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ABSTRACT
We present an unsupervised data processing workflow that is specifically designed to obtain a fast conformational clustering of long molecular
dynamics simulation trajectories. In this approach, we combine two dimensionality reduction algorithms (cc_analysis and encodermap) with
a density-based spatial clustering algorithm (hierarchical density-based spatial clustering of applications with noise). The proposed scheme
benefits from the strengths of the three algorithms while avoiding most of the drawbacks of the individual methods. Here, the cc_analysis
algorithm is applied for the first time to molecular simulation data. The encodermap algorithm complements cc_analysis by providing an
efficient way to process and assign large amounts of data to clusters. The main goal of the procedure is to maximize the number of assigned
frames of a given trajectory while keeping a clear conformational identity of the clusters that are found. In practice, we achieve this by using an
iterative clustering approach and a tunable root-mean-square-deviation-based criterion in the final cluster assignment. This allows us to find
clusters of different densities and different degrees of structural identity. With the help of four protein systems, we illustrate the capability
and performance of this clustering workflow: wild-type and thermostable mutant of the Trp-cage protein (TC5b and TC10b), NTL9, and
Protein B. Each of these test systems poses their individual challenges to the scheme, which, in total, give a nice overview of the advantages
and potential difficulties that can arise when using the proposed method.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0142797

I. INTRODUCTION

With the ever-growing power of computers over the past
decades, researchers in the field of molecular dynamics (MD) have
obtained access to increasingly long trajectories and thereby to
increasingly large amounts of data. The introduction of supercom-
puters that are specifically designed to generate MD trajectories
(Anton1 and Anton 22) is only the latest high point in this devel-
opment. Furthermore, new sampling methods3,4 and distributed
computing projects, such as Folding@home,5 have contributed to
a massive increase in the generated simulation trajectories. With
this increasing amount of data, it is essential to have powerful anal-
ysis tools to process and understand the underlying systems and
processes.

There is a rapid increase in the application of unsupervised
machine learning methods to analyze molecular simulation data.

Two of the most used families of analysis techniques are clus-
tering and dimensionality reduction (DR) algorithms. They help
to find low-dimensional subspaces in which important aspects
of the original data are preserved and to group the data based
on a given similarity measure/metric and thereby gain a better
overview and understanding. In practice, most of the times, clus-
tering and DR methods are used in combination. The DR algo-
rithms can be roughly divided into linear methods [the most known
are principal component analysis (PCA)6,7 and time-lagged inde-
pendent component analysis (TICA)8,9], nonlinear methods [ker-
nel and nonlinear PCA, multidimensional scaling (MDS),10,11 and
MDS-based methods such as sketch-map,12 isomap,13 diffusion
maps,14,15 or UMAP16], and autoencoder-based approaches (such as
encodermap,17,18 time-autoencoders,19 variational autoencoders,20

and Gaussian mixture variational autoencoders21). In terms of clus-
tering algorithms, there is again a wide range of different methods:
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K-means,22,23 spectral-clustering,24 DBSCAN,25 density-peak clus-
tering,26 CNN-clustering,27 root-mean-square deviation (RMSD)
based clustering,28 neural network-based VAMPnets,29 etc. For
a comprehensive overview of unsupervised ML methods com-
monly used to analyze MD simulation data, we refer the reader
to Ref. 30.

Even from this incomplete list of available methods, it should
become obvious that there are a lot of different clustering and DR
methods. All these methods have their individual strengths and
weaknesses. However, there are still open challenges in the suc-
cessful usage of the listed methods for processing simulation data
with a high spatial and temporal resolution. This is connected to
either the proper choice of hyperparameters (such as the number
of dimensions for DR methods, the number of expected states for
some clustering algorithms, neural-network architectures, different
cutoffs, and correlation times), expensive optimization steps, or the
amount of data that could be processed simultaneously. In this work,
we present a data processing scheme that combines three differ-
ent algorithms into one workflow to create a powerful clustering
machinery. It tackles a number of the mentioned challenges as it has
a way to define an appropriate lower dimensionality of the data, does
not require a priori information about the expected number of states,
and is fast in processing extensive MD trajectories with both a very
high dimensionality and a large number of observations. It is specif-
ically designed to find conformational clusters in long molecular
simulation data (Fig. 1).

We use two different DR algorithms, namely an algorithm
called “cc_analysis” and the encodermap algorithm. The cc_analysis
method belongs to the family of MDS-based techniques and was
first introduced for the analysis of crystallographic data.31,32 Here,
it is used for the first time for projecting data of protein conforma-
tions. The dimensionality of the cc_analysis-space that is typically
required is more than two (10–40 for the systems shown in this
work), and the amount of data that can be efficiently projected
simultaneously is limited by the available memory (about 50 000
frames for a 72 GB workstation). To process much longer trajectories
and to obtain a two-dimensional representation, we use the second
DR algorithm—encodermap.33 Its loss function, however, consists
of two parts: the autoencoder loss and a MDS-like distance loss,
which introduces interpretability to the resulting 2D representation.
Moreover, once the encodermap network is trained, the encoder
function can be used to project data into the 2D map in an extremely

efficient way. We use encodermap to project data into 2D and for a
fast assignment of the additional members to the clusters defined
in the cc_analysis space. Finally, we use the HDBSCAN (hierar-
chical density-based spatial clustering of applications with noise)
algorithm34 to cluster the data in the cc_analysis space and then visu-
alize the resulting clusters in the 2D encodermap space. HDBSCAN
is a combination of density and hierarchical clustering that can work
efficiently with clusters of varying densities, ignores sparse regions,
and requires a minimum number of hyperparameters. We apply it
in a non-classical iterative way with varying RMSD-cutoffs to extract
the protein conformations of different similarities.

The clustering workflow that we describe in this work combines
the three before-mentioned algorithms to leverage their different
strengths while avoiding the drawbacks of the individual methods.
It thereby serves as a new route to extract a conformational clus-
tering from large MD data. The clusters that are identified using
this workflow are structurally highly consistent and can be used in
various downstream analyses, e.g., kinetic model building, or for
the initiation or evaluation of enhanced sampling techniques or to
simply get an overview of the conformational variety in any given
dataset. Subsequently, we will show how the scheme performs on
long MD trajectories of wild-type and mutated Trp-cage with native
and misfolded meta-stable states (208 and 3.2 μs long simulations);
really extensive simulations of NTL9 (1877 μs); and Protein B, where
only a small percent of the simulation data (5%) is in the folded
state (104 μs).

