
Max-Planck-Institut für Mathematik
Bonn

Modular orbits on the representation spaces of compact
abelian Lie groups

by

Yohann Bouilly
Gianluca Faraco

Max-Planck-Institut für Mathematik
Preprint Series 2021 (13)

Date of submission: April 21, 2021



Modular orbits on the representation spaces
of compact abelian Lie groups

by

Yohann Bouilly
Gianluca Faraco

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

IRMA, UMR 7501
7 rue René-Descartes
67084 Strasbourg Cedex
France

MPIM 21-13



MODULAR ORBITS ON THE REPRESENTATION SPACES OF COMPACT ABELIAN

LIE GROUPS

YOHANN BOUILLY AND GIANLUCA FARACO

Abstract. Let S be a closed surface of genus g greater than zero. In the present paper we study the topological-
dynamical action of the mapping class group on the Tn-character variety giving necessary and su�cient condi-
tions for Mod(S)-orbits to be dense. As an application, such a characterisation provides a dynamical proof of
the Kronecker's Theorem concerning inhomogeneous diophantine approximation.
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1. Introduction

Let S be a closed - compact without boundary - connected and oriented topological surface of genus g. Its
fondamental group π1S admits the presentation

(1.1)
〈
α1, βg, . . . , αg, βg |

g∏
i=1

[αi, βi] = 1
〉
.

Let G be a connected Lie group (from now G will always assume to be connected unless stated otherwise)
and let Hom(π1S,G) denote the set of representations of π1S in G. Such a set can be topologized with the
compact-open topology and the resulting space is commonly known as representation space. There is a canonical
action of G on Hom(π1S,G) obtained by post-composing representations with inner automorphisms of G. The
resulting quotient space Hom(π1S,G)/G is a space canonically associated to S (or π1S) and G. When G is an
algebraic and reductive Lie group, the quotient space is commonly known as G-character variety of π1S. It can
be shown that Hom(π1S,G)/G identi�es with the moduli space of isomorphism classes of �at G-bundles over S.
We now consider the e�ect of changing the presentation of π1S pre-composing any representation with an
automorphism φ ∈ Aut(π1S) such that any representation ρ is sent to ρ ◦ φ−1. We can, therefore, consider the
action of Aut(π1S) on Hom(π1S,G). The actions of G and Aut(π1S) can be combined together in the following
way: For any pair (φ, g) ∈ Aut(π1S)×G and γ ∈ π1S we de�ne

(φ, g) · ρ(γ) = g
(
ρ ◦ φ−1(γ)

)
g−1.

It is clear that the action of the normal subgroup Inn(π1S) < Aut(π1S), consisting of inner automorphisms,
is absorbed into the action of G. In other words, the action of Inn(π1S) on Hom(π1S,G) descends to the
trivial action on Hom(π1S,G)/G. Thus, there is a well-de�ned action of the outer automorphisms group
Out(π1S) = Aut(π1S)/Inn(π1S) on Hom(π1, G)/G.

When S is a closed surface, the group Out(π1S) has a very explicit geometric interpretation. Every homeomor-
phism of S determines an automorphism of π1S. On the other hand, for closed surfaces, the Dehn-Nielsen-Baer
theorem [Nie27] states that every automorphism of π1S is induced by a homeomorphism of S - this actually true
also for the punctured torus, but it is no longer true for other surfaces with boundary. Now, homeomorphisms
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which are isotopic can be considered as equivalent, and determine conjugate automorphisms of π1S, i.e. a well-
de�ned element of Out(π1S). Conversely, automorphisms which are conjugate can be considered as equivalent,
and determine isotopic homeomorphisms. Therefore, for any closed surface the following isomorphism holds

Homeo(S)

Isotopy
∼= Out(π1S).

De�nition 1.1. The mapping class group of S is de�ned as Mod(S) =
Homeo(S)

Isotopy
.

By Goldman [Gol84], the character variety can be endowed with a symplectic structure which is preserved
by the Out(π1S)-action. Thus, taking the volume form associated to the symplectic structure, we get that
Hom(π1, G)/G is a measured space on which the group Out(π1S) acts preserving measure. The dynamic of this
action is known for compact Lie groups:

Theorem (Goldman, Pickrell-Xia). Let G be a compact Lie group. Then the mapping class group acts ergodi-
cally on each connected components of Hom(π1S,G)/G with respect to the �nite measure µS.

A direct consequence of ergodicity is that almost every Mod(S)-orbit is dense. A more subtle problem concerns
the topological dynamics of the mapping class group action on the space Hom(π1S,G)/G. The topological-
dynamical problem is de�nitely more delicate since no longer we may ignore invariant subsets of measure zero.
For instance, if H is a �nite subgroup of G, the space Hom(π1S,H) is �nite and its image in Hom(π1S,G)/G is
an invariant closed subset under the action of the mapping class group. It follows that, even when the action
of Mod(S) is ergodic, not all the orbits are dense in Hom(π1S,G)/G. In [Gol06, Problem 2.7], Goldman posed
the following problem - we refer to it in the sequel as main problem.

Main Problem: Determine necessary and su�cient conditions on a general repre-
sentation ρ for its orbit Mod(S) · [ρ] to be dense.

A representation ρ : π1S −→ G is de�ned as dense representation if the image of ρ is dense in G. One might
expect the following claim reasonable: If the image of a representation ρ is dense in G, then the Mod(S)-orbit
of [ρ] is dense in Hom(π1S,G)/G. This is currently true for representations in SU(2). In fact, this case has
been completely treated by Previte and Xia [PX02] and it is based on their earlier work [PX00] on which they
consider the case of representations in SU(2) for the punctured torus. For all other compact Lie groups the
problem is still open, and in the present work we provide a positive answer also in the case of the n-dimensional
torus Tn. The following Theorem is in fact the main result of this work.

Theorem A. Let S be a surface of genus g ≥ 1 and π1S its fundamental group. Let ρ : π1S −→ Tn be a
representation. Then the image of ρ is dense in Tn if and only if the mapping class group orbit Mod(S) · ρ is
dense in the representation space.

The proof strongly relies on the explicit knowledge of the objects involved. In fact, the n-torus has a well-known
description and, thanks to the abelian property, the character variety coincides with the representation space
since the action of Tn by conjugation is trivial. Even better, the representation space can be identi�ed with
a torus of suitable dimension, hence the description of the representation space − and then of the character
variety − is very explicit. The main di�culties in the abelian case concern questions coming from number
theory and ergodic theory, see Section 1.2.

1.1. Strategy of the proof and related results. Each given representation ρ : π1S −→ Tn induces a
homological representation ρ : H1(S,Z) −→ Tn, namely an element of the homological representation space
Hom

(
H1(S,Z),Tn

)
. The map associating to any representation ρ its homological representation de�nes a

bijection between the representation space and the homological representation space. This essentially follows
because the commutator group [π1S, π1S] is trivially a subgroup of kerρ in the abelian case, and such a property
is no longer true for a generic non-abelian Lie group. There is also a well-de�ned action of the symplectic group
Sp(2g,Z) on the space Hom

(
H1(S,Z),Tn

)
by precomposition. Given a representation ρ : π1S −→ Tn and its

induced representation ρ : H1(S,Z) −→ Tn, the Mod(S)-orbit of ρ coincides with the Sp(2g,Z)-orbit of ρ. As an
immediate consequence we obtain an equivalent version of the main theorem A, namely we have the following.

Theorem B. Let S be a surface of genus g ≥ 1 and let ρ : H1(S,Z) −→ Tn be a representation. Then the
image of ρ is dense in Tn if and only if the symplectic group orbit Sp(2g,Z) · ρ is dense in the homological
representation space.

Along the way of our investiation we shall remark the following result:
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The action of the Torelli group I(S) on the representation space Hom
(
π1S,Tn

)
is trivial.

For a proof of this fact we refer to our Proposition 2.9 below. This claim seems to be known, however, at the
best knowledge of the authors, it has never been stated explicitely. In contrast to the abelian case, the �rst
named author has shown in [Bou20] that for any connected, compact and semi-simple Lie group, the action of
the Torelli group on the character variety is ergodic.

Given a representation, we are then reduced to consider its Sp(2g,Z)-orbit of instead of its modular orbits.
This makes the study of orbits more understandable because the symplectic group is linear. We shall make the
action even more explicit by identifying a representation with a matrix in the space M

(
n, 2g; T

)
. Such a space

will be introduced later on in section 2.3. After these reductions, we shall see that we are in the position to
apply Ratner's Theorem for studying orbit closures. In particular, we shall derive our main Theorem A.

Remark 1.2. For the torus, the reader may notice that theorems A and B are not only equivalent but actually the
same statement in the strict sense. Indeed, in this very particular case the following equalities π1S = H1(S,Z)
and Mod(S) = SL(2,Z) = Sp(2,Z) holds.

The strategy we propose for Theorem A is di�erent to the one developed by Previte-Xia to show their main theo-
rem [PX02, Theorem 1.4]. Let us brie�y give some more details. Given a dense representation ρ : π1S −→ SU(2)
- Previte-Xia de�ned such a representation generic (see [PX02, De�nition 1.6]) - they �rstly found a handle
Σ, namely a one-holed torus, such that the restriction of ρ to π1Σ is dense. After obtaining a dense handle,
they proceed to demonstrate the base density theorem for the (n + 2g − 2)-holed torus. A similar process in
the abelian case is not possible because dense handles do not always exist, see the discussion at Section A.2 in
Appendix A. In the light of Proposition 2.9, we shall bypass this issue by looking at the Sp(2g,Z)-action on the
representation space as described above.

1.2. Connection with the Kronecker's Approximation Theorem. The dynamical result provided by
Theorem A �nds an application on the theory of geometry of numbers. An important theorem in this topic
is the Kronecker's theorem concerning inhomogeneous Diophantine approximation, see Section 5 below for the
precise statement.

Upon having �xed a presentation of π1S, we can associate to any representation ρ : π1S −→ Tn a matrix
Θρ ∈ M

(
n, 2g;R

)
- see De�nition 2.15 and 2.3 below for the details. Our Theorem 3.1 says that a representation

ρ is dense if and only if the rows of the matrix Θρ satisfy the hypothesis of Kronecker's theorem. On the other
hand, our main result says that the modular orbit of a representation ρ is dense in the representation space if and
only if ρ itself is a dense representation. As the representation space identi�es with T2ng, see section 2 below,
Theorem B provides a dynamical proof of Kronecker's Theorem in the cases of l = m = 2g, for some g ≥ 1,
as well as a sharper simultaneous approximation because the matrix K can be taken in Sp(2g,Z) ⊂ M

(
2g,Z

)
.

