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Modular orbits on the representation spaces of compact
abelian Lie groups

Yohann Bouilly and Gianluca Faraco

Abstract. Let S be a closed surface of genus g greater than zero. In the present paper, we study
the topological-dynamical action of the mapping class group on the Tn-character variety giving
necessary and sufficient conditions for Mod.S/-orbits to be dense. As an application, such a char-
acterisation provides a dynamical proof of the Kronecker’s theorem concerning inhomogeneous
Diophantine approximation.

1. Introduction

Let S be a closed, connected and oriented topological surface of genus g. Its fundamental
group �1.S/ admits the presentationD

˛1; ˇg ; : : : ; ˛g ; ˇg j

gY
iD1

Œ˛i ; ˇi � D 1
E
:

Let G be a connected Lie group and let Hom.�1.S/; G/ denote the set of representa-
tions of �1.S/ in G. Such a set can be topologized with the compact-open topology, and
the resulting space is commonly known as representation space. There is a natural action
of G on Hom.�1.S/; G/ obtained by post-composing representations with inner auto-
morphisms of G. The resulting quotient space Hom.�1.S/; G/=G is a space canonically
associated to S (or �1.S/) and G. When G is an algebraic and reductive Lie group, the
quotient space is commonly known as G-character variety of �1.S/. It can be shown
that Hom.�1.S/; G/=G identifies with the moduli space of isomorphism classes of flat
G-bundles over S .

We next consider the effect of changing the presentation of �1.S/. This can be done by
pre-composing any representation with an automorphism � 2 Aut.�1.S// such that any
representation � is sent to � ı ��1. We can, therefore, consider the action of Aut.�1.S//
on Hom.�1.S/; G/. The actions of G and Aut.�1.S// can be combined together in the
following way: For any pair .�; g/ 2 Aut.�1.S// �G and  2 �1.S/, we define

.�; g/ � �./ D g.� ı ��1.//g�1:
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It is clear that the action of the normal subgroup Inn.�1.S// < Aut.�1.S//, consisting
of inner automorphisms, is absorbed into the action of G. In other words, the action
of Inn.�1.S// on Hom.�1.S/; G/ descends to the trivial action on Hom.�1.S/; G/=G.
Thus, there is a well-defined action of the outer automorphisms group Out.�1.S// D
Aut.�1.S//= Inn.�1.S// on Hom.�1; G/=G.

When S is a closed surface, the group Out.�1.S// has a very explicit geometric inter-
pretation. Every homeomorphism of S determines an automorphism of �1.S/. On the
other hand, for closed surfaces, the Dehn–Nielsen–Baer theorem [16] states that every
automorphism of �1.S/ is induced by a homeomorphism of S – this is actually true also
for the punctured torus, but it is no longer true for other surfaces with boundary. Now,
homeomorphisms which are isotopic can be considered as equivalent and determine con-
jugate automorphisms of �1.S/, i.e., a well-defined element of Out.�1.S//. Conversely,
automorphisms which are conjugate can be considered as equivalent, and determine iso-
topic homeomorphisms. Therefore, for any closed surface the following isomorphism
holds:

Homeo.S/
Isotopy

Š Out.�1.S//:

Definition 1.1. The mapping class group of S is defined as

Mod.S/ D
Homeo.S/

Isotopy
:

The character variety can be endowed with a symplectic structure which is preserved
by the Out.�1.S//-action, see Goldman [7]. By taking the volume form associated to the
symplectic structure, we obtain a finite measure �S and the space Hom.�1.S/; G/=G
turns into a measured space on which the group Out.�1.S// acts preserving measure. The
dynamic of this action is known for compact Lie groups.

Theorem 1.2 (Goldman, Pickrell–Xia). LetG be a compact Lie group. Then the mapping
class group acts ergodically on each connected components of Hom.�1.S/; G/=G with
respect to the finite measure �S .

A direct consequence of ergodicity is that almost every Mod.S/-orbit is dense. A more
subtle problem concerns the topological dynamics of the mapping class group action on
the space Hom.�1.S/;G/=G. The topological-dynamical problem is definitely more del-
icate since no longer we may ignore invariant subsets of measure zero. For instance,
if H is a finite subgroup of G, the space Hom.�1.S/; H/ is finite and its image in
Hom.�1.S/; G/=G is an invariant closed subset under the action of the mapping class
group. It follows that, even when the action of Mod.S/ is ergodic, not all the orbits are
dense in Hom.�1.S/;G/=G. In [10, Problem 2.7], Goldman posed the following problem
(we refer to it in the sequel as main problem).

Main Problem. Determine necessary and sufficient conditions on a general representa-
tion � for its orbit Mod.S/ � � to be dense.
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We introduce the following definition.

Definition 1.3. A representation �W�1.S/! G is defined as dense representation if the
image of � is dense in G.

For closed surfaces, the following claim is expected: If the image of a representation �
is dense inG, then the Mod.S/-orbit of � is dense in Hom.�1.S/;G/=G. This is currently
true for representations in SU.2/. In fact, this case has been completely treated by Previte
and Xia [19], and it is based on their earlier work [18], in which they considered the case
of representations in SU.2/ for the punctured torus. For all other compact Lie groups, the
problem is still open, and in the present work we provide a positive answer also in the
case of the n-dimensional torus Tn. The following theorem is in fact the main result of
this work.

Theorem A. Let S be a surface of genus g � 1 and �1.S/ its fundamental group. Let
�W�1.S/! Tn be a representation. Then the image of � is dense in Tn if and only if the
mapping class group orbit Mod.S/ � � is dense in the representation space.

The proof strongly relies on the explicit knowledge of the objects involved. In fact,
the n-torus has a well-known description and, thanks to the abelian property, the charac-
ter variety coincides with the representation space since the action of Tn by conjugation
is trivial. Even better, the representation space can be identified with a torus of suitable
dimension, hence the description of the representation space – and then of the charac-
ter variety – is very explicit. The main difficulties in the abelian case concern questions
coming from number theory and ergodic theory, see Section 1.2.

1.1. Strategy of the proof and related results

A representation �W �1.S/! Tn yields a representation x�WH1.S;Z/! Tn, namely an
element of the homological representation space Hom.H1.S;Z/;Tn/. The map associ-
ating to any representation � its homological representation defines a bijection between
the representation space and the homological representation space. This essentially fol-
lows because the commutator group Œ�1.S/; �1.S/� is trivially a subgroup of ker.�/ in
the abelian case, and such a property is no longer true for a generic non-abelian Lie
group. There is also a well-defined action of the symplectic group Sp.2g; Z/ on the
space Hom.H1.S;Z/; Tn/ by precomposition. Given a representation �W �1.S/ ! Tn

and its induced representation x�WH1.S;Z/! Tn, the Mod.S/-orbit of � coincides with
the Sp.2g;Z/-orbit of x�. As an immediate consequence, we obtain an equivalent version
of the main Theorem A, namely we have the following theorem.

Theorem B. Let S be a surface of genus g � 1 and let x�WH1.S;Z/! Tn be a repres-
entation. Then the image of � is dense in Tn if and only if the symplectic group orbit
Sp.2g;Z/ � x� is dense in the homological representation space.
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Along the way of our investigation, we shall remark the following result: The action
of the Torelli group 	.S/ on the representation space Hom.�1.S/;Tn/ is trivial.

For a proof of this fact, we refer to Proposition 2.8 below. This claim seems to be
known, however, at the best knowledge of the authors, it has never been stated explicitly.
In contrast to the abelian case, Bouilly has shown in [4] that for any connected, com-
pact and semisimple Lie group, the action of the Torelli group on the character variety is
ergodic.

Given a representation, we have reduced the problem to the study of Sp.2g;Z/-orbit
instead of modular orbits. This makes the study of orbits more understandable because
the symplectic group is linear. We will make the action even more explicit by identifying
a representation with a matrix in the space M.n; 2gIT /. Such a space will be introduced
later on in Section 2.3. After these reductions, we shall see that we are in the position to
apply Ratner’s theorem for studying orbit closures. In particular, we shall derive our main
Theorem A.

Remark 1.4. For the torus, the reader may notice that Theorems A and B are not only
equivalent but actually the same statement in the strict sense. Indeed, in this very particular
case the equalities �1.S/ D H1.S;Z/ and Mod.S/ D SL.2;Z/ D Sp.2;Z/ hold.

The strategy we propose for Theorem A is different to the one developed by Previte
and Xia to show their main theorem [19, Theorem 1.4]. Let us briefly give some more
details. Given a dense representation �W �1.S/! SU.2/ – Previte and Xia defined such
a representation as generic (see [19, Definition 1.6]) – they firstly found a handle †,
namely a one-holed torus, such that the restriction of � to �1† is dense. After obtaining
a dense handle, they proceed to demonstrate the base density theorem for the .nC 2g� 2/-
holed torus. A similar process in the abelian case is not possible because dense handles do
not always exist, see the discussion in Appendix A.2. In the light of Proposition 2.8, we
shall bypass this issue by looking at the Sp.2g;Z/-action on the representation space as
described above.

1.2. Connection with the Kronecker’s approximation theorem

The dynamical result provided by Theorem A finds application in the theory of geometry
of numbers. An important theorem in this topic is the Kronecker’s theorem concerning
inhomogeneous Diophantine approximation, see Section 5 below for the precise state-
ment.

By fixing a presentation of �1.S/, we can associate to any representation �W�1.S/!
Tn a matrix ‚� 2 M.n; 2gIR/; see Definition 2.14 and Section 2.3 below for the details.
We shall prove that a representation � is dense if and only if the rows of the matrix ‚�
satisfy the hypothesis of Kronecker’s theorem, this is our Theorem 3.1. On the other hand,
our main result says that the modular orbit of a representation � is dense in the repres-
entation space if and only if � itself is a dense representation. As the representation space
identifies with T2ng , see Section 2 below, Theorem B provides a dynamical proof of Kro-
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necker’s theorem in the cases where l DmD 2g for some g � 1. More precisely, we have
the following theorem.

