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Significance

Previous work has suggested that 
the phase of ongoing neural 
oscillations is important for the 
separation of neural 
representations and has a direct 
influence on perceptual decisions 
during speech perception. It is 
unknown what the nature of this 
phase code is. Here, we show 
that phase coding is based on the 
probability of an interpreted 
speech event, here a linguistic 
unit, such that highly probable 
events appear to be coded at 
lower excitability phases; we 
additionally demonstrate that 
this phase code is region specific. 
These results suggest that 
oscillations separate linguistic 
neural representations based on 
the excitability of neuronal 
populations.

Author affiliations: aLanguage and Computation in Neural 
Systems group, Max Planck Institute for Psycholinguistics, 
Nijmegen XD 6525, The Netherlands; bLanguage and 
Computation in Neural Systems group, Donders Centre 
for Cognitive Neuroimaging, Donders Institute for Brain, 
Cognition and Behaviour, Radboud University, Nijmegen 
EN 6525, The Netherlands; cDepartment of Cognitive 
Neuroscience, Faculty of Psychology and Neuroscience, 
Maastricht University, EV 6229, The Netherlands; and 
dResearch Group Language Cycles, Max Planck Institute 
for Human Cognitive and Brain Sciences, Leipzig D-04303, 
Germany

Author contributions: S.T.O., L.T., and A.E.M. designed 
research; S.T.O. and L.T. performed research; S.T.O., L.T., 
and N.t.R. analyzed data; A.E.M. supervised research; 
A.E.M. acquired funding; and S.T.O., L.T., N.t.R., and A.E.M. 
wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS. 
This open access article is distributed under Creative 
Commons Attribution License 4.0 (CC BY).
1To whom correspondence may be addressed. Email: 
sanne.tenoever@maastrichtuniversity.nl.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.​
2320489121/-/DCSupplemental.

Published May 28, 2024.

PSYCHOLOGICAL AND COGNITIVE SCIENCES
NEUROSCIENCE

Phase-dependent word perception emerges from region-specific 
sensitivity to the statistics of language
Sanne Ten Oevera,b,c,1 , Lorenzo Titoned , Noémie te Rietmolena,b , and Andrea E. Martina,b

Edited by Richard Aslin, Haskins Laboratories Inc., New Haven, CT; received November 29, 2023; accepted April 22, 2024

Neural oscillations reflect fluctuations in excitability, which biases the percept of ambig-
uous sensory input. Why this bias occurs is still not fully understood. We hypothe-
sized that neural populations representing likely events are more sensitive, and thereby 
become active on earlier oscillatory phases, when the ensemble itself is less excitable. 
Perception of ambiguous input presented during less-excitable phases should therefore 
be biased toward frequent or predictable stimuli that have lower activation thresholds. 
Here, we show such a frequency bias in spoken word recognition using psychophysics, 
magnetoencephalography (MEG), and computational modelling. With MEG, we found 
a double dissociation, where the phase of oscillations in the superior temporal gyrus 
and medial temporal gyrus biased word-identification behavior based on phoneme and 
lexical frequencies, respectively. This finding was reproduced in a computational model. 
These results demonstrate that oscillations provide a temporal ordering of neural activity 
based on the sensitivity of separable neural populations.

speech | spoken word recognition | neural oscillations | phase | MEG

Oscillations, or population rhythmic activity, reflect the waxing and waning of neural 
excitability such that individual neurons modulated by an oscillation are primarily active 
on high excitable phases (1–3). Previous studies have directly linked this phase-dependent 
neural activity to behavioral performance showing that target detection (4–7) and accuracy 
in categorization tasks (8, 9) are modulated by oscillatory phase [note also that there have 
been a substantial amount of null findings regarding phase-dependent effects (10–12)]. 
Besides accuracy, a few studies have also shown that oscillatory phase can modulate the 
categorization of ambiguous stimuli by biasing participants’ percept to one or another 
category based on the phase of presentation (13–15). Improved behavioral performance 
has often been attributed to increased processing efficiency at oscillatory phases at which 
neural activity is increased (3, 16). However, phase-dependent categorization biases cannot 
be explained by overall increases in activity (or increased processing efficiency) on specific 
oscillatory phases because increases in overall activity should not bias processing to one 
specific perceptual interpretation. Thus, it is unclear what neural mechanism underlies 
phase-dependent categorization.

Even though oscillations modulate neural excitability, not all neurons influenced by an 
oscillation reach activation exactly at the same time or phase. In fact, the phase of firing 
of a neuron is determined by an interaction between excitability changes due to oscillations 
and the neural sensitivity of a neuron to incoming signals (17). Neurons that are sensitive 
to incoming signals will respond strongly and will therefore reach activation already at 
relatively low excitable oscillatory phases (1, 17). In contrast, neurons less sensitive to the 
input will reach activation only at later, more excitable, phases. In this way, different 
neurons are active at different phases, which has been proposed to serve as a mechanism 
to separate neural representations and their readouts (18). Neuronal sensitivity can be 
modulated by neuroplastic changes induced through associative and statistical learning 
(19). For example, neural populations representing more likely events in the world have 
higher sensitivity than populations representing less likely events (19, 20). If this is true, 
populations representing probable events should be active at earlier, less excitable, oscil­
latory phases compared to populations representing less likely events which in turn could 
lead to phase-dependent categorization (21).

Previously, we have shown that oscillatory phase in the theta frequency range can bias 
the categorization of an ambiguous syllable (14). In that study, we presented an ambig­
uous syllable that Dutch participants could interpret as /dα/ or /xα/ [notation according 
to the international phonetic alphabet (IPA)]. Originally, this phase-dependent catego­
rization bias was attributed to an articulatory visual-to-auditory temporal difference between 
the two syllables (the visual-to-auditory articulatory delay of /dα/ is shorter than /xα/)  
(14, 22). However, in Dutch, /d/ also has a higher frequency than /x/ (23), that is, 

OPEN ACCESS

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 M
PD

L
 K

O
G

N
IT

IO
N

S 
- 

N
E

U
R

O
W

IS
SE

N
 o

n 
Ju

ne
 3

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
19

4.
95

.1
83

.2
1.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:sanne.tenoever@maastrichtuniversity.nl
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2320489121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2320489121/-/DCSupplemental
mailto:
https://orcid.org/0000-0001-7547-5842
https://orcid.org/0009-0004-6442-6980
https://orcid.org/0000-0002-5532-6118
https://orcid.org/0000-0002-3395-7234
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2320489121&domain=pdf&date_stamp=2024-5-24


2 of 11   https://doi.org/10.1073/pnas.2320489121� pnas.org

/d/ is more probable than /x/. It is therefore possible that the 
categorization effect in this study was instead (or additionally) 
caused by an interaction between ongoing oscillations and the 
sensitivity of neural populations for these consonants (21). If 
oscillations provide a temporal ordering based on neural sen­
sitivity (17, 21), then one would expect phasic categorization 
effects to occur when there is a difference in event probability 
for two possible interpretations of an ambiguous stimulus. If 
this is so, we should view oscillations not merely as a gating 
operation opening and closing lines of neural communication 
(3, 16), but rather as a rich source of representational space 
(18, 24).

