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SI methods 

Behavioral experiment 

Participants. In total 36 (28 female; age range = 18-40; mean age = 24.3) and 28 (20 female; age 

range = 20-59; mean age = 27.6) Dutch native speakers completed the session for the consonant 

and vowel experiment respectively. All participants reported normal hearing and did not have any 

history of language related disorders.  

Materials. Google text-to-speech was used to utter the Dutch word daad (IPA [international 

phonetic alphabet]: /dat/; translation: deed) and gaat (IPA: /xat/; translation: go). We spliced the 

audio-file to only contain the /da/ and /xa/ parts. We max-normalized these spliced audio fragments. 

In praat1 we equalized the pitch contours of /da/ and /xa/ to lie in the middle of the original pitch 

contours of the two sounds. For the consonant manipulation we morphed the two sounds together 

by taking a weighted average of the two audio fragments in 11 spaced steps. Note that this step is 

different than in our original study2 in which we changed the formants directly, but it was necessary 

as we could not achieve a guttural /x/ made in Dutch by using a formant change only. While for 

syllable perception this procedure is not a problem (even though the sound is then closer to a /ga/ 

than a /xa/), for the chosen words a guttural /x/ is needed to understand the words. For the vowel 

manipulation, we subsequently changed the temporal modulation (for all 11 morphs) of the original 

/a/ sound to be 0.75 of the original duration using PSOLA3 (which can maintain pitch while changing 

temporal rate). Then we changed the spectral content of the second formant in 11 steps from 1300-

1700 Hz during the vowel utterance using the burgs LPC method4. This morph generates the 

phoneme /ɑ/. We again max-normalized the output of these morphs. We spliced from the original 

/dat/ sound fragment the /t/, shortened it to 0.9 of the original length (to improve the sound audibility) 

and concatenated the /t/ at the end of all created morphs. The amplitude of the last 0.2 seconds 

was linearly dampened. This whole procedure created a total of 11×11 morphs, morphing between 

the four extreme sounds /xat/, /dat/, /xɑt/, and /dɑt/. Note that from all these morphs we only used 

a total of 11×4–4 sounds, that is, the sounds at which either the consonant or vowel was at its most 

extreme value. All sounds had a duration of 420 ms. 

We choose these words as they are dissociable in vowel, consonant and word frequency 

(see table 1). To verify that these words indeed had varying vowel, consonant, and word frequency 

we counted the number of the vowels, consonants, and words in the manually annotated part of 

the Corpus Gesproken Nederlands (CGN; [Version 2.0.3; 2014]). Frequency was determined by 

dividing the number of occurrences by the total amount of annotated words. As this results in very 

low numbers, the proportion is represented on a log scale. For the phonemes, we additionally 

repeated this analysis separating the phonemes per position in a word position (SI Appendix Fig. 

1). 

For the psychophysics experiment, we presented a rhythmic sequence of broadband noise 

at 6.25 Hz before the word. Broadband noise consisted of 50 ms (with 5 ms linear amplitude ramp 
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up and down) between 1.1 and 3.1 kHz. Sequences lasted randomly 2, 3, or 4 seconds. Stimulus 

onset asynchrony (SOAs) of the word relative to the final noise in the sequence was set to be 

between 0.1 to 0.42 in 12 equidistant steps (covering two cycles of 6.25 Hz).   

Procedure. All procedures were done online using Django web development, running 

under Apache. Participants were instructed to use headphones for the experiment and sit in a quiet 

room. Of course because of the online setting, we could not verify this. In the first part of the 

experiment, we determined the most ambiguous stimulus as the morph for which participants heard 

on of the two extremes of the morph 50% of the time. In both experiments, this entails two morph 

spectra: for the consonant experiment the /dat/-/xat/ and /dɑt/-/xɑt/ spectra; for the vowel 

experiment the /dat/-/dɑt/ and /xat/-/xɑt/ spectra. To do so, we presented all 22 morphed sounds 

for the respective experiment and participants had to indicate what word they heard. A trial 

consisted of a silent period of 0.5 seconds followed by the presentation of the audio fragment. 0.25 

seconds after the sound, participants viewed the response options and could indicate via a button 

press which sound they heard. Participants received two response options corresponding to the 

two extremes of the spectrum to which the sound morph belonged to. In total, each sound was 

presented 12 times, corresponding to 264 trials divided into two blocks. In total, the first part lasted 

about 8 minutes. Immediately after this part for both spectra a psychometric logit function was fitted, 

and the most ambiguous sound was determined.  

