
1.  Introduction
The atmosphere is sensitive to variations in land surface processes, and such covariability between the land and 
atmosphere states is described as the land-atmosphere coupling (Quillet et al., 2010; Santanello et al., 2009, 2018). 
The land surface characteristics, for example, vegetation state, albedo, and soil moisture, play important roles in 
this coupling as they modulate the exchange of water, energy, and carbon between the land surface and the 
atmosphere (Balsamo et  al.,  2011; de Rosnay et  al.,  2013; Dirmeyer et  al.,  2018). Accordingly, an adequate 
representation of land surface properties in the land surface models that are specifically used in numerical 
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Plain Language Summary  The accuracy of weather forecasts relies critically on the accurate 
modeling of the exchange of water and energy between the land surface and the atmosphere. The latent heat 
flux and the soil moisture are two important land surface variables in this exchange through the net balances 
of water and energy. The accurate simulation of these variables is challenging in most land surface models 
specifically used for numerical weather prediction due to (a) outdated land surface cover information and/
or (b) neglecting the role of short-term anomalies in vegetation functioning, for example, related to droughts. 
This study quantifies the benefits of including up-to-date land use/land cover information and an explicit 
consideration of the current vegetation state on the prediction of latent heat flux and soil moisture. We find 
that model simulation performance can only benefit from updated land surface information through further 
adjustments to key soil and vegetation related parameters in the model. Overall, we demonstrate that the new 
Earth observation data sets can help to improve land surface model performance, which then contributes to 
more accurate weather forecasts.
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weather prediction (hereafter LSMs) contributes to improved forecast skills from short-range weather forecasts 
to long-range seasonal predictions (Dirmeyer & Halder, 2017; Guo et al., 2011; Nogueira et al., 2020), helping 
to better predict extreme events like heat waves or droughts (Hirsch et al., 2019; Meng et al., 2014; Miralles 
et al., 2019; Zhang et al., 2008).

As LSMs are an essential component of the models that are typically used for weather forecasting systems, 
there have been considerable efforts in recent decades to improve LSM performance (Dutra et al., 2010; Fisher 
& Koven, 2020; Laguë et al., 2019; Wipfler et al., 2011). The constantly increasing computing power allows us 
to include more realistic descriptions of relevant processes and their interactions with the atmosphere, includ-
ing soil thermodynamics, vegetation dynamics, and land cover and management (González-Rouco et al., 2021; 
Nemunaitis-Berry et al., 2017; Steinert et  al., 2021). The increasing computing power also allows the use of 
big Earth observation data to characterize surface properties and better constrain model simulations (Balsamo 
et al., 2018; Ghilain et al., 2012; Hawkins et al., 2019; Orth et al., 2017). For LSMs that employ data assimilation, 
such as the Carbon Cycle Data Assimilation System (CCDAS) (Rayner et al., 2005) and the Organizing Carbon 
and Hydrology In Dynamic Ecosystems (ORCHIDEE) (Santaren et al., 2007), Earth observation constitutes an 
important data source for key land surface variables including soil moisture, vegetation state, albedo, and land 
use/land cover (Guillevic et al., 2002; Meng et al., 2014; Seneviratne et al., 2010). However, exploiting these 
new data streams for enhanced land surface model performance is not straightforward (Wulfmeyer et al., 2018).

Traditional LSMs used for weather forecasting incorporate the effect of vegetation on simulated land surface 
meteorology through lookup tables providing different parameter values depending on the biome type (Boussetta 
et al., 2013; Duveiller et al., 2022; Johannsen et al., 2019). This requires up-to-date information on land cover 
described through the considered biome types. Furthermore, state-of-the-art LSMs use satellite-observed vegeta-
tion indices such as the leaf area index (LAI) to describe vegetation greening, maturity, and senescence (Boussetta 
et  al.,  2013; Stevens et  al.,  2020). However, in most LSMs, the vegetation state is represented only through 
climatological seasonality, neglecting possible impacts of anomalies in vegetation functioning on the weather 
(Duveiller et al., 2022). Although other studies have contributed to LSM development applying high-resolution 
and/or more accurate Earth observation data, the full potential of LSMs in the face of the newly available data sets 
is not yet well exploited, resulting in opportunities for further improving weather prediction accuracy.

Different studies have demonstrated the benefits of considering spatial heterogeneity and high-resolution Earth 
observations in LSMs at local or regional scale. Chaney et al.  (2018) accounted for the spatial heterogeneity 
using subgrid land surface information (300 tiles) within a 0.25° grid cell in California, US, and they analyzed its 
effects on the water, energy and carbon fluxes. A highlight from their results is that the accurate representation of 
topographic gradients has implications in the simulated interannual variability of these fluxes and, therefore, in 
depicting their extremes. Complementarily, L. Li et al. (2022) investigated the impacts of different spatial heter-
ogeneity sources on the simulated water and energy fluxes over the continental US. They showed that the atmos-
pheric forcing and the land use/land cover information are the dominant heterogeneous aspects in determining the 
spatial variability of the fluxes and therefore have potential to improve LSM performance. Yet another inform-
ative example applied over the continental US is from Torres-Rojas et al. (2022) with the use of subgrid tiles 
to represent spatial heterogeneity and to resolve nonlinear hydrological processes. They accounted for different 
scales in spatial heterogeneity, resulting in a very good model agreement with observations of water and energy 
fluxes. A similar study over continental China (Ji et al., 2023) showed that a high resolution representation of land 
surface parameters (30 m) substantially reduces errors in simulated hydrological variables. The results of these 
four studies offer insights for future developments in LSM to focus on land surface parameterizations, predefined 
accurate topography, soil moisture subgrid representation and urban dynamics.

