebra of k containing t./. Then b � b./. If a … b, then dim b./ � 2.
Therefore, by [Shen 2018, equation (4-44)], for Y k

0 2 k./, we have

Trƒ
�.p�/

s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.Y k

0//
i
D 0: (4.1.24)

This implies (4.1.23). �

Set
g0 D zk˚ gss: (4.1.25)

Then g0 is an ideal of g. Let G0 be the analytic subgroup of G associated with g0, which is closed and has
a compact center; see [Knapp 2002, Proposition 7.27]. The group K is still a maximal subgroup of G0.
Let U 0 � U be the compact form of G0 with Lie algebra u0. Then

uD
p
�1zp˚ u0: (4.1.26)

Now we assume that ı.G/ D 1 and that G has noncompact center, so that b D zp has dimension 1.
Then ı.G0/D 0. Under the hypothesis that U is compact, up to a finite cover, we may write

U ' S1 �U 0: (4.1.27)

We take a1 2 b with ja1j D 1. If .E; �E / is an irreducible unitary representation of U, then �E .a1/
acts on E by a real scalar operator. Let ˛E 2 R be such that

�E .a1/D ˛E IdE : (4.1.28)

PutX 0DG0=K. ThenX 0 is an even-dimensional symmetric space (of noncompact type). We identify zp
with a real line R. Then

G D R�G0; X D R�X 0: (4.1.29)

In this case, the evaluation for analytic torsions can be made more explicit. If  2G0, let X 0./ denote
the minimizing set of d . � / in X 0, so that

X./D R�X 0./: (4.1.30)
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Let Œ � �max denote the coefficient of a differential form (valued in o.TX 0/) on X 0 of the corresponding
Riemannian volume form. Similarly, for k 2 T, let Œ � �max.k/ denote the analogous object on X 0.k/. The
following results are the analogues of [Shen 2018, Proposition 4.14].

Proposition 4.1.6. Assume that G has noncompact center with ı.G/D 1 and that .E; �E / is irreducible.
Then

TrŒ1�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D�

e�
1
2
t˛2E

p
2�t

Œe.TX 0;rTX
0

/�max dimE: (4.1.31)

If  D eak is such that a 2 b, k 2 T, then

TrŒ�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D�

1
p
2�t

e�
jaj2

2t
� 1
2
t˛2E Œe.TX 0.k/;rTX

0.k//�max.k/ TrE Œ�E .k/�: (4.1.32)

Proof. Let C u0 denote the Casimir operator of u0 associated with Bju0 . Then we have

C u
D�a21CC

u0 : (4.1.33)

Since .E; �E / is an irreducible representation, by (4.1.28) and (4.1.33), we get

C u;E
D�˛2E CC

u0;E : (4.1.34)

Then by (4.1.34) and [Bismut et al. 2017, Theorem 8.5], a modification of the proof of [Shen 2018,
Proposition 4.14] proves the identities in our proposition. �

If we assembly the results in Proposition 4.1.6, it is enough to study the corresponding analytic torsions.
We will get back to this point in Corollary 7.4.4 for asymptotic analytic torsions.

4.2. Symmetric spaces of noncompact type with fundamental rank 1. In this subsection, we focus
on the case where ı.G/ D 1 and G has compact center (i.e., zp D 0), so that X is a symmetric space
of noncompact type [Shen 2018, Proposition 6.18]. For simplicity, let us also assume that G is linear
semisimple in this subsection.

Note that the rank ı.X/ of X (see [Eberlein 1996, Section 2.7]) is the same as ı.G/. Then ı.X/D 1.
By the de Rham decomposition, we can write

X DX1 �X2; (4.2.1)

where X1 is an irreducible symmetric space of noncompact type with ı.X1/D 1, and X2 is a symmetric
space of noncompact type with ı.X2/D 0.

As in [Bismut 2011, Remark 7.9.2], among the noncompact simple connected real linear groups such
that m is odd and dim bD 1, there are only SL3.R/, SL4.R/, SL2.H/, and SO0.p; q/ with pq odd > 1.
Also, we have sl4.R/D so.3; 3/ and sl2.H/D so.5; 1/. Therefore, X1 is one of the following cases (see
[Shen 2018, Proposition 6.19]):

X1 D SL3.R/=SO.3/ or SO0.p; q/=SO.pC q/; with pq > 1 odd: (4.2.2)
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Since ı.G/D 1, we have the decomposition of Lie algebras

gD g1˚ g2; (4.2.3)

where
g1 D sl3.R/ or so.p; q/; (4.2.4)

with pq > 1 odd, and g2 is semisimple with ı.g2/D 0. The Cartan involution � preserves the splitting
(4.2.3); see [Knapp 2002, VII.6, p. 471].

Let G1 be the identity component of ZG.g2/. Then G1 is a connected linear semisimple closed
subgroup of G with Lie algebra of g1. Similarly, we can find a connected linear semisimple closed
subgroup G2 of G with Lie algebra of g2 such that we have canonically G1 �G2!G a finite central
extension. Let �j be the induced Cartan involution on Gj (j D 1; 2) from � . Set Kj DGj \K; then

Xj DGj =Kj ; j D 1; 2: (4.2.5)

Note that in general, G1 is a just a finite central extension of SL3.R/ or SO0.p; q/ (pq > 1 odd). The
invariant bilinear form B also splits as B1˚B2 with respect to the splitting (4.2.3).

Remark 4.2.1. Let G�, G1;�, G2;� denote the identity components of the isometry groups of X, X1, X2
respectively. Then we have

G� DG1;� �G2;�: (4.2.6)

By [Shen 2018, Proposition 6.19], G1;� D SL3.R/ or SO0.p; q/, with pq > 1 odd, and G2;� is a
semisimple Lie group with Lie algebra g2 and trivial center. Also ı.G2;�/D 0. If we consider G� instead
of G, then the factor G1 is exactly SL3.R/ or SO0.p; q/, with pq > 1 odd.

Let U1, U2 be (connected linear) compact forms of G1, G2. Then U1�U2 is a finite central extension
of the compact form U of G. Let .E; �E / be an irreducible unitary representation of U, and hence of
U1 �U2. Then

.E; �E /D .E1; �
E1/˝ .E2; �

E2/; (4.2.7)

where .Ej ; �Ej / is an irreducible unitary representation of Uj , j D 1; 2. Let F, F1, F2 be the ho-
mogeneous flat vector bundles on X, X1, X2 associated with these representations. Then we have

F D F1�F2 WD �
�
1 .F1/˝�

�
2 .F2/; (4.2.8)

where �i denote the projections X !Xi , i D 1; 2.
Take  2 G. Let .1; 2/ 2 G1 �G2 be one of its lifts. Then  is semisimple (resp. elliptic) if and

only if both 1, 2 are semisimple (resp. elliptic). Set mi D dimXi ; then m1 is odd, and m2 is even.

Proposition 4.2.2. If  2G is semisimple, for t > 0, we have

TrŒ�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D TrŒ1�s

h�
Nƒ�.T �X1/�

m1
2

�
exp

�
�
tDX1;F1;2

2

�i
�TrŒ2�s

h
exp

�
�
tDX2;F2;2

2

�i
: (4.2.9)
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Then if 2 is nonelliptic,

TrŒ�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D 0: (4.2.10)

If 2 is elliptic, then

TrŒ�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
D Œe.TX2.2/;r

TX2.2//�max2.2/TrE2 Œ�E2.2/�

�TrŒ1�s

h�
Nƒ�.T �X1/�

m1
2

�
exp

�
�
tDX1;F1;2

2

�i
; (4.2.11)

where Œ � �max2.2/ is taking the coefficient of the Riemannian volume element on X2.2/.

Proof. We write

Nƒ�.T �X/
�
m

2
D

�
Nƒ�.T �X1/�

m1
2

�
C

�
Nƒ�.T �X2/�

m2
2

�
: (4.2.12)

Note that, since ı.G1/D 1, by [Bismut 2011, Theorem 7.8.2], we always have

TrŒ1�s

h
exp

�
�
tDX1;F1;2

2

�i
D 0: (4.2.13)

Combining the definition of orbital integrals (3.3.7) together with (4.2.12) and (4.2.13), we get (4.2.9).
The identities (4.2.10), (4.2.11) follow from applying the results in [Bismut 2011, Theorem 7.8.2] to

TrŒ2�s Œexp.�tDX2;F2;2=2/�. �

For studying T .Z; F /, Proposition 4.2.2 helps us to reduce the computations on

Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;F;2

2

�i
to the model cases listed in (4.2.2). But it is far from enough to get an explicit evaluation. In Sections 5
and 6, we will introduce more tools, which allows us work out a proof to Theorem 1.0.2.

5. Cartan subalgebra and root system of G when ı.G/D 1

We use the same notation as in Section 3 and Section 4.1. In Sections 5.1–5.3, we always assume that G
is a connected linear real reductive Lie group with compact center and with ı.G/D 1. But, as we will
see in Remark 5.3.3, the constructions and results in these subsections are still true (most of them are
trivial) if U is compact and if G has noncompact center with ı.G/D 1.

Section 5.4 is independent from other subsections, where we introduce a generalized Kirillov formula
for compact Lie groups.

Recall that T is a maximal torus of K with Lie algebra t� k, and that b� p is defined in (4.1.3). Since
ı.G/D 1, we know b is 1-dimensional. We now fix a vector a1 2b, ja1jD 1. Recall that hDb˚t is a Car-
tan subalgebra of g. Let hgC be the Hermitian product on gC induced by the scalar product �B. � ; � � / on g.
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5.1. Reductive Lie algebra with fundamental rank 1. Since G has compact center, b 6� zg. Let Z.b/ be
the centralizer of b in G, and let Z.b/0 be its identity component with Lie algebra z.b/D p.b/˚ k.b/� g.
Let m be the orthogonal subspace of b in z.b/ (with respect to B) such that

z.b/D b˚m: (5.1.1)

Then m is a Lie subalgebra of z.b/, which is invariant by � .
Put

pm Dm\ p; km Dm\ k: (5.1.2)

Then
mD pm˚ km; p.b/D b˚ pm; k.b/D km: (5.1.3)

Let z?.b/, p?.b/, k?.b/ be the orthogonal subspaces of z.b/, p.b/, k.b/ in g, p, k respectively with
respect to B . Then

z?.b/D p?.b/˚ k?.b/: (5.1.4)

Moreover,
pD b˚ pm˚ p?.b/; kD k.b/˚ k?.b/: (5.1.5)

Let M �Z.b/0 be the analytic subgroup associated with m. If we identify b with R, then

Z.b/0 D R�M: (5.1.6)

Then M is a Lie subgroup of Z.b/0; i.e., it is closed in Z.b/0. Let KM be the analytic subgroup of M
associated with the Lie subalgebra km. Since M is reductive, KM is a maximal compact subgroup of M.
Then the splittings in (5.1.3), (5.1.4), (5.1.5) are invariant by the adjoint action of KM .

Then t is Cartan subalgebra of k, of km, and of m. Recall that hD b˚ t is a Cartan subalgebra of g.
We fix a1 2 b such that B.a1; a1/D 1. The choice of a1 fixes an orientation of b. Let n� z?.b/ be the
direct sum of the eigenspaces of ad.a1/ with the positive eigenvalues. Set NnD �n. Then

z?.b/D n˚ Nn: (5.1.7)

By [Shen 2018, Section 6A], dim n D dim p� dim pm � 1. Then dim n is even under our assumption
ı.G/D 1. Put

l D 1
2

dim n: (5.1.8)

By [Shen 2018, Proposition 6.2], there exists ˇ 2 b� such that if a 2 b, f 2 n, then

Œa; f �D ˇ.a/f; Œa; �.f /�D�ˇ.a/�.f /: (5.1.9)

The map f 2n 7!f ��.f /2p?.b/ is an isomorphism ofKM -modules. Similarly, f 2n 7!f C�.f /2

k?.b/ is also an isomorphism of KM -modules. Since � fixes KM , n' Nn as KM -modules via � .
By [Shen 2018, Proposition 6.3], we have

Œn; Nn�� z.b/; Œn; n�D ŒNn; Nn�D 0: (5.1.10)
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Also
Bjn�n D 0; BjNn�Nn D 0: (5.1.11)

Then the bilinear form B induces an isomorphism of n� and Nn as KM -modules. Therefore, as KM -
modules, n is isomorphic to n�.

