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Introduction

The present document contains additional material (Table and Figures) that supports

the discussion in the study ”Impact of updating vegetation information on land surface

model performance”. This material is not included in the main text because it is not

essential to the main scientific conclusins other than providing additional information.
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Table S1. Land use classification in the Global Land Cover Characterization (GLCC) v1.2

according to the Biosphere-Atmosphere Transfer Scheme (BATS)

Vegetation type High/Low (H/L) vegetation
Crops,mixed, farming L
Short grass L
Evergreen needleleaf trees H
Deciduous needleleaf trees H
Deciduous broadleaf trees H
Evergreen broadleaf trees H
Tall grass L
Desert –
Tundra L
Irrigated crops L
Semidesert L
Ice caps and glaciers –
Bogs and marshes L
Inland water –
Ocean –
Evergreen shrubs L
Deciduous shrubs L
Mixed forest/woodland H
Interrupted forest H
Water and land mixtures L

Table S2: Description of the selected reference datasets

Data Description Advantages Disadvantages Reference
SoMo.ml Global long-term soil moisture

dataset at multiple soil layers
(0–10, 10–30 and 30–50 cm)
derived through a Long Short-
Term Memory (LSTM) algo-
rithm. LSTM is trained us-
ing in-situ data collected through
more than 1000 stations across
the globe to extrapolate daily soil
moisture dynamics in space and
in time.

This dataset is
uniformly dis-
tributed globally
and represents
not only the
top few cen-
timetres of the
soil. It provides
soil moisture
information
independent
from the exist-
ing satellite or
physical-based
model data.

The data quality
can be uncer-
tain outside the
training condi-
tions such as at
high latitudes
and in arid
regions.

O and
Orth
(2021)
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Global
Land
Evapo-
ration
Amster-
dam Model
(GLEAM)

This is a set of algorithms that
estimate terrestrial evaporation
and root-zone soil moisture from
satellite data. GLEAM sepa-
rately derives the different com-
ponents of terrestrial evapora-
tion for different fractions of land
cover types in each grid cell. Es-
timates of potential evaporation
are converted into actual tran-
spiration or bare soil evapora-
tion (depending on the land-cover
type). The soil moisture is cal-
culated using a multi-layer water-
balance algorithm considering net
precipitation and snowmelt as
inputs, and evaporation and
drainage as outputs. The depth
of the root zone is a function of
the land-cover type.

GLEAM uses
high quality
forcing datasets
to produce ac-
curate model
output.

The results
might be biased
given that the
majority (more
than 75%)
of the in-situ
measurements
are located in
the continen-
tal US, where
gauge-based
precipitation
products are
known to out-
perform satellite
products.

Martens et
al. (2017)

Modern-
Era Ret-
rospective
Analysis
for Re-
search
and Ap-
plications
Version 2
(MERRA-
2)

This is an atmospheric reanal-
ysis of the modern satellite
era produced by NASA’s Global
Modeling and Assimilation Of-
fice. MERRA-2 incorporates
data from the atmospheric model
of Goddard Earth Observing Sys-
tem and numerous satellite ob-
servations. The analysis is com-
puted on a latitude-longitude grid
at the same spatial resolution as
the atmospheric model using a
3DVAR data assimilation.

The renaly-
sis combines
scattered ob-
servations in
a physically
consistent man-
ner, enabling
production of
completely grid-
ded variables.

It presents bi-
ases in some
variables, espe-
cially over high
topography in
the tropics and
over northern
high latitudes.

Gelaro et
al. (2017)
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FLUXCOM
RS

This is a machine learning-based
global dataset that estimates ra-
diation and latent and sensible
heat from energy flux measure-
ments from FLUXNET eddy co-
variance towers along with re-
mote sensing data.

FLUXCOM RS
does not use
global climate
forcing datasets
as inputs, which
favours the ac-
curacy of the
fluxes because
such datasets
are subject to
uncertainty
and are lim-
ited in spatial
resolution.

Not using cli-
mate data
excludes poten-
tially important
information on
meteorologi-
cal conditions
for biosphere-
atmosphere
fluxes and limits
temporal cover-
age to the one of
MODIS.