The second, main, part of the experiment consisted of 14 blocks in which we presented 

the rhythmic sequences with the final words. In total we presented 648 experimental trials: nine 

repetitions, three sequence lengths, twelve SOAs, and two sound types. We added 5% of filler trials 

consisting of the extreme sound types (at random sequence length and SOAs) resulting in a total 

of 680 trials. These trials were added to test that participants were performing the task and not 

randomly pressing buttons and to make sure that in some instances there was also a clear correct 

answer. Again, after the button press there was an interval of 0.5 seconds. Throughout the 

experiment we adapted the ambiguous sound when participants heard the same sound too often 

in a row. Specifically, if participants categorized the ambiguous sound as the same word for 10 

times in a row (for each spectra), we adjusted the ambiguous sound one morph step away from 

the perceived word. 

Behavioral analysis. For the first part of the experiment, we fitted a psychometric curve 

using the curve_fit function in the scipy toolbox in python and extracted the most ambiguous 

stimulus for each participant. We had difficulty to ensure that participants maintained an ambiguous 

percept either during the psychometric determination or during the main experiment. We therefore 

had to exclude quite a few participants from the analysis. This is likely due to the online procedure 

that needed to be done during the COVID pandemic to which we had to rely on the audio of the 

participants at their home situation. As the experimental results hinge on having an ambiguous 

percept, we needed to exclude participants who could not maintain an ambiguous word perception 
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throughout the experiment. During the first part of the experiment, we could not fit an ambiguous 

sound that stood in between the 10th and 90th percentile of the morph spectrum for 7 and 4 

participants for consonant and vowel experiment, respectively. Also, during the main experiment, 

6 and 11 participants reported low perceived differences between the two unambiguous words in 

the corresponding spectrum, respectively (under 20% difference between the answers to the two 

unambiguous words; likely due to a failure to comply with the task or difficulties with the task itself). 

An additional 5 and 1 participants reached morphs outside the 10th and 90th percentile ranges for 

more than half the duration of the main experiment, respectively. This ended us with 18 and 12 

participants for the consonant and vowel experiment, respectively. Trials in which morph 

estimations were outside of the 10th and 90th percentile ranges were excluded from the analysis. 

For those participants who met our criteria, we created a time course across the twelve 

SOAs used. For each participant we subtracted the mean of the time course. Then we averaged 

all time-courses and fitted a 6.25 Hz sinusoid to the data (with varying amplitude and phase) and 

extracted the explained variance. We generated a null distribution by randomly permuting (n = 

10,000) the average time course and refitting the sinusoid. One-sided p-values were extracted by 

comparing the proportion of the observed explained variance with the explained variance of the 

null distribution. As these comparisons were pre-planned, we did not further correct for multiple 

comparisons. 

 

MEG experiment  

Participants. 23 Dutch native speakers (13 females; age range: 18-59; mean age = 34.3; one 

author participated as well) participated in the study. 22 were right-handed (one reported no 

preference in hand). All reported normal hearing, had normal or corrected-to-normal vision, and did 

not have any history of dyslexia or other language-related disorders. All participants were 

reimbursed for their participation. One participant was excluded for not maintaining an ambiguous 

percept throughout the experiment. 

Procedure. Just as the behavioral experiment, the MEG experiment consisted of two parts. 

In the first part, we repeated the presentation of the psychometric function to determine the most 

ambiguous sounds. After the sound was finished the response options were immediately shown. 