More precisely we show that:

Theorem C. Let m = 2g with g ≥ 1. Let b(i) =
(
b
(i)
1 , . . . , b

(i)
m

)
, with i = 1, . . . , n, be vectors of Rm such that

b(1), . . . , b(n), πe1, . . . , πem are linearly independent over Q in the vector space Rm. Let A ∈ M
(
n,m;R) be a

real matrix and let ε be a positive number. Then there is an element K ∈ Sp(2g,Z) such that

(1.2)
∣∣∣∣∣∣A−BK∣∣∣∣∣∣ < Cε mod 2π.

where C is a constant depending only on m and n and the norm is any norm on M
(
n,m;R).

For the sake of comprehension, the proof of Theorem C is delayed until section 5 when we have developed
the theory and notation even further. As we shall see, the proof of this result reduces to prove the following
characterisation.

Proposition D. Theorem A holds if and only if Theorem C holds.

1.3. Related dynamical problems. For a generic compact Lie groups G, the main issues one has to face are
mainly two. First of all, the group G may not have a nice description. In fact, among all compact Lie groups
we found the classical simple Lie groups belonging to the four families SU(n+ 1), SO(2n+ 1), Sp(n), SO(2n),
but also the �ve exceptional Lie groups corresponding to the Dynkin diagrams G2, F4, E6, E7, E8 which are
harder to treat. The second issue comes from the fact that most of the representation spaces and their quotients
Hom(π1S,G)/G have not an explicit description to work with. The abelian case is not the only one on which
these issues vanish. Also in the case of SU(2) they completely miss since both the group and the representation
space were already well-known in the literature. For open surfaces of positive genus and positive number of
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boundary components, there is a further problem to be addressed. Suppose S has genus g with boundary of
k disjoint circles. A relative character variety is a slice of the space Hom(π1S,G)/G subject to the condition
imposed by some �nite collection of k conjugacy classes. Like in the close case, the relative character variety
carries a symplectic structure which is preserved by the mapping class group action. In [PX03a], Pickrell-Xia
established the ergodicity of the mappig class group action with respect to the symplectic measure for k > 2.
Their result may be seen as the follow up of the Goldman's work [Gol97], where he considered the cases of
groups whose simple factors are locally isomorphic to SU(2). Very recently, in [GLX19], Goldman-Lawton-Xia
announced a proof in the case of SU(3) based on di�erent techniques than in [PX03a].
As for the modular orbits characterisation, the main problem posed by Goldman has been answered only in the
case of SU(2), as mentioned above. This work is therefore a new and partial development of the wider program
to understanding the dynamics of the mapping class group. In [BKMS18], Biswas-Koberda-Mj-Santharoubane
have consider the opposite problem of characterising representations having �nite modular orbit. For any �xed
Lie group G, they have showed that any representation, with values in G, having �nite modular orbit has
necesseraly �nite image in G. The case G = SL(2,C) has been handled also by Biswas-Gupta-Mj-Whang in
[BGMW19].

The non-compact case is even more complicated and delicate; let us spend a few words. The current situation
is di�erent for non-compact Lie groups and we do not expect an analog theorem. For compact Lie groups G,
the space Hom(π1S,G)/G has non-trivial homotopy type, and Theorem 1 says that the dynamics of the action
of the mapping class is chaotic on each connected component. On the other hand, when G is a non-compact
semisimple Lie group, the space Hom(π1S,G)/G contains open contractible components on which the action of
the mapping class group is properly discontinuous. Often, these components correspond to locally homogeneous
structures uniformizing S. A remarkable case is that of PSL(2,R). It is well-known that the PSL(2,R)-character
variety has 4g − 3 connected components indexed by the Euler class, taking values in a �nite set of Z, where g
denotes the genus of S, see [Gol88]. Two of these components correspond to the Teichmüller spaces T (S) and
T (S) of S (where S is the surface S taken with the opposite orientation). The action of Mod(S) is known to
be proper on these components and it is conjectured to be ergodic on the others. This conjecture is currently
treated in the case of genus 2 surfaces thanks to recent results of Marché-Wol�. They proved the conjecture
about ergodicity is true for Euler class equal to ±1 and decompose the connected component of Euler class 0
in two subspace on which the mapping class group acts ergodically [MW15, MW16]. Currently, little is known
about the dynamics of the mapping class group for non-compact Lie groups. In this sense, one of the most
important problems is the Goldman conjecture about the action of the mapping class group on the PSL(2,R)-
character variety. Such character variety has two connected components on which the action of the mapping
class group is known to be properly discontinuous. Regarding the other components, the action is conjectured
to be ergodic - actually a theorem in the genus two case. As it may easy to expect, even less is known about
the topological dynamics of the mapping class group on the PSL(2,R)-character variety. In the case of genus
two, one among of the consequences of Marché and Wol�'s result is the following claim: in each subspace of
the character variety on which the action of the mapping class group is ergodic there is a full measure subset
of representations whose mapping class group orbit is dense in this subspace. Like in the compact case, we
can pose the following question: Does a dense representation ρ : π1S → PSL(2,R) have dense Mod(S)-orbit?
Answering to this question is even more tricky and for surfaces with boundary we already know counterexamples
- see [PX03b] for an example in SL(2,C).

1.4. Structure of the paper. The present paper is organised as follow. In Section 2 we begin with a description
of the Tn-character variety and then subsequently introduce the homological representation space and show the
identi�cation with the character variety. We �nally describe the action of the symplectic group Sp(2g,Z) on the
homological representation space. As a consequence, we shall derive the Proposition 2.9 and the equivalence
of Theorems A and B. In Section 3 we shall give a complete characterisation of dense representations in the
n-dimensional torus by proving Theorem 3.1. In section 4 we shall �nally derive our main Theorem A. In the
last section, we prove Proposition D and indeed Theorem C establishing the connection of our dynamical result
with the Kronecker's Approximation Theorem. We �nally conclude with a serie of appendix on which we shall
discuss some further aspects related to our project. Appendix A we discuss about a direct approach to our
problem which works for a fairly general class of representations. In Appendix B we digress a little by providing
a brief description of the relative Tn-character variety for surfaces with one puncture and then we claim that
our main results extend to one-punctured surfaces.

Acknowledgment. The �rst named author would like to thanks Olivier Guichard for his comments and
guidance. The second named author would like to thank Anish Ghosh for introducing him in the nice theory of
groups actions on homogeneous spaces. Part of this of work was carry out during the visiting of second named
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author to the University of Bologna in November 2019 and TIFR Mumbai in December 2019. He is grateful for
the nice hospitality in both places. Both the authors would like to thanks the organisers of the Conference on
Geometric Structures in Nice which took place in January 2019 and on which their collaboration began.

2. Tn-character variety

In this work we are interested in characterising the orbits of the Mod(S)-action on Hom(π1S,G)/G where G is
a compact, connected and abelian Lie group. It is classical to see that any such a group is isomorphic to the
n-dimensional torus Tn, for some positive n (see for instance [BtD95, Corollary 3.7]). The speci�c interest for
the abelian case comes from its connection with abstract harmonic analysis, the geometry of numbers and the
theory of group actions on homogeneous spaces (connections with Ratner's Theorem, see section 4).

In the introduction we have given a very brief view of the character variety for a generic compact Lie group
G. In this section we specialise the discussion for compact and connected abelian Lie groups. From the Lie
theory, any such a group is known to be a n-dimensional torus, namely the product of n copies of the unit
circle S1. In the present work S1 is seen as

{
eiθ | θ ∈ [0, 2π)

}
where [0, 2π) carries the quotient topology ob-

tained identifying the boundary points of the closed interval [0, 2π]. Consequently, the n-torus Tn is de�ned as{(
eiθ1 , . . . , eiθn

)
| θi ∈ [0, 2π), for any i = 1, . . . , n

}
endowed with the product topology.

Let S be a closed surface and let α1, β1, . . . , αg, βg be any standard generating system of the fundamental group.
The choice of a representation ρ : π1S −→ Tn amounts to choose for each generator an element of Tn such
that these elements satisfy the condition imposed by the presentation of the fundamental group of S. However,
the abelian property of Tn implies that the condition [A1, B1] · · · [Ag, Bg] = 1 is automatically satis�ed for any
choice of 2g elements in (A1, B1, . . . , Ag, Bg) ∈ Tn. Thus, the representation space can be identi�ed with the

full group
(
Tn
)2g ∼= T2ng. Even more, thanks again to the abelian property, the action of Tn on Hom

(
π1S,Tn

)
by post-composition with inner automorphisms of Tn is trivial. As a consequence, the Tn-character variety
coincides with the representation space.

Remark 2.1. Let S be any surface of genus g ≥ 2. The representation space Hom
(
π1S,Tn

)
splits as the direct

sum of g copies of Hom
(
π1T,Tn

)
where T denote the 2-torus (we do not use here the blackboard notation since

T is considered only as a topological surface regardless of its group structure). The basis
{
α1, β1, . . . , αg, βg

}
of π1S we �xed satis�es moreover to the equalities i

(
αi, αj

)
= i
(
βi, βj

)
= 0, and i

(
αi, βj

)
= δij for all i, j with

1 ≤ i, j ≤ g. We may associate to any representation ρ : π1S −→ Tn the g-tuple of representations
(
ρ1, . . . , ρg

)
where ρi is the restriction of ρ to the handle generated by αi, βi. Such a mapping de�nes then an isomorphism

Hom
(
π1S,Tn

) ∼= g⊕
i=1

Hom
(
〈αi, βi〉,Tn

)
.

which depends on the basis chosen. This decomposition is a consequence of the fact that a surface of genus g is
the connected sum of a surface of genus g − 1 and a torus T along with the property that each representation
ρ sends all simple closed separating curves to the identity. A recursive argument leads to the desire conclusion.

