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ABSTRACT
We present a local and transferable machine-learning approach capable of predicting the real-space density response of both molecules and
periodic systems to homogeneous electric fields. The new method, Symmetry-Adapted Learning of Three-dimensional Electron Responses
(SALTER), builds on the symmetry-adapted Gaussian process regression symmetry-adapted learning of three-dimensional electron densities
framework. SALTER requires only a small, but necessary, modification to the descriptors used to represent the atomic environments. We
present the performance of the method on isolated water molecules, bulk water, and a naphthalene crystal. Root mean square errors of
the predicted density response lie at or below 10% with barely more than 100 training structures. Derived polarizability tensors and even
Raman spectra further derived from these tensors show good agreement with those calculated directly from quantum mechanical methods.
Therefore, SALTER shows excellent performance when predicting derived quantities, while retaining all of the information contained in the
full electronic response. Thus, this method is capable of predicting vector fields in a chemical context and serves as a landmark for further
developments.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0154710

Machine-learning (ML) tools are now widely used in computa-
tional chemistry to reduce the cost of simulations and aid the inter-
pretation of data.1–4 ML models are often employed to predict ener-
gies and forces5–10 and drive molecular dynamics simulations.11–14

This has enabled ab initio quality simulations on timescales and
system sizes, which are completely inaccessible by conventional
ab initio molecular dynamics (AIMD) approaches.14–18 However,
this approach comes at the cost of losing access to other prop-
erties directly related to the electronic density. These must be
obtained by some independent method, which triggered the devel-
opment of many recent models,19–23 including a number of mod-
els capable of predicting the electronic polarizability.10,24–26 We
have recently developed SALTED (Symmetry Adapted Learning of
Three-dimensional Electron Densities), a machine-learning method
that predicts the real-space electronic density of molecular and con-
densed phase systems,27,28 based on earlier work that predicted the
electron densities of molecules.29,30 SALTED may be applied in

tandem with machine-learned potentials, providing access to every
ground-state electronic-structure property that would be available in
a traditional AIMD calculation.

In this article, we present SALTER (Symmetry-Adapted Learn-
ing of Three-dimensional Electron Responses). SALTER builds on
SALTED to predict the static real-space response of the electron
density of a molecule or material to a homogeneous electric field.
This response defines the global dielectric susceptibility of the sys-
tem, which is needed to simulate many flavors of vibrational Raman
and sum-frequency spectra,31–37 and defines the high-frequency
electronic screening that impacts a wide range of static and trans-
port properties of molecules and materials.38–42 The computational
burden of calculating this electronic response is considerable—the
most commonly employed method, density-functional perturba-
tion theory (DFPT),43 is typically 4–10 times more expensive than
the underlying density functional theory (DFT) calculation.42,44 As
such, this calculation is a bottleneck when evaluating dielectric
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properties along long molecular dynamics trajectories. Machine-
learning approaches have recently been used to predict the non-local
density-density response function, from which the density response
to an applied field can be derived.45,46 Here, we target the density
response itself, developing a machine-learning method that pro-
vides more information than direct predictions of the polarizability
while being less cumbersome than predictions of the density-density
response function.

As in our previous work,27,28 SALTER is based on an atom-
centered expansion of the density response, with the coefficients of
the expansion predicted using the symmetry-adapted Gaussian pro-
cess regression (SA-GPR) approach.47 This produces a method that
is local, transferable, and capable of treating molecular and periodic
systems on the same footing.27 The key modification introduced in
this work is the inclusion of a “dummy” atom in the representation
of each atomic environment, which encodes information about the
direction of the applied perturbation in a simple way while retaining
all of the symmetry properties of the representation.