To investigate the relation between phase-dependent categori­
zation and event probability, we presented participants with words 
that varied in consonant, vowel, and word frequency. These were 
the four Dutch words dat, gat, daad, and gaat (see Table 1 for 
translations, IPA notation, and event frequencies; also see SI Appendix, 
Fig. S1 for word-position specific event frequencies). In this way, we 
manipulated event probabilities at different levels of analysis based 
on the recurrence of phonemic and lexical elements in a language. 
By using psychophysics, MEG, and computational modeling, we 
could investigate the influence of event probability on behavioral 
and neural responses to ambiguous stimuli (Fig. 1). Psychophysics 
showed phase-dependent behavioral responses when one of the 

Table 1.   Stimulus materials
Dutch word gat dat gaat daad

Translation hole that go deed

IPA /xαt/ /dαt/ /xat/ /dat/

Consonant frequency −2.53 (−) −1.87 (+) −2.53 (−) −1.87 (+)

Vowel frequency −1.96 (+) −1.96 (+) −2.29 (−) −2.29 (−)

Word frequency −10.47 (−) −3.82 (+) −6.41 (+) −11.66 (−)

Frequency denotation cVw CVW cvW Cvw
Four different Dutch words used in the study. Frequency is indicated on a log scaled based on instance occurrence in the Corpus Gesproken Nederlands. Less negative numbers indicate 
a higher frequency. The frequency is indicated for each class as being high (+) or low(-) IPA = international phonetic alphabet. In the rest of the text, we will denote the frequency across 
the three traits [consonant (C), vowel (V), and word (W)] by indicating via lower- or upper-case letters whether the word has a low (lower-case) or high (upper-case) frequency for a specific 
trait (see denotation at the last row).

Fig. 1.   Overview of the current study. (A) It is hypothesized that low probable linguistic information is represented at high excitable phases, while high probable 
linguistic information is represented at low excitable phases. The perceived sound of ambiguous stimuli depends on the phase of presentation. (B) Four words 
are used that differ in consonant (C), vowel (V), and word (W) frequency. Words are morphed into each other creating an ambiguous percept. (C) Sensory 
entrainment locks neural rhythms to the rhythmic input and therefore the stimulus onset asynchrony (SOA) relative to the entrainment train should bias the 
percept to words containing low or high frequent linguistic information. (D) In MEG, a double dissociation is expected in which perceptual bias is governed by 
phoneme or word frequency for regions sensitive to phonemic or word features, respectively. Sign = significant; ns = not significant. STG = superior temporal 
gyrus; MTG = middle temporal gyrus; IFG = inferior frontal gyrus.D
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response options had low lexical and phonemic frequency and the 
other option had high lexical and phonemic frequency. With MEG, 
we could further disentangle lexical and phonemic frequency effects 
by investigating neural sources that are more sensitive to one of the 
features. Here, we again showed that phase biases categorization 
when words had different probabilities of occurrence. Moreover, we 
found a dissociation in which the phase of oscillations in the superior 
temporal gyrus (STG) and medial temporal gyrus (MTG) biased word- 
identification behavior based on phoneme and lexical frequencies, 
respectively. These outcomes were verified using computational 
modeling.

Results

Psychophysics Experiment. We investigated whether combining 
oscillations with dissimilar “event” probabilities—here phoneme 
and lexical frequency—can lead to phase-dependent categorization. 
We presented an entrainment stream at 6.25 Hz after which 
an ambiguous word was presented at a variable stimulus onset 
asynchronies (SOAs). Assuming an entrained oscillation, these 
SOAs match to ongoing oscillatory phases (25). Ambiguous 
words were generated by creating 10 equally spaced morph levels 
along either the consonant (/x/-/d/) or the vowel dimension  
(/a/-/α/), resulting in four morphs: /xat/-/dat/, /xαt/-/dαt/, /dαt/-/
dat/, and /xαt/-/xat/. During the first part of the experiment, 
we presented stimuli across all morphs to create an individual 
psychometric curve along the consonant (Fig.  2A) and vowel 
dimension (Fig. 2D). Only participants for which we could reliably 
extract an ambiguous stimulus via fitting a psychometric curve 
could participate in the main experiment (included participants 
were n = 18 and n = 12 for the consonant and vowel version, 
respectively). Participants gave informed consent online. The study 
was approved by the Ethics Board of the Social Sciences Faculty of 
Radboud University in Nijmegen. Participants received monetary 
reimbursement for their participation.

In the main experiment, participants listened to rhythmic 
broadband noise bursts presented at 6.25 Hz after which an 
ambiguous word was presented. The SOAs at which ambiguous 
words were presented ranged between 0.1 and 0.4 s in 12 equi­
distant steps (spanning exactly two cycles of 6.25 Hz). Participants 
had to indicate which word they heard. Under the null hypothesis, 
we would expect no 6.25 Hz modulation of the response patterns 
based on the SOA, while this modulation was expected under the 
alternative hypothesis. To test this, we fitted a sinusoid at 6.25 Hz 
to the demeaned data and compared this to a null distribution 
based on random permutations across the SOAs and repeating 
the fit (see SI Appendix, Fig. S2 for nondemeaned data). For the 
consonant experiment, we found that the 6.25 Hz sinusoid fitted 
to the data yielded a higher explained variance than expected by 
chance for the /xαt/-/dαt/ morph (P = 0.006, r2 = 0.661; Fig. 2C), 
but not for the /xat/-/dat/ morph (P = 0.258; Fig. 2B). For the 
vowel experiment, we could significantly fit a sinusoid for the 
/dαt/-/dat/ (P = 0.039, r2 = 0.523; Fig. 2E), but not the /xαt/-/xat/ 
morph (P = 0.136; Fig. 2F). In sum, we could only fit a significant 
curve for morphs in which both varied traits had opposing fre­
quencies in the word pairs, that is for the /xαt/-/dαt/, cVw – 
CVW, morph and the /dαt/-/dat/, CVW – Cvw, morph.