2.1. Homological representations. Let H1(S,Z) be the �rst homology group. The close connection between
the objects π1S and H1(S,Z) is well-known, indeed the latter is known to be isomorphic to the abelianiza-
tion of π1S. As we have seen above, the representation space Hom

(
π1S,Tn

)
naturally identi�es with the

2gn-dimensional torus assigning to any representation ρ the 2g-tuple
(
ρ(α1), ρ(β1), . . . , ρ(αg), ρ(βg)

)
, where

α1, β1, . . . , αg, βg is a basis for π1S. Every representation ρ fails to be injective and its kernel ker(ρ) always
contains the subgroup generated by the commutators since the target is abelian. Therefore, ρ boils down to a
representation

ρ : H1(S,Z) ∼=
π1S[

π1S, π1S
] −→ Tn, ρ

([
γ
])

:= ρ(γ).

In fact, let γ ∈ π1S and let
[
γ
]
be its image via the canonical projection p : π1S −→ H1(S,Z). Let γ +

[
σ1, σ2

]
be a representative of

[
γ
]
. Since the following chain of equalities holds

ρ
(
γ +

[
σ1, σ2

])
= ρ
(
γ
)
ρ
([
σ1, σ2

])
= ρ
(
γ
)
,

the representation ρ is well-de�ned and the image does not depend on the choice of the representative. Fur-
thermore, the image of ρ agrees with the image ρ by contruction.

De�nition 2.2. We de�ne the homological representation space as the set Hom
(
H1(S,Z),Tn

)
of representations

of H1(S,Z) in Tn endowed with the compact-open topology.
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Lemma 2.3. The homological representation space Hom
(
H1(S,Z),Tn

)
identi�es with the 2gn-dimensional torus

T2gn.

Proof. To any representation ρ we can assign the 2g-tuple
(
ρ([α1]), ρ([β1]), . . . , ρ([αg]), ρ([βg])

)
, where the col-

lection
[
αi
]
,
[
βi
]
, 1 ≤ i ≤ g is a �xed basis of the homology group H1(S,Z). Conversely, given a 2g-tuple(

v1, w1, . . . , vg, wg
)
∈
(
Tn
)2g

, as Tn is abelian, the universal property of free abelian groups implies the exis-
tence of a unique group homomorphism from H1(S,Z) into the n-torus Tn which sends [αi] to vi and [βi] to wi,
for every i = 1, . . . , g. �

The implications of this lemma are quite simple, but of crucial importance. Upon choosing a basis for π1S;
the representation space Hom

(
π1S,Tn

)
identi�es with the homological representation space Hom

(
H1(S,Z),Tn

)
and the identi�cation is explicitely given by the association ρ 7→ ρ. According to this property, we derive the
following lemma.

Lemma 2.4. Let ρ1, ρ2 : π1S −→ Tn be two representations. Then ρ1 ≡ ρ2 if and only if ρ1 ≡ ρ2.

Proof. This is just a matter of de�nitions given so far. The necessary condition follows trivially. The su�cient
condition follows from ρ

([
γ
])

= ρ(γ) for any γ ∈ π1S. �

2.2. Actions of the symplectic group Sp(2g,Z). In this section we are going to describe the action of the
symplectic group Sp(2g,Z) both on the representation space and on the homological representation space.

2.2.1. The symplectic group Sp(2g,Z). We begin with recalling some standard notions. The algebraic intersec-
tion number

∩ : H1(S,Z)×H1(S,Z) −→ Z
extends uniquely to a nondegenerate, alternating bilinear map

∩ : H1(S,R)×H1(S,R) −→ R

which realises H1(S,R) as a symplectic vector space.

De�nition 2.5. A collection of elements
[
αi
]
,
[
βi
]
, 1 ≤ i ≤ g of H1(S,Z) < H1(S,R) such that[

αi
]
∩
[
αj
]

=
[
βi
]
∩
[
βj
]

= 0,
[
αi
]
∩
[
βj
]

= δij

for all i, j with 1 ≤ i, j ≤ g is called a symplectic basis of the group H1(S,Z) or a basis for the symplectic
vector space

(
H1(S,Z), ∩

)
. We de�ne a collection of curves αi, βi such that

{
[αi], [βi]

}
is a symplectic basis as

geometric symplectic basis for π1S.

The matrix associated to the antisymmetric bilinear form ∩ on the basis
[
αi
]
,
[
βi
]
is the 2g × 2g blockwise

diagonal matrix

J =

Jo . . .

Jo

 with Jo =

(
0 1
−1 0

)
.

The symplectic linear group Sp(2g,R) is de�ned as the group of invertible matrices A satisfying the relation
AJAt = J and we denote by Sp(2g,Z) the subgroup of those matrices with integer co�cients.

Remark 2.6. Here, the symplectic group Sp(2g,R) is the subgroup of SL(2g,R) of matrices preserving the
alternating 2-form ω = e1∧e2+ · · ·+e2g−1∧e2g. Sp(2g,R) contains the g-times product SL(2,R)×· · ·×SL(2,R)
as a proper subgroup. In turns, the group Sp(2g,Z) contains the g-times product SL(2,Z)× · · · × SL(2,Z) as a
proper subgroup. This property will be useful in the sequel.

An orientation preserving homeomorphism induces an isomorphism in homology which preserves the inter-
section form ∩ de�ned above. Since isotopic homeomorphisms induce the same map in homology, there is a
representation

µ : Mod(S) −→ Aut+
(
H1(S,Z)

) ∼= SL(2g,Z).

As each homeomorphism preserves the intersection form ∩, the image of µ lies also inside Sp(2g,R). Therefore
the image of µ lies inside SL(2g,Z) ∩ Sp(2g,R) = Sp(2g,Z). The representation µ : Mod(S) −→ Sp(2g,Z)
− usually called symplectic representation of Mod(S) − is surjective with kernel I(S). The subgroup I(S) is
called the Torelli subgroup of Mod(S).

Remark 2.7. In the genus one case the Torelli subgroup is trivial. Indeed, Mod(T ) ∼= SL(2,Z) ∼= Sp(2,Z).
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2.2.2. Comparison of the Mod(S)-orbits with the Sp(2g,Z)-orbits. We now consider the e�ect of changing the
basis of H1(S,Z) pre-composing any homological representation with an automorphism φ ∈ Aut+

(
H1(S,Z)

)
such that any representation ρ is sent to ρ ◦ φ−1. We can, therefore, consider SL(2g,Z)-action on the space
Hom

(
H1(S,Z),Tn

)
. Of course, this action restricts to an action of the symplectic group Sp(2g,Z) on the same

space. We are interested in studying the Sp(2g,Z)-orbits in the homological representation space. The main
goal of this section is proving the following claim.

Proposition 2.8. Let ρ1, ρ2 : π1S −→ Tn be two representations and let ρ1, ρ2 : H1(S,Z) −→ Tn be the
induced representations. Suppose there is φ ∈ Mod(S) such that ρ2 = ρ1 ◦ φ. Then ρ2 = ρ1 ◦ µ(φ), where µ is
the symplectic representation of Mod(S).

Proof. Let φ : π1S −→ π1S be any element of Out(π1S). As the image of any commutator is also a commutator,
the mapping φ boils down to a isomorphism in homology µ(φ) : H1(S,Z) −→ H1(S,Z). Two mappings φ1 and
φ2 boil down to the same isomorphism in homology if and only if φ2 ◦ φ−11 descends to the identity map in
homology, that is φ2 ◦ φ−11 is an element of the Torelli subgroup by a Theorem of Johnson, [Joh80]. Therefore,
the association φ 7−→ µ(φ) de�nes the symplectic representation µ seen above. Look at now the following
commutative diagram

(2.1)

H1(S,Z) Tn

π1S π1S Tn

H1(S,Z) H1(S,Z) Tn

ρ2=ρ1◦φ

p

p

φ ρ1

id

id

µ(φ) ρ1

where p is the canonical projection. As ρ2 = ρ1 ◦ φ by assumption, it turns out ρ2 = ρ1 ◦ φ = ρ1 ◦ µ(φ) as
desired. �

2.2.3. Direct consequences. Proposition 2.8 leads to some interesting consequences that we are going to show.
The �rst one concerns the action of the Torelli subgroup I(S) on the representation space Hom

(
π1S,Tn

)
.

Proposition 2.9. The action of the Torelli group I(S) on the representation space Hom
(
π1S,Tn

)
is trivial.

Proof. Let ρ1 ∈ Hom
(
π1S,Tn

)
be any representation and let φ ∈ I(S). Set ρ2 = φ · ρ1 = ρ1 ◦ φ−1. Proposition

2.8 implies that ρ1 = ρ2 because µ(φ) = 1. We now invoke Lemma 2.4 to conclude ρ1 = ρ2, namely the action
of φ is trivial. �

Remark 2.10. An alternative argument is the following. Let γ and γ′ two isotopy classes of simple closed non
separating curves. In [Joh80], Johnson noticed that γ and γ′ are I(S)-equivalent if and only if they represent
the same element in H1(S,Z). Fix a basis for π1S of simple closed non-separating curves, and let ρ1, ρ2 two
I(S)-equivalent representations, that is ρ2 = ρ1◦φ. For any generator γ we have the following chain of equalities

ρ2
(
γ
)

= ρ2
(
[γ]
)

= ρ1 ◦ φ−1
(
[γ]
)

= ρ1
(
φ−1([γ])

)
= ρ1

(
[γ]
)

= ρ1(γ),

that imply ρ1 = ρ2 as desired.

The n-torus Tn is a compact and connected Lie group and hence mapping class group Mod(S) acts ergodically
on the representation space - see Theorem 1 in the introduction. As the action of the Torelli subgroup I(S) is
trivial, the action of the quotient group is also well-de�ned and the following holds.

Proposition 2.11. The action of Sp(2g,Z) ∼=
Mod(S)

I(S)
on Hom

(
π1S,Tn

)
is ergodic with respect to the �nite

measure µS.

As the homological representation spaces identi�es with the representaton space, it also carries a �nite measure.
Calling ı the identifying map, this �nite measure can be seen as the pull-back measure ı∗µS , where µS is the
�nite measure carried by the representation space.

Corollary 2.12. The action of the symplectic group Sp(2g,Z) on the space Hom
(
H1(S,Z),Tn

)
is ergodic with

respect to the �nite measure ı∗µS.

As a �nal consequence we have the following characterisation.
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Proposition 2.13. Let ρ : π1S −→ Tn be a representation and let ρ : H1(S,Z) −→ Tn the homological
representation induced by ρ. Then the mapping class group orbit Mod(S) ·ρ is dense if and only if the symplectic
group orbit Sp(2g,Z) · ρ is dense.