We start by briefly presenting the method. We follow the same
general approach outlined in our previous work learning the elec-
tron density, ρ,27,28 and highlight the key differences to the previous
method. For a more detailed account, we refer the reader to Refs. 27
and 28. The density response ρ(1)β to a field applied along a Cartesian
axis β can be expanded using a set of auxiliary basis functions ϕ, such
that

dρ(r)
deβ

≡ ρ(1)β (r)

≈ ρ̃(1)β (r) =∑
i,σ,U

ciσβϕiσ(r − Ri + T(U)), (1)

where Ri is the position of atom i, and the basis function ϕiσ is cen-
tered on atom i and is the product of a radial part Rn(r) and a real
spherical harmonic Yλμ(θ, ϕ); for brevity, we use a composite index
σ ≡ (anλμ), where a labels the atomic species. T(U) is a translation
vector to a point removed from the central reference unit cell by
an integer multiple U = (Ux, Uy, Uz) of the lattice vectors, present
only when the system is periodic. The optimal coefficients for this
expansion can be found by minimizing the loss function

ϵ(cRI
β ) = ∫

u.c.
dr∣ρ̃ (1)β (r; cRI

β ) − ρ(1)β (r)∣
2
, (2)

which yields

cRI
β = S−1w(1)β , (3)

where S is the overlap matrix of the basis functions, and w(1)β is
a vector of the projections of the self-consistent density response
ρ(1),QM

β (r) onto the basis,

w
(1)
iσβ =

Ucut

∑

U
⟨ϕiσ(r − Ri + T(U))∣ρ(1)β (r)⟩u.c.

. (4)

These optimal coefficients cRI
β serve as the references against which

the accuracy of coefficients predicted by the ML model cML
β are

evaluated.
We approximate cML

β as a linear combination of the regres-
sion weights bjσβ associated with M reference environments and a

covariant kernel kσβ(Ai, Mj) that describes the similarity between
the reference environments {M j} and the atomic environments that
comprise the target structure {Ai},

cML
iσβ ≈

M

∑

j
b jσβkσβ(Ai, M j), (5)

where cML
iσβ and bjσβ are vectors of length 2λ + 1 and kσ,β(Ai, Mj)

is a square matrix of the same dimension. Defining and minimiz-
ing a loss function analogous to Eq. (2) allows us to determine the
regression weights bβ,

ϵ(bβ) =
N

∑

A=1
∫

u.c.
dr∣ρ̃ (1),ML

β (r; bβ) − ρ(1),RI
β (r)∣

2
+ η bTKMMb . (6)

The index A runs over each of the N structures in the training set,
the matrix KMM couples the reference atomic environments to one
another, and we introduce the hyperparameter η to control the regu-
larization of the minimization. In all the examples presented, we use
a regularization parameter of η = 10−8, finding only a weak depen-
dence of the observed error on η. Equation (6) is solved iteratively
using the conjugate gradient algorithm; for a detailed description of
the implementation, see Ref. 28.

Equation (6) contains no explicit constraint to ensure that

∫ ρ̃(1),ML
β (r; bβ)dr = 0. Nevertheless, we find that the charge con-

servation error in the examples presented is negligible: applying an
electric field of 0.1 atomic unit (5.14 V/Å) leads to charge conser-
vation errors typically below 10−4 per electron. This is consistent
with our previous observations using SALTED to predict the elec-
tron density,27 in which case there is also no enforcement of charge
conservation.48

The key difference between SALTER and SALTED lies in
the similarity kernel kσβ(Ai, Mj). In Refs. 27 and 28, kernels are
constructed from the λ-SOAP representation of the atomic environ-
ments Ai and Mj.47 This captures the symmetry covariant transfor-
mations of the spherical harmonics under rotation; the coefficients
must also possess this symmetry since they expand auxiliary basis
functions whose angular parts are spherical harmonics. As such, they
are independent of the laboratory frame. However, in the present
case, the similarity kernel kσβ(Ai, Mj) must retain all of the proper-
ties exploited in previous work, while also including the laboratory
frame direction along which the perturbing field is applied.