As a consequence of (5.1.10), we get

Œz.b/; z.b/� ; Œz?.b/; z?.b/�� z.b/; Œz.b/; z?.b/�� z?.b/: (5.1.12)

Then .g; z.b// is a symmetric pair.
If k 2KM , letM.k/ be the centralizer of k inM, and let m.k/ be its Lie algebra. LetM.k/0 be the iden-

tity component of M.k/. The Cartan involution � acts on M.k/. The associated Cartan decomposition is

m.k/D pm.k/˚ km.k/; (5.1.13)

where pm.k/D pm\m.k/, km.k/D km\m.k/.
Recall that Z.k/ is the centralizer of k in G and that Z.k/0 is the identity component of Z.k/ with

Lie algebra z.k/� g. Then

M.k/DM \Z.k/; m.k/Dm\ z.k/: (5.1.14)

Note that Z.k/0 is still a reductive Lie group equipped with the Cartan involution induced by the
action of � . By the assumption that ı.G/D 1, we have

ı.Z.k/0/D 1: (5.1.15)

In particular,
b� p.k/: (5.1.16)

Set
zb.k/D z.b/\ z.k/; pb.k/D p.b/\ p.k/; kb.k/D k.b/\ k.k/: (5.1.17)

Then
zb.k/D b˚m.k/D pb.k/˚ kb.k/: (5.1.18)

We also have the identities
pb.k/D b˚ pm.k/; kb.k/D km.k/: (5.1.19)

Let p?b .k/, k
?
b .k/, z

?
b .k/ be the orthogonal spaces of pb.k/, kb.k/, zb.k/ in p.k/, k.k/, z.k/ with

respect to B , so that

p.k/D pb.k/˚ p?b .k/; k.k/D kb.k/˚ k?b .k/; z.k/D zb.k/˚ z?b .k/: (5.1.20)

Then
z?b .k/D p?b .k/˚ k?b .k/D z?.b/\ z.k/: (5.1.21)

Put
n.k/D z.k/\ n; Nn.k/D z.k/\ Nn: (5.1.22)
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Then
z?b .k/D n.k/˚ Nn.k/: (5.1.23)

By (5.1.17), (5.1.23), we get

z.k/D pb.k/˚ kb.k/˚ n.k/˚ Nn.k/: (5.1.24)

Since ı.m.k//D 0, dim n.k/ is even. We set

l.k/D 1
2

dim n.k/: (5.1.25)

Let KM .k/ denote the centralizer of k in KM . The map f 2 n.k/ 7! f � �.f / 2 p?b .k/ is an
isomorphism of KM .k/-modules, and similarly for k?b .k/. Since � fixes KM .k/, we have n.k/' Nn.k/

as KM .k/-modules via � .

5.2. A compact Hermitian symmetric space Yb. Recall that uD
p
�1p˚ k is the compact form of g.

Let u.b/� u, um � u be the compact forms of z.b/, m. Then

u.b/D
p
�1b˚ um; um D

p
�1pm˚ km: (5.2.1)

Since M has compact center, let UM be the analytic subgroup of U associated with um. Then UM is
the compact form of M. Let U.b/� U, A0 � U be the connected subgroups of U associated with Lie
algebras u.b/,

p
�1b. Then A0 is in the center of U.b/. By [Shen 2018, Proposition 6.6], A0 is closed

in U and is diffeomorphic to a circle S1. Moreover, we have

U.b/D A0UM : (5.2.2)

The bilinear form �B induces an Ad.U /-invariant metric on u. Let u?.b/ � u be the orthogonal
subspace of u.b/. Then

u?.b/D
p
�1p?.b/˚ k?.b/: (5.2.3)

By (5.1.12), we get

Œu.b/; u.b/� ; Œu?.b/; u?.b/�� u.b/; Œu.b/; u?.b/�� u?.b/: (5.2.4)

Then .u; u.b// is a symmetric pair.
Put a0 D a1=ˇ.a1/ 2 b. Set

J D
p
�1 ad.a0/ju?.b/ 2 End.u?.b//: (5.2.5)

By (5.1.9), J is an U.b/-invariant complex structure on u?.b/ which preserves Bju?.b/. The spaces
nC D n˝R C, NnC D Nn˝R C are exactly the eigenspaces of J associated with eigenvalues

p
�1, �

p
�1.

The following proposition is just the summary of the results in [Shen 2018, Section 6B].

Proposition 5.2.1. Set
Yb D U=U.b/: (5.2.6)

Then Yb is a compact symmetric space, and J induces an integrable complex structure on Yb such that

T .1;0/Yb D U �U.b/ nC; T .0;1/Yb D U �U.b/ NnC: (5.2.7)

The form �B. � ; J � / induces a Kähler form !Yb on Yb.
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Let !u be the canonical left-invariant 1-form on U with values in u. Let !u.b/ and !u?.b/ be the u.b/

and u?.b/ components of !u, so that

!u
D !u.b/

C!u?.b/: (5.2.8)

Moreover, !u.b/ defines a connection form on the principal U.b/-bundle U ! Yb. Let �u.b/ be the
curvature form. Then

�u.b/
D�

1
2
Œ!u?.b/; !u?.b/�: (5.2.9)

Note that the real tangent bundle of Yb is given by

T Yb D U �U.b/ u
?.b/: (5.2.10)

Then �Bju?.b/ induces a Riemannian metric gTYb on Yb. The corresponding Levi-Civita connection is
induced by !u.b/.

Recall that the first splitting in (5.2.1) is orthogonal with respect to �B . Let �um be the um-component
of �u.b/. Since the Kähler form !Yb is invariant under the left action of U on Yb, we also can view !Yb

as an element in ƒ2.u?b /
�/. By [Shen 2018, equation (6-48)],

�u.b/
D ˇ.a1/!

Yb ˝
p
�1a1C�

um : (5.2.11)

Moreover, by [Shen 2018, Proposition 6.9], we have

B.�u.b/; �u.b//D 0; B.�um ; �um/D ˇ.a1/
2!Yb;2: (5.2.12)

Remark 5.2.2. By [Shen 2018, Proposition 6.20], if G has compact center, then as symmetric spaces,
the Kähler manifold Yb is isomorphic either to SU.3/=U.2/ or to SO.pC q/=SO.pC q � 2/� SO.2/
with pq > 1 odd. This way, the computations on Yb can be made more explicit.

Now we fix k 2KM . Let U.k/ be the centralizer of k in U, and let U.k/0 be its identity component.
Let u.k/ be the Lie algebra of U.k/0. Then u.k/ is the compact form of z.k/, and U.k/0 is the compact
form of Z.k/0.

We will use the same notation as in Section 5.1. Then the compact form of m.k/ is given by

um.k/D
p
�1pm.k/˚ km.k/: (5.2.13)

Let ub.k/ be the compact form of zb.k/. Then

ub.k/D
p
�1b˚ um.k/: (5.2.14)

Let Ub.k/ be the analytic subgroup associated with ub.k/. Then

Ub.k/D U.b/\U.k/
0: (5.2.15)

Set
Yb.k/D U.k/

0=Ub.k/: (5.2.16)

As in Proposition 5.2.1, Yb.k/ is a connected complex manifold equipped with a Kähler form !Yb.k/.
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Let u?b .k/ be the orthogonal space of ub.k/ in u.k/ with respect to B . Then

u?b .k/D
p
�1p?b .k/˚ k?b .k/: (5.2.17)

Then the real tangent bundle of Yb.k/ is given by

T Yb.k/D U.k/
0
�Ub.k/ u

?
b .k/: (5.2.18)

Moreover,

T .1;0/Yb.k/D U.k/
0
�Ub.k/ n.k/C; T .0;1/Yb.k/D U.k/

0
�Ub.k/ Nn.k/C: (5.2.19)

Let �ub.k/ be the curvature form as in (5.2.9) for the pair .U.k/0; Ub.k//, which can be viewed as
an element in ƒ2.u?b .k/

�/˝ ub.k/. Using the splitting (5.2.14), let �um.k/ be the um.k/-component
of �ub.k/. Then as in (5.2.11) and (5.2.12), we have

�ub.k/ D ˇ.a1/!
Yb.k/˝

p
�1a1C�

um.k/; (5.2.20)

B.�ub.k/; �ub.k//D 0; B.�um.k/; �um.k//D ˇ.a1/
2!Yb.b/;2: (5.2.21)

5.3. Positive root system and character formula. Recall that t is Cartan subalgebra of k, of km, and of m.
Recall that hD b˚ t is a Cartan subalgebra of g, and H is the associated maximally compact Cartan
subgroup of G.

Put

tU D
p
�1b˚ t� u: (5.3.1)

Then tU is a Cartan subalgebra of u. Let TU � U be the corresponding maximal torus. Then A0 is a
circle in TU . Then t is a Cartan subalgebra of um, and the corresponding maximal torus is T.

Let R.u; tU / be the real root system for the pair .U; TU / [Bröcker and tom Dieck 1985, Chapter V].
The root system for the complexified pair .uC; tU;C/D .gC; hC/ is given by 2�iR.u; tU /. Similarly, let
R.u.b/; tU /, R.um; t/ denote the real root systems for the pairs .u.b/; tU /, .um; t/. When we embed t�

into t�U by the splitting in (5.3.1),

R.u.b/; tU /DR.um; t/: (5.3.2)

For a root ˛ 2R.u; tU /, if ˛.
p
�1a1/D 0, then ˛ 2R.um; t/. Fix a positive root system RC.um; t/.

We get a positive root system RC.u; tU / consisting of an element ˛ such that ˛.
p
�1a1/ > 0 and the

elements in RC.um; t/.
Let W.u; tU / denote the algebraic Weyl group associated with R.u; tU /. If ! 2W.u; tU /, let l.!/

denote the length of ! with respect to RC.u; tU /. Set

".!/D .�1/l.!/: (5.3.3)

Let W.U; TU / be the analytic Weyl group. Then W.u; tU /DW.U; TU /.
Put

Wu D f! 2W.U; TU / j !
�1
�˛ > 0 for all ˛ 2RC.um; t/g: (5.3.4)



FULL ASYMPTOTICS OF REAL ANALYTIC TORSIONS FOR COMPACT LOCALLY SYMMETRIC ORBIFOLDS 1297

Put
�u D

1

2

X
˛02RC.u;tU /

˛0 2 t�U ; �um D
1

2

X
˛02RC.um;t/

˛0 2 t�: (5.3.5)

Then �ujt D �um .
LetPCC.U /� t�U be the set of dominant weights of .U; TU /with respect toRC.u; tU /. If �2PCC.U /,

let .E�; �E�/ be the irreducible unitary representation of U with the highest weight �, which by the
unitary trick extends to an irreducible representation of G.

By [Warner 1972, Lemmas 1.1.2.15, 2.4.2.1], if ! 2Wu, then !.�C�u/��u is a dominant weight for
RC.u.b/; tU /. Let V�;! denote the representation of U.b/ with the highest weight !.�C �u/� �u.

Recall that U.b/ acts on nC. Let H �.nC; E�/ be the Lie algebra cohomology of nC with coefficients
inE�; see [Kostant 1961]. By [Warner 1972, Theorem 2.5.1.3], for iD0; : : : ; 2l , we have the identification
of U.b/-modules

H i .nC; E�/'
M
!2Wu
l.!/Di

V�;! : (5.3.6)

By (5.3.6) and the Poincaré duality, we get the following identifications as U.b/-modules:
2lM
iD0

.�1/iƒin�C˝E� D
M
!2Wu

".!/V�;! : (5.3.7)

Note that if we apply the unitary trick, the above identification also holds as Z.b/0-modules.

Definition 5.3.1. Let P0 W t�U ! t� denote the orthogonal projection with respect to B�jt�U . For ! 2Wu,
� 2 PCC.U /, put

�!.�/D P0.!.�C �u/� �u/ 2 t
�: (5.3.8)

Note that
P0�u D �um : (5.3.9)

Then
�!.�/D P0.!.�C �u//� �um : (5.3.10)

Proposition 5.3.2. If � 2 PCC.U /, for ! 2 Wu, then �!.�/ is a dominant weight of .UM ; T / with
respect to RC.um; t/. Moreover, the restriction of the U.b/-representation V�;! to the subgroup UM is
irreducible, which has the highest weight �!.�/.

Proof. Since !.�C �u/� �u is analytically integrable, �!.�/ is also analytically integrable as a weight
associated with .UM ; T /. By (5.3.2) and the corresponding identification of positive root systems, we
know that �!.�/ is dominant with respect to RC.um; t/.

Recall that A0 ' S1 is defined in Section 5.2. By (5.2.2), we get that A0 acts on V�;! as scalars given
by its character, and then UM act irreducibly on V�;! , which clearly has the highest weight �!.�/. �

Remark 5.3.3. In general, U is just the analytic subgroup of GC with Lie algebra u. If U is compact but
G has noncompact center, i.e., zp D b, then nD NnD 0, so that l D 0. Recall that in this case, G0, U 0 are
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defined in Section 4.1. Then
M DG0; UM D U

0: (5.3.11)

The compact symmetric space Yb now reduces to one point.
Moreover, in (5.3.4), Wu D f1g, so that V�;! becomes just E� itself. The identities (5.3.6), (5.3.7) are

trivially true; so is Proposition 5.3.2.

5.4. Kirillov character formula for compact Lie groups. In this subsection, we recall the Kirillov
character formula for compact Lie groups. We only use the group UM as an explanatory example. We fix
the maximal torus T and the positive (real) root system RC.um; t/.

Let � 2 t� be a dominant (analytically integrable) weight of UM with respect to the above root system.
Let .V�; �V�/ be the irreducible unitary representation of UM with the highest weight �.

Put
OD Ad�.UM /.�C �um/� u�m: (5.4.1)

Then O is an even-dimensional closed manifold.
Since �C �um is regular, we have the following identifications of UM -manifolds:

O' UM=T: (5.4.2)

For u 2 um, an associated vector field Qu on O is defined as follows: if f 2O, then

Quf D� ad�.u/f 2 TfO: (5.4.3)

Such vector fields span the whole tangent space at each point. Let !L denote the real 2-form on O such
that if u; v 2 um, f 2O,

!L. Qu; Qv/f D�hf; Œu; v�i: (5.4.4)

Then !L is a UM -invariant symplectic form on O. Put rC D 1
2

dim um=t. In fact, if we can define an
almost complex structure on TO such that the holomorphic tangent bundle is given by the positive root
system RC.um; t/. Then .O; !L/ become a closed Kähler manifold, and rC is its complex dimension.