Theorem C. Let m D 2g with g � 1. Let b.i/ D .b.i/1 ; : : : ; b
.i/
m /, where i D 1; : : : ; n, be

vectors of Rm such that b.1/; : : : ; b.n/, �e1; : : : ; �em are linearly independent over Q in
the vector space Rm. Let A 2M.n;mIR/ be a real matrix and let " be a positive number.
Then there is an element K 2 Sp.2g;Z/ such that

kA � Bk < C" mod 2�;

where C is a constant depending only onm and n, and the norm is any norm on the space
M.n;mIR/.

This is a sharper simultaneous approximation result because, in principle, one can
always find a matrix K 2 M.2g; Z/ according to Kronecker’s theorem. For the sake
of comprehension, the proof of Theorem C is delayed until Section 5, when we have
developed the theory and notation even further. As we shall see, the proof of this result
reduces to proving the following characterisation.

Proposition D. Theorem A holds if and only if Theorem C holds.

1.3. Related dynamical problems

For a generic compact Lie groups G, the main issues one has to face are mainly two.
First of all, the group G may not have a nice description. In fact, among all compact Lie
groups we found the classical simple Lie groups belonging to the four families SU.nC 1/,
SO.2nC 1/, Sp.n/, SO.2n/, but also the five exceptional Lie groups corresponding to the
Dynkin diagrams G2, F4, E6, E7, E8 which are harder to treat. The second issue comes
from the fact that most of the representation spaces and their quotients Hom.�1.S/;G/=G
have no explicit description to work with. The abelian case is not the only one on which
these issues vanish. Also in the case of SU.2/ they completely miss since both the group
and the representation space were already well known in the literature. For open surfaces
of positive genus and positive number of boundary components, there is a further problem
to be addressed. Suppose S has genus g with boundary of k disjoint circles. A relat-
ive character variety is a slice of the space Hom.�1.S/; G/=G subject to the condition
imposed by some finite collection of k conjugacy classes. Like in the close case, the rel-
ative character variety carries a symplectic structure which is preserved by the mapping
class group action. In [17], Pickrell and Xia established the ergodicity of the mapping
class group action with respect to the symplectic measure for k > 2. Their result may be
seen as the follow up of the Goldman’s work [9], where he considered the cases of groups
whose simple factors are locally isomorphic to SU.2/. Very recently, in [11], Goldman,
Lawton and Xia announced a proof in the case of SU.3/ based on different techniques
than in [17].

As for the modular orbits characterisation, the main problem posed by Goldman has
been answered only in the case of SU.2/, as mentioned above. This work is therefore
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a new and partial development of the wider program to understanding the dynamics of
the mapping class group. In [3], Biswas, Koberda, Mj and Santharoubane considered the
opposite problem of characterising representations having finite modular orbit. For any
fixed Lie group G, they showed that any representation, with values in G, having finite
modular orbit, has necessarily finite image inG. The caseG D SL.2;C/ has been handled
also by Biswas, Gupta, Mj and Whang in [2].

The non-compact case is even more complicated and delicate; let us spend a few
words. The current situation is different for non-compact Lie groups, and we do not expect
an analogous theorem. For compact Lie groups G, the space Hom.�1.S/;G/=G has non-
trivial homotopy type, and Theorem 1.2 says that the dynamics of the action of the map-
ping class is chaotic on each connected component. On the other hand, when G is a non-
compact semisimple Lie group, the space Hom.�1.S/; G/=G contains open contractible
components on which the action of the mapping class group is properly discontinuous.
Often, these components correspond to locally homogeneous structures uniformizing S .
A remarkable case is that of PSL.2;R/. It is well known that the PSL.2;R/-character vari-
ety has 4g � 3 connected components indexed by the Euler class, taking values in a finite
set of Z, where g denotes the genus of S , see [8]. Two of these components correspond
to the Teichmüller spaces T .S/ and T . xS/ of S (where xS is the surface S taken with the
opposite orientation). The action of Mod.S/ is known to be proper on these components
and it is conjectured to be ergodic on the others. This conjecture is currently treated in the
case of genus 2 surfaces thanks to recent results of Marché and Wolff. They proved that the
conjecture about ergodicity is true for Euler number equal to˙1 and decomposed the con-
nected component of Euler number 0 into two subspace on which the mapping class group
acts ergodically [14, 15]. As it may be easy to expect, even less is known about the topo-
logical dynamics of the mapping class group on the PSL.2;R/-character variety. In the
case of genus two, one of the consequences of Marché and Wolff’s result is the following
claim: In each subspace of the character variety on which the action of the mapping class
group is ergodic, there is a full measure subset of representations whose mapping class
group orbit is dense in this subspace. Like in the compact case, we can pose the following
question: Does a dense representation �W�1.S/! PSL.2;R/ have dense Mod.S/-orbit?
Answering to this question is even more tricky, and for surfaces with boundary we already
know counterexamples – see [20] for an example in SL.2;C/.

1.4. Structure of the paper

The paper is organised as follow. In Section 2, we begin with a description of the Tn-
character variety and then subsequently introduce the homological representation space
and show the identification with the character variety. We finally describe the action of the
symplectic group Sp.2g;Z/ on the homological representation space. As a consequence,
we shall derive Proposition 2.8 and the equivalence of Theorems A and B. In Section 3, we
shall give a complete characterisation of dense representations in the n-dimensional torus
by proving Theorem 3.1. In Section 4, we shall finally derive our main Theorem A. In the
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last section, we prove Proposition D and indeed Theorem C establishing the connection
of our dynamical result with the Kronecker’s approximation theorem. We finally conclude
with appendixes discussing some further aspects related to our project. In Appendix A,
we discuss a direct approach to our problem which works for a fairly general class of
representations. In Appendix B, we digress a little by providing a brief description of the
relative Tn-character variety for surfaces with one puncture and then we claim that our
main results extend to one-punctured surfaces.

2. T n-character variety

In this work, we aim to are interested in characterising the orbits of the Mod.S/-action on
Hom.�1.S/; G/=G, where G is a compact, connected and abelian Lie group. It is clas-
sical to see that any such a group is isomorphic to Tn, the n-dimensional torus for some
positive n, see, for instance, in [5, Corollary 3.7]. The specific interest for the abelian case
comes from its connection with abstract harmonic analysis, the geometry of numbers and
the theory of group actions on homogeneous spaces (connections with Ratner’s theorem,
see Section 4).

In the introduction, we have given a very brief view of the character variety for a gener-
ic compact Lie group G. In this section, we specialise the discussion for compact and
connected abelian Lie groups. From the Lie theory, any such a group is known to be
an n-dimensional torus, namely the product of n copies of the unit circle S1. In the
present work, S1 is seen as ¹ei� j � 2 Œ0; 2�/º, where Œ0; 2�/ carries the quotient topology
obtained identifying the boundary points of the closed interval Œ0; 2��. Consequently, the
n-torus Tn is defined as ¹.ei�1 ; : : : ; ei�n/ j �i 2 Œ0; 2�/ for any i D 1; : : : ; nº endowed
with the product topology.

Let S be a closed surface, and let ˛1; ˇ1; : : : ; ˛g ; ˇg be any standard generating sys-
tem of the fundamental group. The choice of a representation �W �1.S/! Tn amounts
to choose for each generator an element of Tn such that these elements satisfy the condi-
tion imposed by the presentation of the fundamental group of S . Since Tn is an abelian
group, the relation ŒA1;B1� � � � ŒAg ;Bg �D 1 is automatically satisfied for any choice of 2g
elements in .A1; B1; : : : ; Ag ; Bg/ 2 Tn. Thus, the representation space can be identified
with the full group .Tn/2g Š T2ng . Even more, thanks again to the abelian property, the
action of Tn on Hom.�1.S/;Tn/ by post-composition with inner automorphisms of Tn

is trivial. As a consequence, the Tn-character variety coincides with the representation
space.

2.1. Homological representations

Let H1.S; Z/ be the first homology group. The close connection between the objects
�1.S/ and H1.S;Z/ is well known, indeed the latter is known to be isomorphic to the
abelianization of �1.S/. The representation space Hom.�1.S/; Tn/, as we have seen
above, naturally identifies with the 2gn-dimensional torus assigning to any representa-
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tion � the 2g-tuple .�.˛1/; �.ˇ1/; : : : ; �.˛g/; �.ˇg//, where ˛1; ˇ1; : : : ; ˛g ; ˇg is a basis
for �1.S/. Every representation � fails to be injective, and its kernel ker.�/ always con-
tains the subgroup generated by the commutators since the target is abelian. So, � boils
down to a representation

x�W H1.S;Z/ Š
�1.S/

Œ�1.S/; �1.S/�
! Tn; x�.Œ�/ WD �./:

In fact, let  2 �1.S/ and let Œ� be its image via the canonical projection pW �1.S/!
H1.S;Z/. Let  C Œ�1; �2� be a representative of Œ�. Since the chain of equalities

�. C Œ�1; �2�/ D �./�.Œ�1; �2�/ D �./

holds, the representation x� is well-defined and the image does not depend on the choice of
the representative. Furthermore, the image of � agrees with the image of x� by construction.

Definition 2.1. The set Hom.H1.S;Z/;Tn/, endowed with the compact-open topology,
is defined as the homological representation space.

Lemma 2.2. The homological representation space Hom.H1.S;Z/;Tn/ identifies with
the 2gn-dimensional torus T2gn.