Proof. Proposition 2.8 implyes that the mapping class group orbit of ρ coincides with the symplectic group
orbit of ρ via the identi�cation ρ 7→ ρ. Therefore, one orbit is dense if and only if the other is dense. �

Corollary 2.14. Let S be a surface of genus g ≥ 1. Then Theorem A holds if and only if Theorem B holds.

2.3. The matrix presentation. The n-torus Tn can be seen also as the quotient of Rn by the standard action
of the lattice 2πZn, indeed the exponential map provides an identi�cation between Rn/2πZn and the n-torus
described above. We shall de�ne the map

(2.2) exp : Rn −→ Tn
(
θ1, . . . , θn

)
7−→

(
eiθ1 , . . . , eiθn

)
as the canonical projection. In the sequel it turns out also useful to look at the n-torus as the quotient of Rn
with a suitable lattice Λ = g ·

(
2πZn

)
where g ∈ SL(n,Z). The reason of that will be discussed afterwards. We

de�ne 2πZn as the the standard lattice − notice that this lattice is 2π times the usual standard lattice.

Fix a set of generators
{
α1, β1, . . . , αg, βg

}
and let us consider Tn as the quotient of Rn by the action of the

standard lattice. Let ρ : π1S −→ Tn be any representations and set

ρ(αi) =
(
eiθ1,2i−1 , . . . , eiθn,2i−1

)
ρ(βi) =

(
eiθ1,2i , . . . , eiθn,2i

)
for any i = 1, . . . , n. The elements ρ(α1), ρ(β1), . . . , ρ(αg), ρ(βg) generate the image of the representation ρ.
Any element γ ∈ π1S may be seen as a word in the letters αi, βi for i = 1, . . . , 2g. Hence, by the Abelian
property, ρ(γ) = ρ

(
w(α1, β1, . . . αg, βg)

)
is equal to ρ(α1)k1 · · · ρ(βg)

k2g for some k1, . . . , k2g ∈ Z. In particular,
the element ρ(γ) can be computed with the following matrix multiplication

θ1,1 · · · θ1,i · · · θ1,2g
...

...
θn,1 · · · θn,i · · · θn,2g




k1
...
ki
...
k2g

 .

De�nition 2.15. Let Θρ be the matrix having as entries the values θi,j ∈ [0, 2π) with i = 1, . . . , n and
j = 1, . . . , 2g. We de�ne Θρ as the matrix associated to ρ with respect the basis

{
α1, β1, . . . , αg, βg

}
and the

standard lattice 2πZn.

In what follows, we shall often identify a representation ρ with its associated matrix. Let us brie�y see the
reason why we are legitimated to do that. Consider the topological vector space M

(
n, 2g;R

)
and introduce an

equivalence relation where A ∼ B if and only if A− B = 2πH ∈ M
(
n, 2g; 2πZ

)
. The mapping ı associating to

any ρ its associated matrix Θρ provides an homeomorphism between the representation space Hom
(
π1S,Tn

)
and the quotient space M

(
n, 2g,T

)
. Moreover, the post-composition of the mapping ρ 7→ ρ with ı−1 de�nes a

homeomorphism between the spaces Hom
(
H1(S,Z),Tn

)
and M

(
n, 2g,T

)
.

Given a representation ρ, the matrix Θρ depends on the choice of a set of generators for π1S and also on the
choice of a lattice Λ < Rn. Let us see how these choices a�ect de�nition 2.15. We begin describing the e�ect of
changing the set of generators of π1S.

2.3.1. The e�ect of changing basis. Given two basis B =
{
α1, β1, . . . , αg, βg

}
and B′ =

{
α′1, β

′
1, . . . , α

′
g, β
′
g

}
of

π1S, we de�ne Θρ and Θ′ρ the matrices associated to ρ : π1S −→ Tn with respect to B and B′ respectively. Every
generator α′l and β

′
l is a �nite word in the letters α1, β1, . . . , αg, βg, so there are integers aij with i, j ∈

{
1, . . . , 2g

}
such that

ρ(α′l) = ρ(α1)a2l−1 1 · · · ρ(βg)
a2l−1 2g and ρ(β′l) = ρ(α1)a2l 1 · · · ρ(βg)

a2l 2g .

Setting A as the integral matrix
(
aij
)
with i, j ∈

{
1, . . . , 2g

}
, a direct computation shows that Θ′ρ equals Θρ ·A.

Likewise, αl, βl are also �nite words in the letters α′1, β
′
1, . . . , α

′
g, β
′
g. Hence, there exist integers bij such that

ρ(αl) = ρ(α′1)b2l−1 1 · · · ρ(β′g)
b2l−1 2g and ρ(βl) = ρ(α′1)b2l 1 · · · ρ(β′g)

b2l 2g .
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Setting B as the integral matrix
(
bij
)
with i, j ∈

{
1, . . . , 2g

}
, the same computation implies Θρ equals Θ′ρ ·B.

It worth noticing Θρ = Θρ · AB and the matrices A,B satisfy the equation AB = I2g implying that A,B are
unimodular. As the matrix Θρ can be singular we cannot directly deduce that AB = I2g, hence let us give a
glimpse of why this is true.

Instead of working in π1S we are going to look at the situation in the �rst homology group H1(S,Z) ∼= Z2g. Let
α1 = w

(
α′1, β

′
1, . . . , α

′
g, β
′
g

)
, in particular[

α1

]
=
[
α′1
]b1 1

[
β′1
]b1 2 · · ·

[
α′g
]b1 2g−1

[
β′g
]b1 2g

where b1j with j = 1, . . . , 2g are as above. On the other hand, any
[
α′l
]
and

[
β′l
]
is of the form[

α′l
]

=
[
α1

]a2l−1 1
[
β1
]a2l−1 2 · · ·

[
αg
]a2l−1 2g−1

[
βg
]a2l−1 2g ,[

β′l
]

=
[
α1

]a2l 1[β1]a2l 2 · · · [αg]a2l 2g−1
[
βg
]a2l 2g .

where aij are as above. Replacing each
[
α′l
]
and

[
β′l
]
inside

[
w
]

=
[
α1

]
, for any l = 1, . . . , g, we obtain[

α1

]
=
[
α1

]k1[
β1
]k2 · · · [αg]k2g−1

[
βg
]k2g

.

As Z2g is torsion-free, we may deduce that k1 = 1 and k2 = · · · = k2g = 0. On the other hand, it is

straightforward to see that km =
∑2g
r=1 b1rarm. Applying the same reasoning to any other generator we get the

desire conclusion.

Remark 2.16. The matrices A and B found above may not have any geometrical meaning. Indeed, for closed
surfaces the action of Aut(π1S) is not transitive on the set of basis of π1S and then two di�erent basis may
not be related by any automorphisms of π1S. This means that not all matrices in SL(2g,Z) have a geometrical
interpretation. As we shall see, a matrix has a geometrical meaning, that is induced by a homeomorphism of
S, if and only if it is symplectic - see Proposition 2.11 above.

2.3.2. The e�ect of changing the basis of the lattice. We begin noticing that the j-th column of the matrix Θρ

corresponds to the vector of coordinates of a lift of the j-th generator of ρ
(
π1S

)
with respect to the standard

lattice. Given any lattice Λ with basis
{
v1, . . . , vn

}
there is a matrix g ∈ SL(n,Z) such that Λ = g ·

(
2πZn

)
.

In particular g
(
ei
)

= vi. Change the basis means to change the coordinates of the vectors forming the columns
of the matrix Θρ. Therefore, with respect to the lattice Λ, the matrix associated to ρ has the following form
gΘρ. In the sequel we shall need to consider the matrix Θρ with respect to a lattice Λ di�erent to the standard
one. We therefore extend the notation in the following way: We denote by Θρ(Λ) the matrix associated to with
respect to Λ. We shall use again the notation Θρ when the lattice is the standard one.

2.3.3. The Z-row rank of the associated matrix. We now introduce the following numerical invariant concerning
the associated matrix Θρ. As we shall see, such an invariant give us a way to characterise dense representations
in Tn completely.

De�nition 2.17. Let M ∈ M
(
n,m;R

)
. We de�ne the Z-row rank of M as the dimension of the Z-module

generated by the rows of M . We shall denote it as rkZ
(
M
)
.

We remark that the Z-row rank is not invariant by transposition.

Lemma 2.18. Let M ∈ M
(
n,m;R

)
. The Z-row rank rkZ

(
M
)
of M is invariant under the left-action of

SL(n,Z). Similarly, rkZ
(
M
)
is invariant under the right-action of SL(m,Z).

Proof. We begin showing the �rst claim. Let k = rkZ
(
M
)
≤ n. De�ne Z as the subset of Zn of those vectors

v such that vM = 0. Notice that Z is a Z-module of dimension n − k. Let A be any matrix in SL(n,Z) and
compute AM . It is easy to check that the j-th row is given by the linear combination

∑n
i=1 aji

(
mi1, . . . ,mim

)
.

Suppose there is a vector µ =
(
µ1, . . . , µn

)
such that µAM = 0, then a straightforward computation shows that

µA ∈ Z, that is µ = vA−1 for some v ∈ Z. The subset Z · A−1 of Zn is thence the set of vectors µ such that
µAM = 0 and it has dimension n − k over Z. Therefore rkZ

(
AM

)
= k. Similarly, the second claim follows

applying an analogous reasoning. �

Given a representation ρ : π1S −→ Tn, the following claims are direct consequences of the lemma above applied
to the matrix Θρ.

Corollary 2.19. Let ρ : π1S −→ Tn be a representation and let Θρ be the matrix associated to ρ with respect
to some basis of π1S. The Z-row rank of Θρ is well-de�ned and it does not depend on any choice of a basis for
π1S either on the choice of any lattice.
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Let v1 . . . , vk be vectors in Rn. In the sequel, we shall say that a Z-module generated by v1 . . . , vk is πQ-free
if and only if 〈v1, . . . , vk〉Z ∩ πQn =

{
(0, . . . , 0)

}
. Keeping this de�nition in mind we �nally state the following

corollary.

Proposition 2.20. Let ρ : π1S −→ Tn be a representation and let Θρ be the matrix associated to ρ with
respect to some basis of π1S. The Z-module 〈Θj : j = 1, . . . , n〉Z generated by the rows of Θρ is πQ-free if and

only if the Z-module 〈
(
AΘρ

)
j

: j = 1 . . . , n〉Z generated by the rows of AΘρ is πQ-free, where A ∈ SL(n,Z).