The Liouville measure on O is defined as

d�L D
.!L/

rC

.rC/Š
: (5.4.5)

It is invariant by the left action of UM . Let VolL.O/ denote the symplectic volume of O with respect to
the Liouville measure. Then we have (see [Berline et al. 1992, Proposition 7.26])

VolL.O/D…˛02RC.um;t/
h˛0; �C �umi

h˛0; �umi
D dimV�: (5.4.6)

The second identity is the Weyl dimension formula (see [Knapp 1986, Theorem 4.48]).
By the Kirillov formula (see [Berline et al. 1992, Theorem 8.4]), if y 2 um, we have

yA�1.ad.y/jum/TrV� Œ�V�.ey/�D
Z
f 2O

e2�ihf;yi d�L: (5.4.7)

To shorten the notation here, if k 2 T, put Y D UM .k/0 with Lie algebra yD um.k/. Then T � Y ,
and it also a maximal torus of Y .
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In the sequel, we will give a generalized version of (5.4.7) for describing the function TrV� Œ�V�.key/�,
with y 2 y.

Let q be the orthogonal space of y in um with respect to B , so that

um D y˚ q: (5.4.8)

Since the adjoint action of T preserves the splitting in (5.4.8). Then R.um; t/ splits into two disjoint parts

R.um; t/DR.y; t/[R.q; t/; (5.4.9)

where R.q; t/ is just the set of real roots for the adjoint action of t on qC.
The positive root system RC.um; t/ induces a positive root system RC.y; t/. Set

RC.q; t/DRC.um; t/\R.q; t/: (5.4.10)

Then we have the disjoint union

RC.um; t/DR
C.y; t/[RC.q; t/: (5.4.11)

Put
�y D

1

2

X
˛02RC.y;t/

˛0; �q D
1

2

X
˛02RC.q;t/

˛0: (5.4.12)

Then
�um D �yC �q 2 t

�: (5.4.13)

Let C � t� denote the Weyl chamber corresponding to RC.um; t/, and let C0 � t� denote the Weyl
chamber corresponding to RC.y; t/. Then C � C0.

Let W.UM ; T /, W.Y; T / be the Weyl groups associated with the pairs .UM ; T /, .Y; T / respectively.
Then W.Y; T / is canonically a subgroup of W.UM ; T /. Put

W 1.k/D f! 2W.UM ; T / j !.C/� C0g: (5.4.14)

Note that the set W 1.k/ is similar to the set Wu defined in (5.3.4).

Lemma 5.4.1. The inclusion W 1.k/ ,!W.UM ; T / induces a bijection between W 1.k/ and the quotient
W.Y; T /nW.UM ; T /.

Proof. This lemma follows from W.Y; T / acting simply transitively on the Weyl chambers associated
with .y; t/. �

Let Ok denote the fixed-point set of the holomorphic action of k on O. We embed y� in u�m by the
splitting (5.4.8). Then

Ok DO\ y�: (5.4.15)

Lemma 5.4.2 (see [Duflo et al. 1984, I.2, Lemma (7); Bouaziz 1987, Lemmas 6.1.1, 7.2.2]). As subsets
of y�, we have the identification

OkD
[

�2W 1.k/

Ad�.Y /.�.�C�um//� y�; (5.4.16)

where the union is disjoint.
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For each � 2W 1.k/, put
Ok�.�C�um / D Ad�.Y /.�.�C �um//� y�: (5.4.17)

Let d�k� denote the Liouville measure on Ok
�.�C�um /

as defined in (5.4.5).
If ı2 t� is (real) analytically integrable, let �ı denote the character of T with differential 2�iı. Note that

for � 2W 1.k/, ��umC�um is analytically integrable even though �um may not be analytically integrable.

Definition 5.4.3. For � 2W 1.k/, set

'k.�; �/D ".�/
��.�C�um /C�um .k/

…˛02RC.q;t/.�˛0.k/� 1/
: (5.4.18)

Note that if y 2 y, the analytic function

det.1� ead.y/ Ad.k//jq
det.1�Ad.k//jq

(5.4.19)

has a square root which is analytic in y 2 y and equal to 1 at y D 0. We denote this square root by�
det.1� ead.y/ Ad.k//jq

det.1�Ad.k//jq

� 1
2

: (5.4.20)

The following theorem is a special case of a generalized Kirillov formula obtained by Duflo, Heckman
and Vergne [Duflo et al. 1984, II.3, Theorem (7)]. We will also include a simpler proof for the sake of
completeness.

Theorem 5.4.4 (generalized Kirillov formula). For y 2 y, we have the identity of analytic functions

yA�1.ad.y/jy/
�

det.1� ead.y/ Ad.k//jq
det.1�Ad.k//q

� 1
2

TrV� Œ�V�.key/�

D

X
�2W 1.k/

'k.�; �/

Z
f 2Ok

�.�C�um /

e2�ihf;yi d�k� : (5.4.21)

If k D 1, (5.4.21) is reduced to (5.4.7).

Proof. Let t0 denote the set of regular element in t associated with the root R.um; t/, which is an open
dense subset of t. Since both sides of (5.4.21) are analytic and invariant by the adjoint action of Y , we
only need to prove (5.4.21) for y 2 t0.

We firstly compute the left-hand side of (5.4.21).
For y 2 t0, we have

yA�1.ad.y/jy/D…˛02RC.y;t/
e�ih˛

0;yi� e��ih˛
0;yi

h2�i˛0; yi
: (5.4.22)

Let y0 2 t be such that k D exp.y0/. Then�
det.1� ead.y/ Ad.k//jq

det.1�Ad.k//jq

� 1
2

D…˛02RC.q;t/
e�ih˛

0;yCy0i� e��ih˛
0;yCy0i

e�ih˛
0;y0i� e��ih˛

0;y0i
: (5.4.23)
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By the Weyl character formula for .UM ; T /, we get

TrV� Œ�V�.key/�D TrV� Œ�V�.eyCy0/�D

P
!2W.um;C;tC/

".!/e2�ih!.�C�um /;yCy0i

…˛02RC.um;t/.e
�ih˛0;yCy0i� e��ih˛

0;yCy0i/
: (5.4.24)

Note that we have �˛0.k/D 1 for ˛0 2RC.y; t/. Then

…˛02RC.y;t/
e�ih˛

0;yCy0i� e��ih˛
0;yCy0i

e�ih˛
0;yi� e��ih˛

0;yi
D e�2�ih�y;y0i: (5.4.25)

Combining (5.4.22)–(5.4.25), we get the left-hand side of (5.4.21) is equal the to function

e2�ih�y;y0i

…˛02RC.y;t/h2�i˛
0; yi

P
!2W.um;C;tC/

".!/e2�ih!.�C�um /;yCy0i

…˛02RC.q;t/.e
�ih˛0;yi� e��ih˛

0;yi/
: (5.4.26)

Now we show that the right-hand side of (5.4.21) is also equal to (5.4.26).
Note that, for ! 2W.Y; T /, !�um��um is analytically integrable. We claim that if ! 2W.Y; T /, then

�!�um��um .k/D e
2�ih!�um��um ;y0i D 1: (5.4.27)

Actually, we have �2�um .k/D �2!�um .k/D 1. Then, after taking the square roots, we get �!�um��um .k/D
�!�um��um .e

y0/D˙1. The continuity of the character implies exactly (5.4.27).
As a consequence of (5.4.27), we get that for � 2W 1.k/, if ! 2W.Y; T /, then

e2�ih!�.�C�um /;y0i D e2�ih�.�C�um /;y0i: (5.4.28)

For � 2W 1.k/, since �.�C �um/ 2 C0 and y is regular, by [Berline et al. 1992, Corollary 7.25], we
haveZ

f 2Ok
�.�C�um /

e2�ihf;yi d�k� D
1

…˛02RC.y;t/h2�i˛
0; yi

X
!2W.Y;T /

".!/e2�ih!�.�C�um /;yi: (5.4.29)

We rewrite 'k.�; �/ as

".�/
e2�ih�y;y0i

…˛02RC.q;t/.e
�ih˛0;yi� e��ih˛

0;yi/
e2�ih�.�C�um /;y0i: (5.4.30)

Combining together Lemma 5.4.1 and (5.4.28)–(5.4.30), a direct computation shows that the right-hand
side of (5.4.21) is given exactly by (5.4.26). �

Remark 5.4.5. Let C 0 denote the identity component of the center of Y , and let Yss be the closed analytic
subgroup of Y associated with yssD Œy; y�. By Weyl’s theorem [Knapp 1986, Theorem 4.26], the universal
covering group of Yss is compact, which we denote by zYss. Put

zY D C 0 � zYss: (5.4.31)

Then zY is clearly a finite central extension of Y . Let zT be the maximal torus of zY associated with the
Cartan subalgebra t, which is also a finite extension of T. By [Knapp 1986, Corollary 4.25], the weights
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�um ; �y are analytically integrable with respect to zT, since they are algebraically integrable [Knapp 1986,
Propositions 4.15, 4.33].

Note that, for � 2 W 1.k/, �.� C �um/ is regular and positive with respect to RC.y; t/; thus
�.�C �um/� �y is nonnegative with respect to RC.y; t/ by the property of �y [Knapp 1986, Proposi-
tion 4.33]. Since now �.�C �um/� �y is also analytically integrable with respect to zT, it is a dominant
weight for . zY ; zT / with respect to RC.y; t/. In this case, let V k

�;�
be the irreducible unitary representation

of zY with highest weight �.�C �um/� �y. Then by (5.4.7), (5.4.21), we get that, for y 2 y,�
det.1� ead.y/ Ad.k//jq

det.1�Ad.k//q

� 1
2

TrV� Œ�V�.key/�D
X

�2W 1.k/

'k.�; �/TrV
k
�;� Œ�V

k
�;� .ey/�: (5.4.32)

6. A geometric localization formula for orbital integrals

Recall that GC is the complexification of G with Lie algebra gC, and that G, U are the analytic subgroups
of GC with Lie algebras g, u respectively. In this section, we always assume that U is compact; we do
not require that G have compact center. We need not to assume ı.G/D 1 either.

Under the settings in Section 4.1, for t > 0 and semisimple  2G, we set

EX; .F; t/D TrŒ�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
: (6.0.1)

The indices X, F in this notation indicate precisely the symmetric space and the flat vector bundle which
are concerned with defining the orbital integrals.

If  2G is semisimple, then there exists a unique elliptic element e and a unique hyperbolic element h
in G such that  D eh D he. Here, we will show that EX; .F; t/ becomes a sum of the orbital
integrals associated with h, but defined for the centralizer of e instead of G. This suggests that the
elliptic part of  should lead to a localization for the geometric orbital integrals.

We still fix a maximal torus T of K with Lie algebra t. For simplicity, if  2G is semisimple, we may
and we will assume

 D eak; k 2 T; a 2 p; Ad.k�1/aD a: (6.0.2)

In this case,
e D k 2 T; h D e

a: (6.0.3)

Recall that Z.e/0 is the identity component of the centralizer of e in G. Then

h 2Z.e/
0: (6.0.4)

The Cartan involution � preserves Z.e/0 such that Z.e/0 is a connected linear reductive Lie group.
Then we have the diffeomorphism

Z.e/
0
DK.e/

0 exp.p.e//: (6.0.5)

It is clear that ı.Z.e/0/D ı.G/.
Recall that TU is a maximal torus of U with Lie algebra tU D

p
�1b˚ t � u. Let RC.u; tU / be a

positive root system for R.u; tU /, which is not necessarily the same as in Section 5.3 when ı.G/D 1.
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Since U is the compact form of G, U.e/0 is the compact form for Z.e/0. Moreover, TU is also a
maximal torus of U.e/0. Let R.u.e/; tU / be the corresponding real root system with the positive root
system RC.u.e/; tU /D R.u.e/; tU /\R

C.u; tU /. Let �u, �u.e/ be the corresponding half sums of
positive roots.

Let zU.e/ be a connected finite covering group of U.e/0 such that �u, �u.e/ are analytically integrable
with respect to the maximal torus zTU of zU.e/ associated with tU . It always exists by a construction
similar to that in Remark 5.4.5.

Let zK.e/ be the analytic subgroup of zU.e/ associated with the Lie algebra k.e/. By [Knapp 2002,
Proposition 7.12], zU.e/ has a unique complexification zU.e/C which is a connected linear reductive Lie
group. Let zZ.e/ be the analytic subgroup of zU.e/C associated with z.e/� u.e/C D z.e/C. Then
we have the Cartan decomposition

zZ.e/D zK.e/ exp.p.e//: (6.0.6)

We still denote by � the corresponding Cartan involution on zZ.e/.
The Lie group zZ.e/ is a finite covering group of Z.e/0. Moreover, we have the identification of

symmetric spaces
X.e/' zZ.e/= zK.e/: (6.0.7)

Note that even under an additional assumption thatG has compact center, zZ.e/may still have noncompact
center.