II. METHODS
A. cc_analysis

For dimensionality reduction, we use the cc_analysis algorithm
introduced in Refs. 31 and 32. This algorithm was originally devel-
oped to analyze crystallographic data, where the presence of noise
and missing observations pose a challenge to data processing in cer-
tain experimental situations. The method separates the inter-dataset
influences of random errors from those arising from systematic dif-
ferences and reveals the relations between high-dimensional input
features by representing them as vectors in a low-dimensional space.
Due to this property, we expected it to be highly applicable to protein
simulation data, where one seeks to ignore the differences arising
from random fluctuations and to separate the conformations based

FIG. 1. Data processing routine pre-
sented in this article.
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on systematic differences. In the course of the manuscript, we show
that this assumption proved to be correct.

The cc_analysis algorithm belongs to the family of MDS meth-
ods.10 Its main distinction is that it minimizes the sum of squared
differences between the Pearson correlation coefficients of pairs of
high-dimensional descriptors and the scalar product of the low-
dimensional vectors representing them [see Eq. (1)]. The procedure
places the vectors into a unit sphere within a low-dimensional space.
The systematic differences between the high-dimensional features
lead to differences in the angular directions of the vectors repre-
senting them, and purely random differences in data points lead to
different vector lengths in the same angular direction. The algorithm
minimizes, e.g., iteratively using L-BFGS,35 the expression

Φ(x) =
N−1

∑

i=1

N

∑

j=i+1
(ri j − xi ⋅ x j)

2 (1)

as a function of x, the column vector of the N low-dimensional
vectors {xk}. Here, rij is the correlation coefficient between descrip-
tors i and j in the high-dimensional space, xi ⋅ xj denotes the dot
product of the unit vectors xi and xj representing the data in the low-
dimensional space, and N is the number of observations, e.g., protein
conformations. The output of cc_analysis is the N low-dimensional
vectors {xk} and the eigenvalues of the xxT matrix.

To understand why this is a sensible approach, one can think
about obtaining the least squares solution of Eq. (1) algebraically by
the eigenanalysis of the matrix r = {rij}. In that case, one would have
to solve

xxT
= r,

where r is the matrix of the correlation coefficients rij. The n
strongest eigenvalue/eigenvector pairs (eigenvectors corresponding
to the largest eigenvalues) could then be used to reconstruct the N
vectors xi, which are located in an n-dimensional unit sphere. The
systematic differences between the input data are thereby shown by
the different angular directions in this low-dimensional sphere. This
approximation is meaningful because, in general, the Pearson corre-
lation coefficient can be written as a dot product between two vectors
(after the subtraction of the mean and division by the standard devi-
ation to scale the vectors to unit length) and is equal to the cosine
of the angle between them. Hence, in an ideal scenario, ∑N

i, jxi ⋅ x j
can exactly reproduce the high-dimensional correlation coefficient
matrix and Φ(x) in Eq. (1) would be equal to zero.

The length of the vectors is less important than the angle
between them. The latter has an inherent meaning: two high-
dimensional feature vectors with a correlation coefficient of zero
between them would be projected to unit vectors at 90○ angles with
respect to the origin, and two feature vectors with a correlation
coefficient of one would have a corresponding angle of zero degrees.

Despite the generality of the cc_analysis approach, by now,
it has only been applied to crystallographic data36,37 and pro-
tein sequence grouping.38 Here, we present a first application of
cc_analysis for protein simulation data analysis.

B. encodermap
To accelerate the processing of large datasets, e.g., from exten-

sive simulations, in addition to cc_analysis, we make use of one more

dimensionality reduction technique—encodermap. It was developed
by Lemke and Peter33 and is used here for the fast assignment of
data points to clusters, as will be explained in detail in Sec. II D. The
method combines the advantages of a neural network autoencoder17

with a MDS contribution, here the loss function from the sketch-
map algorithm12 (Fig. 2). This combination is exceptionally efficient
for projecting large simulation data to the two-dimensional repre-
sentations: the sketch-map loss function allows us to concentrate
only on relevant dissimilarities between conformations (ignoring
thermal fluctuations and coping with the large dissimilarity values
caused by the data’s high dimensionality). Furthermore, the autoen-
coder approach allows us to avoid the complex minimization steps
of the sketch-map projection and to process huge amounts of data
in a very short time.

The encodermap loss function Lencodermap [Eq. (2)] is a weighted
sum of the autoencoder loss Lauto [Eq. (3)] and the sketch-map loss
function Lsketch [Eq. (4)], which emphasizes mid-range distances by
transforming all distances via a sigmoid function [Eq. (5)],

Lencodermap = kaLauto + ksLsketch + Reg, (2)

Lauto =
1
N

N

∑

i=1
D(Xi, X̃i), (3)

Lsketch =
1
N

N

∑

i≠ j
[SIGh(D(Xi, X j)) − SIGl(D(xi, x j))]

2, (4)

where ka and ks are adjustable weights; Reg is a regularization used
to prevent overfitting; N is the number of data points to be projected;
D(⋅, ⋅) is the distance between points; X is the high-dimensional
input; x is the low-dimensional projection (the bottleneck layer); and
SIGh and SIGl are sigmoid functions of the form shown in Eq. (5),

SIGσ,a,b(D) = 1 − (1 + (2
a
b − 1)(

D
σ
)

a
)

−
b
a
, (5)

where a, b, and σ are parameters defining which distances to
preserve.

FIG. 2. Schematic description of encodermap. It has the architecture of the clas-
sic autoencoder consisting of two neural networks (encoder and decoder) with the
same number of layers and neurons in each layer connected through the bot-
tleneck layer with two neurons. In addition to the autoencoder loss La(X , X̃),
encodermap loss has a term with the sketch-map loss function Ls(X , x), which
improves the quality of the two-dimensional projection obtained in the bottleneck
layer [see Eq. (2)].
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C. Hierarchical density-based spatial clustering
of applications with noise (HDBSCAN)

The HDBSCAN34,39 can be approached from two different
sides: it can be described as a hierarchical implementation of a new
formulation of the original DBSCAN25 algorithm called DBSCAN∗

by Campello et al.,34 or it can be formulated as a robust version of
single-linkage clustering with a sophisticated method to obtain a flat
clustering result, as done by McInnes et al.39 Here, we describe it
through the second approach.