Proof. To any representation x�, we can assign the 2g-tuple defined as

.x�.Œ˛1�/; x�.Œˇ1�/; : : : ; x�.Œ˛g �/; x�.Œˇg �//;

where the collection Œ˛i �, Œˇi �, 1� i � g, is a fixed basis of the homology group H1.S;Z/.
Conversely, since T2gn is an abelian group, for any 2g-tuple of .Tn/2g , for example,
.v1; w1; : : : ; vg ; wg/, the universal property of free abelian groups implies the existence
of a unique group homomorphism from H1.S;Z/ into the n-torus Tn which sends Œ˛i �
to vi and Œˇi � to wi for every i D 1; : : : ; g.

The implications of this lemma are quite simple, but of crucial importance. Upon
choosing a basis for �1.S/, the representation space Hom.�1.S/; Tn/ identifies with
the homological representation space Hom.H1.S;Z/;Tn/, and the identification is expli-
citly given by the association � 7! x�. According to this property, we derive the following
lemma.

Lemma 2.3. Let �1; �2W�1.S/! Tn be two representations. Then �1 � �2 if and only
if x�1 � x�2.

Proof. This is just a matter of definitions given so far. The necessary condition follows
trivially. The sufficient condition follows from x�.Œ�/ D �./ for any  2 �1.S/.

2.2. Actions of the symplectic group Sp.2g; Z/

In this section, we are going to describe the action of the symplectic group Sp.2g;Z/ both
on the representation space and on the homological representation space.



Modular orbits on the representation spaces of compact abelian Lie groups 727

2.2.1. The symplectic group Sp.2g;Z/. We begin with recalling some standard notions.
The algebraic intersection number

\W H1.S;Z/ � H1.S;Z/! Z

extends uniquely to a nondegenerate, alternating bilinear map

\W H1.S;R/ � H1.S;R/! R

which realises H1.S;R/ as a symplectic vector space.

Definition 2.4. A collection of elements Œ˛i �, Œˇi �, 1 � i � g, of H1.S;Z/ < H1.S;R/
such that

Œ˛i � \ Œ j̨ � D Œˇi � \ Œ ǰ � D 0; Œ˛i � \ Œ ǰ � D ıij

for all i , j with 1 � i; j � g is called a symplectic basis of the group H1.S;Z/ or a basis
for the symplectic vector space .H1.S;Z/;\/. We define a collection of curves ˛i , ˇi
such that ¹Œ˛i �; Œˇi �º is a symplectic basis as geometric symplectic basis for �1.S/.

The matrix associated to the antisymmetric bilinear form \ on the basis Œ˛i �, Œˇi � is
the 2g � 2g blockwise diagonal matrix

J D

0B@Jo
: : :

Jo

1CA with Jo D

�
0 1

�1 0

�
:

The symplectic linear group Sp.2g;R/ is defined as the group of invertible matrices A
satisfying the relation AJAT D J , and we denote by Sp.2g;Z/ the subgroup of those
matrices with integer coefficients.

Remark 2.5. Here, the symplectic group Sp.2g;R/ is the subgroup of SL.2g;R/ of
matrices preserving the alternating 2-form ! D e1 ^ e2 C � � � C e2g�1 ^ e2g . The group
Sp.2g;R/ contains the g-times product SL.2;R/ � � � � � SL.2;R/ as a proper subgroup.
In turns, the group Sp.2g;Z/ contains the g-times product SL.2;Z/ � � � � � SL.2;Z/ as
a proper subgroup. This property will be useful in the sequel, see Appendix A.

An orientation-preserving homeomorphism yields an isomorphism at the level of ho-
mology groups which preserves the intersection form \ defined above. Since isotopic
homeomorphisms induce the same map in homology, there is a representation

�W Mod.S/! AutC.H1.S;Z// Š SL.2g;Z/:

As each homeomorphism preserves the intersection form\, the image of� lies also inside
Sp.2g;R/. Therefore, the image of � lies inside SL.2g;Z/ \ Sp.2g;R/ D Sp.2g;Z/.
The representation �WMod.S/! Sp.2g;Z/ � usually called symplectic representation
of Mod.S/ � is surjective with kernel 	.S/. The subgroup 	.S/ is called the Torelli
subgroup of Mod.S/.
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Remark 2.6. In the genus one case, the Torelli subgroup is trivial. Indeed, Mod.T / Š
SL.2;Z/ Š Sp.2;Z/.

2.2.2. Comparison of the Mod.S /-orbits with the Sp.2g;Z/-orbits. We now consider
the effect of changing the basis of H1.S;Z/ pre-composing any homological representa-
tion with an automorphism � 2 AutC.H1.S;Z// such that any representation x� is sent to
x� ı ��1. We can, therefore, consider SL.2g;Z/-action on Hom.H1.S;Z/;Tn/. Of course,
this action restricts to an action of the symplectic group Sp.2g;Z/ on the same space. We
are interested in studying the Sp.2g;Z/-orbits in the homological representation space.
The main goal of this section is to prove the following claim.

Proposition 2.7. Let �1; �2W�1.S/! Tn be two representations and x�1; x�2WH1.S;Z/!
Tn be the induced representations. Suppose there is � 2 Mod.S/ such that �2 D �1 ı �.
Then x�2 D x�1 ı �.�/, where � is the symplectic representation of Mod.S/.

Proof. Let �W�1.S/! �1.S/ be any element of Out.�1.S//. As the image of any com-
mutator is also a commutator, the mapping � boils down to an isomorphism in homology
�.�/WH1.S;Z/! H1.S;Z/. Two mappings �1 and �2 boil down to the same isomorph-
ism in homology if and only if �2 ı ��11 descends to the identity map in homology, that is,
�2 ı �

�1
1 is an element of the Torelli subgroup by a theorem of Johnson, [13]. Therefore,

the association � 7! �.�/ defines the symplectic representation � seen above. Look at the
commutative diagram

H1.S;Z/ Tn

�1.S/ �1.S/ Tn

H1.S;Z/ H1.S;Z/ Tn;

x�2D�1ı�

p

p

� �1

id

id

�.�/ x�1

where p is the canonical projection. As �2 D �1 ı � by assumption, it turns out x�2 D
�1 ı � D x�1 ı �.�/ as desired.

2.2.3. Direct consequences. Proposition 2.7 leads to some interesting consequences that
we are going to show. The first one concerns the action of the Torelli subgroup 	.S/ on
the representation space Hom.�1.S/;Tn/.

Proposition 2.8. The action of 	.S/ on the representation space Hom.�1.S/; Tn/ is
trivial.

Proof. Let �1 2 Hom.�1.S/; Tn/ be any representation and let � 2 	.S/. Set �2 D
� � �1D �1 ı �

�1. Proposition 2.7 implies that x�1D x�2 because�.�/D 1. We now invoke
Lemma 2.3 to conclude �1 D �2, namely the action of � is trivial.
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Remark 2.9. An alternative argument is the following. Let  and  0 be two isotopy
classes of simple closed non-separating curves. In [13], Johnson noticed that  and  0 are
	.S/-equivalent if and only if they represent the same element in H1.S;Z/. Fix a basis
for �1.S/ of simple closed non-separating curves, and let �1, �2 be two 	.S/-equivalent
representations, that is, �2 D �1 ı �. For any generator  , we have the following chain of
equalities:

�2./ D x�2.Œ�/ D �1 ı ��1.Œ�/ D x�1.�
�1.Œ�// D x�1.Œ�/ D �1./;

that imply �1 D �2 as desired.

The n-torus Tn is a compact and connected Lie group, and hence mapping class group
Mod.S/ acts ergodically on the representation space, see Theorem 1.2 in the introduction.
As the action of the Torelli subgroup 	.S/ is trivial, the action of the quotient group is
also well-defined and the following holds.

Proposition 2.10. The action of

Sp.2g;Z/ Š
Mod.S/

	.S/

on Hom.�1.S/;Tn/ is ergodic with respect to the finite measure �S .

As the homological representation spaces identifies with the representation space, it
also carries a finite measure. Calling { the identifying map, this finite measure can be seen
as the pullback measure {��S , where�S is the finite measure carried by the representation
space.

Corollary 2.11. The action of Sp.2g;Z/ on the space Hom.H1.S;Z/; Tn/ is ergodic
with respect to the finite measure {��S .

As a final consequence, we have the following characterisation.

Proposition 2.12. Let �W �1.S/ ! Tn be a representation and let x�WH1.S;Z/ ! Tn

be the homological representation induced by �. Then the mapping class group orbit
Mod.S/ � � is dense if and only if the symplectic group orbit Sp.2g;Z/ � x� is dense.

Proof. Proposition 2.7 implies that the mapping class group orbit of � coincides with the
symplectic group orbit of x� via the identification � 7! x�. Therefore, one orbit is dense if
and only if the other is dense.

Corollary 2.13. Let S be a surface of genus g � 1. Then Theorem A holds if and only if
Theorem B holds.

2.3. The matrix presentation

The n-torus Tn is also seen as the quotient of Rn by the action of the lattice 2�Zn,
indeed the exponential map provides an identification between Rn=2�Zn and the n-torus
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described above. We shall define the map

expW Rn ! Tn; .�1; : : : ; �n/ 7! .ei�1 ; : : : ; ei�n/ (2.1)

as the canonical projection. In the sequel, it turns out also useful to look at the n-torus
as the quotient of Rn with a suitable lattice ƒ D g � .2�Zn/, where g 2 SL.n;Z/. The
reason of that will be discussed afterwards. We define 2�Zn as the the standard lattice �
notice that this lattice is 2� times the usual standard lattice.

