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Abstract. A dominant term in the surface energy balance and central to global warming is downwelling long-
wave radiation (Rld). It is influenced by radiative properties of the atmospheric column, in particular by green-
house gases, water vapor, clouds, and differences in atmospheric heat storage. We use the semi-empirical equa-
tion derived by Brutsaert (1975) to identify the leading terms responsible for the spatial–temporal climatological
variations in Rld. This equation requires only near-surface observations of air temperature and humidity. We first
evaluated this equation and its extension by Crawford and Duchon (1999) with observations from FLUXNET,
the NASA-CERES dataset, and the ERA5 reanalysis. We found a strong spatiotemporal correlation between
estimated Rld and the datasets above, with r2 ranging from 0.87 to 0.98 across the datasets for clear-sky and
all-sky conditions. We then used the equations to show that changes in lower atmospheric heat storage explain
more than 95 % and around 73 % of diurnal range and seasonal variations in Rld, respectively, with the regional
contribution decreasing with latitude. Seasonal changes in the emissivity of the atmosphere play a second role,
which is controlled by anomalies in cloud cover at high latitudes but dominated by water vapor changes at mid-
latitudes and subtropics, especially over monsoon regions. We also found that as aridity increases over the region,
the contributions from changes in emissivity and lower atmospheric heat storage tend to offset each other (−40
and 20–30 W m−2, respectively), explaining the relatively small decrease in Rld with aridity (−(10–20) W m−2).
These equations thus provide a solid physical basis for understanding the spatiotemporal variability of surface
downwelling longwave radiation. This should help us to better understand and interpret climatological changes,
such as those associated with extreme events and global warming.

1 Introduction

In the global mean surface energy budget, downward long-
wave radiation (Rld) is dominant surface energy input
(333 W m−2 in global mean and 306 W m−2 over land), con-
tributing around twice as much energy as absorbed solar radi-
ation (161 W m−2 in global mean and 184 W m−2 over land)
(Trenberth et al., 2009; Wild et al., 2015). This dominance
holds over all regions in the climatological mean, although
there are some clear variations in space and time (Figs. 1

and S1). It is central to global warming, reflecting the green-
house effect of the atmosphere (Held and Soden, 2000), and
its variations have been suggested to be the main contributor
to some regional warming amplifications, such as in the Arc-
tic (Lee et al., 2017) and the Tibetan Plateau (Su et al., 2017).
Therefore, it is important to understand the main sources of
variations in this surface energy balance term, which can be
seen in Fig. 1.

The flux of downwelling longwave radiation is influenced
by the radiative properties of the entire atmospheric column,
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Figure 1. Spatial distribution of (a, c) the climatological mean and (b, d) the seasonal amplitude of downward longwave radiation and
absorbed solar radiation at the surface, respectively, from the NASA-CERES dataset. The seasonal amplitude is calculated as the difference
between the maximum and minimum monthly data.

i.e., water vapor, clouds, and greenhouse gases, but also by
the heat stored in the atmosphere, i.e., the temperature at
which radiation is emitted back to the surface. To obtain an
estimate of this flux, Brutsaert (1975) used functional expres-
sions for the typical temperature and humidity profiles of the
lower troposphere together with radiative transfer equations
and semiempirical relationships of the absorptivity by water
vapor, integrated these vertically, and expressed the resulting
flux Rld in terms of near-surface air temperature and water
vapor pressure for clear-sky conditions. He thereby derived
a semi-empirical equation for Rld for an effective clear-sky
emissivity (εcs) and the corresponding flux of downwelling
longwave radiation (Rld,cs):

εcs = 1.24(ea/Ta)1/7, (1)

Rld,cs = εcsσT
4

a , (2)

where σ is the Stefan–Boltzmann constant (σ = 5.67×
10−8 W m−2 K−4), ea is the 2 m water vapor pressure (unit:
mbar) and Ta is the 2 m air temperature (unit: K). The latter
two meteorological variables can easily be obtained or in-
ferred from weather stations, meaning that the downwelling
flux of longwave radiation can be estimated from weather
station observations. Note that the εcs shown in Eq. (1) is
largely insensitive to changes in Ta. As a result, emissivity

does not have a direct dependence on Ta, except that higher
temperature may also lead to higher values in ea.