In the first step, the algorithm introduces the so-called mutual
reachability distance (MRD) [Eq. (6)], which transforms the space
to make sparse points even sparser but does not significantly change
the distance between already dense points,

Dmreach−k(xi, x j) = max{corek(xi), corek(x j), D(xi, x j)}, (6)

where x are points being clustered, k is a constant that determines
the number of nearest neighboring points, corek(x) is the function
that finds the maximum distance between a point x and its k near-
est neighbors, and D(⋅, ⋅) is the distance between two points. The
maximum of three distances is selected as the MRD [Fig. 3(i)].

In the next step, the minimum spanning tree based on the
MRDs is built via Prim’s algorithm40 [see Fig. 3(ii)]. This is done by
starting with the lowest MRD in the dataset and connecting the two
points with a straight line. In the following steps, always, the next
nearest data point to the existing tree, which is not yet connected, is
added to the tree.

Once the minimum spanning tree is generated, the cluster hier-
archy can be built. This is done by first sorting the edges of the tree by
distance. Then, the algorithm iterates over the edges, always merg-
ing the clusters with the smallest MRD. The result of this procedure
is shown in Fig. 3(iii).

In order to extract a flat clustering from this hierarchy, a final
step is needed. In this step, the cluster hierarchy is condensed down,
by defining a minimum cluster size and checking at each splitting
point if the newly forming cluster has at least the same number of
members as the minimum cluster size. If that is the case, then a new
cluster is accepted; if not, the data points splitting off are considered
noise. The condensed tree of a toy system is shown in Fig. 3(iv).

D. Introduction of a new clustering workflow
In this article, we present a data processing routine that we

found to be extremely efficient for large molecular dynamics simula-
tion trajectories. It relies on the three algorithms introduced above.
A schematic description is shown in Fig. 1. In this workflow, a given
dataset is clustered iteratively until either a specified amount of data
points are assigned to clusters or a maximum number of iterations
have been reached.

Figure 1 illustrates the sequence of data processing steps along
the clustering workflow. In the first step, a high-dimensional collec-
tive variable (CV) is chosen. For all systems that are shown in this
article, all pairwise distances between the Cα atoms were selected.
After a CV has been chosen, for trajectories containing more than

FIG. 3. Application of HDBSCAN to a toy dataset with three clusters. (i) Example for the computation of the MRD for two points (red and blue). The red and blue circles
indicate the farthest distance to the five nearest neighbors for both points. One can see that the distance between the red and blue points (green line) is larger than both
the radii of the blue and the red circle. Therefore, in this case, the green line distance is chosen as the MRD. (ii) Minimum spanning tree based on the MRDs. (iii) Cluster
hierarchy. (iv) Condensed clustering.
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25 000 frames, encodermap is trained on all data. Therefore, we
obtain a function that can be used to very efficiently project data
into the newly generated 2D space. In parallel, a random subset from
the entire dataset is generated. The reason to use such a subset is
a limitation that comes with the cc_analysis dimensionality reduc-
tion. As mentioned in Sec. II A, the cc_analysis algorithm works
with the correlation matrix. This means that the Pearson correlation
coefficients of the selected CV (here the pairwise c-alpha distances)
are calculated for all unique pairs of frames and used as input to
cc_analysis. However, the larger a dataset is, the larger the correla-
tion coefficient matrix will be, until it is no longer efficient to work
with that matrix due to very long computation times and mem-
ory issues. Therefore, a subset is created, by randomly selecting up
to 25 000 data points from the entire dataset. This subset is then
used in the cc_analysis dimensionality reduction to project the high-
dimensional CVs (between 190 and 1081 dimensions for the systems
in this article) to a lower-dimensional subspace (20–30 dimen-
sions for the systems in this article). The choice of the appropriate
amount of reduced dimensions is made by searching for a spectral
gap among the cc_analysis eigenvalues. Once the cc_analysis space
has been identified, a clustering is generated by applying the HDB-
SCAN algorithm to that lower dimensional data. Even though we
have found that the HDBSCAN algorithm works very well in the
cc_analysis space, it is, of course, possible to exchange this algo-
rithm with any other density based clustering method (e.g., density
peak-based clustering26). This again highlights the modularity of the
presented workflow. A detailed description of how to choose the
dimensionality for cc_analysis and the parameters for HDBSCAN
is given in the supplementary material, Sec. S-I.

We use two different DR algorithms in the workflow due to
the following reasons. For once, the cc_analysis algorithm is used
to project the smaller subsets to a still comparably high-dimensional
subspace, which holds more information compared to the 2D pro-
jection of encodermap. This higher-dimensional subspace is, there-
fore, very well suited to be the clustering space. Once the data subset
is clustered in the cc_analysis space, the 2D encodermap space is
used to assign the points that were not a part of the subset to the
found clusters. The 2D projection is very well suited to do a fast
assignment of additional points from the dataset and to serve for
visualization purposes. Additionally, encodermap is able to project
huge datasets very time-efficiently. Hence, the generated 2D projec-
tion of a given dataset can be used to avoid the main disadvantage
of the cc_analysis algorithm in the way we use the algorithm here,
which is having to use subsets of the data due to memory issues.
In order to circumvent this disadvantage, we build a convex hull
in the 2D space for each cluster that was found in the cc_analysis
space. If an unassigned point lies inside a convex hull, the RMSD
to the central conformation of that cluster is computed. This con-
vex hull criterion, therefore, works as an acceleration element in
the algorithm, since it ensures that the RMSD does not need to be
computed for every single data point in the remaining dataset. The
acceleration obtained via this approach is discussed in Sec. IV. In
case the RMSD is inside a given cutoff, the data point is considered
to be part of that cluster; otherwise, it is not assigned to the clus-
ter. This RMSD cutoff is chosen by taking the weighted mean of all
average internal cluster RMSDs41 of the first clustering iteration. We
found that this procedure generates structurally quite well defined
clusters with a low internal cluster RMSD since the RMSD criterion

is based on well defined conformational states that emerged from
cc_analysis combined with HDBSCAN. However, there is also the
possibility to identify more fuzzy clusters that only share a general
structural motif by using a larger RMSD cutoff for the assignment.
An example of the identification of such fuzzy clusters is described in
Sec. III B.