Let � be a dominant weight for .U; TU / with respect to RC.u; tU /. Let .E�; �E�/ be the associated
irreducible unitary representation of U. As before, let .F�; hF�/ be the corresponding homogeneous
vector bundle on X with the G-invariant flat connection rF�;f . Let DX;F�;2 denote the associated
de Rham–Hodge Laplacian.

Let W 1
U .e/ � W.U; TU / be the set defined as in (5.4.14) but with respect to the group U and to

e D k 2 T � TU . As in Definition 5.4.3, for � 2W 1
U .e/, set

'Ue .�; �/D ".�/
��.�C�u/C�u.e/

…˛02RC.u?.e/;tU /.�˛0.e/� 1/
: (6.0.8)

As explained in Remark 5.4.5, if � 2W 1
U .e/, then �.�C �u/� �u.e/ is a dominant weight of zU.e/

with respect to RC.u.e/; tU /. Let E�;� be the irreducible unitary representation of zU.e/ with highest
weight �.�C �u/� �u.e/.

We extend E�;� to an irreducible representation of zZ.e/ by the unitary trick. Then

F�;� D zZ.e/� zK.e/
E�;�

is a homogeneous vector bundle on X.e/ with an invariant flat connection rF�;�;f as explained in
Section 4. LetDX.e/;F�;�;2 denote the associated de Rham–Hodge Laplacian acting on��.X.e/; F�;�/.

We also view h D e
a as a hyperbolic element in zZ.e/. For � 2W 1

U .e/, as in (6.0.1), we set

EX.e/;h.F�;�; t /D TrŒh�s

��
Nƒ�.T �X.e//�

p0

2

�
exp

�
�
tDX.e/;F�;�;2

2

��
: (6.0.9)

Note that we use Bjz.e/ on z.e/ to define this orbital integral for zZ.e/.
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Set

c./D

ˇ̌̌̌
det.1�Ad.e//jz?.e/
det.1�Ad.//jz?.e/

ˇ̌̌̌ 1
2

> 0: (6.0.10)

In particular, c.e/D 1.
The following theorem is essentially a consequence of the generalized Kirillov formula in Theorem 5.4.4.

Theorem 6.0.1. Let  2G be given as in (6.0.2). For t > 0, we have the identity

EX; .F�; t /D c./
X

�2W 1
U .e/

'Ue .�; �/EX.e/;h.F�;�; t /: (6.0.11)

We call (6.0.11) a localization formula for the geometric orbital integral.

Proof. Set p0 D dim p.e/D dimX.e/. At first, if m is even, then p0 is even. Then the both sides of
(6.0.11) are 0 by [Bismut 2011, Theorem 7.9.1].

If m is odd, then p0 is odd, and ı.G/D ı.Z.e/0/ is odd. If ı.G/� 3, then the both sides of (6.0.11)
are 0 by [Bismut 2011, Theorem 7.9.1].

Now we consider the case where ı.G/ D ı.Z.e/0/ D 1. If  cannot be conjugated into H by an
element in G, then h cannot be conjugated into H by an element in Z.e/0. Then both sides of (6.0.11)
are 0 by Proposition 4.1.5.

Now we assume that ı.G/ D 1 and a 2 b. Note that z./ is the centralizer of h in z.e/. We will
prove (6.0.11) using (4.1.16)

For y 2 k./, let J�h.y/ be the function defined in 3.3.1 for h D ea 2 zZ.e/:

J�h.y/D
1

jdet.1�Ad.h//jz?0 \z.e/j
1
2

yA.i ad.y/jp.//
yA.i ad.y/jk.//

: (6.0.12)

The Casimir operator C u.e/;E�;� acts on E�;� by the scalar given by

�4�2.j�C �uj
2
� j�u.e/j

2/: (6.0.13)
Similar to (4.1.13), set

ˇz.e/ D
1
16

Trp.e/ŒC k.e/;p.e/�C 1
48

Trk.e/ŒC k.e/;k.e/�: (6.0.14)

Then by [Bismut 2011, Propositions 2.6.1, 7.5.1],

2�2j�u.e/j
2
D�ˇz.e/: (6.0.15)

By (4.1.16), (6.0.13), (6.0.15), for � 2W 1
U .e/, we get

EX.e/;h.F�;�; t /D
e�
jaj2

2t

.2�t/
p
2

exp.�2�2t j�C �uj2/

�

Z
k./

J�h.y/Trƒ
�.p.e/

�/
s

��
Nƒ�.p.e/

�/
�
p0

2

�
exp.�i ad.y//

�
�TrE�;� Œexp.�i�E�;�.y//�e�

jyj2

2t
dy

.2�t/
q
2

: (6.0.16)
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Note that dim p?.e/ is even. We claim that if y 2 k./, then

Trƒ
�.p�/

s

��
Nƒ�.p�/

�
m

2

�
exp.�i ad.y//Ad.k�1/

�
D Trƒ

�.p.e/
�/

s

��
Nƒ�.p.e/

�/
�
p0

2

�
e�i ad.y/

�
det.1� e�i ad.y/ Ad.k�1//jp?.e/: (6.0.17)

Indeed, we can verify (6.0.17) for y 2 t. Since both sides of (6.0.17) are invariant by the adjoint action
of K.e/0, (6.0.17) holds in full generality.

Also K./0 preserves the splitting

p?.e/D p?0 ./˚ .p
?.e/\ p?0 /: (6.0.18)

The action ad.a/ gives an isomorphism between p?.e/\ p?0 and k?.e/\ k?0 as K./-vector spaces.
Note that

z?.e/\ z?0 D .p
?.e/\ p?0 /˚ .k

?.e/\ k?0 /: (6.0.19)

Then

det.1� e�i ad.y/ Ad.e//jp?.e/

D det.1� e�i ad.y/ Ad.e//jp?0 .e/Œdet.1� e�i ad.y/ Ad.e//jz?.e/\z?0 �
1
2 : (6.0.20)

Here the square root is taken to be positive at y D 0.
By Definition 3.3.1 and (6.0.12), for y 2 k./,

J .y/D J
�
h
.y/

1

jdet.1�Ad.//jz?0 \z?.e/j
1
2

�

�
1

det.1�Ad.e//jz?0 ./

det.1� exp.�i ad.y//Ad.e//jk?0 ./
det.1� exp.�i ad.y//Ad.e//jp?0 ./

� 1
2

: (6.0.21)

Combining (6.0.17), (6.0.20) and (6.0.21), we get

J .y/Trƒ
�.p�/

s

��
Nƒ�.p�/

�
m

2

�
exp.�i ad.y//Ad.e/

�
D c./J�h.y/Trƒ

�.p.e/
�/

s

�

��
Nƒ�.p.e/

�/
�
p0

2

�
e�i ad.y/

��det.1� exp.�i ad.y//Ad.e//jz?.e/
det.1�Ad.e//jz?.e/

� 1
2

: (6.0.22)

Note that, for y 2 k./,�det.1� exp.�i ad.y//Ad.e//jz?.e/
det.1�Ad.e//jz?.e/

� 1
2

D

�det.1� exp.�i ad.y//Ad.e//ju?.e/
det.1�Ad.e//ju?.e/

� 1
2

: (6.0.23)
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By (4.1.16), (6.0.13), (6.0.15), (6.0.22) and (6.0.23), we get

EX;�.F�; t /D c./
e�
jaj2

2t

.2�t/
p
2

exp.�2�2t j�C�uj2/

�

Z
k./

J�h.y/Trƒ
�.p.e/

�/
s

��
Nƒ�.p.e/

�/
�
p0

2

�
e�i ad.y/

�
�

�det.1�e�i ad.y/Ad.e//ju?.e/
det.1�Ad.e//ju?.e/

� 1
2

TrE� Œ�E�.e/e�i�
E� .y/�e�

jyj2

2t
dy

.2�t/
q
2

: (6.0.24)

Then (6.0.11) follows from (5.4.32), (6.0.16) and (6.0.24). �

Remark 6.0.2. A similar consideration can be made for TrŒ�s Œexp.�tDX;F�;2/�, where (6.0.11) will
become an analogue of the index theorem for orbifolds as in (2.2.9). The related computation can be
found in [Bismut and Shen 2022, Section 10.4].

7. Full asymptotics of elliptic orbital integrals

In this section, we always assume that ı.G/D 1 and that U is compact. We also use the notation and
settings as in Sections 5.1, 5.2 and 5.3.

In this section, given a irreducible unitary representation E of U with certain nondegenerate highest
weight ƒ, and for elliptic  , we will compute explicitly EX; .F DG �K E; t/ and its Mellin transform
in terms of the root systems. Note that, when  D 1, EX; .Fd ; t / is already computed in [Bergeron and
Venkatesh 2013; Müller and Pfaff 2013a] using the Plancherel formula for identity orbital integral. We
here give a different approach via Bismut’s formula as in (4.1.16).

Then in Section 7.3, we apply these results to a sequence of flat vector bundles fFd gd2N on X defined
by a sequence of nondegenerate dominant weights ƒD d�C �0. This way, we show that the Mellin
transforms of the elliptic orbital integrals are exponential polynomials in d .

7.1. Estimates of elliptic orbital integrals for small time t. Recall that T is a maximal torus of K, TU
is a maximal torus of U, and W.U; TU / denotes the (analytic) Weyl group of .U; TU /. The positive root
system RC.u; tU / is given in Section 5.3. Recall that PCC.U / is the set of dominant weights of .U; TU /
with respect to RC.u; tU /.

Let .E; �E / be the irreducible unitary representation of U associated with the highest weight ƒ 2
PCC.U /. We will prove our main result of this subsection and next subsection for this .E; �E /.

Our homogeneous flat vector bundle concerned here is given by F DG �K E. Let DX;F;2 denote the
associated de Rham–Hodge Laplacian.

For t > 0, if  2G is semisimple, as in (6.0.1), set

EX; .F; t/D TrŒ�s
h�
Nƒ�.T �X/

�
m

2

�
exp

�
�
tDX;F;2

2

�i
: (7.1.1)

It is clear that EX; .Fd ; t / only depends on the conjugacy class Œ� in G. If  D 1, we also write

IX .F; t/D EX;1.F; t/: (7.1.2)

In the sequel, we only consider the case of elliptic  .
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By (4.1.16), (6.0.13), (6.0.15), if  D k 2K, we have

EX; .F; t/D
1

.2�t/
p
2

exp.�2�2t jƒC �uj2/

�

Z
k./

J .Y
k
0/Trƒ

�.p�/
s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.Y k

0//
i

�TrE Œ�E .k/ exp.�i�E .Y k
0//�e

�
jY k
0
j2

2t
dY k

0

.2�t/
q
2

: (7.1.3)

By (3.3.18), we have the following formula for J .Y k
0/, Y

k
0 2 k./:

J .Y
k
0/D

yA.i ad.Y k
0/jp.//

yA.i ad.Y k
0/jk.//

�
1

det.1�Ad.k//jz?./

det.1� exp.�i ad.Y k
0//Ad.k//jk?./

det.1� exp.�i ad.Y k
0//Ad.k//jp?./

� 1
2

: (7.1.4)

Proposition 7.1.1. For an elliptic element  2G, there exists a constant C > 0 (depending on ƒ) such
that for t 2 �0; 1�

j
p
tEX; .F; t/j � C ;

ˇ̌̌�
1C 2t

@

@t

�
EX; .F; t/

ˇ̌̌
� C

p
t : (7.1.5)

As t ! 0, EX; .E; t/ has the asymptotic expansion in the form of

1
p
t

C1X
jD0

a

j t
j ; (7.1.6)

with aj 2 C.

Proof. If  is elliptic, up to a conjugation, we assume that  D k 2 T. Thus the subgroup H defined
in Section 4.1 is also a Cartan subgroup of Z./0. Then b./ D b. Let b?./ be the orthogonal
complementary space of b./ in p./, whose dimension is p� 1. Note that similar estimates have been
proved in [Liu 2021, Theorem 4.4.1]; here we only sketch a proof to (7.1.5).

By (7.1.3), we have

EX; .F; t/D
1

.2�t/
p
2

exp.�2�2t jƒC �uj2/

�

Z
k.k/

Jk.
p
tY k
0/Trƒ

�.p�/
s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.

p
tY k
0//
i

�TrE Œ�E .k/ exp.�i�E .
p
tY k
0//�e

�
jY k
0
j2

2
dY k

0

.2�/
q
2

; (7.1.7)

where the integral is rescaled by
p
t .

In this proof, we denote by C or c a positive constant independent of the variables t and Y k
0 . We use

the symbol Oind to denote the big-O convention which does not depend on t and Y k
0 .

The same computations as in [Liu 2021, equations (4.4.8)–(4.4.10)] show that, for Y k
0 2 t,

Jk.
p
tY k
0/D

1

det.1�Ad.k//jp?.k/
COind.

p
t jY k

0 je
C
p
t jY k
0 j/

�
1

t .p�1/=2
Trƒ

�.p�/
s

h�
Nƒ�.p�/

�
m

2

�
�ƒ
�.p�/.k/ exp.�i�ƒ

�.p�/.
p
tY k
0//
i

D� det.i ad.Y k
0//jb?.k/ det.1�Ad.k//jp?.k/COind.

p
t jY k

0 je
C
p
t jY k
0 j/: (7.1.8)
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Using the adjoint invariance, the further estimates on the above quantities by a function in jY k
0 j hold for

all Y k
0 2 k.k/.