As seen with the previous studies, there is ample potential for further developing LSMs in the face of the newly 
available Earth observation data at the local scale. Yet, this is not fully exploited globally, providing opportunities 
to continuously improve weather prediction accuracy. In this study, we use the ECMWF land surface modeling 
system (ECLand) based on the previous Hydrology Tiled ECMWF Surface Scheme for Exchange over Land 
(HTESSEL) to investigate the impact of updating vegetation and land cover information on model performance 
(Boussetta et  al.,  2021). Previous studies have found that updating the vegetation information in HTESSEL 
enhances the performance of simulated soil moisture and energy fluxes thanks to a more accurate representation 
of (a) the soil moisture uptake and (b) the modulation of evapotranspiration in response to soil moisture changes 
(Boussetta et al., 2013, 2015; Nogueira et al., 2020; O et al., 2020; Orth et al., 2017; Stevens et al., 2020). More 
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recent studies that use the coupled version of HTESSEL within the Integrated Forecasting System (IFS) show the 
subsequent effect of updated land surface information on the forecast skill. For instance, Johannsen et al. (2019) 
showed that large biases in temperature simulated by the IFS strongly relate to the outdated land cover representa-
tion within HTESSEL. Further, Nogueira et al. (2021) showed that it is necessary to adapt the model to the new 
data, that is, to perform a recalibration of model parameters. This recalibration is an important step in the process 
of exploiting the potential of updated land surface information since the model is well adapted to the previously 
used data. However, most existing studies overlook the importance of model recalibration, partially due to the 
lack of land observations to constrain the model parameters (Orth et al., 2016).

Even though there have been considerable efforts to exploit additional Earth observations with HTESSEL, they 
have never brought together all updates in one single study, nor have they performed this in combination with 
a parameter recalibration. Building upon the most recent HTESSEL model performance studies, we perform a 
comprehensive analysis with updated land surface information in ECLand as follows: (a) we update the land use/
land cover information using the European Space Agency Climate Change Initiative and the Copernicus Climate 
Change Service (ESA-CCI/C3S) data set; (b) we introduce interannual variability of LAI and land cover frac-
tion from the Sentinel-3 and THEA GEOV2 satellite observations; (c) we perform a recalibration of key model 
parameters to adjust the model parameterizations to the newly updated land cover and vegetation information. 
This way, we explore the contribution of near-real time land surface information and model calibration to model 
performance.

2.  Data and Methods
2.1.  Model Description

ECLand is the LSM from the operational IFS used at ECMWF (Boussetta et al., 2021). It describes the land 
surface fluxes of energy, water and carbon. At the interface between the surface and the atmosphere, each grid-
box is divided into fractions (tiles). Each fraction has its own properties defining separate heat and water fluxes. 
Current Land Use/Land Cover data (LU/LC) are from the United States Geological Survey Global Land Cover 
Characterization (GLCC) v1.2 (Loveland et al., 2000) which is based on observations from the Advanced Very 
High Resolution Radiometer (AVHRR) covering 1992–1993. The nominal resolution is 1  km. The data set 
provides for each pixel a biome classification based on the Biosphere-Atmosphere Transfer Scheme (BATS) 
(Table S1 in Supporting Information S1).

Vegetation is represented by six static parameters: vegetation cover of low vegetation, vegetation cover of high 
vegetation, low vegetation type, high vegetation type, LAI for low vegetation and LAI for high vegetation. The 
first four parameters are derived from the GLCCv1.2 data by aggregating over the target grid squares. The 
fractional covers for low and high vegetation are obtained by combining the fractions from all the low and high 
vegetation types. The model phenology and its seasonality is represented by the LAI, split into low and high 
vegetation tiles. The LAI in the model is prescribed with a lookup table value that represents the yearly maximum 
LAI per vegetation type and applies a seasonal cycle based on a MODIS LAI climatology.

2.2.  Modeling Experiments

We perform multiple uncoupled model experiments while continuously updating the land and vegetation infor-
mation of ECLand, as listed in Table 1. We use meteorological forcing from the ECMWF atmospheric Reanalysis 
ERA5 (Hersbach et al., 2020) at a reduced Gaussian grid of approximately 0.5° spatial resolution and hourly 
temporal resolution, from 1 January 1995 to 31 December 2019 (available at: https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview). The temperature, humidity, surface pressure and 
wind fields are instantaneous values and representative of the atmospheric layer at 2 m (the first two variables) 
and at 10 m (the last two variables) above the surface. The incoming shortwave and longwave radiation at the 
surface, rainfall and snowfall are provided as hourly accumulations (Boussetta et al., 2015). We use a spin-up 
period from 1995 to 1999, and all results shown do not include these five years.

For each of the first five modeling experiments in Table 1, we update one aspect of the LSM, that is, land cover, 
cover fraction, or LAI. We start from a baseline simulation (CONTROL) which is based on the land cover data set 
from the GLCCv1.2, static cover fraction and a prescribed LAI climatology (through lookup tables) and default 
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model parameters, until we perform the LC_COV_LAI experiment in which we update all aspects including: the 
land cover data set using information with a 300m spatial resolution from ESA-CCI/C3S (Bontemps et al., 2017), 
the cover fraction interannual variability and the LAI interannual variability using 10-daily data from Sentinel-3 
(Verger et al., 2022) and THEA GEOV2 (Verger et al., 2020) at 1 and 4 km spatial resolution respectively, but 
with default model parameters. The cover fraction and LAI interannual variability refers to monthly values that 
vary every year, in contrast to climatological monthly means, based on the monthly mean calculated over the 
period 1993–2019, that is, we do not use new lookup tables for LAI and cover fraction but we apply observational 
data directly to each grid cell.

The new land cover maps have a total of 22 land cover classes based on the Land Cover Classification System 
developed by the United Nations Food and Agriculture Organization. To be used in the model, the 22 classes are 
converted to the BATS classes (Figure S1 in Supporting Information S1). The comparison between ESA-CCI 
and GLCCv1.2 based vegetation cover fraction maps shows an increase (decrease) of low (high) vegetation 
cover in forest areas and a decrease of low vegetation cover favoring more bareground (Figure S2 in Supporting 
Information S1). The vegetation types show a split of the mixed and interrupted forest types between pure forest 
and low vegetation types. The new LAI interannual variability (Figure S3 in Supporting Information S1) extracts 
a seasonally varying LAI lookup table per vegetation type. It defines the ratio of low and high LAI components 
which is then applied to disaggregate the satellite based LAI.