Fix a set of generators ¹˛1; ˇ1; : : : ; ˛g ; ˇgº and consider Tn as the quotient of Rn by
the action of the standard lattice. Let �W�1.S/! Tn be any representations and set

�.˛i / D .e
i�1;2i�1 ; : : : ; ei�n;2i�1/; �.ˇi / D .e

i�1;2i ; : : : ; ei�n;2i /

for any i D 1; : : : ; n. The elements �.˛1/; �.ˇ1/; : : : ; �.˛g/; �.ˇg/ generate the image of
the representation �. Any generic element  2 �1.S/ may be seen as a word in the letters
˛i , ˇi for i D 1; : : : ; 2g. Hence, since T2gn is abelian,

�./ D �.w.˛1; ˇ1; : : : ; ˛g ; ˇg// D �.˛1/
k1 � � � �.ˇg/

k2g

for some k1; : : : ; k2g 2 Z. In particular, the element �./ can be computed with the fol-
lowing matrix multiplication:

0B@�1;1 � � � �1;i � � � �1;2g
:::

: : :
:::

: : :
:::

�n;1 � � � �n;i � � � �n;2g

1CA
0BBBBBB@
k1
:::

ki
:::

k2g

1CCCCCCA :

Definition 2.14. Let ‚� be the matrix having as entries the values �i;j 2 Œ0; 2�/ with
i D 1; : : : ; n and j D 1; : : : ; 2g. We define ‚� as the matrix associated to � with respect
to the basis ¹˛1; ˇ1; : : : ; ˛g ; ˇgº and the standard lattice 2�Zn.

In what follows, we shall often identify a representation � with its associated matrix.
Let us briefly see the reason why we are legitimated to do that. Consider the topological
vector space M.n; 2gIR/ and introduce an equivalence relation where A � B if and only
if A�B D 2�H 2M.n; 2gI2�Z/. The mapping { associating to any � its associated ma-
trix ‚� provides an homeomorphism between the representation space Hom.�1.S/;Tn/

and the quotient space M.n; 2g; T /. Moreover, the post-composition of the mapping
� 7! x� with {�1 defines a homeomorphism between the spaces Hom.H1.S;Z/;Tn/ and
M.n; 2g;T /.

Given a representation �, the matrix ‚� depends on the choice of a set of generators
for �1.S/ and also on the choice of a lattice ƒ < Rn. Let us see how these choices affect
Definition 2.14. We begin describing the effect of changing the set of generators of �1.S/.
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2.3.1. The effect of changing basis. Given two basis BD¹˛1;ˇ1; : : : ;˛g ;ˇgº and B 0D

¹˛01;ˇ
0
1; : : : ;˛

0
g ;ˇ
0
gº of �1.S/, we define‚� and‚0� the matrices associated to �W�1.S/!

Tn with respect to B and B 0, respectively. Every generator ˛0
l

and ˇ0
l

is a finite word in
the letters ˛1; ˇ1; : : : ; ˛g ; ˇg , so there are integers aij with i; j 2 ¹1; : : : ; 2gº such that

�.˛0l / D �.˛1/
a2l�11 � � � �.ˇg/

a2l�12g and �.ˇ0l / D �.˛1/
a2l 1 � � � �.ˇg/

a2l 2g :

Setting A as the integral matrix .aij / with i; j 2 ¹1; : : : ; 2gº, a direct computation shows
that ‚0� equals ‚� � A. Likewise, ˛l , ˇl are also finite words in the letters ˛01; ˇ

0
1; : : : ,

˛0g ; ˇ
0
g . Hence, there exist integers bij such that

�.˛l / D �.˛
0
1/
b2l�11 � � � �.ˇ0g/

b2l�12g and �.ˇl / D �.˛
0
1/
b2l 1 � � � �.ˇ0g/

b2l 2g :

Setting B as the integral matrix .bij / with i; j 2 ¹1; : : : ; 2gº, the same computation
implies ‚� equals ‚0� � B .

It worth noticing‚� D‚� �AB and the matrices A, B satisfy the equation AB D I2g
implying that A, B are unimodular. As the matrix ‚� can be singular, we cannot directly
deduce that AB D I2g , hence let us give a glimpse of why this is true.

Instead of working in �1.S/, we look at the situation in the first homology group
H1.S;Z/ Š Z2g . Let us consider ˛1 as a word w.˛01; ˇ

0
1; : : : ; ˛

0
g ; ˇ

0
g/; then

Œ˛1� D Œ˛
0
1�
b11 Œˇ01�

b12 � � � Œ˛0g �
b12g�1 Œˇ0g �

b12g ;

where b1j with j D 1; : : : ; 2g are as above. On the other hand, any Œ˛0
l
� and Œˇ0

l
� are of the

form

Œ˛0l � D Œ˛1�
a2l�11 Œˇ1�

a2l�12 � � � Œ˛g �
a2l�12g�1 Œˇg �

a2l�12g ;

Œˇ0l � D Œ˛1�
a2l 1 Œˇ1�

a2l 2 � � � Œ˛g �
a2l 2g�1 Œˇg �

a2l 2g ;

where aij are as above. Replacing each Œ˛0
l
� and Œˇ0

l
� inside Œw�D Œ˛1�, for any l D 1; : : : ;g,

we obtain
Œ˛1� D Œ˛1�

k1 Œˇ1�
k2 � � � Œ˛g �

k2g�1 Œˇg �
k2g :

As Z2g is torsion-free, we can deduce that k1 D 1 and k2 D � � � D k2g D 0. On the other
hand, it is straightforward to see that km D

P2g
rD1 b1rarm. Applying the same reasoning

to any other generator, we get the desire conclusion.

Remark 2.15. The matrices A and B found above may not have any geometrical mean-
ing. Indeed, for closed surfaces the action of Aut.�1.S// is not transitive on the set of
basis of �1.S/, and then two different basis may not be related by any automorphisms
of �1.S/. This means that not all matrices in SL.2g;Z/ have a geometrical interpretation.
As we shall see, a matrix has a geometrical meaning, that is, induced by a homeomorphism
of S , if and only if it is symplectic; see Proposition 2.10 above.
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2.3.2. The effect of changing the basis of the lattice. We begin noticing that the j -th
column of the matrix ‚� corresponds to the vector of coordinates of a lift of the j -th
generator of �.�1.S// with respect to the standard lattice. Given any lattice ƒ with basis
¹v1; : : : ; vnº, there is a matrix g 2 SL.n;Z/ such that ƒ D g � .2�Zn/. In particular,
g.ei / D vi . To change the basis means to change the coordinates of the vectors forming
the columns of the matrix ‚�. Therefore, with respect to the lattice ƒ, the matrix associ-
ated to � has the form g‚�. In the sequel, we shall need to consider the matrix ‚� with
respect to a lattice ƒ different to the standard one. We therefore extend the notation in the
following way: We denote by ‚�.ƒ/ the associated matrix with respect to the lattice ƒ.
We shall use again the notation ‚� when the lattice is the standard one.

2.3.3. The Z-row rank of the associated matrix. We now introduce the following nu-
merical invariant concerning the associated matrix ‚�. As we shall see, such an invariant
give us a way to characterise dense representations in Tn completely.

Definition 2.16. Let M 2 M.n;mIR/. We define the Z-row rank of M as the dimension
of the Z-module generated by the rows of M . We denote it by rkZ.M/.

We observe that the Z-row rank is not invariant by transposition.

Lemma 2.17. LetM 2M.n;mIR/. The Z-row rank rkZ.M/ ofM is invariant under the
left action of SL.n;Z/. Similarly, rkZ.M/ is invariant under the right action of SL.m;Z/.

Proof. We prove the first claim. Let k D rkZ.M/ � n. Define Z as the subset of Zn of
those vectors v such that vM D 0. Notice that Z is a Z-module of dimension n � k.
Let A be any matrix in SL.n;Z/, and we compute AM . It is easy to check that the j -th
row is given by the linear combination

Pn
iD1 aj i .mi1; : : : ;mim/. Suppose there is a vector

� D .�1; : : : ; �n/ such that �AM D 0, then a straightforward computation shows that
�A 2 Z, that is, � D vA�1 for some v 2 Z. Therefore, the subset Z � A�1 � Zn is
the set of vectors � such that �AM D 0 and it has dimension n � k over Z. Therefore,
rkZ.AM/ D k. Similarly, the second claim follows applying an analogous reasoning.

Given a representation �W�1.S/! Tn, the following claims are direct consequences
of the lemma above applied to the matrix ‚�.

Corollary 2.18. Let �W�1.S/! Tn be a representation and let‚� be the matrix associ-
ated to � with respect to some basis of �1.S/. The Z-row rank of ‚� is well-defined and
it does not depend on any choice of a basis for �1.S/ nor on the choice of any lattice.

Let v1 : : : ; vk be vectors in Rn. In the sequel, we will use the following definition.

Definition 2.19. We say that a Z-module generated by v1; : : : ; vk is �Q-free if and only if

hv1; : : : ; vkiZ \ �Qn
D ¹.0; : : : ; 0/º:

Keeping this definition in mind, we finally state the following proposition.
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Proposition 2.20. Let �W�1.S/! Tn be a representation and let‚� be the matrix asso-
ciated to � with respect to some basis of �1.S/. The Z-module h‚j W j D 1; : : : ; niZ
generated by the rows of ‚� is �Q-free if and only if the Z-module h.A‚�/j W j D
1; : : : ; niZ generated by the rows of A‚� is �Q-free, where A 2 SL.n;Z/. Similarly,
h‚j W j D 1; : : : ; niZ is �Q-free if and only if the Z-module h.‚�B/j W j D 1; : : : ; niZ is
�Q-free, where B 2 SL.2g;Z/.