MEG Experiment. In the psychophysics experiment, all responses are 
based on the integration of information across both the phonemic 
and lexical level of analyses as there is only one behavioral output. 
However, it would be expected that regions primarily sensitive to 
phonemic frequency would show phase-dependent behavior solely 
on the phonemic frequency (and vice versa for lexical frequency). 
To test this hypothesis, we used MEG in which phase-dependent 
categorization effects at phonemic and lexical levels of analysis 
could be source localized (26, 27). Earlier auditory regions such 
as STG are more sensitive to phoneme content, such as vowel and 
consonant traits, while regions higher in the auditory hierarchy, 
such as MTG and inferior frontal gyrus (IFG), are sensitive to 

0 0.5 1
prop. /d/

0.0

0.5

1.0

pr
op

. /
d/

 re
sp

on
se

/xɑt/-/dɑt/
/xat/-/dat/

A

0 0.5 1
prop. /a/

0.0

0.5

1.0

pr
op

. /
a/

 re
sp

on
se

/xɑt/-/xat/
/dɑt/-/dat/

D /dɑt/ - /dat/

0.2 0.4
SOA (msec)

−0.05

0.00

0.05

pr
op

. /
a/

 re
sp

on
se

p=0.039

0.0 0.5
explained variance

0

2

4

N

e³

E

B /xat/ - /dat/

0.0 0.5
explained variance

0

2

4

N

e³

0.2 0.4
SOA (msec)

−0.05

0.00

0.05

0.10

pr
op

. /
d/

 re
sp

on
se

p>0.05

/xɑt/ - /dɑt/C

0.0 0.5
explained variance

0

2

4

N

e³

0.2 0.4
SOA (msec)

−0.05

0.00

0.05

pr
op

. /
d/

 re
sp

on
se p=0.006

0.0 0.5
explained variance

0

2

4

N

e³

0.2 0.4
SOA (msec)

−0.05

0.00

0.05

pr
op

. /
a/

 re
sp

on
se

p>0.05

F /xɑt/ - /xat/

cVw  -  CVWcvW  -  Cvw

CVW  -  Cvw cVw  -  cvW

Fig. 2.   Behavioral results. (A) Psychometric curves for the consonant experiment (separate lines for the two vowel types). (B) Outcome of the main experiment 
for the /xat/-/dat/ spectrum. The Left panel shows the average demeaned time course across SOA. The Right panel shows a histogram of the null distribution 
together with the observed explained variance of the sinusoid fit (red line) and the 95th percentile (dotted line) of the null distribution. (C) Same as B for the  
/xαt/-/dαt/ spectrum. (D–F) Same as A–C for the vowel experiment. Error bars indicate the SEM. Black lines indicate the best fitted curve (gray if not significant).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 M
PD

L
 K

O
G

N
IT

IO
N

S 
- 

N
E

U
R

O
W

IS
SE

N
 o

n 
Ju

ne
 3

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
19

4.
95

.1
83

.2
1.

http://www.pnas.org/lookup/doi/10.1073/pnas.2320489121#supplementary-materials


4 of 11   https://doi.org/10.1073/pnas.2320489121� pnas.org

lexical representation and temporal integration, respectively (26, 
28–31). If phoneme or word frequency relates to phase-dependent 
categorization, the phase of ongoing oscillations in distinct cortical 
regions should bias categorization based on the level of analysis of 
that region. In the MEG experiment, we presented the ambiguous 
morphs of the consonant experiment to Dutch participants while 
recording their neural activity with MEG and source localizing the 
response to the STG, MTG, and IFG. Stimuli were not preceded 
by an entrainment train but were presented at random SOAs 
as we could extract phase from the MEG directly. Participants 
performed a screening for their eligibility in the MEG and MRI 
and gave written informed consent. The study was approved by 
the Ethical Commission for human research Arnhem/Nijmegen 
(project number CMO2014/288).

First, we looked at the overall power response in the prestimulus 
period (see SI Appendix, Fig. S3 for poststimulus responses). All 
analyses were based on using an array-gain beamformer which 
corrects for center-of-head biases without the need of a baseline 
(32, 33). To limit computational resources, we focused on the first 
component of the principle component analysis (PCA) computed 
over all MEG sensors targeting the bilateral region of interest 
(ROI) that explained the most variance in the ongoing data. In 
all ROIs, we found a peak in the power spectrum (peak values: 
8.4 Hz, 8.6 Hz, and 8.2 Hz for STS, MTG, and IFG, respectively) 
across the whole prestimulus window, but this peak was weaker 
for the IFG (SI Appendix, Fig. S4). We compared prestimulus 
power values dependent on the response of the participant for the 
ambiguous stimuli but found no differences (all P > 0.573).

For all participants, we could individually determine the most 
ambiguous morph and all, but one could maintain an ambiguous 
percept throughout the experiment (Fig. 3 A and B; number of 
participants included in the analysis is 22). Data corresponding to 
the ambiguous sounds were then split according to the response of 
the participants. In the consonant contrast, we contrasted responses 
where the ambiguous word was interpreted as a word with a 
low-frequency consonant (/xαt/ [cVw] and /xat/ [cvW]) vs. a word 

