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Abstract 15 

Neural oscillations reflect fluctuations in excitability, which biases the percept of ambiguous sensory 16 

input. Why this bias occurs is still not fully understood. We hypothesized that neural populations 17 

representing likely events are more sensitive, and thereby become active on earlier oscillatory phases, 18 

when the ensemble itself is less excitable. Perception of ambiguous input presented during less-excitable 19 

phases should therefore be biased towards frequent or predictable stimuli that have lower activation 20 

thresholds. Here, we show with computational modelling, psychophysics, and magnetoencephalography 21 

such a frequency bias in spoken word recognition; a computational model matched the double 22 

dissociation found with MEG, where the phase of oscillations in the superior temporal gyrus (STG) and 23 

medial temporal gyrus (MTG) biased word-identification behavior based on phoneme and lexical 24 

frequencies, respectively. These results demonstrate that oscillations provide a temporal ordering of 25 

neural activity based on the sensitivity of separable neural populations.   26 
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Introduction 27 

Oscillations, or population rhythmic activity, reflect the waxing and waning of neural excitability such that 28 

individual neurons are modulated by an oscillation are primarily active on high excitable phases1-3. 29 

Previous studies have directly linked this phase-dependent neural activity to behavioral performance 30 

showing that target detection4-7 and accuracy in categorization tasks8,9 are modulated by oscillatory 31 

phase. Besides accuracy, a few studies have also shown that oscillatory phase can modulate the 32 

categorization of ambiguous stimuli by biasing participants’ percept to one or another category based on 33 

the phase of presentation10-12. Improved behavioral performance has often been attributed to increased 34 

processing efficiency at oscillatory phases at which neural activity is increased3,13. However, phase-35 

dependent categorization biases cannot be explained by overall increases in activity (or increased 36 

processing efficiency) on specific oscillatory phases because increases in overall activity should not bias 37 

processing to one specific perceptual interpretation. Thus, it is unclear what neural mechanism underlies 38 

phase-dependent categorization.   39 

Even though oscillations modulate neural excitability, not all neurons influenced by an oscillation 40 

reach activation exactly at the same time or phase. In fact, the phase-of-firing of a neuron is determined 41 

by an interaction between excitability changes due to oscillations and the neural sensitivity of a neuron 42 

to incoming signals14. Neurons that are sensitive to incoming signals will respond strongly and will 43 

therefore reach activation already at relatively low excitable oscillatory phases1,14. In contrast, neurons 44 

less sensitive to the input will reach activation only at later, more excitable, phases. Neuronal sensitivity 45 

can be modulated by neuro-plastic changes induced through associative and statistical learning15. For 46 

example, neural populations representing more likely events in the world have higher sensitivity than 47 

populations representing less likely events15,16. If this is true, populations representing probable events 48 

should be active at earlier, less excitable, oscillatory phases compared to populations representing less 49 

likely events which in turn could lead to phase-dependent categorization17.     50 

 Previously, we have shown that oscillatory phase in the theta frequency range can bias the 51 

categorization of an ambiguous syllable11. In that study, we presented an ambiguous syllable that Dutch 52 

participants could interpret as /dɑ/ or /xɑ/ (notation according to the international phonetic alphabet 53 

[IPA]). Originally, this phase-dependent categorization bias was attributed to an articulatory visual-to-54 

auditory temporal difference between the two syllables (the visual-to-auditory articulatory delay of /dɑ/ 55 

is shorter than /xɑ/)11,18. However, in Dutch, /d/ also has a higher frequency than /x/19, that is, /d/ is more 56 

probable than /x/. It is therefore possible that the categorization effect in this study was instead (or 57 
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additionally) caused by an interaction between ongoing oscillations and the sensitivity of neural 58 

populations for these consonants17. Up to now, no study has investigated the role of event probability for 59 

the outcome of phase-dependent behavior. If oscillations provide a temporal ordering based on neural 60 

sensitivity14,17, then one would expect phasic categorization effects to occur when there is a difference in 61 

event probability for two possible interpretations of an ambiguous stimulus. If this is so, we should view 62 