It is clear that

jTrE Œ�E .k/ exp.�i�E .
p
tY k
0//�j � C exp.C

p
t jY k

0 j/: (7.1.9)

Combining (7.1.8) and (7.1.9), we see that there exists a number N 2 N big enough such that if
t 2 �0; 1�,

j
p
tEX; .F; t/j � C 0k

Z
k.k/

.1CjY k
0 j/

N exp
�
C jY k

0 j �
jY k
0 j
2

2

�
dY k

0 : (7.1.10)

The second estimate in (7.1.5) can be proved using the same arguments as in [Liu 2021, equa-
tions (4.4.24)–(4.4.29)].

The asymptotic expansion in (7.1.6) is just a consequence of (7.1.5) and (7.1.7). �

7.2. Elliptic orbital integrals for Hodge Laplacians. In this subsection, we explain how to use Bismut’s
formula (4.1.16) to compute explicitly the expansion of EX; .F; t/ in t > 0 when  2G is elliptic. Then
we study the corresponding Mellin transform. After conjugation, we may and we will assume that
 D k 2 T. Then T is also a maximal torus for K./0, and b./D b.

Recall that !Yb./, �ub./, �um./ are defined in Section 5.2. Note that dim u?b ./ D 4l./. If
� 2ƒ�.u?b ./

�/, let Œ��max./ 2 R be such that

� � Œ��max./!
Yb./;2l./

.2l.//Š
(7.2.1)

is of degree strictly smaller than 4l./.
Recall that �B. � ; � � / is a Euclidean product on g. Let n?./, Nn?./ be the orthogonal spaces of

n./, Nn./ in n, Nn respectively. As T -modules, n?./' Nn?./.
Since t � k./ � k, R.k./; t/ is a subroot system of R.k; t/. Let RC.k./; t/ be the positive root

system for .k./; t/ induced by RC.k; t/. We use the notation in Sections 5.1, 5.2. Then t is a Cartan
subalgebra for km./, um./, m./. Let R.km./; t/, R.um./; t/ be the corresponding root systems.

Similar to (5.4.10), we have the disjoint union

R.um./; t/DR.
p
�1pm./; t/[R.km./; t/: (7.2.2)

SinceR.um./; t/�R.um; t/, by intersecting withRC.um; t/, we get a positive root systemRC.um./; t/.
Moreover,

RC.um./; t/DR
C.
p
�1pm./; t/[R

C.km./; t/: (7.2.3)

Let Vol.K=T /, Vol.UM=T / be the Riemannian volumes ofK=T , UM=T with respect to the restriction
of �B to k, um respectively. We have explicit formulae for them in terms of the roots; for example,

Vol.UM ; T /D…˛02RC.um;t/
1

2�h˛0; �umi
: (7.2.4)
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For  D k 2 T, set

cG./D
.�1/

p�1
2
C1 Vol.K./0=T /jW.UM ./0; T /j

Vol.UM ./0=T /jW.K./0; T /j
1

det.1�Ad.//jn?./
: (7.2.5)

If  D 1, we define

cG D cG.1/D
.�1/

m�1
2
C1Vol.K=T /jW.UM ; T /j

Vol.UM=T /jW.K; T /j
: (7.2.6)

We will use the same notation as in Sections 5.3 and 5.4. In particular, Wu is defined by (5.3.4)
as a subset of W.U; TU /, and W 1./ is defined by (5.4.14) as a subset of W.UM ; T /. As explained
in Remark 5.4.5, for ! 2 Wu, � 2 W 1./, let E!;� denote the irreducible unitary representation of
Y D UM ./

0 or its finite central extension with highest weight �.�!.ƒ/C �um/� �y.

Definition 7.2.1. For j D 0; 1; : : : ; l./, ! 2Wu, � 2W 1./, set

Q

j;!;� .ƒ/D

.�1/jˇ.a1/
2j

j Š .2l./� 2j /Š .8�2/j
dimE!;� Œ!

Yb./;2j h!.ƒC�u/;�
um./i

2l./�2j �max./: (7.2.7)

In particular, if l./� 1, we have

Q

0;!;� .ƒ/D

1

.2l/Š
dimE!;� Œh!.ƒC �u/;�

um./i
2l./�max./;

Q


l./;!;�
.ƒ/D

.�1/l./ˇ.a1/
2l./.2l./� 1/ŠŠ

.4�2/l./
dimE!;� : (7.2.8)

Recall that a1 2 b is such that B.a1; a1/D 1. For ! 2Wu, set

bƒ;! D h! � .ƒC �u/;
p
�1a1i 2 R: (7.2.9)

Then we have

j�!.ƒ/C �um j
2
� jƒC �uj

2
D�b2ƒ;! : (7.2.10)

Note that ' .�; �!.ƒ// is defined in Definition 5.4.3.

Theorem 7.2.2. For t > 0, we have the identity

EX; .F; t/D
cG./
p
2�t

l./X
jD0

t�j
X
!2Wu

�2W1./

".!/' .�; �!.ƒ//e
�2�2tb2ƒ;!Q


j;!;� .ƒ/: (7.2.11)

Remark 7.2.3. The formula (7.2.11) is compatible with the estimate (7.1.5). For example, we take  D 1;
then W 1./ reduces to f1g, the representation E!;� is just Vƒ;! introduced in (5.3.6), and l./ D l ,
' .�; �!.ƒ//D 1. Then we take the asymptotic expansion of the right-hand side of (7.4.2) as t ! 0, the
coefficient of t�l�1=2 is given by

cG
p
2�

X
!2Wu

".!/Q
D1

l;!;1
.ƒ/: (7.2.12)
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By (5.3.7), if l � 1, we get X
!2Wu

".!/ dimVƒ;! D Tr
ƒ�.n�C/
s Œ1� dimE D 0: (7.2.13)

Then by (7.2.8) and (7.2.13), the quantity in (7.2.12) is 0 (provided l � 1).

Before proving Theorem 7.2.2, we need some preparation work.

Definition 7.2.4. For y 2 t, put

�um./=t.y/D
Y

˛02RC.um./;t/

h2�
p
�1˛0; yi;

�p
�1pm./=t

.y/D
Y

˛02RC.
p
�1pm./;t/

h2�
p
�1˛0; yi;

�km./=t.y/D
Y

˛02RC.km./;t/

h2�
p
�1˛0; yi:

(7.2.14)

For y 2 t, put

�um./=t.y/D
Y

˛02RC.um./;t/

�
exp.h�

p
�1˛0; yi/� exp.�h�

p
�1˛0; yi/

�
;

�p
�1pm./=t

.y/D
Y

˛02RC.
p
�1pm./;t/

�
exp.h�

p
�1˛0; yi/� exp.�h�

p
�1˛0; yi/

�
;

�km./=t.y/D
Y

˛02RC.km./t;t/

�
exp.h�

p
�1˛0; yi/� exp.�h�

p
�1˛0; yi/

�
:

(7.2.15)

We can always extend analytically the above functions to y 2 tC. If  D 1, the above functions become
�um=t.y/, �p�1pm=t.y/, �km=t.y/, �um=t.y/, �

p
�1pm=t

.y/, �km=t.y/.
If the adjoint action of T preserves certain orthogonal splittings of um, um./, etc., so that we have

the corresponding splitting of the root systems, then we can also define the associated �-function or
� -function as above.

It is clear that if y 2 tC,
�um./=t.y/D �

p
�1pm./=t

.y/�km./=t.y/;

�um./=t.y/D �
p
�1pm./=t

.y/�km=t.y/:
(7.2.16)

Set
k0m./D k?./\ km; p0m./D p?./\ pm;

k00m./D k?./\ k?.b/; p00m./D p?./\ p?.b/:
(7.2.17)

Let m?./ be the orthogonal space of m./ in m with respect to B . Then

m?./D p0m./˚ k0m./: (7.2.18)

We also have
km D km./˚ k0m./; pm D pm./˚ p0m./ (7.2.19)
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and
k?./D k0m./˚ k00m./; p?./D p0m./˚ p00m./: (7.2.20)

Set
u?m./D

p
�1p0m./˚ k0m./: (7.2.21)

Then it is the orthogonal space of um./ in um with respect to B .

Lemma 7.2.5. The following spaces are isomorphic to each other as modules of T by the adjoint actions:

n?./' Nn?./' k00m./' p00m./: (7.2.22)
Proof. Note that

dim nD dim k� dim km; dim n./D dim k./� dim km./: (7.2.23)

Together with the splittings (7.2.19), (7.2.20), we get

dim k00m./D dim n?./: (7.2.24)
Similarly, dim p00m./D dim n?./.

If f 2 n?./, then f C �.f / 2 k; we can verify directly that f C �.f / 2 k00m./. Then the map
f 2 n?./ 7! f C�.f / 2 k00m./ defines an isomorphisms of T -modules. Similar for n?./' p00m./. �

Since  D k 2 T, let y0 2 t be such that exp.y0/D  . Note that y0 is not unique.

Lemma 7.2.6. If y 2 t is regular with respect to R.km./; t/, then we have

J .y/Trƒ
�.p�/

s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.y//

i
D

.�1/dim pm./=2C1

det.1�Ad.k//jn?./
Tr
ƒ�.n�C/
s Œe�i ad.y/ Ad.k/�

�
�p
�1pm./=t

.iy/

�km./=t.iy/

�um./=t.iy/�u?m ./=t.�iyCy0/

�u?m ./=t.y0/
: (7.2.25)

Proof. Using (5.4.23), (7.2.20) and Lemma 7.2.5, we get that, for y 2 t,�
1

det.1�Ad.k//jz?./

det.1� e�i ad.y/ Ad.k//jk?./
det.1� e�i ad.y/ Ad.k//jp?./

� 1
2

D
.�1/

1
2

dim p0m./

det.1�Ad.k//jn?./

1

�u?m ./=t.y0/

�k0m./=t.�iyCy0/

�p
�1p0m./=t

.�iyCy0/
: (7.2.26)

Recall that in Section 5.1, as KM -modules, we have the isomorphism

p' b˚ pm˚ n: (7.2.27)
Note that

Ad.k/D ead.y0/: (7.2.28)

If y 2 t, when acting on p, we have

Ad.k/ exp.�i ad.y//D exp.ad.�iyCy0//: (7.2.29)
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Note that dim bD 1. Then, for y 2 t, we get

Trƒ
�.p�/

s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.y//

i
D�Trƒ

�.p�m/
s ŒAd.k/e�i ad.y/�Tr

ƒ�.n�C/
s ŒAd.k/e�i ad.y/�

D� det.1�Ad.k�1/ei ad.y//jpm Tr
ƒ�.n�C/
s ŒAd.k/e�i ad.y/�; (7.2.30)

where we have the identity

det.1�Ad.k�1/ei ad.y//jpm D .�1/
1
2

dim pm�p
�1p0m./=t

.�iyCy0/
2�p

�1pm./=t
.iy/2: (7.2.31)

Note that analogous to (7.2.27), we have p./ ' b ˚ pm./ ˚ n./; using [Bismut 2011, equa-
tion (7.5.24)], if y 2 t, we have

yA.i ad.y/jp
�1p.//D

�p
�1pm./=t

.iy/

�p
�1pm./=t

.iy/
yA.i ad.y/jn.//;

yA.i ad.y/jk.//D
�k./=t.iy/

�k./=t.iy/
D
�km./=t.iy/

�km./=t.iy/
yA.i ad.y/jn.//:

(7.2.32)

Combining (7.1.4), (7.2.26) and (7.2.30)–(7.2.32), we get (7.2.25). �

Now we prove Theorem 7.2.2.