with a high-frequency consonant (/dαt/ [CVW] and /dat/ Cvw]; 
averaged amount of trials included: low frequency 126.9, SD = 30.0.  
high frequency 189.7, SD = 27.3). In the word contrast, we con­
trasted responses where the ambiguous word was interpreted as a 
low-frequency word (/dat/ [Cvw] and /xαt/ [cVw]) vs. a high- 
frequency word (/dαt/ [CVW] and /xat/ [cvW]; averaged amount 
of trials included: low frequency 145.0, SD = 16.6. high frequency 
171.6, SD = 25.9). This was done for each ROI separately. At each 
prestimulus time–frequency point, we performed a logistic regres­
sion with the sine and cosine of the prestimulus phase and response 
type (low or high trait frequency) as dependent variable per partic­
ipant. Under the null hypothesis, there is no effect of phase on the 
response of the participant. To correct for multiple comparisons, 
we ran cluster-based statistics (34). For the consonant contrast, we 
found a significant effect of consonant frequency in the STG 
(Fig. 3C; cluster statistic: 60.1074; P-value: 0.028; frequency range: 
5.5 to 9.0 Hz; time range: −0.25 to −0.10 s; peak t (21)-value: 4.099 
at 7.617 Hz, −0.20 s), but not in the MTG or IFG (P > 0.05). For 
the word contrast, we found a significant effect of word frequency 
in the MTG (Fig. 3C; cluster statistic: 60.208, P-value: 0.030; fre­
quency range: 4.4 to 8.5 Hz; time range: −0.25 to 0 s; peak t 
(21)-value: 3.550 at 6.445 Hz, −0.10 s), but not in the STG or 
IFG (P > 0.05). In sum, we found a double dissociation between 
ROI and trait type. Additionally, when directly comparing the sig­
nificant consonant and word cluster within each ROI the effect was 
significantly larger in the STG (t (21) = 2.727, P = 0.018), whereas 
the effect of word was significantly larger in the MTG (t (21) = 
−3.074, P = 0.006). No effects were found in IFG, even after split­
ting up the IFG into pars triangularis, pars opercularis, and pars 
orbitalis.

To further evaluate the exact phase differences for each ambig­
uous sound, we computed the average phase at which participants 
heard either of the two words. Phases were extracted for each 
individual’s peak time–frequency point within the significant clus­
ter (for both morphs separately). The exact MEG phase was not 
expected to be identical across participants as it is difficult to 
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determine excitability levels of an oscillation from the MEG phase 
and individual stimulus processing times might differ. Rather, 
high event probabilities should be represented at the same phase, 
while low event probabilities are represented at the opposite phase 
within each participant. We took the word /dαt/, which had high 
frequencies on all traits (CVW word), as a reference word and 
took the phase difference between the average phase at which 
participants heard /dαt/ and one of the three words (ambiguous 
words perceived as /xαt/, /xat/, or /dat/). We expected that for 
high-frequency traits, the phase difference would be zero, while 
for low-frequency traits, the phase difference would be around π 
relative to the reference word. To test this, we performed a v-test 
that tests for nonuniformity with a specific direction for each of 
the three words per ROI. To generate a p-value that combines the 
three values (as we expected all three contrasts to be significant), 
we multiplied the three probabilities yielding the probability of 
all three events happening at the same time (assuming independ­
ent tests).

In STG, we found that the average phase difference for the three 
words /xαt/, /xat/, or /dat/ was 0.93 π, 0.87 π, and −0.002 π 
respectively. The three phase differences were close to the expected 
phase differences: the low-frequency consonants having a phase 
difference of π, while the high-frequency consonant having a phase 
difference of zero (Fig. 3D). The individual tests showed signifi­
cance (/xαt/: vstat = 8.79, pval = 0.004; /xat/: vstat = 6.88, pval 
= 0.019; /dat/: vstat = 10.13, pval = 0.001, respectively) as well as 
the combined probability (P < 0.001). In MTG, the average phase 
difference for the three words /xαt/, /xat/, or /dat/ was 0.82 π, 
−0.10 π, and −0.99 π respectively. The phase differences were close 
to the expected phase differences: the low-frequency words having 
a phase difference of π and the high-frequency word having a phase 
difference of zero. The individual tests showed significance (/xαt/: 
vstat = 5.78, pval = 0.040; /xat/: vstat = 8.98, pval = 0.003; /dat/: 
vstat = 5.54, pval = 0.047, respectively) as well as the combined 
probability (P < 0.001). Thus, also for the individual words, the 
phase differences matched the neural sensitivity of the underlying 
region.

It is possible that due to our closed set of stimuli there is decreas­
ing influence of lexical frequency as the stimuli are repeated many 
times. To test for this possibility, we compared for both the psy­
chophysics and MEG the first and second half of the experiment 
with each other for the significantly found effect. For the /dat/ vs. 
/dɑt/ contrast, we found that there was a stronger fit for the first 
half compared to for the second half (P = 0.03; SI Appendix, 
Fig. S5). Note that while for both the first and second half there 
was no significant fit, the direction and pattern of the fit was the 
same. For all the other contrasts, no significant difference was 
found.

Computational Model. The psychophysics and MEG experiment 
indicate phase-dependent behavior which depend on the overall 
lexical and phonemic frequency of the stimulus. We hypothesized 
that this is a consequence of ongoing oscillatory changes in 
overall neural excitability together with changes in sensitivity 
of individual neural populations due to stronger expectations 
of stimulus occurrence. To test this, we created a computational 
model based on the Speech Tracking in a Model Constrained 
Oscillatory Network (STiMCON) model introduced in ref. 21 
aimed to reproduce the psychophysics and MEG results. This 
model integrates temporal tracking together with the tracking of 
the content of speech. In the model, the activation of individual 
content representations is modulated by an oscillation set at 
6.25 Hz based on ref. 21, and by the connectivity to the input 
structure. The sensitivity of the model is adapted by changing the 

threshold at which individual representations are activated. In this 
implementation, the activation is a function of the sensitivity, the 
phase of the ongoing oscillator, and the strength of the input.