This equation was later extended to all-sky conditions that
include the effects of cloud cover, among which Crawford
and Duchon (1999) is a common extension (Alados et al.,
2012; Duarte et al., 2006; Flerchinger et al., 2009). This ex-
tension diagnoses cloud cover fraction (fc) as the fraction of
incoming solar radiation at the surface (Rs) in relation to the
potential solar radiation (Rs,pot), that is, the incoming flux at
the top of the atmosphere. The emissivity for all-sky condi-
tions, ε, is then calculated as the mix of the emissivities of
clear-sky conditions (Eq. 1) (weighted by the cloud-free pro-
portion, i.e., 1− fc) and clouds with an emissivity of εc = 1
(weighted by the cloud fraction fc). Using this emissivity, the
estimation of downwelling longwave radiation is then done
by

fc = 1−Rs/Rs,pot, (3)
ε = fc+ (1− fc)εcs, (4)

Rld = εσT
4

a . (5)

Previous studies have already verified Eqs. (4)–(5) to have a
very good agreement with site measurements with the r2 of
0.883 and RMSE of 15.367 W m−2 (Duarte et al., 2006; Hat-
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field et al., 1983), especially when the temperature is higher
than 0◦ (Aase and Idso, 1978; Satterlund, 1979). Other stud-
ies have worked to calibrate and modify this estimate further
to different regions (Malek, 1997; Sridhar and Elliott, 2002).

This expression for downwelling longwave radiation Rld
given by Eq. (5) allows us to quantify the different contribu-
tions by cloud cover, fc; water vapor concentrations, ea (as a
measure of the total water vapor content of the atmospheric
column); and air temperature, Ta (as a proxy for the heat stor-
age within the lower atmosphere, Panwar et al., 2022). With
this, we can then attribute variations in Rld to their physical
causes.

Here, our aim is to first evaluate this estimate for down-
welling longwave radiation with current global datasets at the
continental scale. These variations are illustrated using the
NASA-CERES (EBAF 4.1) dataset (Loeb et al., 2018; Kato
et al., 2018; NASA/LARC/SD/ASDC, 2017) and the NASA-
CERES Syn1deg dataset (Doelling et al., 2013, 2016) in
Fig. 1 and are compared to variations in solar radiation. It can
be seen that the climatological distribution of Rld is mostly
associated with latitudes, while also presenting some zonal
variations, e.g., across western and eastern North America.
In comparison, the seasonal cycle of Rld is less determined
by latitudes (Fig. 1b). It has a larger magnitude over land
than over oceans, over arid regions than humid regions, and
over cold regions more than over warm ones. Although stud-
ies have revealed a close correlation between the variation
of Rld and other factors like air temperature, water vapor,
and CO2 concentration (Wang and Liang, 2009; Wei et al.,
2021), here we go beyond correlations and instead attribute
these variations to the different terms in Eqs. (1)–(5) that rep-
resent different radiative properties affecting Rld.

To figure out the dominant driver for these spatiotempo-
ral variations, we decompose changes in Rld into its compo-
nents: cloud cover, fc; heat storage changes of atmosphere as
reflected by 2 m air temperature, Ta; and air humidity, ea, by
performing the differentiation of these equations. We show
that heat storage changes predominantly shape the diurnal
range and seasonal cycle of Rld, while cloud cover variations
play a second role in most cases. In addition, the temporal
variations of Rld are lower over the ocean than over land and
lower during winter than summer. On the other hand, the spa-
tial variations of Rld from arid to humid regions is relatively
small, which we will show is due to a compensating effect
of corresponding changes in atmospheric emissivity and heat
storage.

Our paper is organized as follows. After briefly describing
the datasets used in our evaluation in Sect. 2, we first the
estimate of Rld from these equations at the global scale using
multiple datasets in Sect. 3.1. After showing that the annual
mean and large-scale variations are well captured, we then
use the equations to decompose the temporal variations of
Rld in terms of its mean spatial and temporal variations and
relate these to their causes in Sect. 3.2. The spatial variations
of Rld are then further discussed in Sect. 3.3 in terms of their

relationship with aridity. We then close with a brief summary
and broader implications.

2 Datasets

To testRld estimates, we use FLUXNET 30 min observations
(Pastorello et al., 2020, 30 min values, 189 sites; see Table S1
and Fig. S2 for details), the NASA-CERES monthly satellite-
based radiation dataset (Doelling et al., 2013, 2016, monthly
means, covering years 2001 to 2018), and the ERA5 monthly
reanalysis dataset (Hersbach et al., 2022, monthly means,
covering years 1979 to 2021).