oscillations not merely as a gating operation opening and closing lines of neural communication3,13, but 63 

rather as a rich source of representational space20,21.   64 

To investigate the relation between phase-dependent categorization and event probability we 65 

presented participants with words that varied in consonant, vowel, and word frequency. These were the 66 

four Dutch words dat, gat, daad, and gaat (see table 1 for translations, IPA notation, and event 67 

probability/frequencies). In this way, we manipulated event probabilities at different levels of analysis 68 

based on the recurrence of phonological and lexical elements in a language. By using computational 69 

modelling, psychophysics, and MEG we could investigate the influence of event probability on behavioral 70 

and neural responses to ambiguous stimuli (Figure 1). Computational modelling showed that phase biases 71 

categorization when words had different probabilities of occurrence. Moreover, the bias was dependent 72 

on the event probability within the specific level of analysis (phoneme or word level). These outcomes 73 

were verified using psychophysics and MEG.  74 

 75 

76 

Table 1. Stimulus materials 

Dutch word gat dat gaat daad 

Translation hole that go deed 

IPA /xɑt/ /dɑt/ /xat/ /dat/ 

consonant frequency -- ++ -- ++ 

vowel frequency ++ ++ -- -- 

word frequency -- ++ ++ -- 

frequency denotation cVw CVW cvW Cvw 

Four different Dutch words used in the study. Plusses and minuses indicate whether the trait was frequent (++) 

or non-frequent (--). IPA = international phonetic alphabet. In the rest of the text, we will denote the frequency 

across the three traits (consonant (C), vowel (V), and word (W)), by indicating via lower- or upper-case letters 

whether the word has a low (lower-case) or high (upper-case) frequency for a specific trait (see denotation at the 

last row). 
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Results 77 

In the current study, we investigated whether combining oscillations with dissimilar ‘event’ probabilities 78 

– here phoneme and lexical frequency - can lead to phase-dependent categorization. First, we designed a 79 

computational model whose goal was to categorize incoming sensory input. To directly link the outcome 80 

of the computational model to empirical findings and quantify phase-dependent categorization, we 81 

presented the model with the stimuli used in the psychophysics and MEG experiment. In the 82 

psychophysics study, we presented an entrainment stream at 6.25 Hz after which an ambiguous word was 83 

presented at a variable stimulus onset asynchronies (SOAs). Assuming an entrained oscillation, these SOAs 84 

match to ongoing oscillatory phases22. We generated ambiguous words by creating 10 equally spaced 85 

morph levels along each dimension (that is varying either the consonant /x/-/d/ or the vowel /a/-/ɑ/). This 86 

Figure 1. Overview of the current study. A) It is hypothesized that low probable linguistic information is represented 
at high excitable phases while high probable linguistic information is represented at low excitable phases. The 
perceived sound of ambiguous stimuli depends on the phase of presentation. B) Four words are used that differ in 
consonant (C), vowel (V), and word (W) frequency. Words are morphed into each other creating an ambiguous 
percept. C) Sensory entrainment locks neural rhythms to the rhythmic input and therefore the stimulus onset 
asynchrony (SOA) relative to the entrainment train should bias the percept to words containing low or high frequent 
linguistic information. D) In MEG a double dissociation is expected in which perceptual bias is governed by phoneme 
or word frequency for regions sensitive to phonemic or word features, respectively. Sign = significant; ns = not 
significant. STG = superior temporal gyrus; MTG = middle temporal gyrus; IFG = inferior frontal gyrus.  
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procedure resulted in four different morph scales: /xat/-/dat/, /xɑt/-/dɑt/, /dɑt/-/dat/, and /xɑt/-/xat/. 87 

Participants categorized each morphed stimulus as one of either word. The most ambiguous morph was 88 

defined individually for each participant by fitting a psychometric curve to their responses and selecting 89 

the morph closest to 50% categorization. In the MEG experiment, stimuli were not preceded with an 90 

entrainment train, but were presented at random SOAs.  91 

 92 

Computational model 93 

The computational model was an extension of the Speech Tracking in a Model Constrained Oscillatory 94 