In the current implementation, we introduced two different 
levels of analysis: a phoneme and a word level. Both levels receive 
input from the input level but have their own connectivity with 
the input and their own node sensitivity. The input is modeled as 
the individual words: /xat/, /xαt/, /dat/, /dαt/, and an empty word 
node is used for the entrainment train. For the phoneme level, we 
represented the phonemes /x/, /d/, /a/, /α/, and an empty pho­
neme node. Connectivity for the input-to-phoneme level was set 
to one when the phoneme was part of the input word (the entrain­
ment stimulus was connected with a one to the empty phoneme 
node). The input-to-word level connectivity consists of an identity 
matrix (each word loads with one on the word level). Sensitivity 
of individual nodes to input was varied by reducing the activation 
threshold for the more frequent phonemes (/d/ and /α/) and words 
(/dαt/ and /gat/) in their respective analysis level (the base activa­
tion threshold of 1 was parametrically reduced between 0.0 and 
0.5). In all simulations, we extracted the categorization response 
of the model by determining the deciding node that was active 
first after stimulus presentation (if both were active at the same 
time, the node with the strongest activation was chosen). See 
SI Appendix, Fig. S6 for a model diagram and SI Appendix, Fig. S7 
for an example time course of the outcome of the model. For the 
two categorization options, we coded one node as a 0 and the 
other node as a 1. For the psychophysics experiment the outcome 
was deterministic (every run would give the same outcome). 
Therefore, if both nodes were active simultaneously at the same 
strength or no node was activated at all we assumed that the model 
would guess and set the value to 0.5. In contrast, the MEG exper­
iment simulation was not deterministic as we simulated random 
phases at an individual trial level (n = 1,000). Since we estimate 
at a single trial level, a guess would entail a random choice of either 
0 or 1 (which would be averaged across multiple trials later). For 
the psychophysics experiment, we assumed that the output of the 
model reflects the average outcome of the phoneme and word 
level.

We let the model run through the psychophysics and MEG 
experiments. In both experiments, all morphs are initially pre­
sented at random moments to generate a psychometric curve and 
to determine the most ambiguous stimulus that will be used for 
the main experiment (see SI Appendix, SI Methods for more 
details). To imitate this procedure, input was presented at different 
amplitude proportions of two words (e.g., for /xat/-/dat/ morph 
with 90% of /dat/, /xat/ was presented with an amplitude of 0.1 
and /dat/ at 0.9) evenly distributed across all phase values. For 
each morph, we averaged the node responses of the model across 
the repetitions of the same morph (and across the two levels). For 
all word morph spectra, we could reliably fit a psychometric func­
tion and extract the most ambiguous morph (Fig. 4A). For the 
second part of the psychophysics experiment, the model was pre­
sented with an entrainment train of empty words after which we 
presented the most ambiguous morph stimulus at different SOAs. 
Results show that only for morph spectra in which the two mor­
phed traits had opposing event probabilities or frequencies (i.e. /
dɑt/ and /xɑt/ [CVW vs cVw] and /dɑt/ and /dat/ [CVW vs 
Cvw]), a phase-dependent categorization performance developed 
(Fig. 4 B and C). This phase-dependent categorization perfor­
mance seemed to last across almost all sensitivities tested.

Note that the exact phase of the sine fit does not align with the 
computational model (compare Fig. 4 C and E with Fig. 2). 
However, the goal of the modeling exercise here is not to provide 
a quantitative estimate of the exact phase; rather to demonstrate D
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whether the presence or absence of a phase-dependent response 
provides a better fit to the behavioral and neural data. In fact, 
estimating an exact phase would be somewhat arbitrary as its 
particular value depends on neural delays which are difficult to 
estimate properly in the current noninvasive setting. Moreover, 
the exact time to disambiguate /xat/ from /dat/ is also likely to be 
different from /dαt/ and /dat/ because the relevant feature (vowel 
vs. consonant) is simply at a different moment in time. Therefore, 
it is likely that the timing of the interpretation for the psychophys­
ics is different for words that are ambiguous in consonants or 
vowels, while in the abstraction of the computational model, these 
factors are not included. We decided to not implement the neural 
delays in the model as this would complicate the model beyond 
what is possible to validate with noninvasive human data, and as 
such, we would not be able to include precise quantifications of 

the exact neural delays. Instead, we focus on the presence or 
absence of a phase-dependent response in the psychophysics and 
MEG data.

For the MEG experiment, phase does not have to be inferred 
from an entrainment train, but rather can be estimated from the 
recorded regions directly. To simulate this experiment, ambiguous 
morphs were presented to the model at random phases (repeated 
for 1,000 repetitions). Only the consonant morphs along the 
/dαt/-/xαt/ and /dat/-/xat/ spectra were used in the MEG exper­
iment. For each of the two ambiguous morphs, the phase was 
extracted together with the categorization response based on the 
node activation of the phoneme or word level. For the main MEG 
experiment, we are not hypothesizing about the absolute phase, as 
we have no hypothesis about the exact phase (see refs. 6 and 14),  
but rather in relative phase difference between a more likely vs. 
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Fig. 4.   Outcome of the computational model. (A) Psychometric functions for the four different morph dimensions (threshold reduction = 0.3). Blue lines represent 
the model output; gray lines show the psychometric fit. (B) Response of the model to the most ambiguous morph of A presented at different stimulus onset 
asynchronies. (C) Response choice of the model during entrainment (as in B) for different threshold reduction levels. (D) Phase difference between the average 
phase of the three different response choices and /dαt/ (threshold reduction = 0.45). (E) Phase differences (as in D) for different threshold reduction levels.
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less likely event. Therefore, we took the phase difference between 
the word /dαt/ which has a high frequency on all trait dimensions 
(CVW) and the phase of the other response options. For the 
phoneme level, the model showed high phase differences of around 
π when the ambiguous morph was interpreted as either /xat/ or /
xαt/, but low phase differences of around 0 when the model inter­
preted the morph as /dat/ (Fig. 4D). In contrast, for the word 
level, we found π phase differences for the categorization choices 
/xαt/ and /dat/, and 0 phase difference for the choice /xat/. Thus, 
phase differences were low when both words had high-frequency 
traits within the level of analysis (high-frequency phonemes in the 
phoneme level [/dαt/, CVW vs. /dat/, Cvw] and high-frequency 
words in the word level [/dαt/, CVW vs. /xat/, cvW]). Phase dif­
ferences were high when the words had different frequency traits 
(high- vs. low-frequency phonemes in the phoneme level [/dαt/, 
CVW vs. /xαt/ [cVw] and /xat/, [cvW] and high- vs. low-frequency 
words in the word level [/dαt/, CVW vs. /xαt/ [cVW] and /dat/, 
[Cvw]). In MEG, this pattern of results could correspond to phase 
differences in different neural sources that analyze phoneme- and 
word-level representations, respectively. These phase differences 
were more pronounced when the sensitivity level changes were 
relatively low (Fig. 4E).