For each dataset, Ta, ea, and fc are needed as inputs
for Eqs. (1)–(5), while Rld data are used for the compari-
son. Cloud cover fc is calculated using Eq. (3) for all three
datasets with incoming solar radiation at the surface (Rs) and
the potential solar radiation (Rs,pot). For NASA-CERES esti-
mation, Ta from the CPC Global Unified Temperature dataset
(CPC Global Unified Temperature, 2022) is used as temper-
ature observation.

For all three datasets, water vapor pressure, ea, is not di-
rectly given. It is calculated from the water vapor deficit
(VPD, FLUXNET) or dew-point temperature (Tdew, ERA5)
using Monteith and Unsworth (2008):

ea = 6.1079× exp(17.269Tdew/ (237.3+ Tdew)) , (6)
ea = 6.1079× exp(17.269Ta/ (237.3+ Ta))−VPD, (7)

and the calculated ea from ERA5 is also used in NASA-
CERES estimation.

For the analysis of the spatial variations of Rld along wa-
ter availability, we use the aridity index (AI= R

LP ) (Budyko,
1958; UNCOD, 1977). This index is calculated using the
mean annual net radiation (R) taken from the NASA-CERES
dataset, the mean annual net precipitation (P ) taken from the
CPC Global Unified Gauge-Based Analysis of Daily Pre-
cipitation data (Chen et al., 2008; Xie et al., 2007; CPC
Global Unified Gauge-Based Analysis of Daily Precipita-
tion, 2022), and a latent heat of vaporization for water of
L= 2260 kJ kg−1. A larger value of AI indicates stronger
aridity.

3 Results and discussion

3.1 Comparison to observed, satellite, and reanalysis
data

We first compared the estimates of Rld at a point-by-point
basis separately for clear-sky and all-sky conditions using
Eqs. (2) and (5), respectively. This comparison is shown in
Fig. 2 using FLUXNET, CERES, and ERA5 data. The esti-
mates correlate very well with r2 of 0.92 and 0.87 for clear-
sky and all-sky conditions, respectively, and RMSE values
of 18.24 and 24.56 W m−2. The slope of the linear regres-
sions between the estimated and observedRld for FLUXNET
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are 1.03 and 1.02, with most data points being concentrated
around the 1 : 1 line (Fig. 2a and b). Note that for all-sky con-
ditions the agreement is slightly less good, with a lower cor-
relation coefficient and a larger RMSE. The agreement with
the NASA-CERES and ERA5 datasets are even better, with
higher correlation coefficients and lower RMSE.

Despite this high level of agreement of the estimates, we
can see some systematic biases in the estimates for Rld.
These can be seen in Figs. 3 and S3, which show the spa-
tial distribution of these biases and their variations against
temperature and humidity. For clear-sky conditions, there ap-
pears to be a general underestimation in the high latitudes
and, to some extent, in arid regions (Fig. 3c and e). Brut-
saert (1975) already described that for very low temperatures
and in arid conditions, there are better parameter values than
those used in Eq. (1), with a larger coefficient than 1.24 and a
different exponent. This can then lead to an underestimation
of Rld under low humidity (Figs. 3b, S3b, S3d). Moreover,
B75 has not considered the gradual increase in emissivity as
temperature decreases below freezing (Aase and Idso, 1978),
thus explaining the underestimation under low temperature
(Figs. 3b, S3a, S3c). The biases seen in Fig. 3 are never-
theless notably smaller than the spatial–temporal variations
shown in Fig. 1. This means that these biases do not prevent
us from using Brutsaert to attribute the causes for the sea-
sonal variation and the spatial range of Rld.

The biases for all-sky conditions generally share the distri-
bution with that of clear-sky conditions, with a smaller mag-
nitude (Fig. 3b, d and f), which are also small compared to
the spatial–temporal variations.

Overall, this evaluation shows that the expressions given
by Eqs. (1)–(5) are very well suited to describe the spatiotem-
poral variations of Rld for current climatological conditions.