Proof. Look at the matrix A‚� and suppose there are �1; : : : ; �n 2 Z such that

nX
jD1

�j

� nX
iD1

aj i .�i;1; : : : ; �i;2g/
�
2 �Q2g :

A simple manipulation of the formula above shows that

nX
jD1

�j

� nX
iD1

aj i .�i;1; : : : ; �i;2g/
�
D

nX
iD1

� nX
jD1

�jaj i

�
.�i;1; : : : ; �i;2g/;

implying the existence of some �1; : : : ; �n 2 Z such that

nX
jD1

�j .�i;1; : : : ; �i;2g/ 2 �Q2g :

The proof of the second claim works similarly: Suppose there are �1; : : : ; �n 2 Z such
that

nX
iD1

�i

� 2gX
jD1

�i;j .bj1; : : : ; bj2g/
�
2 �Q2g :

The same manipulation shows that

nX
iD1

�i

� 2gX
jD1

�i;j .bj1; : : : ; bj2g/
�
D

2gX
jD1

� nX
iD1

�i�i;j

�
.bi1; : : : ; bi2g/;

implying
Pn
iD1 �i�i;j 2 �Q for any j D 1; : : : ; 2g. That is, .�1; : : : ; �n/‚� 2 �Q2g .

2.4. Remarks and comments on the modular action

In this section, we collect a couple of final remarks about the Sp.2g;Z/-action.

2.4.1. Explicit description of the modular action. The action of the mapping class
group on the representation space is defined by pre-composition of any representation with
an automorphism � 2 Out.�1.S//, namely any representation � is sent to � ı ��1 under
this action. Since the Torelli group acts trivially on the representation space, the action of
mapping class group boils down to an action of the group Sp.2g;Z/ which agrees with
the Sp.2g;Z/-action on Hom.H1.S;Z/;Tn/; this is a consequence of Proposition 2.8.
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In Section 2.3, we have identified the representation space with M.n; 2gI T / by using
the mapping { associating to any representation � its matrix ‚�. We use such a map-
ping to transfer the action of Mod.S/ on Hom.�1.S/;Tn/ to an action of Sp.2g;Z/ on
M.n; 2gIT /. Since any � 2 	.S/ leaves � fixed, the matrix associated to �0 D � � � D
� ı ��1 agrees with‚�; this is a consequence of Proposition 2.8. Any coset �	.S/ defines
a unique matrix A in Sp.2g;Z/. In the light of the discussion given at Section 2.3.1, the
matrix associated to �0 D � � � is ‚�0 D ‚�A�1. Therefore, the action of Sp.2g;Z/ on
M.n; 2gI T / is defined as A � ‚� D ‚�A

�1. As the mapping { is a homeomorphism,
it is clear that Sp.2g;Z/-orbit of � is dense in the representation space if and only if the
Mod.S/-orbit of ‚� is dense in M.n; 2gIT /.

2.4.2. The modular action commutes with the change of lattice. Given a represent-
ation �W �1.S/! Tn, the main goal of the present paper is to study its orbit under the
action of the mapping class group. This reduces to studying the orbit of the matrix ‚�
naturally attached to � in the space M.n; 2gIT /. However, the matrix ‚� depends on the
lattice chosen, and hence the orbit could depend on the chosen lattice. The aim of this
paragraph is to point out that this is not the case; indeed, the change of lattice commutes
with the modular action. Each element ‚ in the space M.n; 2gIT / can be thought as the
data of n vectors ‚i 2 T2g corresponding to the rows of ‚. By adopting this point of
view, the space M.n; 2gIR/ identifies with T2g � � � � � T2g . There is a left action of the
group G defined as

G D

8<:
0@A :: :

A

1AWA 2 Sp.2g;Z/

9=; Š Sp.2g;Z/ < SL.2gn;Z/

on the 2gn-dimensional torus induced by the natural right action of the symplectic group
in the matrix space M.n; 2gIT /. Using this new perspective, one can easily verify that
any change of the action of Sp.2g;Z/. Indeed, any change of lattice h 2 SL.n;Z/ can be
seen as an element of the group H defined as

H D

8̂<̂
:
0B@h11I2g � � � h1nI2g

:::
: : :

:::

hn1I2g � � � hnnI2g

1CA ; where

0B@h11 � � � h1n
:::

: : :
:::

hn1 � � � hnn

1CA 2 SL.n;Z/

9>=>;
Š SL.n;Z/ < SL.2gn;Z/:

Since H commutes with the group G defined above, the action of Sp.2g;Z/ commutes
with the change of lattice.

3. Characterising dense representations

In this section, we provide a complete characterisation of dense representations by provid-
ing necessary and sufficient conditions. From Section 1, we recall that a representation
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�W �1.S/! Tn is dense if the subgroup �.�1.S// is dense in Tn. We have seen in the
previous section that, upon choosing a basis of the fundamental group and a lattice, each
representation is represented by a well-define matrix ‚�. Along this section, we fix an
arbitrary basis for the fundamental group and consider Tn as the quotient of Rn with the
standard lattice.

Theorem 3.1. Let �W�1.S/!Tn be a representation and let‚� be its associated matrix.
Then � is dense in Tn if and only if rkZ.‚�/ D n and the rows of ‚� generate a �Q-free
Z-module.

We can notice that the necessary condition means that the Z-module generated by the
rows of the matrix ‚� does not intersect �Q2g and is equivalent to say that row rank
over Z of the matrix

�
‚�
� � I2g

�
D

0BBBBBBBB@

�1;1 � � � �1;2g
:::

: : :
:::

�n;1 : : : �n;2g
� � � � 0
:::

: : :
:::

0 � � � �

1CCCCCCCCA
(3.1)

is maximal, namely 2g C n. Before proving the theorem, we need a preliminary lemma.

Lemma 3.2. Suppose that �W�1.S/! Tn is dense. Then each representation

�k D �k ı �;

where �k is the projection to k-th factor, is dense.

Proof. Suppose there is k for which the representation �k is not dense. Then there is an
open subset A � S1 such that A \ �k.�1.S// D ;. Suppose without loss of generality
that k D 1. Then

.A � Tn�1/ \ �.�1.S// D ;:

In particular, � is not dense, hence a contradiction.

Proof of Theorem 3.1. Assume � has a dense image and suppose the Z-module generated
by the rows intersect �Q2g , that is,

rkZ

�
‚�
� � I2g

�
< 2g C n:

Thus, there is a row ‚i of ‚ such that

nX
jD1
j¤i

�j‚j C .�nC1�; : : : ; �nC2g�/ D �i‚i
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with �i different to zero. Such a summation can be rewritten as

nX
jD1

�j‚j D .�nC1�; : : : ; �nC2g�/

for some �j 2Z and not all zero. Consider the matrixM 2M.n;Z/\GL.n;Q/ defined as

M D In C .�i � 1/Ei i �

nX
jD1
j¤i

�jEij D

0BBBBBBB@

1 0 � � � � � � � � � 0

0 1 � � � � � � � � � � � �
:::

:::
: : :

:::
:::

:::

��1 ��2 � � � �i � � � ��n
� � � � � � � � � � � � 1 0

0 0 � � � � � � 0 1

1CCCCCCCA ;

where the Eij D .ekl / are the matrices with coefficients ekl D ıkiılj . The matrix M
defines a linear homeomorphism, say fM , of Rn with respect to the canonical basis
because detM D ��i which is different from zero. The mapping fM sends Zn to itself
and descends to a finite-degree covering xfM WTn! Tn – in fact the degree coincides with
the determinant of M . In particular, the following equation holds: � ı fM D xfM ı exp,
where expWRn ! Tn denotes as usual the canonical projection. Consider now the Z-
module h‚j W j D 1; : : : ; niZ generated by the rows of‚�. A straightforward computation
shows that its image via the mapping fM is the Z-module generated by the vectors

*
0BBBBBB@
�1;1
:::

�nC1�
:::

�n;1

1CCCCCCA ; : : : ;
0BBBBBB@
�1;2g
:::

�nC2g�
:::

�n;2g

1CCCCCCA
+

Z

:

Let us point out the following fact: As � is assumed to be dense in the torus, the
image via the canonical projection in Tn of Z-module generated by the rows of ‚� fills
a dense subset of Tn, namely the image of �. As M commutes with the action of 2�Zn

and pass through to the quotient as a finite-degree covering map of the Tn, the Z-module
M � h‚j W j D 1; : : : ; niZ is mapped on a dense subset of the torus. On the other hand, the
projection of the i -th factor is discrete. Lemma 3.2 implies the desire contradiction.

We now prove the opposite implication and again argue by contradiction. Suppose �
does not have a dense image in the n-torus, then its closure is a k-dimensional sub-
manifold, say S0, of dimension k < n. We note that S0 may not be connected in general.
Indeed, any closed subgroup of Tn is homeomorphic to Td �

Z
m1Z � � � � �

Z
mn�dZ , that is,

a finite collection of inhomogeneous tori. Assume first S0 be connected; we shall deduce
the general case later on. The subspace S0 lifts to a linear subspace zS0 of Rn which of
course contains the Z-module h‚j W j D 1; : : : ; 2giZ generated by the columns of ‚�.
We now invoke the following lemma.



Modular orbits on the representation spaces of compact abelian Lie groups 737

Lemma 3.3. There is g 2 SL.n;Z/ such that

g � h‚j W j D 1; : : : ; 2giZ < he1; : : : ; ekiR;

where the ei ’s are the vectors of the canonical basis of Rn.

Assume the lemma holds. The Z-module g � h‚j W j D 1; : : : ; 2giZ is contained in the
first factor of Tn D Tk � Tn�k , and then ‚� cannot have maximal row rank over Z.
As a consequence, the matrix given in equation (3.1) cannot have maximal row rank
over Z. The general case follows by applying the same reasoning to the component So

0

of the subspace S0 containing the identity, which contains a finite-index Z-module of
h‚j W j D 1; : : : ; 2giZ. In the general case, g � h‚j W j D 1; : : : ; 2giZ is contained in
Tn D Tk � F , where F is isomorphic to the finite group Z

m1Z � � � � �
Z

mn�dZ . Let us
proceed with the proof of Lemma 3.3.