To further investigate the outcomes of our model, we show that 
this model can also produce phase-dependent behavior at lower 
oscillatory power when representation does not reach activation 
thresholds at rest. In this scenario, input was modeled as linearly 
increasing rather than stable (SI Appendix, Figs. S8 and S9). 
Additionally, similar phase-dependent behavior is found when the 
phonemic level is directly connected to the word level (SI Appendix, 
Fig. S10), but it does not occur when the difference in sensitivity 
is removed (SI Appendix, Figs. S11 and S12). Finally, the model’s 
phase-dependent behavior works for a 5 Hz, but not 1 Hz oscil­
lator (SI Appendix, Figs. S13 and S14). In sum, the current com­
putational model makes qualitative predictions regarding the 
absence or presence of phase-dependent effects which are depend­
ent on the level of analysis as well as differences in event 
probabilities.

Discussion

In the current study, we used computational modeling, psycho­
physics, and MEG recordings to demonstrate that variations in 
neural sensitivity to event probability operationalized as phoneme 
and word frequency can result in phase-dependent perceptual 
categorization. We showed that ambiguous words presented at 
different phases, either through neural entrainment or by extract­
ing the phase from MEG, are interpreted as one or another word 
depending on the time or phase of presentation. Moreover, in the 
MEG data, we could dissociate these effects to separate cortical 
regions: Phase-dependent categorization in STG depended on 
phoneme frequency, while word frequency modulated phase-
dependent responses in MTG. The behavioral findings and the 
double dissociation between STG and MTG responses matched 
the results from a computational model that uses oscillations, 
together with varying neural sensitivity, to capture categorization 
responses. These results demonstrate that the neural phase code 
relies on ordering based on neural sensitivity, directly linking 
phase-coding to behavioral outcomes in a categorization task.

Most studies investigating the direct link between ongoing 
oscillatory phase and behavior have focused on assessing the role 
of oscillatory phase in modulating overall performance measures, 
such as accuracy (8, 35), detection (4, 5, 36), or reaction times 
(37). These studies are all based on the assumption that oscillations 
modulate overall firing rates and subsequent neural processing 

should be optimized at phases where neural excitability is high 
(3). We here argue that this view might be too simplistic and does 
not provide the full picture of the role of oscillations for neural 
computation. Instead of merely providing windows of processing 
opportunity (3, 16), previous research has proposed that oscilla­
tions provide a means to organize the complex neural dynamics 
by activating and thereby synchronizing neural populations at 
different neural phases (17, 18, 38). This organizational principle 
of phase coding has extensively been shown with invasive record­
ings in animals (39, 40). Moreover, prior computational modeling 
has shown the computational benefit of this organizational prin­
ciple, as it effectively increases the representational space in the 
brain (38) and changes the formal expressive power of a system 
(41–43). Our study shows that this encoding process which sep­
arated neural representations by phase steers the decoding process 
to bias categorization toward one or another item.

It has been an open debate what are the organizational princi­
ples of phase coding, that is, what determines on which phase a 
neuron is activated (40). In working memory paradigms, sequence 
order has often been implied to be the main organizational prin­
ciple of phase coding (44, 45). This is based on studies primarily 
in rats that show phase precession in which the order (and phase) 
at which neural representations are active is linked to the order of 
upcoming locations in an explorative maze task (39). In our study, 
no sequence order can be imposed. Nonetheless, we find that 
phase influences the behavioral decision based on the frequency 
of phonemes and words in the Dutch language by using psycho­
physics, MEG, and computational modeling. This finding suggests 
that sequence order is not the only principle by which neuronal 
representations activate at different phases of ongoing oscillations. 
Instead, overall event probability of words within a language mod­
ulates the neural sensitivity. Together with excitability modulations 
of oscillations, neural sensitivity determines on which phase a 
population is active (21). While the present study is focused on 
event probability based on the overall frequency of information 
in a language, we hypothesize that this finding can be extended 
to event probability that also depends on contextual knowledge. 
Evidently, contextual event probability and sequential order are 
related: Events that are going to happen earlier in the future are 
more probable in the short term. Moreover, events occurring in 
the near future have a higher behavioral relevance. Both proba­
bility and behavioral relevance could have a consequence for how 
excitable individual neural populations are. Therefore, excitability 
shifts, rather than solely order or event probability, could be the 
core principle that organizes the phase code.

The brain’s sensitivity to varying levels of event likelihood based 
on the statistics in the world has been shown in a plethora of 
studies which demonstrate that the brain is more sensitive to stim­
uli that are more likely (20). However, the consequence of a prob­
ability manipulation in combination with oscillatory dynamics 
has rarely been studied. We here provide behavioral evidence 
showing that event probability and oscillations together provide 
a phase code which activates event representations on different 
phases based on their likelihood. It is unknown how strongly event 
statistics modulate neural sensitivity. This could potentially be 
relevant for the behavior of a neural system as our computational 
model suggests a nonlinear change in phase-dependent perceptual 
outcomes for increasing neural sensitivities (Fig. 4E). Probability 
modulations as tested in the current study are rather static and 
depend on word probability in language, which has been learned 
over the course of one’s life. It is possible that in our current study, 
the effects are weaker compared to natural speech as the same 
closed stimulus set is repeated many times which could change 
how strongly lexical frequency influences word identification D
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(SI Appendix, Fig. S5). It would be interesting to also investigate 
whether these effects are dynamic by varying event probabilities 
within the course of an experiment as has for example been shown 
for syntactic factors (46). If this manipulation also leads to similar 
phase-dependent categorization, phase codes would not only be 
adjusted solely based on long-term hard-coded changes in excit­
ability but also based on dynamically changing excitability levels 
that rely on top–down feedback (21).

It has been proposed that the primary role of theta oscillations 
during speech comprehension involves parsing speech into sepa­
rate temporal chunks (47–49). This segmentation is hypothetically 
done by aligning theta band oscillations with syllables in an ongo­
ing speech stream through phase resetting mechanisms (48). In 
this way, one can parse and identify individual syllables and use 
them for higher-order linguistic operations (50). In our study, it 
is difficult to separate segmentation or “chunking” from any kind 
of process of interpretation. If a word is separately “segmented” 
or “chunked” by theta oscillations, the information about the 
phase would be lost in an identification operation. However, in 
our study, it is exactly the phase of the theta oscillation that deter­
mines how a word is interpreted. Note also that the reported effects 
are strikingly close to the 6.25 Hz frequency we found in our 
previous study (14). Therefore, our study shows that segmentation 
or chunking through oscillations cannot be treated as a wholly 
separate process from word recognition, because oscillations also 
provide a categorization mechanism alongside any potential seg­
mentation or chunking operation (see also refs. 51–53). Add­
itionally, it highlights how memory operations that also operate 
in theta ranges interact with bottom–up processing of speech.