3.2 Attribution of diurnal and seasonal variations

We next use Eqs. (1)–(5) to attribute temporal variations of
Rld to their physical causes. To do so, we can express changes
1Rld as a function of changes in water vapor, 1ea; cloud
cover, 1fc; and air temperature, 1Ta. The functional depen-
dence is derived from the equations by differentiation and
applying the chain rule. In a first step, we express a change
1Rld by the partial contributions 1Rld,ε and 1Rld,T that is
due to changes in emissivity, 1ε, and due to changes in at-
mospheric heat storage that are associated with a change in
air temperature 1Ta:

1Rld =1Rld,ε +1Rld,T =
∂Rld

∂ε
1ε +

∂Rld

∂Ta
1Ta

= σTa
4
1ε+ 4σεTa

3
1Ta. (8)

The two terms on the right side of Eq. (8) are 1Rld,ε and
1Rld,T , respectively.

The contribution 1Rld,ε is further decomposed into con-
tributions 1Rld,fc , 1Rld,ea , and 1Rld,T ′a due to variations

in clouds, 1fc, air humidity, 1ea, and surface temperature,
1Ta, and we obtain the following equation:

1Rld,ε = σ Ta
4
1ε ≈ σTa

4
×
∂ε

∂fc
1fc + σTa

4

×
∂ε

∂ea
1ea+ σTa

4
×
∂ε

∂Ta
1Ta = σTa

4

×

1− 1.24
(
ea

Ta

) 1
7

1fc+ σTa
4

×
1.24

7

(
1− fc

)
(ea)

6
7
(
Ta
) 1

7
1ea+ σTa

4
×

(
−

1.24
7

)

×

(
1− fc

)
(ea)

1
7(

Ta
) 8

7
×1Ta. (9)

The three terms on the right side of Eq. (9) are 1Rld,fc ,
1Rld,ea , and 1Rld,T ′a .

Note that the third term is of lower magnitude compared
with the other two terms (e.g., in terms of the seasonal range
as shown in Fig. 5f), which is hence not focused on in this
work.

We next applied this approach to the diurnal deviations
1Rld from the daily mean using the FLUXNET dataset. This
decomposition is shown in Fig. 4 in aggregated form across
the FLUXNET sites for the whole year (Fig. 4a) and the
Northern Hemisphere summer (Fig. 4b) and winter seasons
(Fig. 4c). More than 95 % of the diurnal variations (of about
± 20 W m−2) are caused by diurnal changes in air tempera-
ture, while variations in emissivity play practically no role
(Fig. S4). Diurnal changes in air temperature reflect varia-
tions in heat storage of the atmospheric boundary layer. This
is consistent with the notion that diurnal variations in solar
radiation over land are buffered primarily by the lower at-
mosphere, rather than below the surface as is the case for
open water bodies and the ocean (Kleidon and Renner, 2017).
Since most of the stations in the FLUXNET dataset are lo-
cated in the midlatitudes of the Northern Hemisphere, the
variations are consistently larger in summer due to the greater
solar input (Fig. 4b) than in winter (Fig. 4c).

Figure 5 shows the same kind of decomposition, but for
seasonal variations in Rld in the NASA-CERES dataset,
which is the difference between the maximum and mini-
mum of monthly Rld data. Generally, areas with relatively
low annual-mean Rld, e.g., the high-latitude regions of North
America and northeastern Eurasia, have the largest seasonal
cycle (Fig. 1). The decomposition shows that this variation is
mostly due to the seasonal variation in atmospheric heat stor-
age (1Rld,T), with a portion of around 73 % on a global scale,
and the rest are attributed to the seasonal changes in wa-
ter vapor (24 %) and cloud cover (12 %). Notably, seasonal
variations in emissivity play a greater role than atmospheric
heat storage in changing Rld in tropical areas, especially over
the monsoon region. This is predominantly due to the strong
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Figure 2. Comparison of Rld estimated by Brutsaert (1975) (a, c, e) for clear-sky conditions and by Crawford and Duchon (1999) (b, d,
f) for all-sky conditions using (a, b) FLUXNET hourly data of 189 sites, (c, d) NASA-CERES monthly data of 1◦× 1◦ from 2001–2018,
and (e, f) ERA5 monthly data of resolution of 1◦×1◦ from 1979–2021. Colors indicate the density of the data points and are scaled to values
between 0–1.

seasonal fluctuations in water vapor levels and cloud cover
(Fig. 5d–f).