For the last two modeling experiments (last two rows in Table 1) we recalibrate six soil- and vegetation-related 
model parameters which are listed in Table 2. We select these key parameters based on (a) previous parameter 
calibration studies with HTESSEL (MacLeod et al., 2016; O et al., 2020; Orth et al., 2016) and (b) the selection 
of parameters that are theoretically strongly related to the vegetation type, and thus, expected to affect the perfor-
mance of ECLand. Specifically, the minimum stomatal resistance is considered in combination with LAI as what 
matters for evapotranspiration stress is the ratio between minimum stomatal resistance and LAI. The recalibra-
tion experiments are as follows: first, we perform a global calibration in which we search a unique parameter 
set that works best overall for all selected grid cells (i.e., spatially constant calibration); second, we perform a 
regional calibration in which we define the best parameter set individually for each grid cell (i.e., regionally 
varying calibration). We use Latin hypercube sampling (McKay et al., 1979) to select 1000 random combinations 

Model parameter Units Range of default values Range of perturbation factors

Hydraulic conductivity m s −1 0.83–3.83 0.01–100.0

Humidity stress function m s −1 hPa 0.00–0.03 0.25–4.0

Minimum stomatal resistance s m −1 80–250 0.25–4.0

Soil moisture stress function – – 0.25–4.0

Total soil depth cm 1–800 0.5–2.0

Transmission of net solar radiation through vegetation – 0.03–0.05 0.1–10.0

Table 2 
Model Parameters Considered for the Recalibration Experiments

Experiment
Land cover data 

set
Cover fraction 

dynamics LAI dynamics Land surface parameters

CONTROL GLCC Climatology Climatology Default

LC ESA-CCI/C3S Climatology Climatology Default

LC_COV ESA-CCI/C3S Interannual variability Climatology Default

LC_LAI ESA-CCI/C3S Climatology Interannual variability Default

LC_COV_LAI ESA-CCI/C3S Interannual variability Interannual variability Default

Global calibration ESA-CCI/C3S Interannual variability Interannual variability Spatially constant calibration

Regional calibration ESA-CCI/C3S Interannual variability Interannual variability Regionally varying calibration

Table 1 
Modeling Experiments With ECLand
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of perturbation factors independently chosen for each parameter within a specified range. The 
selection of the range for each parameter follows previously used ranges in recent literature about 
parameter sensitivity analysis and recalibration of similar parameters in HTESSEL (MacLeod 
et al., 2016; O et al., 2020; Orth et al., 2016, 2017; Johannsen et al., 2019; Stevens et al., 2020).

The original parameters have been calibrated internally by ECMWF for operational Numerical 
Weather Prediction purposes, given the static maps, model physics and other settings of the 
ECLand cycle used in this study. The vegetation-related parameters are dependent on the vege-
tation type through lookup tables, that is, the default values change in response to the new vege-
tation information that we provide to the model. Then, during our recalibration experiments, we 
do not modify the values of the lookup tables directly but we apply perturbation factors to them, 
to either amplify (factors >1) or to reduce (factors <1) the effect of each parameter in the water 
and energy exchange of the land surface with the atmosphere. We apply the range of perturbation 
factors equally to all vegetation types and they multiply the default value of the parameter in each 
grid cell given by the lookup tables. In other words, the perturbation factors do not vary between 
vegetation types but the resulting parameter values (=perturbation factor × lookup table value) 
are different for each grid cell.

For computational efficiency, we perform the parameter calibration experiments at 230 randomly 
chosen grid cells across the globe (their location is shown in global maps in Section 3.2.2). We 
only consider grid cells with a long-term mean Enhanced Vegetation Index (EVI) greater than 0.2 
to exclude regions with scarce vegetation. The EVI data are derived from the satellite MODIS V6 
(Didan, 2015). First, we select 30 grid cells to run the 1,000 simulations (one for each parameter 
set), and we select the best 100 parameter sets according to the model performance metric intro-
duced in Section 2.3. Second, we run the best 100 parameter sets in the remaining 200 grid cells 
and we again evaluate their performance to find the best-performing parameters that work over 
a wider range of climate regimes. The selection of the first 30 grid cells is a calibration strategy 
for computation time efficiency, to narrow down the parameter ranges. Our results are based on 
the 230 grid cells sampled from diverse regions, to sufficiently represent spatial heterogeneities.

2.3.  Model Evaluation

Not only are novel Earth observations beneficial for modeling directly as in the case of the LAI 
and land cover used here, but furthermore the increasing suite of Earth observations allows a 
more comprehensive model evaluation. This way, as reference data sets in this study we have 
chosen gridded data sets based on interpolating and upscaling station measurements through 
machine learning methods, which are independent from model-based data sets and hence well 
suited to evaluate model simulations. Additionally, we employ reanalysis(-like) data sets which 
benefit from a growing number of available satellite observations which are assimilated into the 
underlying model simulations.

For each model experiment, we compare simulated latent heat flux and soil moisture with respec-
tive global gridded observation-based data sets listed in Table 3. In Table S2 in Supporting Infor-
mation S1, we present a brief description on the different reference data sets and their advantages 
and limitations. We use all the data sets at a 0.5° spatial resolution and at a daily temporal reso-
lution. In the case of the surface latent heat flux from FLUXCOM, we linearly interpolate the 
original 8-daily values to compute daily values. While we use absolute values for latent heat flux, 
for near-surface and deep soil moisture we analyze normalized anomalies to account for different 
systematic errors in ECLand and in each reference data set. To compute normalized anomalies 
for each soil moisture variable and data set (a) we subtract the linear long-term trend from the 
time series, (b) we remove the mean seasonal cycle calculated at daily time steps over the period 
2000–2019, and (c) we divide by the standard deviation of the resulting time series.