The next sound was presented at random interval between 0.5-1.5 seconds after the response. In 

the MEG experiment, we only used the consonant morphs. During the main part of the experiment, 

we presented 50% of the time ambiguous (n = 160 per spectrum) and 50% of the time non-

ambiguous sounds (n = 80 for each extreme per spectrum). All trial types were presented in 

pseudo-random order. After sound presentation, there was a 1 second interval before the sound 

options were shown. The next sound was presented at a random interval between 2 and 4 seconds 

after the response. After 80 sounds participants had a break. The response options of participants 

(pressing left or right for /d/ vs /x/, respectively) were switched halfway through the experiment to 
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ensure that the effects were not due to motor plans. Half of the participants started with /d/ as the 

left option and the other half with /x/ as the left option. During the experiment, the morph was 

changed if the participant reported the same percept for the ambiguous sound within one spectrum 

for 10 consecutive answers. At the end of the experiment, we collected an auditory localizer (data 

not analyzed here) and a scalp digitization using the Polhemus Fastrak digitizer. All stimulus 

presentation was programmed in Psychtoolbox5 and run in the linux environment.  

MEG pre-processing. Surface-based source models from the MRI were made using grid 

points that were defined on the cortical sheet of the automatic segmentation of freesurfer6.0 [50] 

in combination with pre-processing tools from the HCP workbench1.3.2 [51] to down-sample the 

mesh to 4k vertices per hemisphere. The MRI was co-registered to the MEG by using the previously 

defined fiducials as well as an automatic alignment of the MRI to the Polhemus headshape using 

the Fieldtrip20211102 software [52]. Head models were based on the SPM segmentation 

incorporated in Fieldtrip. Regions of interest (ROIs) were the superior temporal gyrus (STG), the 

middle temporal gyrus (MTG) and the inferior frontal cortex (IFG). Parcellations were based on the 

Freesurfer parcellations. 

Preprocessing of MEG involved epoching the data both between -2 and 0 seconds and -1 

to +1 seconds relative to sound onset. This separate epoching was necessary to ensure that for 

the pre-stimulus analyses no data from the post-stimulus interval could leak into the pre-stimulus 

interval due to filtering during preprocessing. Data was then padded for 0.5 seconds at the end of 

the epoch with the last value of the epoch. Data was low-passed at 100 Hz and DFT notch filters 

were applied at 50, 100 and 150 Hz. Then, data was down-sampled to 300 Hz and the padded 

interval was removed again. ICA was performed to remove heartbeat-related signals and eye blinks 

and movements. On average 4.3 components (range: 3-6 components) were removed from the 

analysis. After that, trials with excessive noise were removed via visual inspection with an average 

of 12.7 removed trials (range: 4-22 trials). We calculated a common spatial filter using lcmv filter 

based on the post-stimulus data with a lambda of 5%. Many spatial filters have a center of the head 

bias, resulting in stronger activity in the center compared to the cortical surface6. This bias is often 

counteracted by having a clear baseline period for each trial to which the data is referenced to. 

However, for our analysis no clear baseline period can be defined as we were interested in the pre-

stimulus period. Therefore, to counteract the center of head bias we used an array-gain 

beamformer which normalized the spatial filter6. This filter was applied to all single trial estimates 

of the pre-stimulus data. To extract a single time course representative of our ROIs we extracted 

the first PCA for each ROI. 

MEG analysis. We performed a time-frequency analysis on all source trials using a 

wavelet approach extracting frequencies from 1 to 15 Hz in steps of 0.5 Hz at widths matching 700 

milliseconds for the timepoints -0.5 up to 0 seconds in steps of 0.05 seconds extracting the phase 
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of the complex Fourier spectra. Data corresponding to the ambiguous sounds were then split 

according to the response of the participants based on two different contrast binning: 

1) Consonant frequency binning: responses where the ambiguous word was interpreted as a 

word with a low frequency consonant (/xɑt/ and /xat/) versus a word with a high frequency 

consonant (/dɑt/ and /dat/). 

2) Word frequency binning: responses where the ambiguous word was interpreted as a low 

frequency word (/dat/ and /xɑt/) versus a high frequency word (/dɑt/ and /xat/). 