The main feature of the model that causes phase-dependent 
activation of different items is the interaction between oscillatory 
activity that modulates population-level excitation and representation- 
specific excitation modulations (SI Appendix, Figs. S7 and S9). 
An additional feature of the model is self-inhibition which occurs 
after a period of suprathreshold activation (Eq. 1). Inhibition 
ensures that a representation does not remain active for an 
extended period. In our main model (Fig. 4), it is necessary to 
have this inhibition to generate a phase-dependent effect as oth­
erwise, the high-sensitive representation will always win over the 
low-sensitive representation. It is possible to generate phase- 
dependent effects without inhibition when changing the input 
(SI Appendix, Figs. S8 and S9 which have linearly increasing 
strength of sensory input instead of all-or-nothing); however, we 
have previously shown that self-inhibition ensures stronger 
phase-separation and fits better to behavioral data (see ref. 21). 
Besides self-inhibition, mutual inhibition of representations could 
also improve phase separation. In the current manuscript, we 
extracted the initially active node to decide the perceptual deci­
sion. Therefore, adding mutual inhibition would not have changed 
the effect. A final feature of our model is the frequency. We here 
show that the exact frequency can be variable around the range of 
theta (but ultimately in the model is also determined by the input 
parameters and activation function). Moreover, in the current 
implementation the oscillator aligns with the rhythmic stimulus 
input. Likely, there is a more complex interaction between the 
oscillator and the sensory input that is not modeled in our current 
implementation. Future studies should integrate models of oscil­
latory coupling together with models of phase coding to get a full 
picture on how oscillatory computations relevant for sensory cod­
ing and tracking.

The current model is tailored to explain a rather narrow set of 
observations, namely how phase-dependent categorical choices 
emerge from the interactions between oscillations and neural sen­
sitivity changes that are due to event probabilities. At this stage, 

the model is kept small to more closely adhere to our experimental 
set-up and make explicit how merely changing the time of pres­
entation can influence speech perception due to inherent coding 
properties of the brain. Scaling up the model is possible, but would 
need further experimental verification to make it more applicable 
to everyday circumstances. This model stands in contrast with 
other linguistic (54, 55) and neurolinguistic models (26, 56, 57) 
that try to explain speech perception or language. In most linguis­
tic models, the full lexicon of a speaker is introduced and there 
are strong interactions between the levels, but neurophysiological 
constraints are not always considered. In recent years, models that 
include the role of oscillations for speech perception have emerged 
(e.g., refs. 47 and 58–60). Oscillations here are often a means to 
parse speech (60), or to organize and structure the incoming 
speech (50, 52), but oscillations as a memory phase code is rarely 
considered (18). Most speech perception models aim to align 
neural oscillations to the timing of the incoming speech through 
phase resetting of neural oscillations through oscillatory coupling 
with external stimuli (47, 61), or top–down temporal expectations 
of speech occurrences (58, 62, 63). Therefore, the phase of pres­
entation typically does not determine the quality/choice of the 
perceptual interpretation like in our current model. Instead, phase 
has an influence on the strength of the representation in terms of 
accuracy improvements. While the current version of our model 
cannot implement a strong phase reset based on temporal expec­
tations, models that do implement these phase resets so far cannot 
explain the phase-dependent categorical choices that we see here, 
as they do not take into account how the timing and the content 
of speech are dependent on each other (21, 64). Note that while 
there is evidence that neural oscillations do change their phase 
based on oscillatory dynamics mostly of rhythmic stimuli (65), 
there is not much evidence that there is a strong phase-reset based 
on top–down temporal expectations which are not rhythmic. We 
propose here that oscillatory resetting models must be integrated 
with models that incorporate a role for oscillations as a phase coder 
(18, 21) in order to fully account for the existing literature.

We have previously argued that during natural speech and lan­
guage processing temporal information can be used to infer infor­
mation content, in other words, time can be a cue for content 
(also see refs. 21 and 56). This time–content relation is governed 
by the observation that words that are more likely in the current 
context are uttered with shorter interword intervals (21, 66, 67). 
Combining this observation with theories of oscillatory tracking 
results in more likely words being naturally presented at earlier, 
less excitable phases, which we confirmed with our computational 
model (21). This type of phase code can aid speech comprehen­
sion: When information is ambiguous, the phase of an oscillation, 
and thereby the time of word presentation, can be used to deter­
mine the percept. This timing matches with the natural timing, 
so our model is automatically sensitive to natural temporal varia­
tion in speech that depends on the predictability of a word. 
Importantly, we do not argue that phase is the sole or even a 
primary determinant for speech identification; in natural speech, 
there are a plethora of acoustic and temporal cues that determine 
speech content. As all acoustic cues are controlled for in our stim­
ulus set, the current study does highlight that phase is an addi­
tional cue for speech identification. Notably, our current study 
does put some limitations on the use of phase-dependent catego­
rization. Our behavioral analysis shows that this phase-dependent 
categorization works mostly when trait features across the word 
are all either frequent or nonfrequent. Yet, it is not clear how 
likelihood information that varies based on the level of linguistic 
analysis interacts with timing in natural speech. To investigate 
this, one would need to show how top–down feedback modulates D
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phase-dependent categorization in sentence context as top–down 
feedback strongly influences the sensitivity of individual word 
nodes as well as the timing of speech (21).

Our strongest phase effects had frequencies of 7.6 Hz and 6.4 
Hz for the STG and MTG ROI, respectively (note that the peak 
frequency of the power in the ROIs was around 8 Hz). While for 
the MTG, this frequency matched with our previous finding (14), 
for the STG, this was slightly higher and close to alpha frequency 
ranges. Alpha phase (around 10 Hz) has been related to lexical 
decision-making such that alpha phase modulated whether partic­
ipants were more likely to make a correct vs. an incorrect response 
to determine whether a word was a real or a nonword (68). The 
interpretation of these alpha findings was that there is stronger 
attentional selection at some high excitable phases compared to low 
excitable phases (3, 69, 70). It is difficult to conceive of how atten­
tion can explain why participants pick one response choice over 
another in our current study. Future studies are required to pinpoint 
the exact frequency at which our reported phase-dependent effect 
occurs, to highlight its links to proposed speech tracking (21, 47) 
and memory coding (18) mechanisms, or rather, to link it to the­
ories of the functional role on alpha oscillations (69).