Since we use three different reference data sets per output variable and they are all derived with 
different approaches (e.g., machine learning-based or physical-based), we need to account for 
their uncertainties and their biases in order to compute a robust model performance. For this, we O
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use censored RMSE (cenRMSE) as a performance metric, which is based on modified root mean squared error 
(RMSE). The term “censored” refers to a value that occurs outside the range of a measuring instrument (Fridley 
& Dixon, 2007). We compute the cenRMSE as follows:

cenRMSE =

√

√

√

√

�
∑

�=1

��2�� (1)

��� = min(|�̂� − ��,�|), � = 1, 2, 3� (2)

𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 is the model value in time step i and yi,r is the reference data for the three references (yi,1, yi,2. yi,3). dyi = 0 if 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 
is in the interval defined by the range of the reference values, that is, if the value of the model output in the time 
step i falls within the range of the reference values (min(yi,1, yi,2, yi,3) 𝐴𝐴 𝐴 𝐴𝐴𝐴𝑖𝑖 < max (yi,1, yi,2, yi,3)), otherwise the 
minimum is taken to compute the cenRMSE. The cenRMSE behaves like RMSE outside the interval and is 0 if 
all predictions are within the range of reference values.

Specifically for the parameter calibration experiments, we combine the cenRMSE performance metric of the 
three target variables (i.e., near-surface soil moisture, deep soil moisture and surface latent heat flux). We rank 
the 1,000 perturbation factors individually for each variable and then we add the individual ranks up. The lowest 
(highest) sums constitute the best (poorest) perturbation factors in terms of model performance.

2.4.  Spatial Variability of Regional Parameters

We extend our analysis to the spatial features of calibrated model parameters (Table 2). We employ random 
forest models (Breiman,  2001; Molnar,  2020) (hereafter RF) to predict each of the six calibrated parameter 
values across grid pixels (six RF models are used). As predictor variables we use (a) long-term mean climatic 
and land surface characteristics such as aridity, temperature and EVI, (b) differences in high and low vegeta-
tion cover between the two land cover data sets used in the modeling experiments (ESA-CCI/C3S and GLCC) 
(Boussetta et al., 2021), and (c) the values of the remaining five parameters (other than the target parameter). As 
hyperparameters we choose 1,000 trees, a maximum depth of 25 and oob_score = True to estimate the gener-
alization score; otherwise we apply default settings of scikit-learn RF regressor (i.e., max_features = “auto,” 
min_samples_split  =  2, min_samples_leaf  =  1, bootstrap  =  True). Previous studies suggest that RF perfor-
mance is relatively insensitive to different hyperparameter settings and generally works well with default settings 
(Martínez-Muñoz & Suárez,  2010; Probst et  al.,  2019; Schratz et  al.,  2019), therefore we do not perform a 
hyperparameter tuning here.

We use information from the 230 grid cells for the RF training. We assess the performance of the RF models by 
computing the R 2 between the predicted and the observed target variables for out-of-bag (OOB) data that was 
not used for training (hereafter referred to as estimate of R 2) (W. Li et al., 2021). We infer the relative importance 
of each predictor variable to the target (i.e., how strongly related is each predictor to the target according to the 
model, while accounting for the other predictors in the model) from SHapley Additive exPlanations (SHAP) 
feature importance which is based on the average marginal contribution of each predictor to the modeled target 
variable (Lundberg & Lee, 2017; Sundararajan & Najmi, 2020). We look for spatial correlation or co-variation as 
expressed by the SHAP values within the RF models. We chose this set of predictors because they have a physical 
link with the targets and therefore the spatial co-variation between targets and predictors allows identifying which 
processes are more influential in the parameter calibration. The process-related justifications for the inclusion 
of each of the predictor variables are: (a) the climatological properties of a region, such as aridity (which is a 
function of precipitation and radiation) and temperature partially determine the vegetation type within a region 
and therefore the surface latent heat flux and the soil moisture which are strongly linked with EVI; (b) the ratio 
between high and low vegetation cover in a region affects the surface latent heat flux and the soil moisture varia-
bility; and (c) the degree of interdependence of the model parameters might influence the parameter recalibration 
results.

We note a potential caveat in our approach with the RF due to existing relationships among our selected set of 
predictors. Accordingly, we compute individual Spearman correlations (Wilks, 2011) among the predictors to 
report the magnitude of these associations and to identify the most affected variables.
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3.  Results and Discussion
3.1.  Impact of Updated Land Surface Information on Model Performance

Figure 1 shows ECLand's model performance in the CONTROL experiment. In general, the model performance 
varies considerably across regions. For near-surface and deep soil moisture (Figures 1a and 1b), we see relatively 
good performance in the mid-latitudes of Europe, North America and southern South America. On the contrary, the 
model performs poorly in high-latitude regions, possibly due to high uncertainty in soil moisture-related processes, 
for exam ple, soil freeze/thaw cycles (Diro et al., 2018; Dutra et al., 2010, 2011). In some regions, the model perfor-
mance for deep soil moisture is slightly poorer than for near-surface soil moisture. This can be due to the high uncer-
tainty among the reference data sets for deep soil moisture values as a consequence of sparse observations (Denissen 
et al., 2020; Koster et al., 2020; W. Li et al., 2021). For the surface latent heat flux (Figure 1c) the cenRMSE is 
relatively good in central and eastern Europe and North America, which might be related to the high density of 
observations that can support model development and parameter calibration dedicated to these regions (Stegehuis 
et al., 2013).

Figure 2 shows the performance of the experiment with the most updated land information (LC_COV_LAI) 
compared to the performance of the CONTROL experiment. We find a general deterioration of model perfor-
mance (red color) for all three variables considered which is related to the high sensitivity of the RMSE-based 
metrics to outliers. Recomputing the cenRMSE without the 10% largest disagreements between LC_COV_LAI 
and CONTROL simulation (Figure S4 in Supporting Information S1) shows, however, that the percentage differ-
ence in cenRMSE improves in most regions over Figure 1. Therefore, on average, an update of the land surface 
information in ECLand has positive impacts on the prediction of surface latent heat flux and near-surface and 
deep soil moisture for most of the time, while creating stronger deviations at particular times.