Proof of Theorem 7.2.2. Put

F .ƒ; t/D
1

.2�t/
p
2

Z
k./

J .Y
k
0/Trƒ

�.p�/
s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/e�i ad.Y k

0 /
i

�TrE Œ�E .k/e�i�
E.Y k

0 /�e�
jY k
0
j2

2t
dY k

0

.2�t/
q
2

: (7.2.33)

By (7.1.3), we have

EX; .F; t/D exp.�2�2t jƒC �uj2/F .ƒ; t/: (7.2.34)

Recall that r D pC q D dimR z./. By the Weyl integration formula,

F .ƒ; t/D
Vol.K./0=T /

.2�t/
r
2 jW.K./0; T /j

Z
t
j�k./=t.y/j

2J .y/Trƒ
�.p�/

s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/e�i ad.y/

i
�TrE Œ�E .k/ exp.�i�E .y//�e�

jyj2

2t dy: (7.2.35)

Recall that l./D 1
2

dim n./. We can verify directly that if y 2 t,

�k./=t.iy/
2
D .�1/l./�km./=t.iy/

2 det.i ad.y//jn./C : (7.2.36)

Moreover, if y 2 t is such that �um./=t.y/¤ 0,

j�k./=t.y/j
2

j�um./=t.y/j
2
D

�k./=t.iy/
2

�um./=t.iy/
2
: (7.2.37)
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Then by Lemma 7.2.6 and (7.2.5), (7.2.32), (7.2.36), we get

j�k./=t.y/j
2

j�um./=t.y/j
2
J .y/Trƒ

�.p�/
s

h�
Nƒ�.p�/

�
m

2

�
Ad.k/ exp.�i ad.y//

i
D
.�1/l./C

1
2

dim pm./C1

det.1�Ad.k//jn?./
Tr
ƒ�.n�C/
s Œe�i ad.y/ Ad.k/�

� det.i ad.y//jn./C yA
�1.i ad.y/jum.//

�det.1� e�i ad.y/ Ad.k//ju?m ./
det.1�Ad.k//u?m ./

� 1
2

: (7.2.38)

Note that we have the even number

p� 1D dim pm./C 2l./: (7.2.39)

Now we can rewrite (7.2.35) as

F .ƒ; t/D
.�1/

p�1
2
C1 Vol.K./0=T /

.2�t/
r
2 jW.K./0; T /j

1

det.1�Ad.k//jn?./

�

Z
t
j�um./=t.y/j

2 det.i ad.y//jn./C � yA
�1.i ad.y/jum.//

�

�det.1� e�i ad.y/ Ad.k//ju?m ./
det.1�Ad.k//u?m ./

� 1
2

�Tr
ƒ�.n�C/˝E
s Œe�i�

ƒ�.n�
C
/˝E

.y/�ƒ
�.n�C/˝E .k/�e�jyj

2=2t dy: (7.2.40)

Note that the function in y 2 t

det.i ad.y//jn./C � yA
�1.i ad.y/jum.//

�det.1� e�i ad.y/ Ad.k//ju?m ./
det.1�Ad.k//u?m ./

� 1
2

�Tr
ƒ�.n�C/˝E
s Œe�i�

ƒ�.n�
C
/˝E

.y/�ƒ
�.n�C/˝E .k/� (7.2.41)

can be extended directly to a UM ./0-invariant function in y 2 um./. Since t is a Cartan subalgebra of
um./, we can apply the Weyl integration formula for the pair .um./; t/; we get

F .ƒ; t/D
cG./

.2�t/
r
2

Z
y2um./

det.i ad.y//jn./C � yA
�1.i ad.y/jum.//

�det.1� e�i ad.y/ Ad.k//ju?m ./
det.1�Ad.k//u?m ./

� 1
2

�Tr
ƒ�.n�C/˝E
s Œe�i�

ƒ�.n�
C
/˝E

.y/�ƒ
�.n�C/˝E .k/�e�

jyj2

2t dy: (7.2.42)

The constant cG./ is defined by (7.2.5).
Note that

r D dim um./C 4l./C 1: (7.2.43)

If y 2 um./, then

B

�
y;
�um./

2�

�
2ƒ2.u?b ./

�/: (7.2.44)
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If y 2 um./, by [Shen 2018, equation (7-27)], we have

det.i ad.y//jn./C
.2�t/2l./

D

�
exp

�
1

t
B

�
y;
�um./

2�

���max./

: (7.2.45)

Combining (7.2.42)–(7.2.45), we get

F .ƒ; t/D
cG./
p
2�t

�Z
y2um./

yA�1.i ad.y/jum.//
�det.1�e�i ad.y/Ad.k//ju?m ./

det.1�Ad.k//u?m ./

� 1
2

�Tr
ƒ�.n�C/˝E
s Œ�ƒ

�.n�C/˝E .e�iyk/�e
1
t
B.y;�

um./

2�
/� jyj

2

2t
dy

.2�t/dimum./=2

�max./

: (7.2.46)

By (5.2.21) if y 2 um./, then

B

�
y;
�um./

2�

�
�
jyj2

2
D
1

2
B

�
yC

�um./

2�
; yC

�um./

2�

�
�
ˇ.a1/

2

8�2
!Yb./;2: (7.2.47)

Let �um./ be the standard negative Laplace operator on the Euclidean space .um./;�Bjum.//. Then
by considering the heat kernel of ��um./, we can rewrite (7.2.46) as

F .ƒ; t/D
cG./
p
2�t

�
exp

�
�
ˇ.a1/

2!Yb./;2

8�2t

�
�exp

�
t

2
�um./

��
yA�1.i ad.y/jum.//

�det.1�e�i ad.y/Ad.k//ju?m ./
det.1�Ad.k//u?m ./

� 1
2

�Tr
ƒ�.n�C/˝E
s Œ�ƒ

�.n�C/˝E .e�iyk/�

�ˇ̌̌̌
yD��

um./

2�

�max./

: (7.2.48)

Recall that Vƒ;! is an irreducible unitary representation of UM with highest weight �!.ƒ/. By (5.3.7),
for y 2 um./, then

Tr
ƒ�.n�C/˝E
s Œ�ƒ

�.n�C/˝E .e�iyk/�D
X
!2Wu

".!/TrVƒ;! Œ�Vƒ;! .e�iyk/�: (7.2.49)

Then we apply the generalized Kirillov formula (5.4.21) to each term in the right-hand side of (7.2.49),
we conclude that, for ! 2Wu, the function in y 2 um./

yA�1.i ad.y/jum.//
�det.1� e�i ad.y/ Ad.k//ju?m ./

det.1�Ad.k//u?m ./

� 1
2

TrVƒ;! Œ�Vƒ;! .e�iyk/� (7.2.50)

is an eigenfunction of �um./ associated with the eigenvalue 4�2j�!.ƒ/C�um j
2. Then the heat operator

exp
�
t
2
�um./

�
acts on the function (7.2.50) as a scalar e2�

2t j�!.ƒ/C�um j
2

. By (5.3.8), (5.3.9), for ! 2Wu,
we get

�!.ƒ/C �um D P0.!.ƒC �u//: (7.2.51)

Combing the above computation with the term e�2�
2t jƒC�uj

2

in (7.2.34), by (7.2.10), we get the factor
e�2�

2tb2ƒ;! in (7.2.11).
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Now we deal with the main part in (7.2.48) after removing the heat operator exp
�
t
2
�um./

�
. We will

use the same notation as in Section 5.4. The orbit O
�.�!.ƒ/C�um /

is defined in (5.4.17) equipped with a
Liouville measure d�� . We claim the identity�

exp
�
�
ˇ.a1/

2!Yb./;2

8�2t

�
�

�
yA�1.i ad.y/jum.//

�det.1�e�i ad.y/Ad.k//ju?m ./
det.1�Ad.k//u?m ./

� 1
2

TrVƒ;!s Œ�Vƒ;! .e�iyk/�

�ˇ̌̌̌
yD��

um./

2�

�max./

D

X
�2W 1./

' .�;�!.ƒ//�dimE!;�

�
exp

�
�
ˇ.a1/

2!Yb./;2

8�2t
�h�.�!.ƒ/C�um/;�

um./i

��max./

: (7.2.52)

Indeed, by (5.4.21), we have the following identity as elements in ƒ�.u?b ./
�/:�

yA�1.i ad.y/jum.//
�det.1� e�i ad.y/ Ad.k//ju?m ./

det.1�Ad.k//u?m ./

� 1
2

TrVƒ;!s Œ�Vƒ;! .e�iyk/�

�ˇ̌̌̌
yD��

um./

2�

D

X
�2W 1./

' .�; �!.ƒ//

Z
f 2O

�.�!.ƒ/C�um /

e�hf;�
um./i d�� : (7.2.53)

Recall that the curvature form �ub./ is invariant by the action of UM ./0 on Yb./. Since a1 and
!Yb./ are invariant by UM ./0-action, so is �um./. Therefore, for f 2 um./�, u 2 UM ./0,�

exp
�
�
ˇ.a1/

2!Yb./;2

8�2t

�
exp.�hAd�.u/f;�um./i/

�max./

D det Ad.u/ju?b ./

�
exp

�
�
ˇ.a1/

2!Yb./;2

8�2t

�
exp.�hf;�um./i/

�max./

: (7.2.54)

Since UM ./0 acts on u?b ./ isometrically with respect to �Bju?b ./,

det Ad.u/ju?b ./ D 1: (7.2.55)

Then (7.2.52) follows from (5.4.6) and (7.2.53)–(7.2.55).
The right-hand side of (7.2.52) is a polynomial in t�1. Recall that dim u?b ./D 4l./. Then, for each

� 2W 1./, we can rewrite the term Œ � � � �max./ in the right-hand side of (7.2.52) as follows:
l./X
jD0

1

tj
.�1/jˇ.a1/

2j

j Š.2l./� 2j /Š.8�2/j
Œ!Yb./;2j h!.ƒC �u/;�

um./i
2l./�2j �max./: (7.2.56)

Finally, putting together (7.2.7), (7.2.34), (7.2.48), (7.2.49), (7.2.52), and (7.2.56), we get (7.2.11). �

The Mellin transform of EX; .F; t/ (if applicable) is defined by the following formula as a function in
s 2 C with <.s/� 0:

MEX; .F; s/D�
1

�.s/

Z C1
0

EX; .F; t/ts�1 dt: (7.2.57)
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If MEX; .F; s/ admits a meromorphic extension on C which is holomorphic at s D 0, we will set

PEX; .F /D
@

@s

ˇ̌̌
sD0

MEX; .F; s/: (7.2.58)

Theorem 7.2.7. Suppose that the dominant weightƒ is such that, for every ! 2Wu, bƒ;! ¤ 0. Then, for
s 2 C with <.s/ > l./C 1, MEX; .F; s/ is well-defined and holomorphic, which admits a meromorphic
extension to s 2 C.

Moreover, we have the identity

MEX; .F; s/

D�
cG./
p
2�

l./X
jD0

�
�
s� j � 1

2

�
�.s/

� X
!2Wu

�2W1./

".!/' .�; �!.ƒ//Q

j;!;� .ƒ/.2�

2b2ƒ;!/
jC 1

2
�s

�
: (7.2.59)

Then MEX; .F; s/ is holomorphic at s D 0. We have

PEX; .F /

D�
cG./
p
2

l./X
jD0

.�4/jC1.j C 1/Š

.2j C 2/Š

� X
!2Wu

�2W1./

".!/' .�; �!.ƒ//Q

j;!;� .ƒ/.2�

2b2ƒ;!/
jC 1

2

�
: (7.2.60)

Proof. By Theorem 7.2.2, the assumption on ƒ implies that EX; .F; t/ decays exponentially as t !C1.
By (7.1.6) and (7.2.11), we get (7.2.59). This proves the first part of this theorem.

Equation (7.2.60) is a direct consequence of (7.2.59) by taking its derivative at 0. This completes the
proof of our theorem. �

The formula in the right-hand side of (7.2.60) still looks complicated; we can rewrite it in a neat way
as follows. We introduce the following functions.

Definition 7.2.8. Let a1 2 b� take value �1 at a1. Note that  2 T. For ! 2 Wu, � 2 W 1./, if
ƒ 2 PCC.U /, for z 2 C, set

P

!;�;ƒ.z/D dimE!;� �

�
exp

�
h�ub./; �.�!.ƒ/C �um/C z

p
�1a1i

��max./
: (7.2.61)

Since � fixes �ub./, by the fact that det � ju?b ./ D 1, we have P !;�;ƒ.z/ is an even polynomial in z.
Moreover, by the dimension formula (5.4.6), the coefficients of zj , j 2 N, in P !;�;ƒ.z/ are polynomials
in ƒ. Such polynomials are related to the Plancherel measures in the representation theory.

Lemma 7.2.9. We have the identity

l./X
jD0

.�4/jC1.j C 1/Š
p
2.2j C 2/Š

Q

j;!;� .ƒ/.2�

2.bƒ;!/
2/jC

1
2 D�2�

Z jbƒ;! j
0

P

!;�;ƒ.t/ dt: (7.2.62)

Proof. We have

h�!.ƒ/C �um C z
p
�1a1; �ub./i D zˇ.a1/!

Yb./Ch!.ƒC �u/;�
um./i: (7.2.63)
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Since P !;�;ƒ.z/ is an even function in z,

P

!;�;ƒ.z/D dimE!;� �

1

.2l.//Š

��
zˇ.a1/!

Yb./Ch!.ƒC�u/;�
um./i

�2l./�max./

D dimE!;� �
l./X
jD0

ˇ.a1/
2j z2j

.2l./�2j /Š.2j /Š

�
!Yb./;2j h!.ƒC�u/;�

um./i
2l./�2j

�max./
: (7.2.64)

Note that, for j D 0; 1; � � � ; l./,Z jbƒ;! j
0

t2j dt D
1

2j C 1
jbƒ;! j

2jC1: (7.2.65)

Then (7.2.62) is a consequence of (7.2.7), (7.2.64) and (7.2.65). �

As a consequence, we get the following formula for PEX; .F /.

Theorem 7.2.10. Suppose that the dominant weight ƒ is such that, for every ! 2Wu, bƒ;! ¤ 0. Then

PEX; .F /D 2�cG./ �
X
!2Wu

�2W1./

".!/' .�; �!.ƒ//

Z jbƒ;! j
0

P

!;�;ƒ.t/ dt: (7.2.66)

7.3. A family of representations of G . We recall a definition of nondegeneracy of � in [Bismut et al.
2017, Definition 1.13, Proposition 8.12].