For these two contrasts, low frequency traits were labeled with a zero and high frequency 

traits with a one. A logistic regression was performed using the sine and cosine of the pre-stimulus 

phase as independent variables and the response of the participant as dependent variable for all 

time and frequency points. To compare these values across participants, we performed statistics 

using the inverse of the normative cumulative distribution based on the p-value of the regression 

of the individual participants (also see7). Group statistics were performed by statistically testing 

these z-values against zero using a one-sample t-test. To control for multiple comparisons across 

all time-frequency points we performed cluster-based permutation tests8. 

To further inspect the effect of the two contrasts we split the data based on all four possible 

response options. Then, we extracted for each participant and for each of the possible perceived 

words the average phase at which participants reported perceiving that specific word. We 

calculated the phase difference between the average phase at which participants perceived the 

word /dɑt/ and the other three options. The logic of this analysis was as follows: /dɑt/ has high 

frequency features for all investigated feature dimensions. Words that also have a high frequency 

content should therefore show a phase difference of zero with /dɑt/, but words that have a low 

frequency content should show a phase difference of  with /dɑt/. We statistically tested whether 

the phases were non-uniform around the expected phase using the v-test statistic9,10. This test will 

show a significant effect only when the data is both non-uniform and the phase is around the 

expected phase. 

For the power analysis, we used the same wavelet approach as for the time-frequency 

plots (Figure 4C) and converted the data in z-scores across the whole time-frequency window. For 

the power spectra (Figure 4B), we cut the data from -1 to 0, padded the data out to 5 seconds and 

extracted the power using Hanning tapers.  

 

Computational modelling 

We used a modified version of the Speech Tracking in a Model Constrained Oscillatory Network 

(STiMCON) model11. In this model, a population of neural nodes is modulated by an oscillation and 

individual nodes are additionally modulated based on their connectivity pattern with sensory input. 

Input activation levels at a given time (Al,T) are governed by the following function: 
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𝐴𝑙,𝑇 = 𝐶𝑙−1→𝑙 ∗ 𝐴𝑙−1,𝑇 + 𝑝𝑜𝑠𝑡𝑇ℎ𝑟𝑒𝑠𝐴𝑐𝑡(𝑇𝑎) + 𝑜𝑠𝑐(𝑇)  (1) 

 

in which C represents the connectivity patterns between different hierarchical levels (l), T the time 

in milliseconds, and Ta a vector representing the times of individual nodes within the post threshold-

activation function (see online methods). Input activation is thus determined by activations from 

lower levels as well as an activation function and an oscillation function. Individual Ta node values 

are set to zero as soon as activation of a node reaches activation threshold (default threshold = 1). 

This activation function first ensures non-linear supra-threshold activation after which the node is 

temporally inhibited. The oscillation function in our implementation is fixed to a frequency of 6.25 

Hz (based on our previous findings2). Each node is governed by a non-linear activation function: 

 

𝑝𝑜𝑠𝑡𝑇ℎ𝑟𝑒𝑠𝐴𝑐𝑡(𝑇𝑎) =  {
−3 ∗ 𝐵𝑎𝑠𝑒𝐼𝑛ℎ𝑖𝑏, 𝑇𝑎

3 ∗ 𝐵𝑎𝑠𝑒𝐼𝑛ℎ𝑖𝑏, 20 ≤ 𝑇𝑎 ≤ 100
𝐵𝑎𝑠𝑒𝐼𝑛ℎ𝑖𝑏, 𝑇𝑎 > 100

   (2) 

 

in which BaseInhib is a constant factor for the base inhibition level (set to -0.2, same as in 11). 