By introducing a RMSD criterion in the last step, we force the
clustering to only include structurally very similar conformations
in the respective clusters. There are, of course, various other clus-
tering algorithms that group MD datasets based on their RMSD
values, e.g., the implementation28 in the GROMACS software pack-
age.42 Such RMSD-based clustering algorithms have been used in the
MD community for at least 20 years now, and they are a very obvi-
ous choice for conformational clusterings of MD trajectories. They
directly compare the positions of specified atoms in various confor-
mations of a molecule and then group the individual conformations
along the trajectory using a cutoff value. However, these methods
generally rely on the full RMSD matrix of a given dataset. For larger
trajectories, it becomes almost infeasible to compute these matrices
due to extremely long computation times and memory issues that
arise when working with such large matrices. In our workflow, we
can circumvent these issues by only having to compute the RMSD
between the coordinates of Cα atoms of the central conformations
of each cluster and the data points that lie inside the convex hull of
the respective clusters in the 2D space.

In case a given system has less than about 50 000 frames, it is,
in principle, also possible to omit the encodermap part, since the
cc_analysis algorithm is able to handle the entire dataset. If this
approach is chosen, the user can either entirely skip the RMSD cri-
terion or the members of clusters that are found in the cc_analysis
space can still be accepted/rejected based on a RMSD cutoff. An
advantage of using both the cc_analysis algorithm and the enco-
dermap algorithm together is the possibility to check the dimension-
ality reduction steps on the fly. Since the clustering is done in one DR
space but visualized in the other, narrow and well defined clusters in
the 2D space indicate that the 2D map separates the different confor-
mational clusters nicely and that, therefore, the chosen encodermap
parameters were well selected.

Our clustering scheme is not very dependent on the quality
of the encodermap projection, as it is used only to assign addi-
tional structures to already identified clusters. Since the clustering
itself is done in the higher-dimensional cc_analysis space, the final
cluster assignment uses a RMSD cutoff. The only requirement that
the scheme poses toward the 2D map is that similar conforma-
tions are located close to each other on the map. This is achieved
by the MDS-like distance loss part of the overall loss function of
encodermap.

The remaining points that were not assigned to any cluster after
one clustering iteration are then used as a new pool of data from
which the new random subset is built. This whole cycle is repeated
until a certain amount of data points are assigned to clusters or
until a certain number of clustering iterations are performed. To
decide on a stopping point for the iterative procedure, we rely on two
possible convergence criteria: either a percentage of assigned confor-
mations or average cluster sizes found at an iteration. If we observe
a plateau in the percentage of unassigned data points during sev-
eral successive iterations, the clustering procedure is stopped. Due to
the design of our workflow, the average cluster size of newly added
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clusters will decrease with each iteration. Therefore, the average
size of newly added clusters or the convergence of this property
during successive iterations can also be used as a stopping crite-
rion. Examples are shown in the supplementary material, Sec. S-II,
Fig. S2.

The conformational clusters that are identified by this work-
flow can be used in various different ways, for example, to build a
kinetic model, which is discussed more in Sec. IV. Another use case
would be to take advantage of the knowledge gained from the clus-
tering to initiate and/or evaluate enhanced sampling schemes43,44 to
sample lowly populated parts of phase space in order to speed up
the overall convergence, or the found clusters might simply be used
to get an overview of the conformational variety that is present in
any given dataset, which works especially well in combination with
the visualization of the accessible phase space in the 2D encodermap
projection.

III. RESULTS
A. Description of the proteins’ trajectories
used for the analysis

In order to illustrate the capability and performance of the pro-
posed scheme, we chose four test systems: one is the 40 temperature
replica exchange (RE) trajectories of the Trp-cage protein (TC5b)
analyzed in the original encodermap paper;33 the other three sys-
tems are long trajectories of Trp-cage (TC10b), NTL9, and Protein
B simulated by the Shaw group on the Anton supercomputer45 and
generously provided by them. The four systems are listed in Table I.
For all the systems, we chose distances between Cα atoms as the
input collective variables.

The first protein we analyze in this work is the Trp-cage sys-
tem (TC5b) (Trp-cage RE). It is a comparatively small protein
(20 residues), which has a very stable native state when simulated

at room temperature. The combination of 40 temperature replica
exchange trajectories (temperature range from 300 to 570 K, 3.2 μs
of simulation time, 1577 520 frames) gives a very diverse mixture of
structures, including trajectories where the system is very stable and
barely moves away from the native state, as well as highly disordered
trajectories where high-energy conformations are visited. This com-
bination of conformations makes the data set extremely diverse and
complicated for analysis due to the high number of expected clusters
with extremely varying sizes and densities.

Second, we consider the K8A mutant of the thermostable Trp-
cage variant TC10b (Trp-cage Anton) simulated by Lindorff–Larsen
et al.45 (208 μs; 1044 000 frames). This simulation was run at 290 K
and produced a much more disordered trajectory compared to the
low temperature replica simulations of the TC5b system. Despite the
fact that TC5b and the K8A mutant of TC10b have slightly differ-
ent amino acid sequences, we use the same trained encodermap to
project both systems in the same 2D map (see Figs. 4 and 5), since
both systems have the same number of residues and, therefore, the
same dimensionality of CVs. This offers the opportunity to demon-
strate that different systems can be compared to each other very
nicely when projected into the same 2D space.

Next, we probed our clustering scheme with extremely long
(1877 μs;46 9389 654 frames) simulations45 of the larger (39 amino
acids) N-terminal fragment of ribosomal protein L9 (NTL9), which
has an incredibly stable native state. Besides the possibility to show
how the algorithm deals with this extremely large dataset, the sys-
tem has also been studied by several other researchers.29,47 This
allows us to compare our results to their findings. Schwantes and
Pande47 reported on very low populated states that contain register-
shifts between the residues that are involved in the formation of
the beta sheet structures of NTL9. This opens up the opportunity
to show whether our clustering workflow is able to identify both
very large states and extremely lowly populated states in the same
dataset.

TABLE I. Proteins analyzed in this study and performance overview of the clustering scheme.