Similarly, 〈Θj : j = 1, . . . , n〉Z is πQ-free if and only if the Z-module 〈
(
ΘρB

)
j

: j = 1, . . . , n〉Z is πQ-free,
where B ∈ SL(2g,Z).

Proof of Proposition 2.20. Look at the matrix AΘρ and suppose there are λ1, . . . , λn ∈ Z such that

n∑
j=1

λj

( n∑
i=1

aji
(
θi,1, . . . , θi,2g

))
∈ πQ2g.

A simple manipulation of the formula above shows that

n∑
j=1

λj

( n∑
i=1

aji
(
θi,1, . . . , θi,2g

))
=

n∑
i=1

( n∑
j=1

λjaji

)(
θi,1, . . . , θi,2g

)
,

implying the existence of some µ1, . . . , µn ∈ Z such that

n∑
j=1

µj
(
θi,1, . . . , θi,2g

)
∈ πQ2g. The proof of the second

claim works similarly: Suppose there are λ1, . . . , λn ∈ Z such that

n∑
i=1

λi

( 2g∑
j=1

θi,j
(
bj1, . . . , bj2g

))
∈ πQ2g.

The same manipulation shows that

n∑
i=1

λi

( 2g∑
j=1

θi,j
(
bj1, . . . , bj2g

))
=

2g∑
j=1

( n∑
i=1

λiθi,j

)(
bi1, . . . , bi2g

)
,

implying that

n∑
i=1

λiθi,j ∈ πQ for any j = 1, . . . , 2g. That is
(
λ1, . . . , λn

)
Θρ ∈ πQ2g. �

2.4. Remarks and comments on the modular action. In this section we collect a couple of �nal remarks
about the Sp(2g,Z)-action.

2.4.1. Explicit description of the modular action. The action of the mapping class group on the representation
space is de�ned by pre-composition of any representation with an automorphism φ ∈ Out(π1S) such that any
representation ρ is sent to ρ ◦ φ−1. Since the Torelli subgroup acts trivially on the representation space by our
Proposition 2.9, the action of mapping class group boils down to an action of the group Sp(2g,Z) which agrees
with the Sp(2g,Z)-action on Hom

(
H1(S,Z),Tn). In section 2.3, we have identi�ed the representation space with

M
(
n, 2g;T

)
by using the mapping ı associating to any representation ρ its matrix Θρ. We use such a mapping

to transfer the action of Mod(S) on Hom
(
π1S,Tn

)
to an action of Sp(2g,Z) on M

(
n, 2g;T

)
. Since any φ ∈ I(S)

leaves ρ �xed, the matrix associated to ρ′ = φ · ρ = ρ ◦φ−1 agrees with Θρ, this is a consequence of Proposition
2.9. Any coset φ I(S) de�nes a unique matrix A in Sp(2g,Z). In the light of the discussion given at subsection
2.3.1, the matrix associated to ρ′ = φ · ρ is Θρ′ = ΘρA

−1. Therefore, the action of Sp(2g,Z) on M
(
n, 2g;T

)
is

de�ned as A ·Θρ = ΘρA
−1. As the mapping ı is a homeomorphism, it is clear that Sp(2g,Z)-orbit of ρ is dense

in the representation space if and only if the Mod(S)-orbit of Θρ is dense in M
(
n, 2g;T

)
.

2.4.2. The modular action commutes with the change of lattice. Given a representation ρ : π1S → Tn, the main
goal of the present paper is to study its orbit under the action of the mapping class group. This reduces to study
the orbit of the matrix Θρ naturally attached to ρ in the space M

(
n, 2g;T

)
. However the matrix Θρ depends on

the lattice chosen and hence the orbit could depend on the chosen lattice. The aim of this paragraph is to point
out that this is not the case; indeed the change of lattice commutes with the modular action. Each element Θ
in the space M

(
n, 2g;T

)
can be thought as the datum of n vectors Θi ∈ T2g corresponding to the rows of Θ.

By adopting this point of view, the space M
(
n, 2g;R

)
identi�es with T2g × · · · × T2g. There is a left action of
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the group G de�ned as

G =


A . . .

A

 : A ∈ Sp(2g,Z)

 ∼= Sp(2g,Z) < SL(2gn,Z)

on the 2gn-dimensional torus induced by the natural right action of the symplectic group in the matrix space
M
(
n, 2g;T

)
. Using this new perspective, one can easily verify that any change of lattice commutes with the

Sp(2g,Z) action. Indeed, any change of lattice h ∈ SL(n,Z) can be seen as an element of the group H de�ned
as

H =


h1 1I2g · · · h1nI2g

...
. . .

...
hn 1I2g · · · hnnI2g

 ∣∣∣∣∣ where
h1 1 · · · h1n

...
...

hn 1 · · · hnn

 ∈ SL(n,Z)

 ∼= SL(n,Z) < SL(2gn,Z)

Since H commutes with the group G de�ned above, the Sp(2g,Z) action commutes with the change of lattice.

3. Characterising dense representations

In this section we provide a complete characterisation of dense representations by providing necessary and
su�cient conditions. From section 1, we recall that a representation ρ : π1S −→ Tn is dense if the subgroup
ρ
(
π1S

)
is dense in Tn. We have seen in the previous section that, upon choosing a basis of the fundamental

group and a lattice, each representation is represented by a well-de�ne matrix Θρ. Along this section we �x an
arbitrary basis for the fundamental group and we consider Tn as the quotient of Rn with the standard lattice.

Theorem 3.1. Let ρ : π1S −→ Tn be a representation. Then ρ is dense in Tn if and only if rkZ
(
Θρ

)
= n and

the rows of Θρ generate a πQ-free Z-module.

Notice that the necessary condition means that the Z-module generated by the rows of the matrix Θρ does not
intersect πQ2g and is equivalent to say that row rank over Z of the matrix

(3.1)

(
Θρ

π · I2g

)
=



θ1,1 · · · θ1,2g
...

...
θn,1 . . . θn,2g
π · · · 0
...

. . .
...

0 · · · π


is maximal, namely 2g + n. Before proving the Theorem, we need a preliminar Lemma.

Lemma 3.2. Suppose that ρ : π1S −→ Tn is dense. Then each representation ρk = πk ◦ ρ, where πk is the
projection to kth factor, is dense.

Proof of Lemma 3.2. Suppose there is k for which the representation ρk is not dense. Then there is an open
subset A ⊂ S1 such that A ∩ ρk

(
π1S

)
= ∅. Suppose without loss of generality that k = 1. Then

(
A× Tn−1

)
∩

ρ
(
π1S

)
= ∅. In particular ρ is not dense, hence a contradiction. �

Proof of Theorem 3.1. Assume ρ has a dense image and suppose the Z-module generated by the rows intersect

πQ2g that is rkZ

(
Θρ

π · I2g

)
< 2g + n. Thus, there is a row Θi of Θ such that:

n∑
j=1
j 6=i

λjΘj +
(
λn+1π, . . . , λn+2gπ

)
= λiΘi

with λi di�erent to zero. Such a summation can be rewritten as:

n∑
j=1

λjΘj =
(
λn+1π, . . . , λn+2gπ

)
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for some λj ∈ Z and not all zero. Consider the matrix M ∈ M
(
n,Z

)
∩GL

(
n,Q

)
de�ned as:

M = In + (λi − 1)Eii −
n∑
j=1
j 6=i

λjEij =



1 0 · · · · · · · · · 0
0 1 · · · · · · · · · · · ·

· · · · · ·
. . . · · · · · · · · ·

−λ1 −λ2 · · · λi · · · −λn
· · · · · · · · · · · · 1 0
0 0 · · · · · · 0 1


where the Eij =

(
ekl
)
are the matrices with coe�cients ekl = δkiδlj . The matrix M de�nes a linear homeomor-

phism, say fM of Rn with respect to the canonical basis because detM = −λi which is di�erent to zero. The
mapping fM sends Zn to itself and descends to a �nite-degree covering fM : Tn −→ Tn - in fact the degree
coincides with the determinant of M . In particular the following equation holds: π ◦ fM = fM ◦ exp, where
exp : Rn −→ Tn denotes as usual the canonical projection. Consider now the Z-module 〈Θj : j = 1, ..., n〉Z
generated by the rows of Θρ. A straightforward computation shows that its image via the mapping fM is the
Z-module generated by the vectors

〈
θ1,1
. . .

λn+1π
. . .
θn,1

 , . . . ,


θ1,2g
. . .

λn+2gπ
. . .
θn,2g


〉

Z

Let us point out the following fact: As ρ is assumed to be dense in the torus, the image via the canonical
projection in Tn of Z-module generated by the rows of Θρ �lls a dense subset of Tn, namely the image of ρ. As
M commutes with the action of 2πZn and pass through to the quotient as a �nite-degree covering map of the
Tn, the Z-module M · 〈Θj : j = 1, ..., n〉Z is mapped on a dense subset of the torus. On the other hand, the
projection of the i-th factor is discrete. Lemma 3.2 implies the desire contradiction.
We now prove the opposite implication and again we argue by contradiction. Suppose ρ does not have a
dense image in the n-torus, then its closure is a k-dimensional submanifold, say S0, of dimension k < n.
We note that S0 may not be connected in general. Indeed any closed subgroup of Tn is homeomorphic to
Td× Z

m1Z ×· · ·×
Z

mn−dZ , that is a �nite collection of inhomogeneous tori. Assume �rst S0 be connected; we shall

deduce the general case later on. The subspace S0 lifts to a linear subspace S̃0 of Rn which of course contains
the Z-module 〈Θj : j = 1, ..., 2g〉Z generated by the columns of Θρ. We now invoke the following lemma.

Lemma 3.3. There is g ∈ SL(n,Z) such that :

g · 〈Θj : j = 1, . . . , 2g〉Z <
〈
e1, . . . , ek

〉
R

where the ei's are the vectors of the canonical basis of Rn.

Assume the lemma holds. The Z-module g ·〈Θj : j = 1, ..., 2g〉Z is contained in the �rst factor of Tn = Tk×Tn−k
and then Θρ cannot have maximal row rank over Z. As a consequence the matrix given in the equation 3.1
cannot have maximal row rank over Z. The general case follows by applying the same reasoning to the com-
ponent So0 of S0 containing the identity which contains a �nite-index Z-module of 〈Θj : j = 1, ..., 2g〉Z. In the
general case, g · 〈Θj : j = 1, ..., 2g〉Z is contained in Tn = Tk × F , where F is isomorphic to the �nite group
Z

m1Z × · · · ×
Z

mn−dZ . Let us proceed with the proof of Lemma 3.3.