Proof of Lemma 3.3. If zSo
0 is contained in he�.1/; : : : ; e�.k/iR for some � 2 Sn, then it is

sufficient to rename the coordinates. This corresponds to a matrix g obtained by product
of elementary matrices. Assume zSo

0 is not contained in any such a space. Let xi be the
intersection of zSo

0 with the affine space ei C Rn�k , and let di be its Euclidean distance
to Rd . Then xi has the following form:

xi D .0; : : : ; 1; : : : ; 0; t1; : : : ; tn�k/;

where ti 2Q. In fact, if this had been not true, then So
0 would have been a dense subspace

of dimension k C 1 in the torus. As a consequence, di 2 Q for any i D 1; : : : ; k and zSo
0

is described by n� k equations with integer coefficients. Look at the set zSo
0 \Zn. This is

a lattice in zSo
0 , and there is a basis v1; : : : ; vk made of integer vectors. We invoke [6, p. 14,

Corollary 3] to claim the existence of n � k vectors vkC1; : : : ; vn such that the vectors
v1; : : : ; vn gathered together form a basis for Zn. Since SL.n;Z/ acts transitively on the
space of lattices, there is g such that

g � h‚j W j D 1; : : : ; 2giZ < g � zS0 D he1; : : : ; ekiR:

This concludes the proof of Lemma 3.3 and indeed the proof of Theorem 3.1.

From the proof, we deduce that the row rank of the matrix ‚� has a very explicit
geometric interpretation, in fact it coincides with the dimension of the subspace containing
the image of �. Of course, the proof does not depend on the presentation of �1.S/ nor on
the lattice chosen. Let us prove these facts.

Proof of independence on the chosen basis. Let h‚j W j D 1; : : : ; 2giZ be the Z-module
generated by the columns of‚�. In Section 2.3.1, we have seen that the effect of changing
a basis of generators corresponds to multiply on the right the matrix‚� with a matrix A 2
SL.2g;Z/. Since the row rank of‚� is invariant under the action by right multiplication of
SL.2g;Z/, the matrices‚� and‚�A have the same row rank. Furthermore, in the light of
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Corollary 2.20, �Q-freedom is also invariant under the right action of SL.2g;Z/. On the
other hand, let S be the closure of the subspace of Tn generated by the columns of ‚�.
Its lift zS is a linear (possibly improper) subspace of Rn described by n � k equations. As
the columns of ‚�A satisfy the same equations, the image is unaffected by the change of
basis. This proves the independence on the basis chosen.

Proof of independence on the chosen lattice. Given two lattices ƒ1 and ƒ2, there always
exists an element of A 2 SL.n;Z/ mapping the first lattice on the second one because the
action of SL.n;Z/ is transitive on the set of lattices. Such a map descends to a homeo-
morphism of the n-torus and hence the Z-module h‚j Wj D 1; : : : ; 2giZ projects to a dense
subset of the torus if and only if its image via A projects to dense subset as well. On the
other hand, it is immediate to verify that the row rank of the matrix ‚�.ƒ1/ equals the
one of ‚�.ƒ2/ because the row rank is invariant under the action by left multiplication
of SL.n;Z/. Again, Corollary 2.20 implies �Q-freedom is invariant under the left action
of SL.n;Z/. Hence the conclusion.

We finally provide a couple of explicit examples.

Example 3.4. Let S be a surface of genus 2, and let �W�1.S/! T2 Š S1 � S1 be the
representation such that �.a1/ D �.a2/ D .ei' ; ei'/, where ' 2 R n �Q, and �.b1/ D
�.b2/ D .1; 1/.

The matrix ‚ has the following form:�
' 0 ' 0

' 0 ' 0

�
:

If  2�1.S/, then �./D �.a1/k1�.b1/k2�.a2/k3�.b2/k4 with ki 2Z. Consider the vector
v D .k1; k2; k3; k4/, then

‚ � v D ..k1 C k3/'; .k1 C k3/'/:

Viewing the 2-torus as a complex with one 0-cell, four 1-cells and one 2-cell, the
image of � is densely contained the main diagonal. Both projections are dense in S1, but
the image does not fill T2. Notice that the row rank of ‚ over Z is one as the dimension
of the smallest subspace containing �.�1.S//.

Example 3.5. Let S be a surface of genus 2, and let �W �1†! T2 Š S1 � S1 be the
representation such that �.a1/ D �.a2/ D .ei' ; 1/ and �.b1/ D �.b2/ D .1; ei'/ with
' 2 R n �Q.

The matrix ‚ has the following form:�
' 0 ' 0

0 ' 0 '

�
:



Modular orbits on the representation spaces of compact abelian Lie groups 739

If  2�1.S/, then �./D �.a1/k1�.b1/k2�.a2/k3�.b2/k4 with ki 2Z. Consider the vector
v D .k1; k2; k3; k4/, then

‚ � v D ..k1 C k3/'; .k2 C k4/'/:

Viewing the 2-torus as a complex with one 0-cell, four 1-cells and one 2-cell, the
image of � densely fills the torus. Notice that the rank of ‚ is two in this case and both
projections are dense.

4. Sp.2g; Z/-action and orbit closures

The group Sp.2g;Z/ acts on the space Hom.H1.S;Z/;Tn/ by precomposition. We have
seen in Section 2.3 that, up to a choice of a symplectic basis, this latter space identifies
with the space M.n; 2gIT /. In this section, we would like to study the orbit closures of
an element of M.n; 2gIT / under the action of Sp.2g;Z/. The first thing we notice is
that a subset � � M.n; 2gIR/ is invariant under the action Sp.2g;Z/ Ë M.n; 2gI 2�Z/
if and only if its projection onto M.n; 2gIT / is Sp.2g;Z/-invariant. This simple remark
legitimates us to study the orbit closures on the universal cover, that is, M.n; 2gIR/.

Let us consider the group G D Sp.2g;R/ Ë M.n; 2gIR/. Given two elements .A; a/
and .B; b/, their product is defined as .A; a/ � .B; b/ D .AB; bA�1 C a/. The group G
acts transitively on the space M.n; 2gIR/ with the action being defined as .A; a/ � p D
pA�1 C a; indeed, a point p 2 M.n; 2gIR/ may be regarded as the couple .I; p/. There
is a natural identification between the space M.n; 2gIR/ with the G=U , where U is
the stabiliser of any point. It is straightforward to check that the zero matrix is noth-
ing but Sp.2g;R/. The subgroup � D Sp.2g;Z/ Ë M.n; 2gI 2�Z/ is a lattice in G and
acts in the obvious way on G=U . Under these conditions, we are in the right position
to apply Ratner’s theorem, see [21], which we state as follows according to our set-
ting.

Ratner’s theorem. Let G, U , � be as above and let p 2 M.n; 2gIR/ D G=U be such
that p D U . Then there is a closed subgroup H such that the following holds:

• U D U
�1 � H ,

• � \H is a lattice in H ,

• � � p D �Hp.

Notice that  can be taken as .I; p/. Since our goal here is to classify the closures of
�-orbits of any point in the space of matrices M.n;2gIR/, we just need to figure out which
subgroups of G may be provided by Ratner’s theorem. To this purpose, let us consider the
projectionˆWSp.2g;R/ Ë M.n; 2gIR/! Sp.2g;R/. Given a point p in M.n; 2gIR/, the
groupH is isomorphic to the semidirect productH D U ËK , whereK is defined as
kerˆ \H , that is, the kernel of the mapping ˆ restricted to H . Notice that the image
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ofH under the mappingˆ is the whole group Sp.2g;R/ becauseH �U Š Sp.2g;R/.
In particular, H Š Sp.2g;R/ ËK .

Let us proceed on understanding K . The first thing we notice is that any change of
lattice h 2 SL.n;Z/ extends to a homeomorphism �h of G defined as

�hW G ! G; �h.A; a/ D .A; ha/:

This is an automorphism of G, and its restriction to kerˆ, where ˆ is the projection just
defined above, is linear and corresponds to a change of lattice in M.n;2gIR/. In particular,
the relation

� � .hp/ D �h.� � p/

holds for any p 2 M.n; 2gIR/. As a consequence of Lemma 3.3, there is an element
h 2 SL.n;Z/ such that h � p is of the form0BBBBBBBBB@

�1;1 � � � �1;2g
:::

: : :
:::

�k;1 : : : �k;2g

�qkC1;1 � � � �qkC1;2g
:::

: : :
:::

�qn;1 � � � �qn;2g

1CCCCCCCCCA
D

 
‚o

�Q

!
; (4.1)

where

• ‚o 2 M.k; 2gIR/ for some 0 � k � n,

• �Q 2 M.n � k; 2gI�Q/,

• the rows ¹.�i;1; : : : ; �i;2g/ºiD1;:::;k are linearly independent over Z,

• h.�i;1; : : : ; �i;2g/W i D 1; : : : ; ki is �Q-free,

and hence it is sufficient to study K for  D .I; p/ and p is a matrix in form (4.1).
Furthermore, it will be sufficient to study the closures of �-orbits for matrices in these
form. We also notice that K is a linear subspace of M.n; 2gIR/ invariant under the
action of U by conjugation. In fact, suppose  D .I;p/, let q D .I; q/ 2K be any point
and let .A; p � pA�1/ be a generic element of U . Then

.A; p � pA�1/ � .I; q/ � .A�1; p � pA/ D .I; qA�1/ 2 K

as claimed. The following lemma implies our main Theorem A for representations of
closed surface groups into the unit circle S1.

Lemma 4.1. Let x� D .�1; : : : ; �2g/ 2 R2g . If x� 2 �Q2g , then .Sp.2g;Z/ Ë 2�Z2g/ � x�
is discrete in R2g . Otherwise, if x� 2 R2g n �Q2g , then Sp.2g;Z/ � x� is dense in T2g and
hence .Sp.2g;Z/ Ë 2�Z2g/ � x� is dense in R2g .