Definition 7.3.1. A dominant weight ƒ 2PCC.U / is said to be nondegenerate with respect to the Cartan
involution � if

W.U; TU / �ƒ\ t� D∅: (7.3.1)

It is equivalent to

Ad�.U /ƒ\ k� D∅: (7.3.2)

Note that if such dominant weight exists, we must have ı.G/ > 0.

Let .E; �E / be the irreducible unitary representation of U with highest weight ƒ 2 PCC.U /. By
the unitary trick, it extends to an irreducible representation of G, which we still denote by .E; �E /.
Then ƒ being nondegenerate is equivalent to saying that .E; �E / is not isomorphic to .E; �E ı �/ as
G-representations (as in [Müller and Pfaff 2013a]).

Definition 7.3.2. If � 2 t�U , for ! 2W.U; TU /, put

a�;! D h! ��;
p
�1a1i 2 R: (7.3.3)

Recall the real number b�;! is already defined by (7.2.9); then b�;! D a�;! C a�u;! . In particular, we
simply put a� D a�;1, b� D b�;1.

Lemma 7.3.3. If � 2 PCC.U / is nondegenerate, then, for ! 2W.U; TU /, a�;! ¤ 0.
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Now we fix two dominant weights �; �0 2 PCC.U /. Let f.Ed ; �Ed /gjd2N be the sequence of
representations of G given by the irreducible unitary representations of U with the highest weights
d�C�0, d 2 N.

Put Fd D G �K Ed . Let DX;Fd ;2 denote the associated de Rham–Hodge Laplacian. For t > 0, let
exp.�tDX;Fd ;2=2/ denote the heat operator associated with DX;Fd ;2=2. By taking ƒD d�C�0, we
apply our results in previous subsection to the sequence EX; .Fd ; t /, d 2 N.

7.4. Asymptotics for identity orbital integrals. In this subsection, we specialize our results in Section 7.2
for  D 1 and ƒD d�C�0. Now the set W 1./ reduces to f1g, and l./D l , ' .�; �!.ƒ//D 1. We
will drop the superscript  and subscript � in our notation.

Moreover, for ! 2 Wu, the representation ED1!;�D1 is just Vƒ;! introduced in (5.3.6), which is the
irreducible unitary representation of UM with highest weight �!.ƒ/ given by (5.3.8).

Definition 7.4.1. By taking ƒ D d� C �0 in (7.2.7), we define the following functions in d : for
j D 0; 1; : : : ; l , ! 2Wu, set

Q
�;�0
j;! .d/DQj;!.d�C�0/

D
.�1/jˇ.a1/

2j

j Š.2l � 2j /Š.8�2/j
dimVd�C�0;! Œ!

Yb;2j h!.d�C�0C �u/;�
umi

2l�2j �max: (7.4.1)

By the Weyl dimension formula, dimVd�C�0;! is a polynomial in d . Then Q�;�0j;! .d/ is a polynomial
in d of degree � 1

2
dim.g=h/� 2j .

By Theorem 7.2.2 and (7.4.1), we get directly the following results.

Theorem 7.4.2. For t > 0, we have the identity

IX .Fd ; t /D
cG
p
2�t

lX
jD0

t�j
X
!2Wu

".!/e�2�
2t.da�;!Cb�0;!/

2

Q
�;�0
j;! .d/: (7.4.2)

Theorem 7.4.3. Suppose that � is nondegenerate with respect to � . For d 2 N large enough and for
s 2C with <.s/� 0, MIX .Fd ; s/ is well-defined and holomorphic, which admits a unique meromorphic
extension to s 2 C and is holomorphic at s D 0.

Moreover, we have the identities

MIX .Fd ; s/D�
cG
p
2�

lX
jD0

�
�
s�j�1

2

�
�.s/

� X
!2Wu

".!/Q
�;�0
j;! .d/.2�2.da�;!Cb�0;!/

2/jC
1
2
�s

�
; (7.4.3)

PIX .Fd /D�
cG
p
2

lX
jD0

.�4/jC1.jC1/Š

.2jC2/Š

� X
!2Wu

".!/Q
�;�0
j;! .d/.2�2.da�;!Cb�0;!/

2/jC
1
2

�
: (7.4.4)

In particular, the quantity PIX .Fd / is a polynomial in d for d large enough, whose coefficients depend
only on the given root system and �, �0, and has degree � 1

2
dim.g=h/C 1.
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Proof. Since � is nondegenerate, by Lemma 7.3.3, a�;! ¤ 0, ! 2Wu. Then there exists d0 2N such that
for d � d0, .da�;! C b�0;!/

2 > 0. Then by Theorem 7.2.7, we get first part of this theorem and (7.4.3),
(7.4.4).

Note that

Œ.da�;! C b�0;!/
2�
1
2 D jda�;! C b�0;! j:

For d � d0,

jda�;! C b�0;! j D sign.a�;!/.da�;! C b�0;!/:

Then we see that PIX .Fd / is a polynomial in d for d large enough. �

As explained in Remark 5.3.3, when G has noncompact center with ı.G/D 1 (but U is still assumed to
be compact), most of the above computations can be reduce into very simple ones. Recall that a�; b�0 2R

are defined in Definition 7.3.2.

Corollary 7.4.4. Assume that U is compact and that G has noncompact center with ı.G/ D 1, and
assume that � is nondegenerate. Then, for t > 0, s 2 C,

IX .Fd ; t /D
cG
p
2�t

e�2�
2t.da�Cb�0 /

2

dimEd ;

MIX .Fd ; s/D�
cG
p
2�

�
�
s� 1

2

�
�.s/

.2�2.da�C b�0/
2/1=2�s dimEd : (7.4.5)

Furthermore,

PIX .Fd /D 2�cG jda�C b�0 j dimEd : (7.4.6)

Proof. By the hypothesis, we get that l D 0, Wu D f1g and Q�;�00;1 .d/D dimEd . Then (7.4.5), (7.4.6)
are just special cases of (7.4.2), (7.4.3) and (7.4.4).

However, we can prove them more directly using a result of Proposition 4.1.6. It is enough to prove
the first identity in (7.4.5). Note that by (5.3.11), we have

X 0 DM=K; (7.4.7)

with ı.X 0/D 0.
By [Müller and Pfaff 2013a, Proposition 5.2] or [Shen 2018, Proposition 4.1], we have

Œe.TX 0;rTX
0

/�max
D .�1/

m�1
2
jW.UM ; T /j=jW.K; T /j

Vol.UM=K/
: (7.4.8)

Then by (7.2.6), we have

Œe.TX 0;rTX
0

/�max
D�cG : (7.4.9)

By (4.1.28) and (7.3.3), we have

˛Ed D�2�.da�C b�0/: (7.4.10)

Combing (4.1.31) and (7.4.8) - (7.4.10), we get the first identity in (7.4.5), and hence the other identities.
This gives a second proof to this corollary. �
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7.5. Connection to Müller and Pfaff’s results. In this subsection, we assume that G has compact center
with ı.G/D 1. We explain here how to connect our computations in the previous subsection to the results
in [Müller and Pfaff 2013a].

For  D 1, ! 2Wu, the function P !;�;ƒ defined in (7.2.61) now reduces to

P!;ƒ.z/D dimVƒ;!
�
exp

�
h�!.ƒ/C �um C z

p
�1a1; �u.b/

i
��max

: (7.5.1)

We can verify directly that

P!;ƒ.z/D
Vol.UM=T /
Vol.U=TU /

…˛02RC.u;tU /
h˛0; �!.ƒ/C �um C z

p
�1a1i

h˛0; �ui
: (7.5.2)

The scalar product in (7.5.2) is taken with respect to �Bju. Up to a universal constant, P!;ƒ.z/ is just the
polynomial related to the Plancherel measure of representation Vƒ;! as given in [Müller and Pfaff 2013a,
equation (6.10)]. Note that there is no factor .2�/2l in (7.5.2) because of our normalization for Œ � �max.

By Theorem 7.2.10, we have the following result for sufficiently large d .

Corollary 7.5.1. Suppose that � is nondegenerate with respect to � . Then

PIX .Fd /D 2�cG
X
!2Wu

".!/

Z jda�;!Cb�0;! j
0

P!;d�C�0.t/ dt: (7.5.3)

By [Müller and Pfaff 2013a, Lemma 6.1], we can get the identity

jW.K; T /j D 2jW.KM ; T /j: (7.5.4)

Combining (7.2.6), (7.5.2), (7.5.4), we see that the formula in Corollary 7.5.1, is exactly the same formula
of [Müller and Pfaff 2013a, Proposition 6.6] for PIX .Fd /.

Recall that the U -representation Ed has highest weight d�C�0 2PCC.U /. Then by Weyl dimension
formula, dimEd is a polynomial in d . If � is regular, then the degree (in d ) of dimEd is 1

2
dim g=h.

For determining the leading term of PIX .Fd /, as mentioned in the Introduction, we can specialize
the result of [Bismut et al. 2017, Theorem 0.1] as in Section 8 of that work for the symmetric space X.
Here to emphasize PIX .Fd / being a polynomial in d , we state a result of [Müller and Pfaff 2013a,
Proposition 1.3] as follows.

Proposition 7.5.2. Suppose that � is nondegenerate and that �0 D 0. Then there exists a constant
CX;� ¤ 0 such that

PIX .Fd /D CX;�d dimEd CR.d/; (7.5.5)

where R.d/ is a polynomial whose degree is no greater than the degree of dimEd .

Remark 7.5.3. Note that Müller and Pfaff [2013a, Proposition 1.3] proved Proposition 7.5.2 by reducing
the problems to the cases G D SL3.R/ and SO0.p; q/ (pq > 1 odd). In particular, for certain examples
of �, they also worked out explicitly the constant CX;� [Müller and Pfaff 2013a, Corollaries 1.4, 1.5].

Similarly, if we take a nonzero �0, we can repeat their computations for G D SL3.R/ and SO0.p; q/
(pq > 1 odd) in order to get more explicit information on the leading terms of PIX .Fd /.
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An important step in Müller and Pfaff’s proof to Proposition 7.5.2 is reducing the computation of
PIX .Fd / to the cases where gD sl3.R/ or so.p; q/ with pq >1 odd. Such reduction is already explained
in Section 4.2. More precisely, we have

X DX1 �X2; (7.5.6)

where X1 is one case listed in (4.2.1), and X2 is a symmetric space with rank 0.
We use the notation in Section 4.2 and assume G to be semisimple. Let �i , �0;i be dominant weights

of Ui , i D 1; 2, such that

�D �1C�2; �0 D �0;1C�0;2: (7.5.7)

Now we consider the sequence d�C�0, d 2 N. Then

Ed DEd�1C�0;1 ˝Ed�2C�0;2 : (7.5.8)

Since G2 is equal rank, the nondegeneracy of � with respect to � is equivalent to the nondegeneracy
of �1 with respect to �1. Then by Proposition 4.2.2, after taking the Mellin transform, we have

MIX .Fd ; s/D Œe.TX2;rTX2/�max2 dimEd�2C�0;2MIX1.Fd�1C�0;1 ; s/: (7.5.9)

Then

PIX .Fd /D Œe.TX2;rTX2/�max2 dimEd�2C�0;2PIX1.Fd�1C�0;1/: (7.5.10)

Then we only need to evaluate PIX1.Fd�1C�0;1/ explicitly, which has been dealt with in [Müller and
Pfaff 2013a, Section 6].

7.6. Asymptotic elliptic orbital integrals.

Definition 7.6.1. A function f .d/ in d is called an exponential polynomial in d if it is a finite sum of
the term cj;se

2�
p
�1sdd j with j 2 N, s 2 R, cj;s 2 C. The largest j � 0 such that cj;s ¤ 0 in f .d/ is

called the degree of f .d/.
We say that the oscillating term e2�

p
�1sd is nice if s 2Q. We say that an exponential polynomial f .d/

in d is nice if all its oscillating terms are nice.

Remark 7.6.2. If f .d/ is a nice exponential polynomial in d , then there exists an N0 2 N>0 such that
the function f .dN0/ is a polynomial in d .

Note that by (5.4.18), ' .�; �!.d�C�0// is an oscillating term in d , which is nice when  2 T is of
finite order. The following theorem is a direct consequence of Theorem 7.2.10.

Theorem 7.6.3. Suppose that � is nondegenerate, and that  D k 2 T. Then, for sufficiently large d ,
PEX; .Fd / is an exponential polynomial in d . Moreover, we have

PEX; .Fd /D 2�cG./ �
X
!2Wu

�2W1./

".!/' .�; �!.d�C�0//

Z jda�;!Cb�0;! j
0

P


!;�;d�C�0
.t/ dt: (7.6.1)
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If we considerGDSpin.1; 2nC1/, n� 1, as in [Fedosova 2015], then up to a constant, the exponential
polynomial

P
�2W 1./ ' .�; �!.d�C �0//P



!;�;d�C�0
.t/ is just the one defined in [Fedosova 2015,

Proposition 5.1]. This way, our results are compatible with her results in [Fedosova 2015, Theorem 1,1]
for hyperbolic orbifolds.

Remark 7.6.4. Let Char.A/ denote the character ring of the complex representations of a compact Lie
group A. One key ingredient in (7.2.66) is an explicit decomposition of characters of U into characters
of UM ./0. In the diagram below, we give two different ways of getting to this decomposition:

Char.U./0/
˝ƒ�n./�C

++
Char.U /

˝ƒ�n�C

++

Kirillov for 2U 33

Char.UM ./0/

Char.UM /

Kirillov for 2UM 33

(7.6.2)

The formula in (7.2.66) is obtained by the computations along the lower path in (7.6.2). We also have the
upper path, which is essentially the geometric localization formula obtained in Theorem 6.0.1.