Our solution is simple. An additional “dummy” atom of atomic
number zero is added to every atomic environment on the β axis, dif-
ferentiating this axis from the others. The kernels are then calculated
using λ-SOAP representations of these modified atomic environ-
ments in the normal way. This dummy atom is included in the
kernels for all values of λ, ensuring that the kernels retain all of the
required symmetry properties, while including (symmetry-adapted)
information about the laboratory frame direction of the applied field.
This idea is illustrated in Fig. 1 and defined mathematically below.

The unmodified λ-SOAP kernel is defined as47

kσ(Ai, M j) = ∫ dR̂Dλ
(R̂)∣∫ ni(r)n j(R̂r)dr∣

2
, (7)

where the first integral is performed over all rotations of order λ,
and Dλ

(R̂) is the Wigner matrix corresponding to rotation R̂. The
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FIG. 1. An illustration of the modified λ-SOAP descriptors and kernels. Envi-
ronments Ai are defined by a cutoff radius around a central atom i, labeled
with a blue dot. The usual SOAP environments ni [see Eq. (8)] are constructed
from a Gaussian function centered on every atom within the cutoff radius. Our
modified environments niβ [see Eq. (9)] add a Gaussian corresponding to an
additional “dummy” atom, shown here in green, which encodes the direction of
the applied field in the descriptor. The λ-SOAP kernels are then built from the
symmetry-adapted overlap of these modified environments, as in Eq. (7).

atomic environment around atom i is described as a sum of Gaussian
functions of width ν centered at the position of every atom Rj that
lies within some radius rc of the central atom,

ni(r) =∑
j

gν(r − R j)Θ(rc − ∣R j − Ri∣). (8)

Θ(x) is the Heaviside step function. To include information about
the direction of an applied field, we include a “dummy” atom in the
atomic environment, adding an additional term to Eq. (8),

niβ(r) =∑
j

gν(r − R j)Θ(rc − ∣R j − Ri∣) + gζ(r − xr̂βrc). (9)

x is a parameter between 0 and 1 specifying the position of the
dummy atom and r̂β is a unit vector in the Cartesian direction β.
Note that the width of the Gaussian associated with the dummy atom
is not required to be the same as that associated with the physical
atoms; in general, ζ ≠ ν. The λ-SOAP kernel kσβ that accounts for
the direction of the applied field is then obtained by replacing ni(r)
with niβ(r) in Eq. (7).

We define the % root mean square error (RMSE) across the
datasets as

% RMSE
100

=

¿

Á
Á
Á
ÁÀ

1
Nt
∑

Nt
A ∫u.c.dr∣ρ̃ (1),ML

Aβ (r) − ρ̃ (1),RI
Aβ (r)∣

2

1
Nt−1∑

Nt
A Δc̄T

AβΔw̄(1)Aβ

. (10)

The denominator is the standard deviation of the density response
across the Nt structures in the test set, with Δc̄A = cA − c̄ and Δw̄(1)A

= w(1)A − w̄ (1); c̄ and w̄ (1) are the mean values for the vectors of
coefficients and density projections in the dataset.

We used the FHI-aims software package49 to obtain the train-
ing data S and w(1)β and reference density responses ρ(1),QM

β using
density functional theory50,51 employing the local-density approxi-
mation (LDA) functional.50 In all cases, “light” basis sets were used,
and the auxiliary basis functions introduced in Eq. (1) are con-
structed by taking all possible products of these basis functions and
then eliminating linear dependencies from the resulting basis set.52

The molecular dynamics simulations were performed using i-PI.53

We note that the “light” settings used are not the most accurate for

the prediction of these properties but are sufficient to test the qual-
ity of the ML model. Increasing the model accuracy only requires
calculating new training data, which we will show below is not very
costly.