Modular orbits on the representation spaces of compact abelian Lie groups 741

Proof. Let ƒ be the subgroup of R generated by the entries of x� and consider ƒ2g . The
first claim is easy to establish. In this case, ƒ2g is a lattice in R2g containing 2�Z2g

and preserved by Sp.2g; Z/. Now observe that the Sp.2g; Z/-orbit of x� is contained
in ƒ2g . Suppose x� 2 R2g n �Q2g , hence there exists �i 2 R n �Q. There is an element
in Sp.2g;Z/ such that all the entries are R n �Q. We may assume �i 2 Œ0; 2�/ for all
i D 1; : : : ;2g. Let �� 2T2g be any point. For each couple .�2i�1; �2i /, where i D 1; : : : ;g,
there are two integers ki , hi such that the couple .ki�2i�1C �2i ; .kihi � 1/�2i�1C hi�2i /
is closed to .��2i�1; �

�
2i /. Therefore, the Sp.2g;Z/-orbit of x� is dense in T2g and hence

Sp.2g;Z/ Ë 2�Z2g � x� is dense in R2g as desired.

Before proving the general case, we need the following proposition in which we
describe the group K .

Proposition 4.2. Let p 2 X be any point in the form given in equation (4.1) and let k
be the number of lines not in �Q2g . Let H be the group provided by Ratner’s theorem,
where  D .I; p/. Then K is trivial or K D M.k; 2gIR/.

Proof. Let p be any point in M.n; 2gIR/. Assume p be different from the zero matrix
for which the claim trivially holds. Let us begin with the case p D �Q 2 M.n; 2gI�Q/,
that means k D 0. We claim K to be trivial. Let  D .I; p/ and let H be the group
provided by Ratner’s theorem. The orbit � � p lies in the subgroup of M.n; 2gIR/ gen-
erated by the matrices �qijEij , where �qij are the entries of p, which is discrete and
closed. This means that � � p D � � p and implies H is the stabiliser of p. Therefore,
H D U and hence K is trivial. Notice that this argument generalises the first case
of the previous lemma. Let us now assume k > 0. The linear space K is completely
determined by ‚o; indeed, the block �Q does not give any contribution. In this case, the
orbit � � p is no longer closed, and the Sp.2g;Z/-orbit of p is contained in some lin-
ear subspace of M.k; 2gIR/ of dimension 2gl , where l is the dimension of the linear
space generated by the rows of ‚o. Hence K contains V as a proper subspace. We can
notice that V is Sp.2g;R/-invariant but V \M.k; 2gI 2�Z/ is not a lattice because the
Z-module, generated by the rows of ‚o, is �Q-free. For the same reason, the minimal
linear space containing V and a lattice is M.k; 2gIR/, hence K D M.k; 2gIR/.

From the proof of Proposition 4.2, we can deduce the following corollary.

Corollary 4.3. Let p 2 . n; 2gIR/ be any point in the form given in equation (4.1) and
let k be the number of lines not in �Q2g . Then there exists a closed connected subgroup
H � Tn of dimension k such that � � p projects into a finite union of inhomogeneous tori
of dimension k corresponding to cosets of H . In particular, the modular orbit of a dense
representation �WH1.S;Z/! Tn is dense in the representation space.

This corollary implies Theorem B and indeed Theorem A. In Appendix A, we will
study the modular orbits by applying a direct approach without relying on Ratner’s theory.
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5. An application: approximation result

The aim of this final section is to present Proposition D and indeed Theorem C. Let
us begin by recalling the statement of Kronecker’s theorem as formulated in [12, Sec-
tion 26.19 (e)]. The reader may also consult [1, Section 1.12 (iii)] for another one-dimen-
sional version of Kronecker’s theorem.

Kronecker’s approximation theorem. Let b.i/ D .b.i/1 ; : : : ; b
.i/
m / with i D 1; : : : ; n be

vectors of Rm such that b.1/; : : : ; b.n/, �e1; : : : ; �em are linearly independent over Q in
the vector space Rm (where the ej ’s form the canonical basis of Rm). Let a1; : : : ;an be any
real numbers and let " be a positive number. Then there is an element .k1; : : : ; km/ 2 Zm

such that ˇ̌̌
ai �

mX
lD1

klb
.i/

l

ˇ̌̌
< " mod 2� (5.1)

for every i D 1; : : : ; n.

For a real a, the expression jaj < " mod 2� means that ja � 2k�j < " for some
integer k. From equation (5.1) above, one can easily infer the equivalent estimate

k.a1; : : : ; an/
T
� 2�.h1; : : : ; hn/

T
� B.k1; : : : ; km/

T
k < C";

where .h1; : : : ; hn/ 2 Zn, B is the matrix having b.i/’s as rows, C is a real constant
depending only on n, and k � k is any norm on Rn. Kronecker’s theorem generalises to
simultaneous approximation of l given real vectors a.j / D .a1j ; : : : ; anj /

T, where j D
1; : : : ; l . Indeed, for any " > 0 there is a matrix K 2 M.m; l IZ/ such that

kA � 2�H � BKk < C";

where A is the matrix having a.j /’s as columns, H 2 M.n; l IZ/ and C is a constant
depending only on l , n. That is,

kA � BKk < " mod 2�:

Let S be a closed surface of genus greater than zero, let �W�1.S/! Tn be a repres-
entation and let ‚� be the associated matrix in the sense of Definition 2.14.

Proposition D. The following are equivalent:

(1) Mod.S/ � � is dense in the representation space.

(2) For any matrix A 2 M.n; 2gIR/ and any " > 0, there is a matrix g 2 Sp.2g;Z/
such that

kA �‚�gk < " mod 2�:

Proof. Each representation is identified with its associated matrix and the representation
space with M.n; 2gIT /. Suppose Mod.S/ � ‚� is not dense in the representation space.
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Then there is an open set U such that Mod.S/ �‚� \ U D �. Let A be any matrix in U ,
and " be a strictly positive real number such that the open ball B".A/ � U . Then, for
any g 2 Mod.S/ the estimate jA �‚�gj > " mod 2� holds. As the action of the Torelli
subgroup is trivial by Proposition 2.8, the action of the mapping class group coincides
with the action of Sp.2g;Z/. Therefore, Theorem C implies Theorem A.

Suppose Mod.S/ �‚� is dense in the representation space. In that case, for any A 2
M.n; 2gI T / and for any " > 0, the mapping class group orbit intersects the open set
B".A/ �M.n; 2gIT /, i.e., there is an element g 2Mod.S/ such that g�1 �‚� D ‚�g 2
B".A/. In particular, kA �‚�gk < " mod 2� . Once again, by Proposition 2.8, the mat-
rix g can be taken in Sp.2g;Z/, and so Theorem A implies Theorem C as desired.

A. Dense orbits and further discussion

In this appendix, we are going to prove Theorem A for almost every representation without
relying on Ratner’s theorem. We begin consider the genus one case and we shall use it to
extend the discussion to surfaces of arbitrary genus.

A.1. Direct proof of Theorem B for almost every representations

The set of matrices M.n; 2gIT / contains, as a proper subset, the space D of all of those
matrices of the form0BBBBBB@

�1 �2 � � � �2i�1 �2i � � � �2g�1 �2g
:::

:::
: : :

:::
:::

: : :
:::

:::

�j �1 �j �2 � � � �j �2i�1 �j �2i � � � �j �2g�1 �j �2g
:::

:::
: : :

:::
:::

: : :
:::

:::

�n�1 �n�2 � � � �n�2i�1 �n�2i � � � �n�2g�1 �n�2g

1CCCCCCA ; (A.1)

where .�1; �2; : : : ; �2g�1; �2g/ 2R2g n �Q2g is the lift of .ei�1 ; ei�2 ; : : : ; ei�2g�1 ; ei�2g / 2
T2g contained in Œ0; 2�/2g and the reals ¹1; �2; : : : ; �nº � R are linearly independent
over Q.

Lemma A.1. The space D is dense in M.n; 2gIT /.

Proof. Let �2; : : : ; �n be real numbers such that 1; �2; : : : ; �n are linearly independent
over Q. Let us consider the mapping 'WR2g ! T2gn defined by

.�1; �2; : : : ; �2g�1; �2g/

7! ..ei�1 ; : : : ; ei�2g /; .ei�2�1 ; : : : ; ei�2�2g /; : : : ; .ei�n�1 ; : : : ; ei�n�2g //:

This mapping factors through a mapping x'WR2g ! R2gn such that ' D expıx' and exp is
the exponential mapping as in equation (2.1) introduced in Section 2.3. The image of x' is
a 2g-dimensional linear subspace. Since the reals ¹1; �2; : : : ; �nº are linearly independent
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over Q, then the projection via the exponential mapping is dense in T2gn. The space D

is defined as the union of the images for each possible subset ¹�2; : : : ; �nº � R such that
1; �2; : : : ; �n are linearly independent over Q. Therefore, D is dense.

The following lemma is easy to establish and the proof is left to the reader.

Lemma A.2. The space D is Sp.2g;Z/-invariant.

Let us consider first surfaces of genus one. Let T be the genus one surface, and let
�W �1T ! Tn be a dense representation, and ‚� be its associated matrix with respect
to some basis ¹˛; ˇº and the standard lattice of Rn. Let �� be the SL.2;Z/-orbit of ‚�
in M.n; 2IT /. The associated matrix ‚� has the form

‚� D

0BBBBBB@
�1 �2
:::

:::

�i�1 �i�2
:::

:::

�n�1 �n�2

1CCCCCCA ; (A.2)

where .�1; �2/ 2 R2 is the lift of .ei�1 ; ei�2/ 2 T2 contained in Œ0; 2�/2 and �i 2 R, for
any i D 2; : : : ; n, are linearly independent over Q. Set

x‚� D

�
‚�
� � I2

�
:

Since the representation � is assumed to have a dense image, the matrix x‚� has max-
imal row rank, that is, rkZ D nC 2. This implies the following properties of the matrix‚�
above:

(i) The real numbers �1 and �2 cannot be both elements of �Q. If this were the case,
the row rank of the matrix x‚� would fail to be maximal, contradicting our assump-
tions. In the case one on them is an element of �Q, we can change the basis in
such a way they are both elements of R n �Q. Indeed, assume without loss of
generality that �2 2 �Q. The Dehn twist T˛ along ˛ maps the curve ˇ to ˛ˇ
and hence �.ˇ/ is mapped to �.˛ˇ/. The second column of ‚� changes accord-
ingly, and the element in position .1; 2/ of ‚T˛ �� is nothing else than �1 C �2.
As �1 … �Q, the same necessarily holds for �1 C �2. In what follows, we shall
assume both �1; �2 … �Q.