Trp-cage RE (TC5b) Trp-cage Anton (TC10b) NTL9 Protein B

Trajectory length in μs 3.2 208 1877 104
Number of frames 1 577 520 1 044 000 9 389 654 520 250
Dimensionality of input CVs 190 190 703 1081
Number of cc_analysis dimensions 20 20 20 30
Average iteration time on our local 15 18 55 12
workstation (see the supplementary material,
Sec. S-V) (min)
Average iteration time over all used 24 × 15 = 360 24 × 18 = 432 4 × 55 = 1320 24 × 12 = 288
CPU threads (min)
Frames assigned to clusters after ten iterations 60.5% 33.1% 80.9% 20%
Total CPU time over all iterations (min) 3600 4320 13 200 2880
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FIG. 4. Trp-Cage TC5b (40 tempera-
ture RE trajectories): exemplary confor-
mations of the most populated clusters
found in each of the areas indicated by
colored circles and their populations in
percentages. The cluster representatives
show the average secondary structure
over the entire cluster. The clusters
are colored randomly, and the colors
repeat. Therefore, clusters that have the
same color but are separated in 2D
space contain different conformations.
The depicted clusters hold 36.5% of all
conformations. Most of the remaining
24% of conformations that have been
assigned to clusters are slight variations
of the native structure and are not shown
here due to visibility reasons. The cluster
that is referred to by an arrow is one of
the fuzzy clusters that were generated by
increasing the RMSD cutoff. Top right: a
histogram of the 2D encodermap space.

Finally, we chose to analyze the protein B simulations (104 μs;
520 250 frames).45 Compared to the aforementioned proteins, pro-
tein B does not have a single very stable state; instead, three helices
can move quite easily against each other. This leads to a broad con-
formational space where the energy barriers between the individual
states are very small. Therefore, the individual conformational states
are not as easily separable and rather fade/transition into each other.
Taking the long simulation time into account, this system is very
hard to cluster conformationally.

To demonstrate how our clustering scheme works, we chose
to apply it to these four systems that pose very diverse challenges
(e.g., an extremely large dataset, both highly and very lowly pop-
ulated states in the same data, and differences in the amount of
folded/unfolded conformations along the trajectories). For each
of the systems, we initially conducted the same number of clus-
tering iterations (10), then evaluated the resulting clustering, and
decided whether, for a given system, additional iterations were
needed.

B. Trp-cage
1. TC5b

For the RE simulations of the Trp-cage, the clustering scheme
was run over ten iterations and 60.5% of all conformations were
assigned to clusters. Figure 4 shows an encodermap projection of all
40 replicas with some of the most populated clusters found after ten
iterations and representative conformations of these clusters. Similar
conformations are grouped together, and rare structures are spread
out across the map. For example, the native conformation of Trp-
cage RE (33.4% of all conformations) is shown in the bottom right

of the 2D map in Fig. 4. On the bottom left, conformations with
one turn near the middle of the backbone are located. The two parts
of the backbone chain of these conformations lie right next to each
other and partially form beta-sheet structures.

Using a larger cutoff distance in the RMSD-based assignment
of structures to the clusters (the other clusters were generated by
applying a 1.8 Å RMSD cutoff to the central conformation), we
obtained larger and quite diffuse clusters of extended conformations
(one of these clusters is shown in the left part of the projection in
Fig. 4, where it is referred to by an arrow). An appropriate size of
this RMSD cutoff was defined for each fuzzy cluster individually by
computing the mean value of the largest 20% of the RMSD values
between the centroid and cluster members of the cluster identified
in the current iteration (it is equal to 5.5 Å for the cluster shown
here). Before we identify fuzzy clusters, we first continuously assign
structures based on a fixed RMSD cutoff (1.8 Å for TC5b) until
one of the stopping points defined in Sec. II D is reached (aver-
age cluster size for TC5b). Once this stopping point is reached,
the RMSD cutoff is adjusted in the way explained above and fuzzy
clusters are obtained. Thereby, one ensures that all conformations
that can be assigned to well-defined clusters are removed from con-
sideration before identifying fuzzy clusters. The usage of such a
varying cutoff can be very helpful in order to identify diffuse clus-
ters, where the members share a certain structural motif but do
not converge to a very defined conformation, just like the cluster
shown here.

From the clustering results shown in Fig. 4, one can see that
the proposed clustering workflow manages to efficiently identify
structurally very well defined clusters for the TC5b system. Over
ten clustering iterations, it assigned 60.5% of all conformations to
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FIG. 5. Most populated clusters and
respective conformations of Trp-Cage
TC10b45 projected to the same 2D enco-
dermap space as TC5b (Fig. 4). Top
right: a histogram of the 2D projection.

260 clusters. Besides the highly populated native state (33.4%), the
algorithm also finds very “rare” states, which contain only a very
small amount of conformations (≤0.1%) but, nevertheless, show a
very defined structural identity.

2. TC10b
Figure 5 shows the same analysis applied to the trajectory of

the K8A mutant of TC10b Trp-cage. We used the encodermap algo-
rithm that we trained on TC5b to project the trajectories to the same
2D space. The identification of clusters, however, is entirely inde-
pendent and unique for both cases, since the clustering is done in
the higher-dimensional cc_analysis space.

Notably, the backbone conformation of the native state of this
mutant is extremely similar to the one in the TC5b system. However,
this biggest cluster only contains 12% of all conformations along the
trajectory, compared to the 33.4% in the case of the TC5b system.
If all clusters whose central conformation is within 2 Å RMSD to
the native conformation are combined, we get a native conformation
percentage of 16.9%. This is in excellent agreement with the native
cluster sizes reported by Deng et al.48 and Ghorbani et al.49 who ana-
lyzed the same Trp-cage trajectories provided by Lindorff–Larsen
et al.45 Furthermore, our 33.4% of assigned conformations coin-
cide very well with the reporting of Sidky et al.50 They found a
total of 31% of conformations distributed over eight metastable
macrostates and the remaining 69% as one big “molten globule”
state.

The TC10b trajectory is more disordered; this can be seen by
the more homogeneous projection in 2D space (the upper right plot
in Fig. 5) and the RMSD values to the native conformation in the
supplementary material, Sec. S-III, Fig. S3. This is also the reason

why the clustering scheme assigned only 33.4% of all conformations
to clusters after ten iterations. If more frames should be assigned
to clusters, more clustering iterations can be performed, the RMSD
cutoff can be increased, or both can be done simultaneously (for the
Protein B system, we show the results of this approach later in the
article).