We will use the same notation as in Section 6. The following theorem is a consequence of the geometric
localization formula obtained in Theorem 6.0.1.

For k 2T , letW 1
U .k/�W.U; TU / be defined as in (5.4.14) with respect to RC.u; tU /. For � 2W 1

U .k/,
the term 'U

k
.�; d�C�0/ defined as in (6.0.8) is an oscillating term, which is nice if k is of finite order.

Theorem 7.6.5. Suppose that  D k 2 T is elliptic and that � is nondegenerate with respect to � .
Then, for � 2 W 1

U .k/, �� 2 PCC. zU.k// is nondegenerate with respect to the Cartan involution �
on z.k/. For d 2 N, let Ek

�;d
be the irreducible unitary representation of zU.k/ with highest weight

d��C �.�0C �u/� �u.k/. This way we get a sequence of flat vector bundles fF k
�;d
gd2N on X.k/. Then,

for sufficiently large d , we have

PEX; .Fd /D
X

�2W 1
U .k/

'Uk .�; d�C�0/PIX.k/.F k�;d /: (7.6.3)

Proof. The nondegeneracy of �� (� 2 W 1
U .k/) follows easily from the nondegeneracy of � and the

definition ofW 1
U .k/. For proving this theorem, we only need to prove (7.6.3). Actually, by Theorem 6.0.1,

for t > 0, we get
EX; .Fd ; t /D

X
�2W 1

U .k/

'Uk .�; d�C�0/IX.k/.F
k
�;d ; t /; (7.6.4)

Then (7.6.3) follows from the linearity of Mellin transform. �

8. A proof of Theorem 1.0.2

In this section, we complete the proof of Theorem 1.0.2; then Theorem 1.0.1 (and Theorem 1.0.10) follows
as a consequence. We assume that G is a connected linear real reductive Lie group with ı.G/D 1 and
compact center, so that U is a compact Lie group.



FULL ASYMPTOTICS OF REAL ANALYTIC TORSIONS FOR COMPACT LOCALLY SYMMETRIC ORBIFOLDS 1323

8.1. A lower bound for the Hodge Laplacian on X . We use the notation from Section 4. Recall that
e1; : : : ; em is an orthogonal basis of TX or p. Put

C g;H
D�

mX
jD1

e2j 2 U g: (8.1.1)

Let C g;H;E be its action on E via �E. Then

C g;E
D C g;H;E

CC k;E : (8.1.2)

Let �H;X be the Bochner–Laplace operator on the bundle ƒ�.T �X/˝F associated with the unitary
connection rƒ

�.T �X/˝F;u. Put

‚.F /D 1
4
SX � 1

8
hRTX .ei ; ej /ek; e`ic.ei /c.ej / Oc.ek/ Oc.e`/

�C g;H;E
C
1
2

�
c.ei /c.ej /� Oc.ei / Oc.ej /

�
RF .ei ; ej /; (8.1.3)

where RF is the curvature of the unitary connection rF on F.
Then ‚.F / is a self-adjoint section of End.ƒ�.T �X/ ˝ F /, which is parallel with respect to

rƒ
�.T �X/˝F;u. Equivalently, ‚.F / is an element in End.ƒ�.p�/ ˝ E/ which commutes with the

K-action. By [Bismut et al. 2017, equation (8.39)], we have

DX;F;2
D��H;X C‚.F /: (8.1.4)

Then, for s 2��c.X; F /, we have

hDX;F;2s; siL2 � h‚.F /s; siL2 : (8.1.5)

Let �H;X;i denote the Bochner–Laplace operator acting on �i .X; F /, and let pH;it .x; x0/ be the
kernel of exp.t�H;X;i=2/ on X with respect to dx0. We will denote by pH;it .g/ 2 End.ƒi .p�/˝E/ its
lift to G explained in Section 3.2. Let �X0 be the scalar Laplacian on X with the heat kernel pX;0t .

Let kpH;it .g/k be the operator norm of pH;it .g/ in End.ƒi .p�/˝E/. By [Müller and Pfaff 2013b,
Proposition 3.1], if g 2G; then

kp
H;i
t .g/k � p

X;0
t .g/: (8.1.6)

Let pHt be the kernel of exp.t�H;X=2/, then

pHt D

pM
iD1

p
H;i
t : (8.1.7)

Let qX;Ft be the heat kernel associated with DX;F;2=2, by (8.1.4), for g 2X,

q
X;F
t .g/D exp

�
�
t‚.F /

2

�
pHt .g/: (8.1.8)

Recall that PCC.U / is the set of dominant weights of U with respect to RC.u; tU / defined in
Section 5.3. As in Section 7.3, we fix �; �0 2 PCC.U / such that � is nondegenerate with respect to � .
Recall that, for d 2 N, .Ed ; �Ed / is the irreducible unitary representation of U with highest weight
d�C�0, which extends uniquely to a representation of G. By [Bismut et al. 2011, Théorème 3.2; 2017,
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Theorem 4.4, Remark 4.5; Müller and Pfaff 2013a, Proposition 7.5], there exist c > 0, C > 0 such that,
for d 2 N,

‚.Fd /� cd
2
�C; (8.1.9)

where the estimate d2 comes from the positive operator C g;H;Ed . By (8.1.4), (8.1.5), (8.1.9), we get

DX;Fd ;2 � cd2�C: (8.1.10)

Lemma 8.1.1. There exists d0 2 N and c0 > 0 such that if d � d0, g 2G,

kq
X;Fd
t .g/k � e�c0d

2tp
X;0
t .g/: (8.1.11)

Proof. By (8.1.9), there exist d0 2 N, c0 > 0 such that if d � d0,

‚.Fd /� c
0d2: (8.1.12)

Then if t > 0, exp
�
�
t‚.Fd /

2

�� e� 12c0d2t : (8.1.13)

By (8.1.6), (8.1.7), (8.1.8), (8.1.13), we get (8.1.11). �

The locally symmetric orbifold Z is defined as �nX, where � is a cocompact discrete subgroup of G.
For  2 �, the number m � 0 is given by (3.3.3), which only depends on the conjugacy class of  (in G
or �). Recall that EŒ�� is the finite set of elliptic conjugacy classes in �.

For t > 0, x 2X,  2 �, set

vt .Fd ; ; x/D Trƒ
�.T �X/˝Fd

s

h�
Nƒ�.T �X/

�
m

2

�
q
X;Fd
t .x; .x//

i
: (8.1.14)

Then by Lemma 8.1.1, we have the following result.

Lemma 8.1.2. There exist C0 > 0, c0 > 0 such that if d is large enough, for t > 0, x 2X,  2 �,

jvt .Fd ; ; x/j � C0.dimEd /e
�c0d

2tp
X;0
t .x; .x//: (8.1.15)

Set

m� D inf
Œ�2Œ���EŒ��

m : (8.1.16)

By [Liu 2018, Proposition 1.8.5], m� > 0.

Proposition 8.1.3. There exist constants C > 0, c > 0 such that if x 2X, t 2 �0; 1�, thenX
2�; nonelliptic

p
X;0
t .x; .x//� C exp

�
�
c

t

�
: (8.1.17)

Proof. By [Donnelly 1979, Theorem 3.3], there exists C0 > 0 such that when 0 < t � 1,

p
X;0
t .x; x0/� C0t

�m
2 exp

�
�
d2.x; x0/

4t

�
: (8.1.18)
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By [Liu 2018, Lemma 1.8.6], there exist c > 0, C > 0 such that for R > 0, x 2X,

#f 2 � j  nonelliptic; d .x/�Rg � C exp.cR/: (8.1.19)

By (8.1.16), (8.1.18), (8.1.19), and using the same arguments as in the proof of [Müller and Pfaff 2013b,
Proposition 3.2], we get (8.1.17). �

8.2. A proof of Theorem 1.0.2. In this subsection, we complete our proof of Theorem 1.0.2. Note that
every elliptic element  2 � is of finite order, then part (2) of Theorem 1.0.2 is an easy consequence of
Theorem 7.6.5. We only need to prove part (1). We restate it as follows.

Proposition 8.2.1. Let � �G be a cocompact discrete subgroup and set Z D �nX. There exists c > 0
such that, for d large enough,

T .Z; Fd /D
Vol.Z/
jS j

PIX .Fd /C
X

Œ�2ECŒ��

Vol.� \Z./nX.//
jS./j

PEX; .Fd /CO.e�cd /; (8.2.1)

where ECŒ��DECŒ��nfŒ1�g is the finite set of nontrivial elliptic classes in Œ��.

Proof. By (8.1.10), we have

DZ;Fd ;2 � cd2�C: (8.2.2)

Then if d is large enough, we have

H �.Z; Fd /D 0: (8.2.3)

Then T .Z; Fd / can be computed using (2.2.15).
As in (2.2.12), for t > 0, set

b.Fd ; t /D
�
1C 2t

@

@t

�
Trs
h�
Nƒ�.T �Z/

�
m

2

�
exp

�
�
tDZ;Fd ;2

2

�i
: (8.2.4)

As in [Bismut et al. 2017, Section 7.2], by (8.2.2), there exist constants Qc > 0, zC > 0 such that, for d
large enough and for t > 1

d
,

jb.Fd ; t /j � zC exp.�Qcd � Qct/: (8.2.5)

By (2.2.15), we have

T .Z; Fd /D�
Z C1
0

b.Fd ; t /
dt

t
: (8.2.6)

We rewrite it as

T .Z; Fd /D�
Z C1
1=d

b.Fd ; t /
dt

t
�

Z d

0

b

�
Fd ; t

d2

�
dt

t
: (8.2.7)

By (8.2.5), there exists c > 0 such that, for d large enough,Z C1
1=d

b.Fd ; t /
dt

t
DO.e�cd /: (8.2.8)
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By (3.5.1), (8.1.14), (8.2.4), we get

b.Fd ; t /D
�
1C 2t

@

@t

� Z
Z

1

jS j

X
2�

vt .Fd ; ; z/ dz: (8.2.9)

We split the sum in (8.2.9) into two parts,X
2�; elliptic

C

X
2�; nonelliptic

; (8.2.10)

so that we write
b.Fd ; t /D belliptic.Fd ; t /C bnonelliptic.Fd ; t /: (8.2.11)

Similar to Selberg’s trace formula in Section 3.5, we get

belliptic.Fd ; t /D
X

Œ�2EŒ��

Vol.� \Z./nX.//
jS./j

�
1C 2t

@

@t

�
EX; .Fd ; t /: (8.2.12)

By (7.4.2) and (7.6.4), the terms in EX; .Fd ; t / are of the form

t�jC
1
2 exp.�2�2t .da0C b0/2/Q.d/; (8.2.13)

where Q.d/ is a nice exponential polynomial in d , and a0; b0 2 R with a0 ¤ 0 due to the nondegeneracy
of �. By (8.2.13), there exists c > 0 such that, for d large enough,Z d

0

belliptic

�
Fd ;

t

d2

�
dt

t
D

Z C1
0

belliptic.Fd ; t /
dt

t
CO.e�cd /: (8.2.14)

Using Proposition 7.1.1 and by (8.2.13), we get

PEX; .Fd /D�
Z C1
0

�
1C 2t

@

@t

�
EX; .Fd ; t /

dt

t
: (8.2.15)

Now we consider the contribution from the nonelliptic elements. If x 2X, put

ht .Fd ; x/D
1

jS j

X
2�; nonelliptic

vt .Fd ; ; x/: (8.2.16)

Then

bnonelliptic.Fd ; t /D
�
1C 2t

@

@t

� Z
Z

ht .Fd ; z/ dz: (8.2.17)

Now we prove the following uniform estimates for x 2X :Z d

0

�
1C 2t

@

@t

�
ht=d2.Fd ; x/

dt

t
DO.e�cd /: (8.2.18)

Indeed, using Lemma 8.1.2 and Proposition 8.1.3, there exist C > 0, c0 > 0, c00 > 0 such that if d is
large enough, 0 < t � d , then

jht=d2.Fd ; x/j � C dim.Ed /e
�c0t exp

�
�
c00d2

t

�
: (8.2.19)
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Recall that dimEd is a polynomial in d . Then by (8.2.19), we haveˇ̌̌̌Z 1

0

ht=d2.Fd ; x/
dt

t

ˇ̌̌̌
� Ce�c

00d2=2 dim.Ed /
Z 1

0

e�c
00d2=2t dt

t
DO.e�cd /;ˇ̌̌̌Z d

1

ht=d2.Fd ; x/
dt

t

ˇ̌̌̌
� Ce�c

00d dim.Ed /
Z d

1

e�c
0t dt

t
DO.e�cd /:

(8.2.20)

By (8.2.19)–(8.2.20), we get (8.2.18).
At last, we assembly together (8.2.7), (8.2.8), (8.2.11), (8.2.14)–(8.2.18), we get exactly (8.2.1). �

Note that since T .Z; Fd / is always a real number, (8.2.1) still holds if we take the real part of
PEX; .Fd / instead.
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