In our computational model, we postulated a separate phono­
logical and lexical level of analysis. This is in line with neurosci­
entific results, which show that speech analysis is split up in 
separate analytical levels across the cortex (26, 27, 71). Specifically, 
it is suggested that STG is sensitive to phonological content, while 
MTG is sensitive to lexical access and word content. Note that 
while our current results show that STG is more sensitive to pho­
nemic compared to word features and vice versa for MTG, we can 
never fully be sure that either region is exclusively sensitive to only 
one speech feature. Moreover, it is likely that there are subregions 
in the MTG and STG that are differentially sensitive to our 
reported effect which we did not explicitly split up further. Instead, 
we do report on the coefficients of the PCA components, which 
can hint at the centers of our effect. In our PCA components, we 
found for STG the strongest involvement of bilateral early audi­
tory areas as well as anterior STG and for MTG the strongest 
involvement of right inferior temporal cortex bordering toward 
the medial temporal lobe (SI Appendix, Fig. S3). The early audi­
tory regions are known to be involved in primary phonemic anal­
ysis (26, 72, 73). While anterior regions are normally reported to 
be sensitive to more abstract representation of words (74–76), 
they have also been implicated in primary phonetic analyses as we 
report here (77). MTG is known to be involved in word process­
ing, although some studies suggest that the main center of this 
sensitivity is more superior than we find in our study (26, 75). 
Nonetheless, there are also various reports of activation in the 
inferior (73, 78) and medial (79–81) temporal cortex in lexical 
processing. It is known that anatomical and functional connec­
tivity between MTG and STG operate via the early auditory cor­
tex. There are direct connections between early auditory cortex 
and other regions in STG as well as connections to regions in 
MTG. Additionally, there are direct connections between STG 
and MTG (82–84). Our model currently relies primarily on the 
direct connections, but we also show the phase dependency effect 
using a hierarchical model where the phoneme layer connects to 
the word layer (SI Appendix, Fig. S10). An additional area strongly 
involved in the language network is the IFG. We could not find 
any phase-dependent categorization in the IFG. This null finding 
is not necessarily surprising as IFG has mostly been associated 
with higher-order language processes that involve temporal inte­
gration across words and syntactic analysis (30, 31, 85). IFG might 
simply be less sensitive to phonological or word-level likelihood 
differences. Alternatively, it is possible that we did not find 

phase-dependent effects simply because there is too much tempo­
ral variability in the IFG responses to speech. As we map phase of 
a cortical region directly to the onset of the presented sound, any 
variability will reduce the accuracy of the phase estimation in 
relation with the behavioral outcome. It can be expected that an 
area high up the processing hierarchy such as IFG has relatively 
high temporal variability of the neural response to speech. 
Therefore, as it stands, it could be that the absence of an effect in 
IFG is a consequence of increased noise and variability.

To conclude, we show that word categorization depends on the 
oscillatory phase of the neural populations in regions where lexical 
and phonological information effects are typically observed. The 
categorization bias is mediated by the trait or linguistic unit fre­
quency that is putatively represented in the region, perhaps 
through variation in sensitivity of diverse neural populations. We 
find a double dissociation in which the phase in STG biases par­
ticipants to the low or high frequent consonant percept, while the 
phase in MTG biases participants to the low or high frequent 
word percept. These results demonstrate that oscillations provide 
a temporal ordering of neural activation based on the excitability 
of neural populations. Moreover, our study highlights the role of 
low-frequency oscillations to organize neural activation patterns 
along a gradient of event probability and provide an outlook for 
further investigating the fundamental mechanisms that may be 
expressed via population rhythmic activity.

Methods

Psychophysics. Morphs spectra between four different Dutch words were generated 
to select ambiguous sounds that were interpreted half the time as one extreme of 
the morph spectrum and the other half the time as the other extreme of the morph 
spectrum (with spectra /xat/-/xαt/, /dat/-/dαt/, /dat/-/xat/, and /dαt/-/xαt/). During 
the experiment, we presented a rhythmic sequence of broadband noise at 6.25 Hz 
before the final ambiguous word presented at variable SOA (between 0.1 and 0.42 in 
12 equidistant steps). Participants were required to indicate which sound they heard.

MEG. Per participant, we presented ambiguous words (in between /dat/ and /xat/ 
or /dαt/ and /xαt/) in isolation. We investigated whether participants’ response 
choice would depend on the phase of the presentation. A time–frequency analysis 
for three regions of interest (STG, MTG, and IFG) was performed for frequencies 
from 1 to 15 Hz for the timepoints −0.5 up to 0 s extracting the phase of the 
complex spectra. Logistic regressions were performed using the sine and cosine 
of the prestimulus phase as independent variables. The dependent variable cor-
responded to a label of the response choice based on the low (labeled as zero) 
or high (labeled as one) frequency of the consonant or word.

Computational Modeling. We used a modified version of the STiMCON model 
(21). This model integrates temporal tracking together with the tracking of the 
content of speech. In the model activation of individual content, representations 
are dependent on the time at which that information is presented. Input activation 
levels at a given time (Al,T) are governed by the following function:

	 [1]Al,T = Cl−1→l ∗Al−1,T + postThresAct(Ta) + osc(T ),

in which C represents the connectivity patterns between different hierarchical 
levels (l), T the time in milliseconds, and Ta a vector representing the times of 
individual nodes within the postthreshold-activation function. Therefore, input 
activation is determined by activations from lower levels, an activation function, 
and an oscillation function. Individual Ta node values are set to zero as soon as 
activation of a node reaches activation threshold (default threshold = 1). Each 
node is governed by a nonlinear activation function:

	 [2]postThresAct(Ta) =

⎧
⎪
⎨
⎪
⎩

−3∗BaseInhib, Ta

3∗BaseInhib, 20≤ Ta≤100

BaseInhib, Ta <100

,
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in which BaseInhib is a constant factor for the base inhibition level. Initiation of the 
inhibition function is governed by the activation threshold which was modified 
based on the sensitivity of the neural populations.

Data, Materials, and Software Availability. MEG and behavioral data have 
been deposited in Radboud University Data Repository (10.34973/f4am-rd20) (86).
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