However, the clusters in the very center of the map (the dark
blue circle) are much more compact and collapsed compared to the
clusters that were found in the similar area of Trp-cage RE’s 2D pro-
jection. In addition, some of the clusters that were found at the very
bottom of the left-hand side of the map in the case of the replica tra-
jectories (the light blue circle) were not found at all in the TC10b
trajectory. The very large and diffuse cluster on the left-hand side of
the map is present in both systems as well.

3. Clustering directly in 2D space of TC5b
The clustering discussed above was performed in a

20-dimensional space after applying the cc_analysis algorithm
and was only displayed in a 2D projection done with encodermap.
In order to demonstrate the advantages of our approach, we also
directly clustered the 2D encodermap space using HDBSCAN. The
encodermap space that we used for this clustering is the same space
that we used to visualize the cc_analysis clustering in Figs. 4 and 5.
The results of this clustering and a few chosen clusters are shown in
Fig. 6. In total, this clustering assigned 13.5% of all conformations to
362 clusters. The biggest cluster that was found is the native cluster;
however, it only contains 0.8% of all conformations compared
to the 33.4% that were found by clustering the cc_analysis space.
The clustering in the 2D space identifies some structurally very
well defined clusters, such as clusters 0, 1, and 3, but also a lot
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FIG. 6. 2D encodermap space of TC5b
clustered with HDBSCAN. Representa-
tions of chosen clusters that have the
same location in the 2D map as clus-
ters found with the clustering scheme in
Fig. 4 are shown.

of very diffuse and inhomogeneous clusters. To quantify this
inhomogeneity, we computed the average of the internal cluster
RMSDs. For the TC5b system, our clustering workflow resulted in
an average cluster RMSD of 1.34 Å and a weighted average RMSD
of 1.03 Å, where weights are defined as the fraction of each cluster to
all clustered data. The average RMSD for the direct clustering in the
2D space is 2.25 Å, and the weighted average RMSD is 2.73 Å. This
clearly shows that the internal cluster RMSD variance is, on average,
much larger when clustering directly in the 2D space. Furthermore,
the clustering in the 2D space itself naturally highly depends on the
quality of the 2D map.

Other than the much clearer conformational identity of the
individual clusters (shown via internal cluster RMSDs), our clus-
tering scheme also manages to assign 60.5% of all conformations to
different clusters. Compared to that, the clustering in the 2D projec-
tion only assigned 9%–14% of all conformations, depending on the
choice of clustering parameters.

4. Comparison to other clustering approaches
For a further assessment of our clustering scheme, we have

also applied a frequently used clustering routine to the TC5b data.
In the supplementary material, Sec. S-IV and Figs. S4 and S5, the
results of applying the k-means algorithm to an 11-dimensional PCA
projection of the same CVs (pairwise Cα distances of TC5b) are
shown.

In summary, the scheme identified both structurally very
defined and quite diffuse clusters in considered systems. Even
though the combination of the 40 RE trajectories produces a very
diverse dataset, the clustering scheme manages to assign a large
amount of the conformations to clusters (60%). Our clustering
results for the TC10b are in very good agreement with the findings of
other researchers.48–50 Furthermore, the comparison to a clustering
in the 2D space clearly shows the superiority of using more dimen-
sions obtained with the cc_analysis algorithm in HDBSCAN over
just relying on a low-dimensional representation alone.

C. NTL9
Next, we examined very long (1877 μs) simulations of NTL9.45

With 9.38 × 106 frames to cluster, this system is an ideal candidate to
demonstrate how the proposed algorithm copes with large amounts
of data. After ten iterations, 81% of all conformations were assigned
to clusters. Figure 7 shows a 2D projection made with encodermap,
where points are colored according to the clusters found after ten
iterations of the scheme, and a histogram of the 2D space is in the
upper right corner. In total, we found 157 clusters and assigned to
them 81% of all conformations over ten clustering iterations.

A comparison of the time series of the RMSD values for the
folded state with the respective data of the Trp-cage Anton simula-
tions (the supplementary material, Sec. S-III, Fig. S3) reveals that the
two systems exhibit very different dynamics. While in the Trp-cage
case, the RMSDs show the disordered nature of the system, in the
case of the NTL9 trajectories, the RMSDs are predominantly quite
low and only spike up to larger values for rather short time peri-
ods. This suggests that the NTL9 system resides in a native-like state
for the majority of the simulated time. This was confirmed during
the very first iteration of the clustering scheme. There we found two
clusters that make up 75.8% of all conformations.

This example also nicely illustrates how the iterative cluster-
ing approach can be efficient in identifying clusters of very different
sizes and densities (highly populated native states and low populated
clusters). After finding and removing the first two clusters (75.8%
of the data), the clustering algorithm becomes much more sensi-
tive toward the less dense areas in the CV-space in the following
clustering iterations.

We compared our clustering results with those other publica-
tions analyzing the NTL9 trajectories from Ref. 45. Mardt et al.29

applied VAMPnets to trajectory 0 and found, in total, 89.1% of
folded, native-like conformations. If we take the clusters we found
by analyzing the trajectories 0, 2, and 3 and evaluate the confor-
mations stemming from trajectory 0 (trajectory 0 resides in the
native-like state for a larger fraction of the simulated time; see
RMSD plots in the supplementary material, Sec. S-III, Fig. S3), the
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FIG. 7. 2D encodermap projection of
NTL9. The projection can be approxi-
mately divided into three parts: the upper
part with the densest areas (where the
native-like states are located) and the
lower left and right planes divided by
an unpopulated vertical gap. The left-
hand side includes various conforma-
tions with a singular beta-sheet formed
mostly between the beginning and the
end of the protein. In contrast, on the
right-hand side lie the mostly extended
conformations with multiple helices along
the backbone. Exemplary conformations
of some of the most populated clusters
found in each of the marked areas on the
map and their populations are shown. All
clusters in the yellow circle are extremely
similar to the native cluster and can be
summed up to a total of 76% of all
conformations. The structures that are
shown here make up 78.4% of all confor-
mations. Top right: histogram of the 2D
encodermap space.

amount of folded, native-like conformations we find is in very good
agreement with that of Mardt et al.29 Furthermore, Schwantes and
Pande47 reported the finding of three “register-shifted” states, which
are very low populated and, therefore, very hard to find. “Register-
shifted” refers to the identity of the specific residues involved in
forming the beta-sheet structure in the native-like states (residues
1–6, 16–21, and 35–39). With our method, we identified six dif-
ferent register-shifted states in the NTL9 trajectories 0, 2, and 3
(see Fig. 8).