Network (STiMCON) model introduced in 17. This model integrates temporal tracking together with the 95 

tracking of the content of speech using both temporal and content information. Input activation levels at 96 

a given time (Al,T) are governed by the following function: 97 

𝐴𝑙,𝑇 = 𝐶𝑙−1→𝑙 ∗ 𝐴𝑙−1,𝑇 + 𝑖𝑛ℎ𝑖𝑏(𝑇𝑎) + 𝑜𝑠𝑐(𝑇)    (1) 98 

in which C represents the connectivity patterns between different hierarchical levels (l), T the time in 99 

milliseconds, and Ta a vector representing the times of individual nodes within the inhibition function (see 100 

online methods). Input activation is thus determined by activations from lower levels as well as an 101 

inhibition and an oscillation function. Individual Ta node values are set to zero as soon as activation of a 102 

node reaches activation threshold (default threshold = 1). This function first ensures non-linear supra-103 

threshold activation after which the node is temporally inhibited.  104 

In the current implementation, we introduced two different levels of analysis: a phoneme and a 105 

word level. Both levels receive input from the input level but have their own connectivity with the input 106 

and their own node sensitivity. The input is modelled as the individual words: /xat/, /xt/, /dat/, /dt/, 107 

and an empty word node is used for the entrainment train. For the phoneme level, we represented the 108 

phonemes /x/, /d/, /a/, //, and an empty phoneme node. Connectivity for the input-to-phoneme level 109 

was set to one when the phoneme was part of the input word (the entrainment stimulus was connected 110 

with a one to the empty phoneme node). The input-to-word level connectivity consists of an identity 111 

matrix (each word loads with one on the word level). Sensitivity of individual nodes to input was varied 112 

by reducing the activation threshold for the more frequent phonemes (/d/ and //) and words (/dt/ and 113 

/gat/) in their respective analysis level (activation thresholds were parametrically reduced between 0.01 114 

- 0.1). In all simulations, we extracted the categorization response of the model by determining the 115 

deciding node that was active first after stimulus presentation. For the two categorization options, we 116 
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coded one node as a 0 and the other node as a 1 (if both nodes were active simultaneously or no node 117 

was activated at all we assumed that the model would guess and set the value to 0.5 for the psychophysics 118 

simulation or choose randomly 0 or 1 for the MEG simulation). For the psychophysics experiment, we 119 

assumed that the output of the model reflects the average outcome of the phoneme and word level. 120 

We let the model run through the psychophysics and MEG experiments. In both experiments, all 121 

morphs are initially presented at random moments to generate a psychometric curve and to determine 122 

the most ambiguous stimulus that will be used for the main experiment (see online methods for more 123 

Figure 2. Outcome of the computational model. A) Psychometric functions for the four different morph 
dimensions (sensitivity = 0.09). Blue lines represent the model output; grey lines show the psychometric fit. B) 
Response of the model to the most ambiguous morph of A presented at different stimulus onset asynchronies. 
C) Response choice of the model during entrainment (as in B) for different sensitivity levels. D) Phase difference 
between the average phase of the three different response choices and /dɑt/ (sensitivity = 0.07). E) Phase 
differences (as in D) for different sensitivity levels. 
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details). To imitate this procedure, input was presented at different amplitude proportions of two words 124 

(e.g. for /xat/-/dat/ morph with 90% of /dat/, /xat/ was presented with an amplitude of 0.1 and /dat/ at 125 

0.9) evenly distributed across all phase values. For each morph, we averaged the node responses of the 126 

model across the repetitions of the same morph (and across the two levels). For all word morph spectra, 127 

we could reliably fit a psychometric function and extract the most ambiguous morph (Figure 2A). For the 128 

second part of the psychophysics experiment, the model was presented with an entrainment train of 129 

empty words after which we presented the most ambiguous morph stimulus at different SOAs. Results 130 

show that only for morph spectra in which the two morphed traits had opposing event probabilities or 131 

frequency (i.e. /dɑt/ and /xɑt/ [CVW vs cVw] and /dɑt/ and /dat/ [CVW vs Cvw]) a phase-dependent 132 

categorization performance developed across all sensitivities tested (Figure 2B and 2C).  133 