First, we tackle the simple example of an isolated water
molecule. We learn the density response to an electric field for a
dataset of 1000 distorted configurations taken from Ref. 47 using
both the usual kernels kσ and the modified kernels kσβ. Each
molecule in the dataset is aligned to a reference molecule, as shown
in Fig. 2. We use the SOAP parameters rc = 4.0 Å, ν = 0.3 Å, as is
commonly used to describe water,47 and chose ζ = ν and x = 0.9 to
define the dummy atom. The choice of these parameters will be dis-
cussed in more detail below and makes little difference to the results
in this simple example. The dataset of was split into a training set of
250 and a test set of 750 structures; M = 300 reference environments
were used.

The accuracy of SALTER density responses for this simple
dataset are summarized in the table in Fig. 2. The first row shows
that while aligning the molecules is sufficient to allow reasonably
accurate learning of the density response to a field applied along
the y axis, the learning entirely fails for fields applied along the x
or z axes. This can be explained by symmetry: since the molecules
lie in the xy plane, the SOAP descriptors are invariant to reflec-
tions in that plane; there is no differentiation between a field applied
in the +z and −z directions, resulting in errors approaching 100%.
By contrast, once the dummy atom is introduced, this ambiguity is
removed. As a result, using the modified kernels, we see errors of
around 1% regardless of the field direction.54

This example also displays a feature of SALTER. Since the
molecules are aligned, the Cartesian axes are nonequivalent. As a
result, a separate machine-learning model must be trained for each
non-equivalent direction. This additional cost is offset by the con-
ceptual simplicity of the approach, the computational simplicity of
calculating the descriptors, and that this drawback only applies in
the specific case of nonequivalent axes. It is not necessary to align

FIG. 2. Top: A visualization of the 1000 water molecule dataset in which all struc-
tures are overlayed. Each molecule lies in the xy plane, with the O atom at the
origin; the positions of the H atoms are varied around the equilibrium geometry,
which is highlighted in blue and whose center of mass lies on the y axis. Bot-
tom: The % RMSE across the test set of 750 structures using λ-SOAP kernels
built using atomic environments that exclude (first row) and include (second row)
a dummy atom.
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systems for this approach to succeed; the alignment here has a purely
pedagogical purpose.

Having established that our approach works in principle, we
turn to a more realistic example: a cubic water cell of side 9.67 Å
containing 32 water molecules. Our dataset consists of 500 con-
figurations, divided into a training set of 400 structures and a test
set of 100 structures; this is the same dataset as used in Ref. 28.
Because there are now physical atoms distributed throughout each
spherical atomic environment, it is not clear a priori what the
optimal values for x and ζ in Eq. (9) would be. We performed a
search of the parameter space using a subset of 50 structures from
the full training set, finding the lowest errors when x = 0.3 and
ζ = 1.0 Å. The results show only a weak dependence on x, since the
role of the dummy atom is simply to break the symmetry of the
atomic environment—the precise position of the atom in the envi-
ronment, as long as it lies along the relevant Cartesian direction, is
unimportant. Full details of this optimization are provided in the
supplementary material.

The learning curves for the density response to a field applied
along each Cartesian axis are shown in Fig. 3. Learning improves
monotonically with increasing training set size, with the error reach-
ing a plateau of around 12% for N ≥ 100. We have used M = 3000
reference environments for these calculations (see convergence with
respect to M in the supplementary material). As the Cartesian direc-
tions are all equivalent, the machine-learning model trained on the
density response to a field applied along the x axis is also used to pre-
dict the response to a field along the y and z axes; the errors observed
are very similar regardless of the field direction, as would be expected
by symmetry.

The learning curve for this dataset saturates at a relatively large
% RMSE: around three times larger than the error in the predicted
densities we reported in our previous work.28 The reason for this
could be a deficiency of the descriptor or a lack of quality in the
training data. Our descriptors are short ranged: any correlations in
the density response, which are longer ranged than the 4 Å cutoff
radius of the atomic environment, will be lost, limiting the accuracy
of predictions. Alternatively, more accurate predictions may be pos-
sible if the training data were obtained using a larger basis set, since
this allows a more accurate expansion of the density response and

FIG. 3. Learning curves for the density response to a field along each Cartesian
direction for the bulk water dataset, M = 3000.

reduces the error in the training data, which in turn reduces the noise
in the machine-learning model.