States 0, 1, and 2 are the ones that were also found in Ref. 47.
To our knowledge, states 3, 4, and 5 have not been reported yet. In
state 0, the central of the three beta-sheet strands is shifted down-
ward, whereas in state 2, the rightmost strand is shifted downward.
In state 1, both the middle and the rightmost strands are dislocated
compared to the native state. State 3 is similar to state 1 in the fact
that both the middle and the rightmost strands are shifted; however,
in state 3, the rightmost strand is shifted upward and not downward
like in state 1. Among these six states, state 4 is unique since the

FIG. 8. Register-shifted states found in
the NTL9 trajectories 0, 2, and 3. The
residues that form the beta-sheets in the
native state are colored based on their
residue ID.
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rightmost strand is turned by 180○. Finally, state 5 differs from other
states in having an extra helix along the chain between the leftmost
and the middle strand. Because of this additional helix, the leftmost
strand is extremely shifted compared to its native state.

The identification of these register-shifted states highlights one
asset of the proposed workflow. It is able to find both very large
states (native, 74.5%) and very low populated clusters (<0.001%) in
the same dataset.

D. Protein-B
The last system we analyzed is protein B. This system does not

have a very stable native state; instead, the three helices can move
against each other relatively freely. This can be seen in the time
series of the RMSD to the closest experimental homologue (1PRB)
shown in the supplementary material, Sec. S-III, Fig. S3. There are
no extended periods where the values are stable over some time,
meaning that there are no large free-energy barriers separating the
various accessible conformations and, thus, the system constantly
transitions into different conformations. This has also been found in
Ref. 45, where the authors stated that they were unable to identify a
free-energy barrier between folded and unfolded states for protein B
(tested over many different reaction coordinates).

Such a highly dynamic system is very challenging for confor-
mational clustering. Here, we want to show where our algorithm
has its limitations and what can be done to get a satisfactory cluster-
ing result. Figure 9 gives an overview of some of the clusters found
after ten iterations of the scheme. These clusters include only 20% of
the protein B trajectory and, thus, 80% of all conformations are still
unclustered.

In order to have more data assigned to clusters, two parameters
can be adjusted. First, the RMSD cutoff value can be increased and,

thereby, more conformations can be assigned to the found clusters.
In this specific case, this adjustment is justified since, due to the low
free-energy barriers between different states, the individual clusters
are not as sharply defined in terms of their conformations. In the ten
clustering iterations, which are shown in Fig. 9, we used a RMSD cut-
off of 3.0 Å. In a second run, we increased it to 3.5 Å. This resulted in
an assignment of 31% of all conformations to generally more loosely
defined clusters.

A second approach is to increase the number of clustering
iterations. For the first ten clustering iterations of previously ana-
lyzed systems, we manually tuned the clustering parameters. This
includes the choice of the number of cc_analysis dimensions as well
as the min_samples and min_cluster_size parameters of HDBSCAN.
However, such a manual adjustment of the parameters is, of course,
not feasible for automating the script in order to perform many
more clustering iterations. Since the amount of cc_analysis dimen-
sions needs to be very rarely changed once a suitable amount has
been identified in the first clustering iteration, the automation of
the script only relies on the choice of the HDBSCAN parameters.
Once the number of clusters found in a single iteration falls below
a certain threshold (ten clusters in this case), the numerical values
of the min_samples and min_cluster_size parameters of HDBSCAN
are slightly decreased. This leads to the detection of smaller clusters
that have not been identified before. By applying this automation
approach after the first ten iterations to protein B and using a RMSD
cutoff of 3.5 Å, we could assign 44.3% of all conformations to clusters
over 100 iterations, which took roughly 15 h on our workstation.

IV. DISCUSSION
The Trp-cage system (TC5b) is a relatively small protein that

has a quite stable native conformation. The combination of 40

FIG. 9. Protein B: exemplary conforma-
tions of some of the most populated
clusters found for the protein B system
after ten clustering iterations and their
populations. Top right: histogram of the
2D encodermap space.
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temperature RE trajectories, however, gives a very diverse dataset
including (under standard conditions) very improbable high-energy
conformations. Over ten iterations, the algorithm managed to assign
60.5% of all conformations to clusters, which took, on average,
360 min per iteration over all CPU threads (15 min per iteration
on a standard office machine with 24 CPU threads). Table I shows
the clustering performance for the four systems discussed here. By
switching the generally static RMSD cutoff to a varying cutoff, we
could show that the algorithm can generate both conformation-
ally very defined clusters and clusters that are quite diffuse. The
conformations assigned to such loose clusters share a general struc-
tural motif. The ability to identify both of these cluster types is
one of the advantages of the proposed algorithm. Furthermore, we
demonstrate that the clustering workflow is able to directly com-
pare different systems (even if they slightly differ structurally), by
projecting them to the same 2D map using the encodermap algo-
rithm. This enables a direct and visual comparison of the sampled
phase-spaces of different trajectories and their respective identified
states. By comparing the clustering result where the clustering is
done in a 20-dimensional cc_analysis space and then projected to a
two-dimensional space to a clustering where the clusters are purely
found in a 2D encodermap space, we prove an advantage using more
dimensions and combine cc_analysis with encodermap. The scheme
created clusters with a much clearer structural identity (a lower
RMSD variance) while being much less dependent on the quality of
the 2D map.

We analyzed long (9.38 × 106 frame) trajectories of NTL9 to
show how the proposed scheme copes with very large amounts of
data. On average, the algorithm needed 1320 min of computation
time over all CPU threads per iteration (55 min per iteration on
our office machine). Since this system also has one hugely populated
native state, it is also a nice example to demonstrate an advantage
of iterative clustering. After the clusters with the native states are
removed from consideration, the algorithm becomes much more
sensitive toward less populated areas in the following iterations.
Applying this approach, we could identify three very low populated
register-shifted states, which have been reported before,47 and three
not yet seen register-shifted states.