For the MEG experiment, phase does not have to be inferred from an entrainment train, but 134 

rather can be estimated from the recorded regions directly. To simulate this experiment, ambiguous 135 

morphs were presented to the model at random phases (repeated for 1000 repetitions). Only the 136 

consonant morphs along the /dɑt/-/xɑt/ and /dat/-/xat/ spectra were used in the MEG experiment. For 137 

each of the two ambiguous morphs, the phase was extracted together with the categorization response 138 

based on the node activation of the phoneme or word level. For the main MEG experiment, we are not 139 

hypothesizing about the absolute phase, as we have no hypothesis about the exact phase (see6,11), but 140 

rather in relative phase difference between a more-likely versus less-likely event. Therefore, we took the 141 

phase difference between the word /dɑt/ which has a high frequency on all trait dimensions (CVW) and 142 

the phase of the other response options. For the phoneme level, the model showed high phase differences 143 

of around π when the ambiguous morph was interpreted as either /xat/ or /xɑt/, but low phase 144 

differences of around 0 when the model interpreted the morph as /dat/ (Figure 2D). In contrast, for the 145 

word level, we found π phase differences for the categorization choices /xɑt/ and /dat/, and 0 phase 146 

difference for the choice /xat/. Thus, phase differences were low when both words had high frequency 147 

traits within the level of analysis (high frequency phonemes in the phoneme level [/dɑt/, CVW vs /dat/, 148 

Cvw] and high frequency words in the word level [/dɑt/, CVW vs /xat/, cvW]). Phase differences were high 149 

when the words had different frequency traits (high versus low frequency phonemes in the phoneme level 150 

[/dɑt/, CVW vs /xɑt/ [cVw] and /xat/, [cvW] and high versus low frequency words in the word level [/dɑt/, 151 

CVW vs /xɑt/ [cVW] and /dat/, [Cvw]). In MEG, this pattern of results could correspond to phase 152 

differences in different neural sources that analyze phoneme- and word-level representations, 153 

respectively. These phase differences were more pronounced when the sensitivity level changes were 154 

relatively low (Figure 2E). 155 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2023. ; https://doi.org/10.1101/2023.04.17.537171doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.17.537171
http://creativecommons.org/licenses/by-nc/4.0/


 9 

 156 

Psychophysics experiment 157 

We conducted a consonant and a vowel version of the experiment by morphing either the consonants of 158 

the words or the vowels of the words, creating four morphs: /xat/-/dat/, /xɑt/-/dɑt/, /dɑt/-/dat/, and 159 

/xɑt/-/xat/. During the first part of the experiment, we presented stimuli across all morphs to create an 160 

individual psychometric curve along the consonant (Figure 3A) and vowel dimension (Figure 3D). Only 161 

participants for which we could reliably extract an ambiguous stimulus via fitting a psychometric curve 162 

could participate in the main experiment. 163 

 In the main experiment, participants listened to rhythmic broadband noise bursts presented at 164 

6.25 Hz after which an ambiguous word was presented. The SOAs at which ambiguous words were 165 

presented ranged between 0.1 and 0.4 seconds in 12 equidistant steps (spanning exactly two cycles of 166 

6.25 Hz). Participants had to indicate which word they heard. For the consonant experiment, we found 167 

that a 6.25 Hz sinusoid fitted to the data yielded a higher explained variance than expected by chance for 168 

the /xɑt/-/dɑt/ morph (p = 0.006, r2 = 0.661; Figure 3C), but not for the /xat/-/dat/ morph (p > 0.05; Figure 169 

3B). For the vowel experiment, we could significantly fit a sinusoid for the /dɑt/-/dat/ (p = 0.039, r2 = 170 