We then tested the performance of SALTER on a derived quan-
tity from the electronic response, the static dielectric susceptibility
tensor. This quantity is related to the polarizability of individual
molecules and is defined by42

αγδ = −∫
u.c.

rγρ(1)δ (r)dr. (11)

When considering a non-metallic periodic system, instead of eval-
uating Eq. (11), we exploit the commutation relation between the
unperturbed Hamiltonian and the position operator to avoid an ill-
defined result,42,43 having obtained the unperturbed Kohn–Sham
orbitals from a ground-state calculation or an ML prediction.55 We
denote the tensor defined by the density response found by a self-
consistent DFPT calculation as αQM, while αML is derived from the
predicted density response; the error in αML relative to αQM provides
a measure of the accuracy of the predicted density responses.

Table I gives the errors in different elements of αML derived
from the density response predicted by the machine-learning model
with N = 400, M = 3000. In all cases, errors are around 5%; this com-
pares favorably to previous direct machine-learning predictions of
αML, which typically find errors >10% for models trained on a few
hundred structures, reducing to 5% only when trained on a few
thousand structures.24–26 Indeed, a direct prediction of the dielectric
susceptibilities of this dataset yielded errors between 20% and 30%
using the same training set and learning parameters. Therefore, for
a given accuracy, our indirect method of predicting αML reduces the
computational effort required to generate training data by an order
of magnitude relative to a direct prediction of αML.

The smaller errors in αML than in ρ(1),ML can be understood
from Eq. (11). If errors in the density response accumulate in regions
of space, which do not contribute significantly to the integral, one
would expect to see lower errors in αML than the density response
from which it is derived. We discussed a similar dependence of
the error in properties derived from electron density on the spatial
distribution of errors in the electron density itself in Ref. 28.

Finally, we use SALTER to predict a quantity that is “twice
removed” from the target prediction of the model: the vibra-
tional Raman spectrum of the P21/a naphthalene crystal at 80 K.
We used five 10 ps NVE ab initio molecular dynamics trajec-
tories of a 2 × 2 × 1 crystal supercell (eight molecules) using the
Perdew–Burke–Ernzerhof (PBE) functional56 with many-body dis-
persion corrections.57,58 To train the machine-learning model, we
selected 100 structures from each of these trajectories, dividing
these structures into a training set of 400 configurations and a
test set of the remaining 100. The learning curves for the den-
sity response to a field applied along each Cartesian direction are
shown in Fig. 4. These curves are converged with respect to M (see

TABLE I. % RMSE in each component of the dielectric susceptibility derived from
the density responses predicted by a machine-learning model trained using N = 400,
M = 3000 for the bulk water test set.

Component xx yy zz xy xz yz

% RMSE 5.03 4.88 4.39 5.11 4.91 4.31
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FIG. 4. Learning curves for the density response to a field along each Cartesian
direction for the naphthalene test set, M = 2000.

the supplementary material) and we see no significant difference in
performance when predicting the response to a field applied along
each Cartesian axis. The dataset is relatively homogeneous: a single
training structure is sufficient to produce an ML model accurate to
within 12%, and no improvement is seen when the training set size
is increased beyond 100.

We then used the predicted density responses to calculate αML

for each structure in the test set. Curiously, the errors given in
Table II are significantly larger than those found in bulk water
(Table I), despite the % RMSE of the density response itself being
significantly lower for naphthalene. In contrast to the water dataset,
these indirect predictions also underperform direct predictions of
the dielectric susceptibility, which show errors of around 7% using
the same training data and machine-learning parameters. Further-
more, the errors in the components of αML derived from a response
to a field applied in the z direction are the largest, despite the errors
in this response being the lowest (see crystal cell orientation in
Fig. 4). This counter-intuitive result is again due to the fact that the
errors in αML depend not just on the magnitude of the error but also
its spatial distribution. Specifically, for a given magnitude of error,
the greater the distance between the regions of positive and nega-
tive error, the greater the error in the dielectric susceptibility derived
from the density response—as we observe along the z direction of
naphthalene. This is illustrated in more detail in the supplementary
material. This also suggests a possible solution: adding auxiliary basis
functions with larger values of λ will likely improve the description
of the electron density response far from the nuclei, resulting in a
reduction in the error in the dielectric susceptibility.