The aggregation to the global scale across land and ocean
is shown in Fig. S5, where the deviations are calculated as
the difference in the monthly means to the annual mean. Fig-
ure S5 show that the seasonal variations of Rld are generally
lower over the ocean than on the land, an effect that can also
be seen in Fig. 1. The decomposition shows that these varia-
tions are mostly caused by changes in lower atmospheric heat
storage, with a slight modulation by emissivity changes. This
can, again, be largely explained by the effect described above
for the diurnal variations (Kleidon and Renner, 2017). Over
the land, the changes in radiation are majorly buffered by the
heat storage in the lower atmosphere and the variations in
convective boundary layer height. However, over marine ar-
eas, solar radiation penetrates the transparent water bodies,

the heat storage of which buffers the season cycle of the ra-
diation over the ocean. Since the heat storage of the water
body is larger than that of the lower atmospheric boundary
layer, the buffering effect is consequently larger, which leads
to the less severe seasonal cycle of surface temperature and
Rld over the ocean.

In summary, what our decomposition shows is that most
temporal variations in Rld in current climatological condi-
tions are explained by heat storage changes within the lower
atmosphere.

3.3 Attribution of geographic variations with aridity

Last, we applied the decomposition to the climatological
variations in Rld along with differences in mean water avail-
ability. Water availability was characterized by Budyko’s
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Figure 3. Biases in the estimates for multi-year mean Rld for FLUXNET data of 189 sites against (a) air temperature and (b) water vapor
pressure. Distribution of biases in the estimates for multi-year mean Rld for (c, d) NASA-CERES data from 2001–2018 and (e, f) ERA
reanalysis from 1979–2021 for (c, e) clear-sky and (d, f) all-sky conditions over land. Grey shading indicates missing values.

aridity index (AI), with values AI< 1 representing humid re-
gions, and larger values reflecting increased aridity. The spa-
tial distribution of AI is shown in Fig. S6. Here, the devi-
ations 1Rld are calculated with respect to the annual mean
over land. The different contributions to the deviations are
shown in Fig. 6, as well as the delineation along the aridity
index (Fig. 6e–f).

The decomposition of the spatial distribution of the clima-
tological means shows that the variations are largely caused
by differences in lower atmospheric heat storage as well
(Fig. 6a). The contribution due to variations in emissivity has
a smaller magnitude (Fig. 6b) and is dominated by changes
in cloud cover (Fig. 6c) and changes in water vapor (Fig. 6d)
at high latitudes and midlatitudes, respectively.

These variations are evaluated with respect to the aridity
index in Figs. 6e and f and S7. While there is a large spread,

as seen in the quantiles, there is a small but consistent trend
towards lower values ofRld in more arid regions, with a mag-
nitude of about −(10–20) W m−2 across the entire aridity in-
dex spectrum (dashed black line in Fig. 6e). We also notice
a shift in the contributions, with emissivity contributing less
and lower atmospheric heat storage contributing more with
increased values of AI. The decreasing contributions in emis-
sivity of about −40 W m−2 is caused by reductions in cloud
cover and water vapor (Fig. 6f), which can be attributed to
the common presence of high-pressure systems in subtropi-
cal arid areas (Zampieri et al., 2009) and less monsoon there.
The decreasing contribution by lower atmospheric emissiv-
ity is compensated for by an increased contribution of about
+20–30 W m−2 by atmospheric heat storage that is caused
by the generally warmer mean temperatures in arid regions.
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Figure 4. The multi-year average diurnal variations in Rld (dashed black line) and its decomposition into contributions by changes in
emissivity (blue, 1Rld,ε) and lower atmospheric heat storage (red, 1Rld,T) in the FLUXNET dataset aggregated over 189 sites for (a) the
whole year, (b) June–August, and (c) December–February. The box shows the variation among the 189 sites. The upper and lower whiskers
indicate the 95th and 5th percentiles, respectively, while the upper boundary, median line, and lower boundary of the box indicate the 75th,
50th, and 25th quantiles, respectively. For each site and each day, the daily mean value is removed, with the deviations shown. Regression
lines are based on site-mean or grid-mean value using LOESS regression.