Figure 1.  cenRMSE performance metric of CONTROL simulation for (a) near-surface soil moisture, (b) deep soil moisture 
and (c) surface latent heat flux. cenRMSE is computed based on absolute values for latent heat flux, while normalized 
anomalies are used for soil moisture. Numbers in the textboxes represent the global median. Gray areas are masked as their 
long-term mean EVI is lower than 0.2.
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We assume that the introduction of the interannual variability of LAI is the main cause of the strongest outliers 
since the magnitude of the errors increase substantially after we perform the LC_LAI model experiment (Figures 
S5c, S6c, and S7c in Supporting Information S1). We see a high interannual variability of LAI for low vegetation 
type in the Amazon river basin (Figure S3 in Supporting Information S1) that was neglected in the CONTROL 
simulation, but up to the LC_LAI experiment the model parameters do not respond to this variability (i.e., they 
are not yet calibrated), as also stated by Nogueira et al. (2021). As a second cause for the outliers, the new high 
and low vegetation cover data sets from ESA-CCI/C3S have an increase of low vegetation cover at the expense 
of the high vegetation cover in forest areas (Figure S2 in Supporting Information S1), like the Amazon river 
basin and the Congo river basin where we see the strongest differences between the cenRMSE (Figure 2) and the 
cenRMSE without outliers (Figure S4 in Supporting Information S1).

The updated land surface information has a much clearer impact on the simulation of latent heat flux compared 
to soil moisture, as indicated by a larger magnitude of percentage changes in surface latent heat flux. Also, the 
spatial patterns of improvement/deterioration are not always consistent between latent heat flux and soil moisture; 
for instance, in southern South America and India, there are improvements in most areas for surface latent heat 
flux but for both near-surface and deep soil moisture we find deterioration. This points to possible weaknesses 
in the representation of the coupling between latent heat flux and soil moisture in the model, as also stated in 
other studies (Dirmeyer & Halder, 2017; Fairbairn et al., 2019; Meng et al., 2014; Quillet et al., 2010; Santanello 
et al., 2009; Wulfmeyer et al., 2018; Zhang et al., 2008). The improvement in surface latent heat flux in South 
America coincides with the region where we find more interannual variability in LAI for low vegetation type 
(Figure S3b in Supporting Information S1) corresponding mostly to deciduous shrubs and short grass (Figure S1b 
in Supporting Information S1). This is likely linked with a more accurate description of the LAI interannual vari-
ability in this region, which was neglected with the prescribed climatology in the outdated version of ECLand.

We also look at the model performance of each individual experiment in terms of the three considered output 
variables (Figures S4, S5, and S6 in Supporting Information S1). In general, the spatial patterns of improvement 

Figure 2.  Similar to Figure 1, but for percentage differences in performance: LC_COV_LAI minus CONTROL divided by 
CONTROL.
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and deterioration are similar to the results in Figure 2. Comparing the magnitudes of the changes we find that 
the strongest effect on the model performance is exerted by the land cover type update, which is present in all 
experiments. The LAI interannual variability update has the second strongest effect on the model performance 
(Boussetta et al., 2013, 2015; Duveiller et al., 2022; Stevens et al., 2020).

3.2.  Effect of Recalibration of Model Parameters

3.2.1.  Ranks of the Parameter Sets

We rank the 1,000 model simulations with perturbed parameter values according to the cenRMSE performance 
metric of the three target variables (see Section 2.3), and relate the ranking to individual parameter perturbations 
in Figure 3 in order to assess their individual contribution. Table S3 in Supporting Information S1 shows the 
individual optimal perturbation factors for the model parameters. Hydraulic conductivity and minimum stoma-
tal resistance show the strongest systematic influence on model performance, similar to the results from Orth 
et al. (2016, 2017).

Hydraulic conductivity governs the water transport in the soil and is therefore directly linked to soil moisture 
and evapotranspiration (latent heat flux). We find that a substantial reduction of the hydraulic conductivity 
from its default value improves model performance. This reduces percolation of infiltrated water and therefore 
increases near-surface soil moisture and ultimately latent heat flux (O et al., 2020). If the model with the new 
land surface information displays a general dry bias in soil moisture, a lower hydraulic conductivity would help 
in retaining more water into the soil matrix. One possible way for the introduction of a dry bias with the new land 
surface information is an increase in the LAI. Actually, Boussetta et al. (2021) reports that the LAI component 
for high vegetation tends to increase by up to 80% in the summer months. An increase in LAI compared to the 
CONTROL experiment should be related to an increase in evapotranspiration and therefore a decrease in the 
soil moisture.

In the case of the minimum stomatal resistance it strongly relates to evapotranspiration as it modulates the 
exchange of moisture from vegetated surfaces (Orth et al., 2016). Our results suggest that there is an optimum 
perturbation value for the minimum stomatal resistance between 1 and 2, that is, close to the default parameteri-
zation, thus, modifying it has little potential to improve the model. The increase in stomatal resistance should be 
related to an excess of evapotranspiration with the new land surface information, for instance, with an increase of 
LAI, compared to the CONTROL experiment.

Figure 3.  Relating model performance to perturbations in the considered individual ECLand parameters: (a) hydraulic conductivity, (b) humidity stress function, (c) 
minimum stomatal resistance, (d) soil moisture stress function, (e) total soil depth and (f) transmission of net solar radiation through vegetation. Red dots indicate the 
performance of the default parameterizations (i.e., no perturbation). A rank value of 0 (1,000) in the Y-axis indicates the best (poorest) perturbation factor in terms of 
model performance.
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We also analyze the influence of parameter perturbations on model performance in terms of the considered 
individual variables (Figures S8, S9, and S10 in Supporting Information S1). The clear pattern of better model 
performance in the case of lower hydraulic conductivity found in Figure 3 is mainly related to an improvement of 
the soil moisture performance, especially for the near-surface layer (Figure S8 in Supporting Information S1) and 
in a second extent for the deep soil moisture (Figure S9 in Supporting Information S1). For the minimum stomatal 
resistance the pattern found in Figure 3 is related to variations in the simulation performance of latent heat flux 
(Figure S10 in Supporting Information S1), since this parameter is a dominant driver in the evapotranspiration 
process. Additionally, the total soil depth is relevant for the simulation performance of deep soil moisture (Figure 
S9 in Supporting Information S1), as also found in a similar study by Hawkins et al. (2019). This illustrates that 
different parameters matter for different land surface variables, as well as that different observational data sets are 
needed to constrain different parameters.