We compared the Raman spectrum obtained using αQM with
one obtained indirectly using SALTER predictions of ρ(1),ML to

TABLE II. % RMSE in each component of the dielectric susceptibility derived from
the density responses predicted by machine-learning models trained using N = 400,
M = 3000 for the naphthalene test set.

Component xx yy zz xy xz yz

% RMSE 9.13 14.40 19.74 9.38 12.81 20.11

obtain αML. The anharmonic Raman spectrum of a disordered
naphthalene sample (the powder spectrum) was calculated using
ensemble-averaged time-correlation functions, as in Ref. 32. The
spectra are shown in Fig. 5. Good agreement is seen at the
polymorph-sensitive low frequency modes, with small discrepan-
cies in the peak intensities appearing at higher frequencies. Using
SALTER, we obtain Raman spectra of comparable quality to those
obtained using ab initio methods and to those obtained from a direct
learning of αQM,24 while dramatically reducing the simulation cost
and retaining access to all the information included in the real-space
distribution of ρ(1)

(r).
In conclusion, we presented a simple modification to the widely

used λ-SOAP descriptors, which allows us to use machine learning
to predict a vector field; specifically, the response of the electron
density to a static electric field. By adding a “dummy” atom to each
atomic environment that indicates the direction of the applied field,
we retain all of the beneficial properties of the λ-SOAP kernels,
which allowed us to predict the scalar electron density field in pre-
vious work,27,28 while including (symmetry-adapted) information
about the laboratory frame direction of the applied field. Therefore,
we expect the method developed here to be straightforward to gen-
eralize to the prediction of other vector fields. To the best of our
knowledge, this is the first reported machine-learning model capa-
ble of predicting vector fields in a chemical context. We note that,
after the initial submission of this paper, a very similar model was
developed independently and used to predict the electron density of
systems under a finite field.59

We applied SALTER to two condensed phase systems: liquid
water and the P21/a naphthalene crystal. A single machine-learning
model successfully predicted the density response of water to a field
applied along each of the Cartesian axes; we derived the dielectric
susceptibility from these predictions, finding values within 5% of
the reference DFPT calculations. For naphthalene, we constructed
machine-learning models of similar accuracy regardless of the direc-
tion of the applied field. We found a counter-intuitive relationship
between the errors in the density response, which were smallest
when the field was applied along the z axis, and the errors in the
corresponding dielectric susceptibilities, which were the largest for

FIG. 5. The powder Raman spectrum of the P21/a naphthalene crystal at 80 K,
calculated from time-correlation functions of dielectric susceptibilities ab initio (QM)
and via an indirect SALTER prediction.
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the yz and zz components of the tensor. This apparent contradic-
tion can be explained by analyzing the spatial distribution of the
error in the predicted density response. Nevertheless, the Raman
powder spectrum obtained from these indirectly predicted dielec-
tric susceptibilities was very similar to that obtained using DFPT,
and at a fraction of the computational cost. In general, this method
produces accurate derived quantities while retaining the full infor-
mation contained in the electron density response to an applied
field.

The supplementary material contains details of the optimiza-
tion of the dummy atom parameters, the convergence of the
machine-learning models with respect to the number of reference
environments, a description of additional machine-learning para-
meters, details of the auxiliary basis employed, and an analysis of
the origin of the error in the polarizability or dielectric susceptibility
derived from a predicted density response.
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