Figure 5. Decompositions of the mean seasonal variation (1, difference between the maximum and minimum monthly data at each grid) of
Rld in the NASA-CERES dataset into contributions by (a) lower atmospheric heat storage (1Rld,T) and (b) emissivity (1Rld,ε) and (c) their
latitudinal variations. Decomposition of1Rld,ε into contributions by variations in (d) cloud cover (1Rld,fc ), (e) humidity (1Rld,ea ), and (f)
their latitudinal variations. In (a), (b), (d), and (e), grey shading indicates missing values. In (c) and (f), the box shows the variation among
the land grids at the same latitude, while the solid line is their mean. The upper and lower whiskers indicate the 95th and 5th percentiles,
respectively, while the upper boundary, median line, and lower boundary of the box indicate the 75th, 50th, and 25th quantiles, respectively.

4 Discussion and conclusions

We found that the semiempirical equations of Brut-
saert (1975) and Crawford and Duchon (1999) work very
well to estimate the downwelling flux of longwave radia-

tion by comparing these to estimates from observation, satel-
lite, and reanalysis datasets, with r2 ranging from 0.87 to
0.98 across the datasets for clear-sky and all-sky conditions.
We then showed that one can use these equations to decom-
pose this flux into different components and relate changes
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Figure 6. Decompositions of the multi-year-mean spatial variation of Rld (deviations in the multi-year-mean value for each grid from
the land-mean value) in the NASA-CERES dataset into contributions by (a) lower atmospheric heat storage (1Rld,T) and (b) emissivity
(1Rld,ε). Decomposition of 1Rld,ε into contributions by (c) variations in cloud cover (1Rld,fc ) and (d) humidity (1Rld,ea ). In (a)–(d),
grey shading indicates missing values. In (e) and (f), the box shows the variation among the land grids with the same aridity. The upper
and lower whiskers indicate the 95th and 5th percentiles, respectively, and the upper boundary, median line, and lower boundary of the box
indicate the 75th, 50th, 25th quantiles, respectively.

to differences in cloud cover, water vapor, and lower atmo-
spheric heat storage. We found that most diurnal changes in
downwelling longwave radiation are caused by differences
in lower atmospheric heat storage that are reflected in dif-
ferences in surface air temperature, with the changes in at-
mospheric emissivity playing the secondary role. The domi-
nance of surface air temperature can be also observed in the
seasonal ranges of Rld, except in tropical monsoon regions
due to large variations in water vapor and cloud cover. As for
the spatial variation, from arid to humid regions the increas-
ing lower atmospheric heat storage and decreasing atmo-
spheric emissivity have an offsetting effect on the Rld vari-

ation, thus leading to relatively subtle changes in Rld along
with the aridity index.

Relating our decomposition to radiative kernel helps us
gain a more comprehensive understanding of variations in
Rld. Referring to the sensitivity in the downwelling long-
wave radiation for an incremental change in an atmospheric
property (e.g., Ta, fc, and ea), the radiative kernel has been
used to attribute Rld changes, based on numerically calcula-
tion with radiative transfer code (Previdi, 2010; Zeppetello
et al., 2019) or partial differentiating with explicit formula
for Rld (Shakespeare and Roderick, 2022). Following Shake-
speare and Roderick (2022), the approximate radiative ker-
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nel of Ta, fc, and ea are calculated based on Eqs. (8)–(9)

(i.e., ∂Rld
∂T
= 4σεTa

3
; ∂Rld
∂fc
= σTa

4
×

(
1− 1.24

(
ea
Ta

) 1
7

)
; and

∂Rld
∂ea
= σTa

4
×

1.24
7

(
1−fc

)
(ea)

6
7
(
Ta
) 1

7
) and shown in the left panel of

Fig. S8. As shown in Fig S8a, the sensitivity of Rld to Ta
peaks in the tropics with a maximum of around 5 W m−2 K−1

and decreases at higher latitudes, which is generally consis-
tent with Shakespeare and Roderick (2022). Moreover, the
seasonal cycle of the atmospheric properties themselves are
shown in the right panel of Fig. S8, which reveals that the
spatial distribution of the contribution of Ta, ea, and fc to the
seasonal variations in Rld (Fig. 5) is dominated by the sea-
sonal changes of the air properties (Fig. S8b, d, and f) instead
of the sensitivity of Rld to them (Fig. S8a, c, and e).