Proof of Lemma 3.3. If S̃0

o
is contained in

〈
eσ(1), . . . , eσ(k)

〉
R for some σ ∈ Sn then it is su�cient to rename

the coordinates. This corresponds to a matrix g obtained by product of elementary matrices. Assume S̃0

o
is

not contained in any such a space. Let xi be the intersection of S̃0

o
with the a�ne space ei + Rn−k and let di

its Euclidean distance to Rd. Then xi has the following form:

xi =
(
0, . . . , 1, . . . , 0, t1, . . . , tn−k

)
where ti ∈ Q. In fact, if this had been not true then So0 would have been a dense subspace of dimension k + 1

in the torus. As a consequence di ∈ Q for any i = 1, . . . , k and S̃0

o
is described by n− k equations with integer

coe�cients. Look at the set S̃0

o
∩ Zn. This is a lattice in S̃0

o
and there is a basis v1, . . . , vk made of integer

vectors. We invoke [Cas97, Corollary 3, pag.14] to claim the existence of n − k vectors vk+1, . . . , vn such that
the vectors v1, . . . , vn gathered together form a basis for Zn. Since SL(n,Z) acts transitively on the space of
lattices, there is g such that

g · 〈Θj : j = 1, . . . , 2g〉Z < g · S̃0 =
〈
e1, . . . , ek

〉
R.



MODULAR ORBITS ON THE REPRESENTATION SPACES OF COMPACT ABELIAN LIE GROUPS 13

This concludes the proof of Lemma 3.3 and indeed the proof of Theorem 3.1. �

From the proof we deduce that the row rank of the matrix Θρ has a very explicit geometric interpretation, in
fact it coincides with the dimension of the subspace containing the image of ρ. Of course, the proof does not
depend on the presentation of π1S either on the lattice chosen. Let us prove these facts.

Independence on the chosen basis. Let 〈Θj : j = 1, . . . , 2g〉Z be the Z-module generated by the columns of
Θρ. In section 2.3.1 we have seen that the change of basis corresponds to multiply on the right the matrix Θρ

with a matrix A ∈ SL(2g,Z). Since the row rank of Θρ is invariant under the action by right-multiplication
of SL(2g,Z), the matrices Θρ and ΘρA have the same row rank. Furthermore, in the light of Corollary 2.20,
πQ-freedom is also invariant under the right action of SL(2g,Z). On the other hand, let S be the closure of

the subspace of Tn generated by the columns of Θρ. Its lift S̃ is a linear (possibly improper) subspace of Rn
described by n − k equations. As the columns of ΘρA satisfy the same equations, the image of una�ected by
the change of basis. This proves the independence on the basis chosen. �

Independence on the lattice chosen. Given two lattices Λ1 and Λ2, there always exists an element of A ∈
SL(n,Z) mapping the �rst lattice on the second one because the action of SL(n,Z) is transitive on the set of lat-
tices. Such a map descends to a homeomorphism of the n-torus and hence the Z-module 〈Θj : j = 1, . . . , 2g〉Z
projects to a dense subset of the torus if and only if its image via A projects to dense subset as well. On
the other hand, the row rank of the associated matrix Θρ(Λ1) equals the one of Θρ(Λ2) because the row rank
is invariant under the action by left-multiplication of SL(n,Z). Again, Corollary 2.20 implies πQ-freedom is
invariant under the left action of SL(n,Z). Hence the conclusion. �

We �nally provide a couple of explicit examples.

Example 3.4. Let S be a surface of genus 2, and let ρ : π1S −→ T2 ∼= S1 × S1 be the representation such that
ρ(a1) = ρ(a2) =

(
eiϕ, eiϕ

)
, where ϕ ∈ R \ πQ, and ρ(b1) = ρ(b2) = (1, 1).

The matrix Θ has the following form (
ϕ 0 ϕ 0
ϕ 0 ϕ 0

)
If γ ∈ π1S, then ρ(γ) = ρ(a1)k1ρ(b1)k2ρ(a2)k3ρ(b2)k4 with ki ∈ Z. Consider the vector v = (k1, k2, k3, k4), then
Θ · v =

(
(k1 + k3)ϕ, (k1 + k3)ϕ

)
. Viewing the 2-torus as a complex with one 0-cell, four 1-cells and one 2-cell,

the image of ρ is densely contained the main diagonal. Both projections are dense in S1, but the image does
not �ll T2. Notice that the row rank of Θ over Z is one as the dimension of the smallest subspace containing
ρ
(
π1Σ

)
.

Example 3.5. Let S be a surface of genus 2, and let ρ : π1Σ −→ T2 ∼= S1 × S1 be the representation such that
ρ(a1) = ρ(a2) =

(
eiϕ, 1

)
and ρ(b1) = ρ(b2) =

(
1, eiϕ

)
with ϕ ∈ R \ πQ.

The matrix Θ has the following form (
ϕ 0 ϕ 0
0 ϕ 0 ϕ

)
If γ ∈ π1S, then ρ(γ) = ρ(a1)k1ρ(b1)k2ρ(a2)k3ρ(b2)k4 with ki ∈ Z. Consider the vector v = (k1, k2, k3, k4), then
Θ · v =

(
(k1 + k3)ϕ, (k2 + k4)ϕ

)
. Viewing the 2-torus as a complex with one 0-cell, four 1-cells and one 2-cell,

the image of ρ densely �lls the torus. Notice that the rank of Θ is two in this case and both projections are
dense.

4. Sp(2g,Z)-action and orbit closures

The symplectic group Sp(2g,Z) acts on the homological representation space Hom
(
H1(S,Z),Tn

)
by precompo-

sition. We have seen in section 2.3 that, up to a choice of a symplectic basis, this latter space identi�es with
the space M

(
n, 2g;T

)
. In this section we would like to study the orbit closures of an element of M

(
n, 2g;T

)
under the action of Sp(2g,Z). The �rst thing we notice is that a subset Ω ⊂ M

(
n, 2g;R

)
is invariant under

the action Sp(2g,Z) nM
(
n, 2g; 2πZ

)
if and only if its projection onto M

(
n, 2g;T

)
is Sp(2g,Z)-invariant. This

simple remark legitimates us to study the orbit closures on the universal cover, that is M
(
n, 2g;R

)
.

Let us consider the group G = Sp(2g,R) nM
(
n, 2g;R

)
. Given two elements (A, a) and (B, b), their product

is de�ned as follows (A, a) · (B, b) = (AB, bA−1 + a). The group G acts transitively on the space M
(
n, 2g;R

)
with the action being de�ned as (A, a) · p = pA−1 + a − indeed a point p ∈ M

(
n, 2g;R

)
may be regarded

as the couple (I, p). The space M
(
n, 2g;R

)
naturally identi�es with the G/U , where U is the stabiliser of
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any point. It is straighforward to check that the of the zero matrix is nothing but Sp(2g,R). The subgroup
Γ = Sp(2g,Z) nM

(
n, 2g; 2πZ

)
is a lattice in G and acts in the obvious way on G/U . Under these conditions

we are in the right position to apply Ratner's Theorem, see [Rat91], which we state as follows according to our
setting.

Ratner's Theorem. Let G,U,Γ as above and let p ∈ M
(
n, 2g;R

)
= G/U such that p = γ U . Then there is a

closed subgroup Hγ such that the following holds.

• Uγ = γ U γ−1 ≤ Hγ ,
• Γ ∩ Hγ is a lattice in Hγ and

• Γ · p = ΓHγ p.

Notice that γ can be taken as (I, p). Since our goal here is to classify the closures of Γ-orbits of any point in
the space M

(
n, 2g;R

)
, we just need to �gure out which subgroups of G may be provided by Ratner's Theorem.

To this purpose, let us consider the projection Φ : Sp(2g,R) n M
(
n, 2g;R

)
−→ Sp(2g,R). Given a point p

in M
(
n, 2g;R

)
, the group Hγ is isomorphic to the semidirect product Hγ = Uγ n Kγ , where Kγ is de�ned

as kerΦ ∩ Hγ , that is the kernel of the mapping Φ restricted to Hγ . Notice that the image of Hγ under the
mapping Φ is the whole group Sp(2g,R) because Hγ ≥ Uγ ∼= Sp(2g,R). In particular, Hγ

∼= Sp(2g,R) nKγ .

Let us proceed on understanding Kγ . The �rst thing we notice is that any change of lattice h ∈ SL(n,Z)
extends to a homeomorphism φh of G de�ned as

φh : G −→ G, φh(A, a) = (A, ha).

This is an automorphism of G and its restriction to kerΦ, where Φ is the projection just de�ned above, is linear
and corresponds to a change of lattice in M

(
n, 2g;R

)
. In particular, the relation

(4.1) Γ · (h p) = φh
(
Γ · p

)
holds for any p ∈ M

(
n, 2g;R

)
. As a consequence of Lemma 3.3, there is an element h ∈ SL(n,Z) such that h · p

is of the following form

(4.2)



θ1,1 · · · θ1,2g
...

...
θk,1 . . . θk,2g

π qk+1,1 · · · π qk+1,2g

...
...

π qn,1 · · · π qn,2g


=

(
Θo

πQ

)

where

• Θo ∈ M
(
k, 2g;R

)
for some 0 ≤ k ≤ n,

• πQ ∈ M
(
n− k, 2g;πQ

)
,

• the vectors
{

(θi,1, . . . , θi,2g)
}
i=1,...,k

lines are linearly independent over Z, and
•
〈
(θi,1, . . . , θi,2g) : i = 1, . . . , k

〉
is πQ-free;

and hence it is su�cient to study Kγ for γ = (I, p) and p is a matrix in the form 4.2. Furthermore, it will be
su�cient to study the closures of Γ-orbits for matrices in these form. The second thing we notice is that Kγ is
a linear subspace of M

(
n, 2g;R

)
invariant under the action of Uγ by conjugation. Indeed, suppose γ = (I, p),

let q = (I, q) ∈ Kγ be any point and let (A, p− pA−1) be a generic element of Uγ . Then

(A, p− pA−1) · (I, q) · (A−1, p− pA) = (I, qA−1) ∈ Kγ

as claimed. The following Lemma implies our main Theorem A for representations of closed surface groups into
the unit circle S1.
Lemma 4.1. Let θ =

(
θ1, . . . , θ2g

)
∈ R2g. If θ ∈ πQ2g, then

(
Sp(2g,Z) n 2πZ2g

)
· θ is discrete in R2g.