(ii) The real numbers �; �1; : : : ; �i�1; : : : ; �n�1 are linearly independent over Q.
Indeed, if this were not the case, then one can easily check that x‚� does not
have maximal rank. This implies that the subgroup of Tn generated by the vector
.�1; : : : ; �i�1; : : : ; �n�1/ is dense in Tn (see [1, Exercise 1.13]), meaning that Tn

is monothetic (that is, Tn contains a dense cyclic subgroup). The same holds also
for the real numbers �; �2; : : : ; �i�2; : : : ; �n�2.
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We begin with considering the SL.2;Z/ action on the space M.n; 2IR/ seen as the
universal cover of M.n; 2IT /, see also Remark 2.14. Given the matrix ‚� as in (A.2),
there is a unique lift, say‚.�/, in M.n; 2IR/ which is still of form (A.2). Notice that such
a matrix is the unique one who has all the entries in the interval Œ0; 2�/. Let us finally
denote by �.�/ the SL.2;Z/-orbit of ‚.�/ in M.n; 2IR/.

Since ‚.�/ is of form (A.2), an easy computation shows that the matrix A � ‚.�/ 2
�.�/ is still of form (A.2) for any A 2 SL.2;Z/, that is, the i -th row of A � ‚.�/ is �i -
times .�1; �2/A�1. Therefore, we can deduce that�.�/ is contained in some proper linear
subspace S of R2n. In fact, the coefficients of any matrix A � ‚.�/ 2 �.�/ satisfy the
homogeneous linear system

� W

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�2;1 � �2�1;1 D 0;
:::

�n;1 � �n�1;1 D 0;

�22 � �2�12 D 0;
:::

�n2 � �n�12 D 0

in 2n � 2 equations and 2n variables. Hence, S is defined as the full space of solutions
of the linear system � . Let us consider the subspace S . Since each of the �i is taken as
an element of R nQ, the subspace S necessarily meets the lattice M.n; 2I 2�Z/ only at
the origin. Hence, the projection of the subspace S into the space M.n; 2IT / densely fills
a closed subspace K of M.n; 2IT /. We finally claim that K cannot be a proper subspace.
We notice that, due to the nature of the linear system � , the subspace S splits as the
direct product V1 � V2 inside the vector space Rn � Rn Š M.n; 2IR/. Then the image
of S into the space M.n; 2IT / lies inside a closed subgroup of the form H1 �H2, where
Hi < M.n; 1IT / Š Tn, for i D 1; 2. Notice that K is a proper subgroup of M.n; 2IT / if
and only if Hi is a proper subgroup of M.n; 1IT /. Therefore, the proof of the final claim
boils down to showing that Hi cannot be a proper subgroup for both i D 1; 2. As the
group H1 contains the vector exp.�1; �2�1; : : : ; �n�1/, then it contains also the subgroup
¹exp.t.�1; �2�1; : : : ; �n�1// j t 2Zº and thus its closure which we know to be equal to the
full space Tn. In the same fashion, we can prove H2 D Tn. As a result, K D M.n; 2IT /
and the SL.2;Z/-orbit of ‚� is dense in M.n; 2IT / as desired.

The general case for surfaces of genus greater than one works similarly, and we rely
on the following remark.

Remark A.3. Let S be any surface of genus g � 2. The space Hom.�1.S/;Tn/ naturally
splits as the direct sum of g copies of Hom.�1T;Tn/, where T denotes the 2-torus (we
do not use here the blackboard notation since T is considered only as a topological sur-
face regardless of its group structure). The basis ¹˛1; ˇ1; : : : ; ˛g ; ˇgº of �1.S/ we fixed
satisfies moreover the equalities i.˛i ; j̨ /D i.ˇi ; ǰ /D 0, and i.˛i ; ǰ /D ıij for all i , j
with 1 � i; j � g. We may associate to any representation �W �1.S/! Tn the g-tuple
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of representations .�1; : : : ; �g/ where �i is the restriction of � to the handle generated
by ˛i , ˇi . Such a mapping defines then an isomorphism

Hom.�1.S/;Tn/ Š

gM
iD1

Hom.h˛i ; ˇi i;Tn/;

which depends on the basis chosen. This decomposition is a consequence of the fact that
a surface of genus g is the connected sum of a surface of genus g � 1 and a torus T along
with the property that each representation � sends all simple closed separating curves to
the identity. A recursive argument leads to the desire conclusion. We finally notice that the
group SL.2;Z/ � � � � � SL.2;Z/ < Sp.2g;Z/ introduced in Remark 2.5 acts diagonally
on this space; the i -th copy of SL.2;Z/ acts on Hom.h˛i ; ˇi i;Tn/.

Given any matrix, say A, of the form as in equation (A.1), up to replace it with
Ag�1 with g 2 Sp.2g;Z/, we may assume, without loss of generality, that at least one
of �2i�1; �2i … �Q. Under this condition, observations (i) and (ii) hold for each pair of
columns 0BBBBBB@

�2i�1 �2i
:::

:::

�j �2i�1 �j �2i
:::

:::

�n�2i�1 �n�2i

1CCCCCCA :
Therefore, the action of the g-times product SL.2;Z/ � � � � � SL.2;Z/ < Sp.2g;Z/

provides a dense orbit inside the space M.n; 2gIT / as desired.

A.2. Finding curve generating dense subgroups

All the representations � considered in Section A.1 above are characterised by the fol-
lowing property: Each column of the associated matrix ‚� generates a dense subgroup
of Tn. It turns out that for any such a representation one can find infinitely many curves
whose image generates a dense subgroup in Tn. This lead the authors to ask themselves:
Given a dense representation �W�1.S/! Tn, can we find a simple closed curve  such
that h�./i is dense in Tn? Remind that a vector .ei�1 ; : : : ; ei�n/ 2 Tn generates a dense
subgroup if and only if �; �1; : : : ; �n are linearly independent over Q. As a corollary of
Lemma 4.1, we deduce the following.

Lemma A.4. Let �W �1.S/ ! S1 be a dense representation. Then there always exists
a simple closed curve  such that h�./i D S1.

However, for n � 2, the scenario changes completely. Indeed, for any n we can find
examples of dense representations which do not have any curve generating a dense sub-
group in Tn.
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Example A.5. Let S be a surface of genus g and �W �1.S/! T2 be the representation
having as the associated matrix ‚� 2 M.2; 2gIT / the following:�

1 1 0 0 0 0 � � � 0 0

0 0 1 1 0 0 � � � 0 0

�
2 M.2; 2gIT /:

One can show that x‚� has maximal rank and hence � is a dense representation. However,
no curve is applied by � to a vector generating a dense subgroup.

Example A.6. Let S be a surface of genus g and �W�1.S/! Tn be the representation
having as the associated matrix ‚� 2 M.2; 2gIT / the following:0BBBBB@

1 1 0 0 0 0 � � � 0 0

0 0 1 1 0 0 � � � 0 0

�3 0 0 0 0 0 � � � 0 0
:::

:::
:::

:::
:::

:::
: : :

:::
:::

�n 0 0 0 0 0 � � � 0 0

1CCCCCA 2 M.n; 2gIT /;

where 1; �3; : : : ; �n are linearly independent over Q. One can show that x‚� has maximal
rank and hence � is a dense representation. However, no curve is applied by � to a vector
generating a dense subgroup.

B. Surfaces with one puncture

Let us now discuss the case of the one-holed torus†. We denote by �1†Š h˛;ˇi the fun-
damental group of†. Also in this case, the choice of a representation consists in choosing
for each generator an element of Tn. The representation space Hom.�1†;Tn/ trivially
identifies with the space Tn � Tn. For each choice of an element c, the relative repres-
entation variety Homc.�1†;Tn/ is defined as the preimage of c via the commutator map
kWTn �Tn!Tn. Thus, as a consequence of the abelian property, the relative representa-
tion space is empty for any c¤ .1; : : : ; 1/ and coincides with the full representation variety
when c D .1; : : : ; 1/. Once again, the action of Tn by inner automorphisms is trivial and
hence the character variety trivially coincides with the representation space. As a con-
sequence, the space Hom.�1†;Tn/ naturally identifies with the space Hom.�1T;Tn/.
The equalities Mod.T /DMod.†/D SL.2;Z/ are well known, and the actions of Mod.T /
and Mod.†/ on the representation spaces associated to T and †, respectively, coincide.
Therefore, we have the following proposition.

Proposition B.1. Theorems A and B hold for the torus T if and only if they hold for the
one-holed torus †.

More generally, the main results of the present work extend to surfaces of higher
genus and with one boundary component. Indeed, let Sg;1 be a surface of genus g and
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one boundary component. We have already seen above that this is true for the one-holed
torus †, see Proposition B.1. The general claim follows because, since Tn is abelian,
one can establish an identification between the representations spaces Hom.�1.S/;Tn/

and Hom.�1.Sg;1/;Tn/. Since the mapping class group coincides with the pure mapping
class group for one-puncture surfaces the following proposition also holds.

Proposition B.2. Theorems A and B hold for a closed surface of genus g if and only if
they hold for the one-holed surface of genus g.
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