It is relevant for LSM development that model parameters still have physical meaning, rather than becoming 
solely effective numbers (i.e., parameter values that reduce the model errors but that don't have any physical 
reasoning behind them). It is difficult to prove that the parameters are theoretically plausible because model 
parameters often represent physical quantities that are not directly observable. Even when the parameters can be 
observed, they are based on small soil samples that are location-specific, whereas the LSM is applied globally. 
When performing this study, there were no data sets to our knowledge that provided global estimates of these 
parameters, and even if there were, they could also vary in the same site due to the heterogeneity of the soil. 
Nevertheless, for those parameters that can be measured (like hydraulic conductivity, minimum stomatal resist-
ance and transmission of net solar radiation through vegetation), we look for typical observational values found 
in literature and we compare them with our calibrated values. In Table 4 we add the observational values found 
in different field experiments available in the literature. The values of these parameters vary greatly among the 
different studies. Even for the same study, the variability of one parameter is substantial and depends on the time 
of the day that the experiments were carried out, the level of the soil that the samples were taken from, among 
other factors. Yet, our recalibrated values are within these different ranges of observations, so at least they seem 
physically plausible and hence not necessarily entirely effective parameters.

3.2.2.  Model Performance in Parameter Calibration Experiments

Figures 4 and 5 show the model performance changes relative to CONTROL after the global and the regional 
recalibration across 230 grid cells, respectively. Generally, for the global calibration (Figure 4) we find inconsist-
ent results with improved or deteriorated model performance depending on the grid cell. This suggests that there 
is no one(calibration)-fits-all(regions) solution, probably related to the spatial heterogeneity in climate along with 
different land surface characteristics, or its insufficient representation in the current default values in the model 
(like for specific vegetation types, soil textures, etc.) (Laguë et al., 2019; Nogueira et al., 2021), as can be seen 

Model parameter Units Range of recalibrated values Range of experimental values Reference

Hydraulic conductivity m s −1 0.0166–3.83 10 −7–10 Medici and West (2021)

8.20E −5–2.88E −4 Verbist et al. (2009)

5.5E −9–60.87E −7 Sihag et al. (2019)

2E −9–2.26E −3 Araya and Ghezzehei (2019)

6.46E −8–8.13E −5 Coutadeur et al. (2002)

Minimum stomatal resistance s m −1 27.2–827.5 39.8–78.1 Kardel et al. (2010)

ca. 100–700 D. S. Niyogi and Raman (1997)

20.4–41.3 (one site) D. S. Niyogi et al. (1997)

ca. 100–1,000 Mehrez et al. (1992)

ca. 1,000–15,000 (one plant) Cockburn et al. (1979)

ca. 100–6,000 Turner (1974)

ca. 10–250 Monteith et al. (1965)

Transmission of net solar radiation through vegetation – 0.003–0.495 ca. 0.2–0.6 Hardy et al. (2004)

Table 4 
Range of Observed Values of the Considered Model Parameters in the Experiments Reported in Literature
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from the spatial distribution of the calibrated parameter values in Figure S11 in Supporting Information S1. After 
the global calibration we already see an improvement in both soil moisture variables but it is not always the case 
for the surface latent heat flux, probably due to compensation in model performance between variables (McCabe 
et al., 2005). This is expected as the newly applied datastreams are related to land cover and vegetation structure. 
Specifically, the model performance in the grid cells in northern Asia always degrades from a global calibration, 
whereas for the other regions we see mixed results.

After the regional calibration, we find substantial improvement in model performance for all three variables as 
shown in Figure 5. See also Figure S12 in Supporting Information S1 for comparisons of model performance 
between the regional and global calibrations. In a similar study for another LSM, Xie et al.  (2007) found an 
improvement in model performance after a regional calibration of model parameters. This suggests that parame-
ters should sufficiently reflect land surface heterogeneity, different climate zones, different biome types, etc. The 
regional calibration leads to better model performance for most grid pixels, except for high latitudes in Northern 
Asia, possibly due to high uncertainty in the representation of soil freeze processes, as found in other studies 
(Diro et al., 2018; Dutra et al., 2010, 2011). Given that the regional calibration exceeds the model improvement of 
the global calibration by 20% or more in some of the tested grid cells (Figure S12 in Supporting Information S1), 
there should always be a motivation to calibrate each grid cell individually instead of seeking a single globally 
perturbation factor for the parameters.

To aggregate our main findings, Figure 6 shows the median global change in model performance for each exper-
iment and variable. Most of the experiments do not show clear model performance improvement with regards 
to the CONTROL simulation before recalibration. Only the regional calibration experiment shows improve-
ment in all output variables, which calls for parameter recalibration after updating land surface information on 
LSMs to exploit the benefits of Earth observation developments (Nogueira et al., 2021). This is specifically the 
case for a regional (spatially varying) as opposed to the global (spatially constant) calibration as this can better 
account for spatial heterogeneities, and compensate for potentially related shortcomings in the model structure 

Figure 4.  Similar to Figure 1, but for percentage differences in performance: Global calibration minus CONTROL divided 
by CONTROL.
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(Xie et al., 2007). The variability of the experiments (represented by the error bars in Figure 6) for the surface 
latent heat flux is higher than for the two soil moisture variables. We attribute this to a direct effect on latent heat 
flux from the perturbation of the selected parameters because these are mostly related with evapotranspiration, 
whereas they have an indirect effect on soil moisture (Jefferson et al., 2017; Montzka et al., 2017).