Otherwise, if θ ∈ R2g \ πQ2g, then Sp(2g,Z) · θ is dense in T2g and hence
(
Sp(2g,Z) n 2πZ2g

)
· θ is dense in

R2g.

Proof. Let Λ be the subgroup of R generated by the entries of θ and consider Λ2g. The �rst claim is easy to
establish. In this case Λ2g is a lattice in R2g containing 2πZ2g and preserved by Sp(2g,Z). Now observe that
the Sp(2g,Z)-orbit of θ is contained in Λ2g. Suppose θ ∈ R2g \ πQ2g, hence there exists θi ∈ R \ πQ. There is
an element in Sp(2g,Z) such that all the entries are R \ πQ. We may assume θi ∈ [0, 2π) for all i = 1, . . . , 2g.
Let θ∗ ∈ T2g be any point. For each couple (θ2i−1, θ2i), where i = 1, . . . , g, there are two integers ki, hi such
that the couple

(
ki θ2i−1 + θ2i, (ki hi − 1)θ2i−1 + hi θ2i

)
is closed to (θ∗2i−1, θ

∗
2i). Therefore the Sp(2g,Z)-orbit

of θ is dense in T2g and hence Sp(2g,Z) n 2πZ2g · θ is dense in R2g as desired. �
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Before proving the general case we need the following proposition on which we describe the group Kγ .

Proposition 4.2. Let p ∈ X be any point in the form given in the equation (4.2) and let k the number of
lines not in πQ2g. Let Hγ be the group provided by Ratner's Theorem, where γ = (I, p). Then Kγ is trivial or

Kγ = M
(
k, 2g;R

)
.

Proof of Proposition 4.2. Let p be any point in M
(
n, 2g;R

)
. Assume p be di�erent from the zero matrix for

which the claim trivially holds. Let us begin with the case p = πQ ∈ M
(
n, 2g;πQ

)
, that means k = 0. We

claim Kγ to be trivial. Let γ = (I, p) and let Hγ be the group provided by Ratner's Theorem. The orbit Γ · p
lies in the subgroup of M

(
n, 2g;R

)
generated by the matrices πqij Eij , where πqij are the entries of p, which

is discrete and closed. This means that Γ · p = Γ · p and implies Hγ is the stabiliser of p. Therefore Hγ = Uγ
and hence Kγ is trivial. Notice that this argument generalises the �rst case of the previous Lemma 4.1. Let us
now assume k > 0. The linear space Kγ is completely determined by Θo, indeed the block πQ does not give
any contribution. In this case, the orbit Γ · p is no longer closed and the Sp(2g,Z)-orbit of p is contained in
some linear subspace of M

(
k, 2g;R

)
of dimension 2g l, where l is the dimension of the linear space generated by

the rows of Θo. Hence Kγ contains V as a proper subspace. We can notice that V is Sp(2g,R)-invariant but
V ∩ M

(
k, 2g; 2πZ

)
is not a lattice because the Z-module generated by the rows of Θo is πQ-free. For the same

reason, the minimal linear space containing V and a lattice is M
(
k, 2g;R

)
, hence Kγ = M

(
k, 2g;R

)
. �

From the proof of Proposition 4.2 we can deduce the following corollary.

Corollary 4.3. Let p ∈ M
(
n, 2g;R

)
be any point in the form given in the equation (4.2) and let k the number

of lines not in πQ2g. There exists a closed connected subgroup H ≤ Tn of dimension k such that Γ · p projects to
a �nite union of inhomogeneous torii of dimension k corresponding to cosets of H. In particular, the modular
orbit of a dense representation ρ : H1(S,Z) −→ Tn is dense in the representation space.

This corollary implies Theorem B and indeed Theorem A. In the appendix, we shall study the modular orbits
by applying a direct approch without rely on Ratner's Theory.

5. An application: Approximation result

The aim of this �nal section consists in showing Proposition D and indeed Theorem C. Let us begin by recalling
the statement of Kronecker's Theorem as formulated in [HR63, Section 26.19(e)]. The reader may also consult
[BM00, Section 1.12(iii)] for another one-dimensional version of Kronecker's theorem.

Kronecker's Approximation Theorem. Let b(i) =
(
b
(i)
1 , . . . , b

(i)
m

)
, with i = 1, . . . , n, be vectors of Rm such

that b(1), . . . , b(n), πe1, . . . , πem are linearly independent over Q in the vector space Rm (where the ej's form the
canonical basis of Rm). Let a1, . . . , an be any real numbers and let ε be a positive number. Then there is an
element

(
k1, . . . , km

)
∈ Zm such that

(5.1)
∣∣∣ai − m∑

l=1

klb
(i)
l

∣∣∣ < ε mod 2π

for every i = 1, . . . , n.

For a real a, the expression |a| < ε mod 2π means that |a − 2kπ| < ε for some integer k. From the equation
(5.1) above, one can easily infer the equivalent estimate

(5.2)
∣∣∣∣∣∣(a1, . . . , an)t − 2π

(
h1, . . . , hn

)t −B (k1, . . . , km)t∣∣∣∣∣∣ < Cε

where
(
h1, . . . , hn

)
∈ Zn, B is the matrix having b(i)'s as rows, C is a real constant depending only on n and∣∣∣∣ · ∣∣∣∣ is any norm on Rn. Kronecker's theorem generalises to simultaneous approximation of l given real vectors

a(j) =
(
a1j , . . . , anj

)t
where j = 1, . . . , l. Indeed, for any ε > 0 there is a matrix K ∈ M

(
m, l;Z

)
such that

(5.3)
∣∣∣∣∣∣A− 2πH −BK

∣∣∣∣∣∣ < Cε

where A is the matrix having a(j)'s as columns, H ∈ M
(
n, l;Z

)
and C is a constant depending only on l, n.

That is

(5.4)
∣∣∣∣∣∣A−BK∣∣∣∣∣∣ < ε mod 2π.

Let S be a closed surface of genus greater than zero, let ρ : π1S −→ Tn be a representation and let Θρ be the
associated matrix in the sense of De�nition 2.15.
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Proposition D. The following are equivalent.

1. Mod(S) · ρ is dense in the representation space.
2. For any matrix A ∈ M

(
n, 2g;R

)
and any ε > 0 there is a matrix g ∈ Sp(2g,Z) such that∣∣∣∣A−Θρ g

∣∣∣∣ < ε mod 2π.

Proof of Proposition D. Each representation is identi�ed with its associated matrix and the representation space
with M

(
n, 2g;T

)
. Suppose Mod(S) · Θρ is not dense in the representation space. Then there is an open set U

such that Mod(S) ·Θρ ∩ U = φ. Let A be any matrix in U and ε a strictly positive real number such that the
open ball Bε(A) ⊂ U . Then, for any g ∈ Mod(S) the following estimate

∣∣∣∣A−Θρ g
∣∣∣∣ > ε mod 2π holds. As the

action of the Torelli subgroup is trivial by Proposition 2.9, the action of the mapping class group coincides with
the action of Sp(2g,Z). Therefore, Theorem C implies Theorem A.
Suppose Mod(S) · Θρ dense in the representation space. Then, for any A ∈ M

(
n, 2g;T

)
and for any ε > 0 the

mapping class group orbit intersects the open set Bε(A) ⊂ M
(
n, 2g;T

)
, i.e. there is an element g ∈ Mod(S)

such that g−1 ·Θρ = Θρ g ∈ Bε(A). In particular,
∣∣∣∣A−Θρ g

∣∣∣∣ < ε mod 2π. Once again, by Proposition 2.9, the
matrix g can be taken in Sp(2g,Z) and so Theorem A implies Theorem C as desired. �

Appendix A. Dense Orbits and further discussion

In this appendix we are going to prove Theorem A for almost every representation without relying on Ratner's
Theorem. We begin consider the genus one case and we shall use it to extend the discussion to surfaces of
arbitrary genus.

A.1. Direct proof of Theorem B for almost every representations. The set of matrices M
(
n, 2g;T

)
contains, as a proper subset, the space D of all of those matrices of the following form

(A.1)



θ1 θ2 · · · θ2i−1 θ2i · · · θ2g−1 θ2g
...

...
...

...
...

...
λjθ1 λjθ2 · · · λjθ2i−1 λjθ2i · · · λjθ2g−1 λjθ2g
...

...
...

...
...

...
λnθ1 λnθ2 · · · λnθ2i−1 λnθ2i · · · λnθ2g−1 λnθ2g


where

(
θ1, θ2, . . . , θ2g−1, θ2g

)
∈ R2g\πQ2g is the lift of

(
eiθ1 , eiθ2 , . . . , eiθ2g−1 , eiθ2g

)
∈ T2g contained in [0, 2π)2g

and the reals {λi} ⊂ R are linearly independent over Q.

Lemma A.1. D is dense in M
(
n, 2g;T

)
.

Proof. Let λ2, . . . , λn real numbers such that 1, λ2, . . . , λn are linearly independent over Q. Consider the map-
ping ϕ : R2g −→ T2gn de�ned as(

θ1, θ2, . . . , θ2g−1, θ2g

)
7→
((
eiθ1 , . . . , eiθ2g

)
,
(
eiλ2θ1 , . . . , eiλ2θ2g

)
, . . . ,

(
eiλnθ1 , . . . , eiλnθ2g

))
.

This mapping factors through a mapping ϕ : R2g −→ R2gn such that ϕ = exp ◦ϕ and exp is the exponential
mapping thought as in equation (2.2) introduced in section 2.3. The image of ϕ is a 2g-dimensional linear
subspace. As 1, λ2, . . . , λn are linearly independent over Q, then the projection via the exponential mapping is
dense in T2gn. The space D is de�ned as the union of the images for each possible subset {λ2, . . . , λn} ⊂ R such
that 1, λ2, . . . , λn are linearly independent over Q. Therefore D is dense. �

The following lemma is easy to establish and the proof is left to the reader.

Lemma A.2. D is Sp(2g,Z)-invariant.