Initiation of the inhibition function is governed by the activation threshold (by default set on 1, but 

varies with neural sensitivity, see main text). First, this function creates suprathreshold activation 

after which nodes are inhibited. The oscillatory function is as follows:  

 

𝑜𝑠𝑐(𝑇) = 𝐴𝑚 ∗ cos (2𝜋𝜔𝑇 + 𝜙)     (3) 

 

in which Am is the amplitude of the oscillator (set to 1.5),  the frequency (set to 6.25Hz in 

accordance with 2), and  the phase offset (variable). For the psychophysics experiment the phase 

offset is equalized with the phase of the stimulus input. In the model, sensory input is directed to 

two different levels of analysis, a phonetic level and a word level of analysis. Sensory input itself is 

modelled as a step function lasting 50 ms. The maximum strength of the sensory input depends on 

the morph level presented (see main text).  
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Figure S1 to S14 

 
Fig. S1. Position dependent frequency of the phonemes used in this study. 
 
 
 
 

 
Fig S2. Behavioral results without demeaning. Conventions are the same as in Fig. 3. 
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Fig. S3. Responses in regions of interest. A) Response to ambiguous stimulus /xɑt/-/dɑt/. B) 
Response to ambiguous stimulus /xat/-/dat/. C) Time-frequency response averaged across all 
stimuli. D) Average PCA coefficients across participants for the first principle component for each 
of the ROIs. Yellow indicates a stronger average coefficient (but exact number is arbitrary). For 
MTG we added an extra differently oriented image to show the strong right inferior PCA 
coefficient. STG = superior temporal gyrus. MTG = medial temporal gyrus. IFG = inferior frontal 
gyrus. 
 
 
 

 
Fig. S4. Pre-stimulus power in regions of interest. A) The three regions of interest. B) Power spectra 
averaged for the -1-0 sec time window averaged across the two ambiguous stimuli and response 
choices. C) Time-frequency response averaged across the ambiguous stimuli and response 
options. Note that data is padded from time point 0 on (explaining the sharp power drop around 
zero).   
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Fig. S5. Split of data in first and second half for psychophysics (A) and the MEG (B). In A) the gray 
line indicates the best fit. In B) the gray contour indicates the original significant cluster region. 
 
 

 
Fig. S6. Schematic diagram of the model. Input is split to either the phoneme (p) or word (w) 
level. Activation (A) at time point T depends on the input strength and connections (C) with the 
respective levels, a common oscillator, and the postThresholdActivation function (not visualized). 
As soon as the activation of a node in the phoneme or word level reaches it activation threshold 
(H) Ta is set to zero for that node and the postThresholdActivation function is reset. Response 
choice (R) is defined as the first node that reaches activation. For the psychometric experiment 
simulation, the response choice is the average of the two options. For the MEG simulation the 
responses choice is the output of the two respective levels.  
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Fig. S7. Time courses of example simulation corresponding to the model parameters in Fig. 4. 
Simulations are run with a threshold reduction of 0.3. A-C show activity of the phonetic (R1) and 
word (R2) level of the model at different delays. D-F show the same time courses but zooming in 
on the area highlighted in A-C respectively. L and H stand for low and high probability event 
respectively. N is a neutral stimulus. SOA = stimulus onset asynchrony relative to the neutral 
entrainment input. 
 



 

 

12 

 