These equations can then be applied to different aspects
of climate research. For instance, the values of downwelling
longwave radiation are often missing in FLUXNET data (Ta-
ble S2), and these equations can be used to fill the gaps with
air temperature and humidity observations. We can also use
these equations to better understand the physical mechanisms
for temperature change due to extreme events. For instance,
Park et al. (2015) and Alekseev et al. (2019) found that an
enhancement of downwelling longwave radiation in the Arc-
tic is found to be preceded by the advection of moisture and
heat. The equations by Brutsaert (1975) and Crawford and
Duchon (1999) can then be used to quantify the individual
contributions by the advection of heat and moisture (Tian et
al., 2022). Another example is the attribution of differences
in temperature magnitudes across humid and arid regions
(Ghausi et al., 2023). Du et al. (2020) used these equations
to explain why global warming was stronger during clear-sky
conditions in observations in China due to the greater sensi-
tivity of clear-sky emissivity to a change in water vapor. This
was then used to explain the observed, stronger global warm-
ing in the arid regions of China, which have fewer clouds and
a higher frequency of clear-sky conditions than the humid re-
gions. Furthermore, while the empirical coefficient of 1.24 in
Eq. (1) may change due to emissivity changes from green-
house gases, this formulation can nevertheless provide a use-
ful basis in terms of the interannual changes of Rld, which
is shown in Fig. S9. As shown in Fig. S9a, Rld increases in
most of the land regions at an average rate of 0.64 W m−2 per
decade, with the contribution of increased temperature, in-
creased water vapor, and decreased cloud cover contributing
0.46, 0.28, −0.10 W m−2 per decade, respectively. Further-
more, it can be observed in Fig. S9d–i that the temperature
effect is generally around 0.5 W m−2 per decade, while the
influence of emissivity is significantly dominant in the mon-
soon region, which is majorly due to the interannual changes
in water vapor.

It is worth noting that several effects on Rld variations are
not included in B75 and C&D99, e.g., the well-mixed green-
house gas concentrations (Shakespeare and Roderick, 2022),

large aerosol particles (Zhou and Savijärvi, 2013), and cloud
base (Viúdez-Mora et al., 2015). Although rarely influencing
the diurnal change, seasonal cycles, and spatial distribution,
these terms need attention when the interannual trend of Rld
is investigated under global warming, which can be implied
by the difference between Fig. S9a and b. In addition, B75 in
conjunction with C&D99 is adopted in this work to decom-
pose the Rld variations in different spatial–temporal scales,
considering its solid physical foundations and the relatively
lower computation consumption. Further analysis can be per-
formed based on other estimations, e.g., Prata (1996), which
shows consistency with reanalysis data (Allan et al., 2004).
The cloud effect can be also detected using the difference be-
tween all-sky and clear-sky Rld (Allan, 2011; Ghausi et al.,
2022). Moreover, datasets that are more focused on radiation
and energy budget can be used to test the robust of the re-
sults, e.g., BSRN (Driemel et al., 2018) and GEBA (Wild et
al., 2017).

We conclude that the equations by Brutsaert (1975) and
Crawford and Duchon (1999) are still very useful in ad-
vancing our understanding of surface temperature changes.
Our evaluation has shown how well these equations estimate
this flux, and our application to the decomposition of differ-
ent contributions has shown its utility in understanding the
causes of its variation. These equations should help us to bet-
ter understand aspects of climate variability, extreme events,
and global warming, linking these to the mechanistic contri-
butions by downwelling longwave radiation.

Data availability. FLUXNET observations are available through
the FLUXNET data portal: https://fluxnet.org/data/download-data/
(FLUXNET2015 cummunity, 2022; Pastorello et al.,
2020), the NASA-CERES monthly satellite-based radi-
ation datasets are available through EARTHDATA data
portal: https://doi.org/10.5067/TERRA+AQUA/CERES/
SYN1DEGMONTH_L3.004A (NASA/LARC/SD/ASDC,
2017), the ERA5 monthly reanalysis datasets are available
through the Copernicus Climate Change Service Climate
Data Store (CDS): https://doi.org/10.24381/cds.f17050d7
(Hersbach et al., 2022), CPC Global Unified Temper-
ature dataset is available through NOAA data portal:
https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html
(CPC Global Unified Temperature, 2022), and CPC
Global Unified Gauge-Based Analysis of Daily Pre-
cipitation data is available through NOAA data portal:
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
(CPC Global Unified Gauge-Based Analysis of Daily Precipitation,
2022).
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