Let us consider �rst surfaces of genus one. Let T be the torus, let ρ : π1T −→ Tn be a dense representation
and let Θρ be its associated matrix with respect to some basis

{
α, β

}
and the standard lattice of Rn. Let Ωρ

be the SL(2,Z)-orbit of Θρ in M
(
n, 2;T

)
. The associated matrix Θρ has the following form:

(A.2) Θρ =



θ1 θ2
...

...
λiθ1 λiθ2
...

...
λnθ1 λnθ2


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where
(
θ1, θ2

)
∈ R2 is the lift of

(
eiθ1 , eiθ2

)
∈ T2 contained in [0, 2π)2 and λi ∈ R, for any i = 2, . . . , n, are

linearly independent over Q. Set

Θρ =

(
Θρ

π · I2.

)
Since the representation ρ is assumed to have a dense image, the matrix Θρ has maximal row rank, that is
rkZ = n+ 2. This implies the following properties of the matrix Θρ above.

A.2.i The real numbers θ1 and θ2 cannot be both elements of πQ. If this were the case, the row rank of
the matrix Θρ would fail to be maximal, contradicting our assumptions. In the case one on them is an
element of πQ, we can change the basis in such a way they are both elements of R \ πQ. Indeed, assume
without loss of generality that θ2 ∈ πQ. The Dehn twist Tα along α maps the curve β to αβ and hence
ρ(β) is mapped to ρ(αβ). The second column of Θρ changes accordingly and the element of place (1, 2)
of ΘTα·ρ is nothing else that θ1 + θ2. As θ1 /∈ πQ the same necessarily holds for θ1 + θ2. In what follows,
we shall assume both θ1, θ2 /∈ πQ.

A.2.ii The real numbers π, θ1, . . . , λiθ1, . . . , λnθ1 are linearly independent over Q. Indeed, if this were not the
case then one can easily check that Θρ has not maximal rank. This implies that the subgroup of Tn
generated by the vector

(
θ1, . . . , λiθ1, . . . , λnθ1

)
is dense in Tn, see [BM00, Exercise 1.13], meaning that

Tn is monothetic (that is Tn contains a dense cyclic subgroup). The same holds also for the real numbers
π, θ2, . . . , λiθ2, . . . , λnθ2.

A.2.iii The real numbers 1, λ2, . . . , λn are linearly independent over Q. If this were not the case, then there
would be a1, . . . , an ∈ Q such that a1 + a2λ2 + · · ·+ anλn = 0. In particular,

n∑
i=1

aiλi
(
θ1, θ2

)
= 0,

with λ1 = 1. That is the rows of Θρ are linearly dependent over Q. Therefore the row rank cannot
be maximal, a contradiction. In particular, λi /∈ Q for every i = 2, . . . , n. In what follows, we shall
sometimes refer to 1 as λ1 for simplify the formulas.

We begin with considering the SL(2,Z) action on the space M
(
n, 2;R

)
seen as the universal cover of M

(
n, 2;T

)
,

see also Remark 2.15. Given the matrix Θρ as in A.2, there is a unique lift, say Θ(ρ), in M
(
n, 2;R

)
which is

still of the form A.2. Notice that such a matrix is the unique one who has all the entries in the interval [0, 2π).
Let us �nally denote with Ω(ρ) the SL(2,Z)-orbit of Θ(ρ) in M

(
n, 2;R

)
.

Since Θ(ρ) is of the form A.2, an easy computation shows that the matrix A · Θ(ρ) ∈ Ω(ρ) is still of the form
A.2 for any A ∈ SL(2,Z), that is the i-th row of A ·Θ(ρ) is λi-times

(
θ1, θ2

)
A−1. Therefore, we can deduce that

Ω(ρ) is contained in some proper linear subspace S of R2n. In fact, the coe�cients of any matrix A ·Θ(ρ) ∈ Ω(ρ)
satisfy the following homogeneous linear system

(A.3) S :



θ2,1−λ2θ1,1 = 0

...

θn,1−λnθ1,1 = 0

θ22−λ2θ12 = 0

...

θn2−λnθ12 = 0

in 2n− 2 equations and 2n variables. Hence, S is de�ned as the full space of solutions of the linear system S.
Let us consider then the subspace S. Since each of the λi is taken as an element of R \Q, the subspace S meets
the lattice M

(
n, 2; 2πZ

)
only at the origin. Therefore, the projection of the subspace S into the space M

(
n, 2;T

)
densely �lls a closed subspace K of M

(
n, 2;T

)
. We �nally claim that K cannot be a proper subspace. To this

end, we begin with noting that, due to the nature of the linear system S, the subspace S splits as the direct
product V1 × V2 inside the space Rn × Rn ∼= M

(
n, 2;R

)
. Therefore, the image of S into the space M

(
n, 2;T

)
lies inside a closed subgroup of the form H1×H2, where Hi < M

(
n, 1;T

) ∼= Tn, for i = 1, 2. Notice that K is a

proper subgroup of M
(
n, 2;T

)
if and only if Hi is a proper subgroup of M

(
n, 1;T

)
. Therefore the proof of the

�nal claim boils down to show that Hi cannot be a proper subgroup for both i = 1, 2. As the group H1 contains
the vector exp

(
θ1, λ2θ1, . . . , λnθ1

)
, then it contains also the subgroup

{
exp

(
t
(
θ1, λ2θ1, . . . , λnθ1

))
| t ∈ Z

}
and
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thus its closure which we know to be equal to the full space Tn. In the same fashion, we can prove H2 = Tn.
Therefore K = M

(
n, 2;T

)
and the SL(2,Z)-orbit of Θρ is dense in M

(
n, 2;T

)
as desired.

The general case for surfaces of genus greater than one works similarly. Given any matrix of the form as in
equation (A.1), up to change the matrix with any element of Sp(2g,Z) we may assume, without loss of generality,
that at least one of θ2i−1, θ2i /∈ πQ. Under this condition all the observations A.2.(i-ii-iii) hold for each pair of
colomuns

(A.4)



θ2i−1 θ2i
...

...
λjθ2i−1 λjθ2i

...
...

λnθ2i−1 λnθ2i


Therefore the action of the g-times product SL(2,Z)× · · · × SL(2,Z) < Sp(2g,Z) provides a dense orbit inside
the space M

(
n, 2g;T

)
as desired.

A.2. Finding curve generating dense subgroups. All the representations ρ considered in subsection A.1
above are characterized by the following property: Each column of the associated matrix Θρ generates a dense
subgroup of Tn. Actually, for any such a representation one can �nd in�nitely many curves whose image
generates a dense subgroup in Tn. This lead the authors to ask themselves: Given a dense representation
ρ : π1S −→ Tn, can we �nd a simple closed curve γ such that 〈ρ(γ)〉 is dense in Tn? Remind that a vector(
eiθ1 , . . . , eiθn

)
∈ Tn generates a dense subgroup if and only if π, θ1, . . . , θn are linearly independent over Q.

As a corollary of Lemma we deduce the following Lemma.

Lemma A.3. Let ρ : π1S −→ S1 be a dense representation. Then there always exists a simple closed curve γ
such that 〈ρ(γ)〉 = S1.

However, for n ≥ 2, the scenario changes completely. Indeed, for any n we can �nd examples of dense represen-
tations which do not have any curve generating a dense subgroup in Tn.

Example A.4. Let S be a surface of genus g and ρ : π1S −→ T2 be the representation associated to the matrix
Θρ ∈ M

(
2, 2g;T

)
de�nes as follow.(

1 1 0 0 0 0 · · · · · · 0 0
0 0 1 1 0 0 · · · · · · 0 0

)
∈ M

(
2, 2g;T

)
.

One can show that Θρ has maximal rank and hence ρ is a dense representation. However, no curve is applied
by ρ to a vector generating a dense subgroup.

Example A.5. Let S be a surface of genus g and ρ : π1S −→ Tn be the representation associated to the matrix
Θρ ∈ M

(
n, 2g;T

)
de�nes as follow.

1 1 0 0 0 0 · · · · · · 0 0
0 0 1 1 0 0 · · · · · · 0 0
θ3 0 0 0 0 0 · · · · · · 0 0
...

...
θn 0 0 0 0 0 · · · · · · 0 0

 ∈ M
(
n, 2g;T

)
,

where 1, θ3, . . . , θn are linearly independent over Q. One can show that Θρ has maximal rank and hence ρ is a
dense representation. However, no curve is applied by ρ to a vector generating a dense subgroup.

Appendix B. Surfaces with one puncture

Let us now discuss the case of the one-holed torus Σ. We shall denote π1Σ ∼= 〈α, β〉 the fundamental group
of Σ. Also in this case the choice of a representation consists in choosing for each generator an element of
Tn. The representation space Hom

(
π1Σ,Tn

)
trivially identi�es with the space Tn × Tn. For each choice of an

element c, the relative representation variety Homc

(
π1Σ,Tn

)
is de�ned as the preimage of c via the commutator

map k : Tn × Tn → Tn. Thus, as a consequence of the abelian property, the relative representation space is
empty for any c 6= (1, . . . , 1) and coincides with the full representation variety when c = (1, . . . , 1). Once
again, the action of Tn by inner automorphisms is trivial and hence the character variety trivially coincides
with the representation space. As a consequence, the space Hom

(
π1Σ,Tn

)
naturally identi�es with the space

Hom
(
π1T,Tn

)
. The equalities Mod(T ) = Mod(Σ) = SL(2,Z) are well-known and the actions of Mod(T ) and
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Mod(Σ) on the representation spaces associated to T and Σ respectively coincide. Therefore, we have the
following proposition.

Proposition B.1. Theorem A and Theorem B hold for the torus T if and only if they hold for the one-holed
torus Σ.

More generally, the main results of the present work extend to surfaces of higher genus and with one boundary
component. Indeed, let Sg,1 be a surface a surface of genus g and one boundary component. We have already
seen above that this is true for the one-holed torus Σ, Proposition B.1. The general claim follows because, as
a consequence of the abelian property of Tn, one can establish an identi�cation between the representations
spaces Hom

(
π1S,Tn

)
and Hom

(
π1
(
Sg,1

)
,Tn

)
. Since the mapping class group coincides with the pure mapping

class group for one-puncture surfaces the following proposition also holds.

Proposition B.2. Theorem A and Theorem B hold for a closed surface of genus g if and only if they hold for
the one-holed surface of genus g.
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