Jung et al.
(2019)

Table S3. Optimal perturbation factors for the model parameters after global calibration

Model parameter Optimal perturbation factors
Hydraulic conductivity 0.09766
Humidity stress function 0.83900
Minimum stomatal resistance 1.27800
Soil moisture stress function 1.47000
Total soil depth 1.06044
Transmission of net solar radiation through vegetation 0.13652
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Figure S1. Updated vegetation type in ECLand for a) high vegetation and b) low vegetation.

Dataset from ESA-CCI/C3S.

Figure S2. Vegetation cover difference (fraction) between ESA-CCI/C3S and GLCC for a)

high vegetation and b) low vegetation.

August 16, 2023, 9:41pm



RUIZ-VÁSQUEZ ET AL.: X - 7

Figure S3. Standard deviation of annual mean LAI values (2000-2019) for a) high vegetation

and b) low vegetation. Dataset from Sentinel-3 and THEA GEOV2.
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a) Near-surface soil moisture b) Deep soil moisture

c) Surface latent heat flux

Improvement Deterioration Improvement Deterioration

Improvement Deterioration

Figure S4. Percentage differences in cenRMSE model performance: LC COV LAI minus

CONTROL divided by CONTROL for a) near-surface soil moisture, b) deep soil moisture and c)

surface latent heat flux. Outliers based on the 90th quantile are removed before the computation

of the performance metric. Numbers in the textboxes represent the global median.
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Figure S5. Percentage differences in cenRMSE model performance for near-surface soil mois-

ture in a) LC, b) LC COV, c) LC LAI, d) LC COV LAI, e) Global calibration and f) Regional

calibration simulations with regards to CONTROL simulation. Numbers in the textboxes repre-

sent the global median.
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Figure S6. Similar to Figure S5, but for deep soil moisture.
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Figure S7. Similar to Figure S5, but for surface latent heat flux.
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Figure S8. Rankings of 1001 random perturbation factors for near-surface soil moisture for

a) hydraulic conductivity, b) humidity stress function, c) minimum stomatal resistance, d) soil

moisture stress function, e) total soil depth and f) transmission of net solar radiation through

vegetation. Red dots indicate the performance of the default parameterizations (i.e. no pertur-

bation).
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Figure S9. Similar to Figure S8, but for deep soil moisture.
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Figure S10. Similar to Figure S8, but for surface latent heat flux.
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Figure S11. Spatial distribution of the calibrated parameter values in the regional calibration

experiment for a) hydraulic conductivity, b) humidity stress function, c) minimum stomatal

resistance, d) soil moisture stress function, e) total soil depth and f) transmission of net solar

radiation through vegetation.
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X - 16 RUIZ-VÁSQUEZ ET AL.:

a
) 

N
e
a
r-

s
u

rf
a
c
e

s
o
il
 m

o
is

tu
re

b
) 

D
e
e
p

 s
o
il

m
o
is

tu
re

c
) 

S
u

rf
a
c
e
 l
a
te

n
t

h
e
a
t 
fl

u
x

Global calibration
Regional vs. Global 

calibration

Figure S12. Model performance of the global parameter calibration experiment (left column)

and reduction in cenRMSE of the regional parameter calibration experiment with regards to

the global calibration experiment (right column) for a) near-surface soil moisture, b) deep soil

moisture and c) surface latent heat flux.
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a) Dry grid cells

b) Wet grid cells

Near-surface soil moisture Deep soil moisture Surface latent heat flux

Model output variable

60

40

20

0

20

40

60
M

e
d

ia
n

 i
m

p
ro

v
e
m

e
n

t 
[%

]

LC

LC_COV

LC_LAI

LC_COV_LAI

Global calibration

Regional calibration

Near-surface soil moisture Deep soil moisture Surface latent heat flux

Model output variable

60

40

20

0

20

40

60

M
e
d

ia
n

 i
m

p
ro

v
e
m

e
n

t 
[%

]

LC

LC_COV

LC_LAI

LC_COV_LAI

Global calibration

Regional calibration

Figure S13. Summary of ECLand performance for each experiment compared to the CON-

TROL simulation only considering a) dry (≤first quartile of soil moisture) and b) wet (≥ third

quartile of soil moisture) grid cells. The error bars represent the 25th and 75th percentile.
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Figure S14. Model performance (OOB estimate of R2) in the trained RF for the considered

six soil and vegetation related model parameters. Higher OOB means the RF can well explain

the spatial pattern of model parameters.
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Figure S15. Spearman cross-correlation matrix among the 11 predictors used in the RF

models to predict the calibrated parameter values.
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