Figure 5.  Similar to Figure 1, but for percentage differences in performance: Regional calibration minus CONTROL divided 
by CONTROL.

Figure 6.  Summary of ECLand performance for each experiment compared to the CONTROL simulation. Medians of 
percentage change of cenRMSE across 230 grid cells are shown. The error bars represent the 25th and 75th percentile.
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In a final step, we study model performance changes in wet versus dry regions by producing Figure 6 for such 
regions separately (Figure S13 in Supporting Information S1). The effect of updating land surface information in 
ECLand on model performance is generally stronger in dry grid cells than in wet grid cells. This is expected since 
vegetation plays a more important role for modulating the exchange of water and energy in dry-to-transitional 
regions, whereas the role of the vegetation and relevant land processes in comparison to the effect of atmospheric 
dynamics is less prominent in wet regions (Denissen et al., 2020; Miralles et al., 2019; Seneviratne et al., 2010).

3.3.  Attribution Analysis of Spatial Patterns of Regional Parameter Calibration

In a final step, we analyze the spatial patterns of the optimal parameter perturbations determined in the grid 
cell-wise model calibration shown in Figure S11 in Supporting Information S1. In order to explain the spatial 
pattern of each parameter we consider several predictors including climate and vegetation characteristics, as well 
as the calibrated values of the other considered parameters. This attribution analysis is done separately for each 
parameter (target in the regional calibration). Figure 7 shows that overall for each of the modeled parameters, the 
remaining parameters are the best factors to predict the values of the target: the parameter values depend most 
strongly on each other; this emphasizes the important role of equifinality, and it means that parameter sets need to 
be chosen consistently and parameters cannot be calibrated individually. The motivation behind this analysis was 
to see if an extrapolation of the calibrated values of parameters to other grid cells (beyond the 230 selected grid 
cells) was possible using climatological and land/vegetation characteristics of the grid cells, instead of individual 
grid cell calibration which is computationally expensive. Our results suggest that this is not possible since the 
most influential predictors are the calibrated parameters and therefore we cannot extrapolate their values simply 
using climatological and land/vegetation information. Only for the humidity stress function (Figure 7b) and for 
the transmission of net solar radiation through vegetation (Figure 7f) the difference in vegetation type and the 
temperature are important predictors (other than the remaining model parameters) in the RF models, respectively. 
We attribute this to an equifinality problem in the model and accept it as a caveat in our analysis: we select only 
the best parameter sets while other sets might perform almost as good as the best set (Williams et al., 2009).

The RF models have in general a good model performance (Figure S14 in Supporting Information S1), meaning 
that the considered factors can explain the spatial patterns of model parameters. The hydraulic conductivity 
calibration has the best RF model performance due to the clear systematic pattern in the parameter set ranks 
(Figure  3a), specially given by the dependence of the near-surface soil moisture model performance on this 
parameter (Figure S8 in Supporting Information S1).

The relative importance is analyzed here for correlation or co-variation and not causation. We acknowledge that 
some of the selected factors are highly correlated (Figure S15 in Supporting Information S1) and their actual 
relative importance might be reduced by the co-variation (Ghosh & Maiti, 2021). The most cross-correlated ones 
are: hydraulic conductivity and total soil depth; minimum stomatal resistance and soil moisture stress function; 
EVI and aridity; EVI and temperature; and the differences in high and low vegetation cover. Although most pairs 
of factors show correlations lower than 0.2, we accept collinearities as a caveat in our analysis since independ-
ence is not the usual case in Earth system sciences (W. Li et al., 2021; Silva et al., 2022; He et al., 2023; Wadoux 
et al., 2023).

4.  Implications for Future Model Calibration Strategies
This study provides an approach on how to perform parameter recalibration in the ECLand model following the 
inclusion of newly available Earth observations. We find a clear added value of parameter recalibration for model 
performance which allows the model to benefit (more) from the accuracy of the newly included Earth observa-
tions. Therefore, we feel that our approach and its limitations are relevant to the broader modeling community 
as well as to forecasting centers as also coupled forecasts may be impacted by emerging Earth observations and 
related recalibration strategies for the LSM. For this reason, we want to reflect on some aspects related to model 
recalibration in this section.

Most parameters in LSMs originally had an actual physical meaning such as hydraulic conductivity or stomatal 
resistance. As models evolve, process representations are revised and expanded and underlying soil and vegeta-
tion characteristics are updated. As a result of such changes, the original parameter values may be inconsistent 
with the updated model structure and data. Hence, they need to be recalibrated, making them “effective” rather 
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than physical parameters. Comparing the recalibrated parameter values with respective observations from soil 
samples (Table 4) allows us to assess the extent to which parameters have deviated from physically meaningful 
values through the model development and recalibration process. In our case, as the range of reported values is 
large as a consequence of the heterogeneity of the soil, parameter values are still physically plausible.

Generally, it is beneficial to aim for physically interpretable parameters as their comparison with lab or field 
observations provides an opportunity to independently validate model calibration results. This can also reveal 
structural inconsistencies in a model if the parameters need to change beyond a physically plausible range in 
order to maintain reasonable model performance. In this context, novel high-resolution data sets about land 
surface characteristics are valuable, such as the 1 km resolution data set of global land surface parameters (L. Li 

Figure 7.  Relative importance (SHAP values) of multiple factors to explain the spatial patterns of regionally calibrated model parameters for (a) hydraulic conductivity, 
(b) humidity stress function, (c) Minimum stomatal resistance, (d) soil moisture stress function, (e) total soil depth and (f) transmission of net solar radiation through 
vegetation. Note that the Y-axes have different ranges.
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et al., 2023) derived through the development of machine-learning models utilizing the latest and most accurate 
available data sets related to land use and land cover, vegetation, soil, and topography. Higher resolution means 
smaller grid cells within which soil and vegetation types are often more homogenous such that model parameters 
can better reflect land surface conditions compared with larger grid cells with mixed composition where the 
resulting behavior in the land climate system is an emerging property. As an outlook, using higher resolution data 
sets in future work will enable us to derive more physically meaningful calibration results and to check the cali-
brated parameter values against observations and thereby have another type of validation of the model structure 
and implemented processes.