Fig. S8. Outcome of the computational model with linear increasing input and lower power. A) 
Psychometric functions for the four different morph dimensions (threshold reduction = 0.09). Blue 
lines represent the model output; grey lines show the psychometric fit. B) Response of the model 
to the most ambiguous morph of A presented at different stimulus onset asynchronies. C) 
Response choice of the model during entrainment (as in B) for different threshold reduction 
levels. D) Phase difference between the average phase of the three different response choices 
and /dɑt/ (threshold reduction = 0.07). E) Phase differences (as in D) for different threshold 
reduction levels. Compared to the model in Fig. 4, the oscillatory power is set to 1 (instead of 1.5) 
and the threshold reduction levels are weaker. Input here is linearly increasing and lasts half a 
cycle. 
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Fig. S9. Time courses of example simulation corresponding to the model parameters in SI 
Appendix Fig. 8. Simulations are run with a threshold reduction of 0.09. A-C show activity of the 
phonetic (R1) and word (R2) level of the model at different delays. D-F show the same time 
courses but zooming in on the area highlighted in A-C respectively. L and H stand for low and 
high probability event respectively. N is a neutral stimulus. SOA = stimulus onset asynchrony 
relative to the neutral entrainment input. 
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Fig. S10. Outcome of the computational model directly connecting the phoneme with the word 
level. In this model the phonetic level links to the word level. The input only connects to the 
phonetic level and this level links to the word level (in which phonemes part of the word link at a 
0.5 connection strength to the words they are connected to, for the neutral phoneme the 
connection strength is 0.2 across all words). The outcome for the psychometric curve and the 
entrainment is based on the word-level activations. With this model, we can replicate the 
sinusoidal pattern in the behavioral responses as well as the phase opposition in the MEG, but do 
see some spurious response choices for /xat/-/dat/ and /xɑt/-/xat/. This is a consequence of the 
phonetic level response influencing the word-level response. Moreover, the psychometric 
functions do not fully match the found psychometric functions. Because the response choice is 
mostly driven by the word-level, to make a stimulus ambiguous it in this model has to be far away 
from the high frequency word option. So for that part the psychometric function is better fitted with 
a model where response options are weighted by both the phoneme and word level 
representation. 
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Fig. S11. Outcome of the computational model with no difference in the word level event 
probabilities. Conventions are the same as in Fig. 4. Note that phase-dependent effects now 
solely depend on the phoneme level probability differences. 
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Fig. S12. Outcome of the computational model with no difference in the phase level event 
probabilities. Conventions are the same as in Fig. 4. Note that phase-dependent effects now 
solely depend on the word level probability differences. 
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Fig. S13. Outcomes of the computational model when using a 5 Hz oscillator. The entrainment 
frequency is also adjusted, but the duration of the stimuli and activation function remained the 
same. All conventions are the same as in Fig. 4. 
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Fig. S14.  Outcomes of the computational model when using a 1 Hz oscillator. The entrainment 
frequency is also adjusted, but the duration of the stimuli and activation function remained the 
same. All conventions are the same as in Fig. 4. 
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Tables S1 to S2 
 
Table S1 

Proportions of the ambiguity chosen for Figure 4 

ThresRed /xɑt/-/dɑt/ /xat/-/dat/ /dɑt/-/dat/ /xɑt/-/xat/ 

0 0.5 0.5 0.5 0.5 

0.05 0.5 0.5 0.5 0.5 

0.10 0.5 0.5 0.5 0.5 

0.15 0.5 0.5 0.5 0.5 

0.20 0.5 0.5 0.5 0.5 

0.25 0.4 0.5 0.6 0.5 

0.30 0.4 0.5 0.6 0.5 

0.35 0.4 0.5 0.6 0.5 

0.40 0.4 0.5 0.6 0.5 

0.45 0.3 0.5 0.7 0.5 
0.50 0.3 0.5 0.7 0.5 

Proportion of the stimulus at the upper half of the contrast (e.g., for 
/xat/-/dat/ the proportion /dat/) per contrast and threshold reduction 
level corresponding to Fig. 4. ThresRed = threshold reduction.  

 
Table S2 

Proportions of the ambiguity chosen for Supplementary Figure 8 

ThresRed /xɑt/-/dɑt/ /xat/-/dat/ /dɑt/-/dat/ /xɑt/-/xat/ 

0 0.5 0.5 0.5 0.5 

0.01 0.5 0.5 0.5 0.5 

0.02 0.5 0.5 0.5 0.5 

0.03 0.5 0.5 0.5 0.5 

0.04 0.5 0.5 0.5 0.5 

0.05 0.5 0.5 0.5 0.5 

0.06 0.5 0.5 0.5 0.5 

0.07 0.5 0.5 0.5 0.5 

0.08 0.4 0.5 0.6 0.5 

0.09 0.4 0.5 0.6 0.5 

0.10 0.4 0.5 0.6 0.5 

Proportion of the stimulus at the upper half of the contrast (e.g., for 
/xat/-/dat/ the proportion /dat/) per contrast and threshold reduction 
level corresponding to SI Appendix Fig. 8. ThresRed = threshold 
reduction.  
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