Finally, we looked at protein B, which is a highly dynamic sys-
tem. To analyze this 1.04 × 106 frame trajectory, it took, on average,
288 min of computation time per iteration (12 min per iteration on
our office machine). This system has no large free-energy barriers
separating the various conformations, which makes it very difficult
to cluster. This was confirmed by the fact that after ten clustering
iterations, only 20% of all conformations could be assigned to clus-
ters. However, by increasing the RMSD cutoff from 3.0 to 3.5 Å,
we could already increase the number of assigned conformations to
31%, which, of course, resulted in slightly less structurally defined
clusters. It is also possible to automate the clustering and run until
a certain number of conformations are assigned to clusters or until
the given number of iterations is reached. In this specific case, we
ran the scheme for 100 automated iterations (≈15 h), during which
44.3% of the conformations were assigned to clusters.

For all considered systems, the proposed workflow was able to
identify defined clusters at the cost of leaving some amount of the
trajectories unassigned. As we have shown here, the rest of the struc-
tures do not belong to any specific clusters and can be considered
as unfolded or transition states. We intentionally do not propose

any additional steps to assign or classify those conformations as it is
highly dependent on the intended application of the data. For exam-
ple, in case the data are used to build subsequent kinetic models, the
rest of the points can be assigned to the nearest (e.g., in simulation
time) cluster using methods such as PCCA + analysis,51 or defined
as a metastable transition state as in Ref. 50. It can also be defined as
noise and used as discussed in Ref. 52. If such a kinetic model were
to be built from the conformational clusters that we identify, e.g., for
the TC5b system, most likely, many of the smaller clusters found in
the disordered part of phase space would be combined to form just
a very few macrostates.

All performance data are shown in Table I and were obtained
by running the clustering scheme script on the office workstation
described in the supplementary material, Sec. S-V. The proposed
workflow is, however, highly parallelizable, since the computation-
ally most expensive step is the assignment of additional data points
to the initially identified clusters in the small subset based on the
convex hull and the RMSD criterion. If a large number of CPU cores
are available, the 2D encodermap projection array can be split by the
number of cores and the assignment can, thereby, be run in parallel,
leading to a significant speedup.

The convex hull around the clusters identified in the small sub-
set is used to reduce the amount of RMSD computations that have
to be performed when assigning additional conformations in each
clustering iteration. This, however, might, in principle, lead to the
exclusion of data points that might otherwise have been assigned
to some of the clusters. In order to get an idea of the magni-
tude of this “loss” of potential cluster members, we computed the
RMSD of all data that were labeled as noise (623 000 conformations;
39.5%) to each of the cluster centers of TC5b (260 clusters). This
computationally very expensive task took an additional 5 h on our
working machine. We found that 42 000 conformations (2.7%) were
not assigned to the identified clusters due to the convex hull crite-
rion. When keeping in mind that the entire ten iteration clustering
process took 2.5 h, the “loss” of 2.7% of unclustered data can be
considered a worthy trade-off.

Another point to consider is that due to the convex hull cri-
terion, clusters can be split. If data points that would be assigned
to a certain cluster by reason of the RMSD criterion lie outside of
the convex hull, they could be identified as another cluster in one of
the following clustering iterations. In such cases, it can make sense
to merge these clusters in hindsight due to their very similar struc-
tural identity. In order to showcase such a merge, we again analyzed
TC5b. We computed the RMSDs between all of the 260 central clus-
ter conformations and merged all clusters that had a RMSD of ≤1 Å.
This resulted in a reduction to 201 clusters with only a very marginal
influence on the average internal cluster RMSDs.

The code for the encodermap algorithm is available on the
following GitHub page: https://github.com/AG-Peter/encodermap.
The cc_analysis code can be found at https://strucbio.biologie.uni-
konstanz.de/xdswiki/index.php/Cc_analysis.

V. CONCLUSION
We developed a clustering scheme that combines two different

dimensionality reduction algorithms (cc_analysis and encodermap)
and HDBSCAN in an iterative approach to perform fast and accu-
rate clustering of molecular dynamics simulations’ trajectories. The

J. Chem. Phys. 158, 144109 (2023); doi: 10.1063/5.0142797 158, 144109-12

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0142797/16814539/144109_1_5.0142797.pdf

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0142797
https://github.com/AG-Peter/encodermap
https://strucbio.biologie.uni-konstanz.de/%20xdswiki/index.php/Cc_analysis
https://strucbio.biologie.uni-konstanz.de/%20xdswiki/index.php/Cc_analysis


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

cc_analysis dimensionality reduction method was first applied to
protein simulation data. The method projects collective variables to a
usually relatively high-dimensional (∼10–40 dim) unit sphere, sepa-
rating noise and fluctuations from important structural information.
Then, the data can be efficiently clustered by density based clustering
methods, such as HDBSCAN. The iterative application of HDB-
SCAN allows us to account for the inhomogeneity in population and
density of the projected points, which is very typical for protein sim-
ulation data. As cc_analysis relies on the calculation of correlation
matrices between each frame, this drastically limits the amount of
data one can project simultaneously. To allow the processing of long
simulation trajectories, we included encodermap to the scheme. In
addition to the obvious advantage of the two-dimensional visual-
ization, it is used in combination with a RMSD-based acceptance
criterion for a fast structure-based assignment of additional points to
the clusters initially identified in the higher-dimensional projection
done with cc_analysis. To demonstrate the accuracy and perfor-
mance of the proposed scheme, we applied the clustering scheme
to four test systems: replica exchange simulations of Trp-cage and
three long trajectories of a Trp-cage mutant, NTL9, and protein B
generated on the Anton supercomputer. By applying the scheme to
these four test systems, we could show that the algorithm can effi-
ciently handle very large amounts of data, that it can be used to
compare the clusters of structurally different systems in one 2D map,
and that it can also be applied to cluster systems that do not have
very stable native states and are, therefore, intrinsically very difficult
to cluster conformationally. Furthermore, the algorithm is able to
find clusters independent of their size. By varying the RMSD cutoff,
both conformationally very well defined clusters and fuzzy clus-
ters, whose members only share an overall structural motive, can be
identified.
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