Although the current manuscript is focused on offline assessment, the ultimate goal of model development 
and parameter recalibration is to yield more accurate weather forecasts and climate projections which are done 
with coupled models. In such complex schemes it is not obvious whether and how changes in the land surface 
model affect the interaction with other model components and the overall model simulation. Evidence from 
previous studies is mixed, showing that land surface model improvements can benefit the coupled system (Orth 
et al., 2016), while in other cases this was not the case due to compensating errors and uncertainties in parame-
ters and physics schemes (Santanello et al., 2013, 2019). One way to address this is to revise model formulations 
affecting the land-atmosphere coupling and/or including more processes (D. Niyogi, 2019). A comprehensive 
revision of the land-atmosphere coupling should include all land surface variables that describe the water, energy 
and carbon balances (like latent and sensible heat flux, soil moisture, runoff, Gross Primary Productivity, among 
others) and a broad list of vegetation-related parameters (like hydraulic conductivity, skin conductivity, mini-
mum stomatal resistance, rooting depth, hydraulic diffusivity, among others). Furthermore, also a recalibration 
of the entire coupled model, instead of the land surface model alone, could help while this is a considerable 
effort.

Model calibration is challenged by the limited availability of observations to validate model performance in 
terms of a comprehensive set of variables. This can lead to the problem that model performance is optimized for 
considered variables while degrading it for others. It has been shown that this risk decreases the more variables 
are considered in the calibration (Orth et al., 2017). Therefore, the increasing suite of Earth observations offers 
the opportunity to calibrate models more robustly. This is even more the case as various (partly) independent 
data sets describing the same variable can be used in order to consider the observational uncertainty in the model 
calibration, as done in this study.

With regards to global and regional recalibration exercises our study reveals how successful or not is the adap-
tation of parameters to land surface characteristics, that is, if this was working perfectly, the local recalibration 
should yield no improvements over the global recalibration. This has potential implications for the creation of 
lookup tables in LSM and forecasting systems, which do not properly translate globally valid parameters to 
different soil and vegetation types prevailing locally. An update of these lookup tables could allow that future 
recalibrations can be done globally only.

Another important aspect is the timing of performing parameter recalibration, that is, when this effort is justi-
fied and can be expected to yield significant improvements in model performance. We think that it would be 
adequate to spend the effort of a parameter recalibration as soon as the model performance is found to degrade 
with updated land surface data. If the model performance remains similar, while we expect that it should improve 
because it includes a more close-to-reality land surface, then the recalibration step seems less urgent. Another 
aspect to consider is the duration of cycles of model development, and of satellite generations and data sets result-
ing from them. As the completion of such cycles can be expected to involve major model adaptations, it may be 
worth considering to perform recalibration to harvest the full potential of the model updates.

5.  Summary and Conclusion
Recent studies performed substantial efforts for exploiting additional Earth observations in ECLand model vali-
dation (Boussetta et al., 2013, 2015; Orth et al., 2017; Nogueira et al., 2020; O et al., 2020; Stevens et al., 2020). 
However these experiments have never included all updates in one single study. Neither have they performed a 
follow-up recalibration of the model to exploit the benefits of including more accurate land surface information. 
Here we make a step in this direction with our comprehensive modeling experiments (Gupta et al., 1999), not only 
updating land cover type but also including interannual variability of LAI and cover fraction.
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We find a substantial impact of updating land and vegetation information from newly available Earth observations 
on the simulated surface latent heat flux and near-surface and deep soil moisture. However, these modifications 
do not always show positive impacts on the model performance. The changes in model performance vary between 
regions and considered variables, indicating the need for model evaluation based on multivariable analysis to 
make conclusive remarks on model performance (McCabe et al., 2005). Further, this shows that ingesting novel 
Earth observation data streams into current LSMs is not automatically leading to improved model performance as 
the model parameterizations need to be adapted to these updates (Nogueira et al., 2021). By considering several 
reference data sets, we benefit from the growing suite of global observational products, and manage to incorpo-
rate the uncertainty between these products into our evaluation of model performance.

As a further step we also recalibrate the model to adapt it to the new conditions. For the model recalibration we 
follow two approaches: global calibration and regional calibration (Xie et al., 2007). We find that the regional 
calibration yields substantial better agreement between model simulations and reference data sets, suggesting it 
may be beneficial to revise the spatial variability of model parameters which so far is based on soil and vegetation 
types that is, lookup tables. An update of those lookup tables and/or the consideration of more aspects of spatial 
heterogeneity may be a way forward in this context. This would allow that future calibrations can be done globally 
only.

We suggest that one reason for the lack of improvement in the model performance after updating land surface 
information with state-of-the-art observations is attributed to the fact that the previously calibrated parameter 
values are then inconsistent with the new vegetation data sets in the model. The model shows substantial improve-
ment when adjusting parameters, particularly through the regional calibration, indicating that land information 
updates in the model cannot be treated independently from model parameterization. Future work should consider 
the impact of the improved and calibrated ECLand performance within a coupled model system.

Data Availability Statement
The meteorological forcing for ECLand from ERA5 is available at https://cds.climate.copernicus.eu/ (ECMWF & 
Service, 2018). The EVI data from MODIS are available through NASA's data catalogue at https://lpdaac.usgs.
gov/products/mod13c1v006/ (EOSDIS, 2015). Both the evaporative fraction data from FLUXCOM and the soil 
moisture data from SoMo.ml are available at the Data Portal of the Max Planck Institute for Biogeochemistry at 
https://www.bgc-jena.mpg.de/geodb/projects/Data.php (Max Planck Institute for Biogeochemistry, 2019, 2021). 
The output data from the ECLand modelling experiments are available in the Zenodo repository at https://doi.
org/10.5281/zenodo.7823893.
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