Figure 3. Behavioral results. A) Psychometric curves for the consonant experiment (separate lines for the two 
vowel types). B) Outcome of the main experiment for the /xat/ - /dat/ spectrum. The left panel shows the average 
demeaned time course across stimulus onset asynchronies (SOA). The right panel shows a histogram of the null 
distribution together with the observed explained variance of the sinusoid fit (red line) and the 95th percentile 
(dotted line) of the null distribution. C) Same as B for the /xɑt/-/dɑt/ spectrum. D-F) Same as A-C for the vowel 
experiment. Error bars indicate the standard error of the mean. Black lines indicate the best fitted curve (gray if 
not significant).  
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0.523; Figure 3E), but not the /xɑt/-/xat/ morph (p > 0.05; Figure 3F). In sum, we could only fit a significant 171 

curve for morphs in which both varied traits had opposing frequencies in the word pairs, that is for the 172 

/xɑt/ - /dɑt/, cVw – CVW, morph and the /dɑt/ - /dat/, CVW – Cvw, morph. This was in line with the 173 

outcome of the computational model (Figure 2). 174 

 175 

MEG-experiment 176 

The output of our computational model showed that event probability determines whether we can expect 177 

phase-dependent categorization. Moreover, the phase-dependent categorization was different for the 178 

phoneme and the word level of analysis. However, in the psychophysics experiment, all responses are 179 

based on an integration across both levels of analyses as there is only one behavioral output. To bridge 180 

this gap, we designed a MEG study in which the phase-dependent categorization effects at different levels 181 

of analysis could be source localized to cortical regions that are known to correspond to varying levels of 182 

linguistic computations23,24. Indeed, earlier auditory regions such as superior temporal gyrus (STG) are 183 

more sensitive to phoneme content, such as vowel and consonant traits, while regions higher in the 184 

auditory hierarchy, such as medial temporal 185 

gyrus (MTG) and inferior frontal gyrus (IFG) 186 

are sensitive to lexical representation and 187 

temporal integration, respectively23,25-28. If 188 

phoneme or word frequency relate to 189 

phase-dependent categorization, the phase 190 

of ongoing oscillations in distinct cortical 191 

regions should bias categorization based on 192 

the level of analysis of that region. To test 193 

this hypothesis, we presented the 194 

ambiguous morphs of the consonant 195 

experiment to Dutch participants while 196 

recording their neural activity with MEG and 197 

source localizing the response to the STG, 198 

MTG and IFG.  199 

Figure 4. Pre-stimulus power in regions of interest. A) The 
three regions of interest. B) Power spectra averaged for the -
1-0 sec time window averaged across the two ambiguous 
stimuli and response choices. C) Time-frequency response 
averaged across the ambiguous stimuli and response options. 
Note that data is padded from time point 0 on (explaining the 
sharp power drop around zero).  
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First we looked at the overall power response in the pre-stimulus period (see Supplementary 200 

Figure 1 for post-stimulus responses). All analyses were based on using an array-gain beamformer which 201 

corrects for center-of-head biases without the need of a baseline29,30. To limit computational resources, 202 

we focused on the first PCA of all grid points part of the ROI quantifying the component explaining the 203 

most variance in the ongoing data. In all ROIs we found theta peak (peak values: 8.4 Hz, 8.6 Hz, and 8.2 204 

Hz for STS, MTG, and IFG, respectively) across the whole pre-stimulus window, but this peak was weaker 205 

for the IFG (Figure 4). We compared pre-stimulus power values dependent on the response of the 206 

participant for the ambiguous stimuli but found no differences (all p > 0.573).  207 

 For all participants, we could individually determine the most ambiguous morph in the first part 208 

of the experiment and all, but one could maintain an ambiguous percept throughout the experiment 209 

(Figure 5A-B). We investigated whether phase-dependent categorization was determined by phoneme or 210 

word frequency for each ROI separately. At each pre-stimulus time-frequency point, we performed a 211 

circular-linear correlation between the pre-stimulus phase and response type (low or high trait frequency; 212 

that is, for the consonant contrast /xɑt/ [cVw] and /xat/ [cvW] vs /dɑt/ [CVW] and /dat/ [Cvw]; for the 213 

word contrast /xɑt/ [cVw] and /dat/ [Cvw] vs /xat/ [cvW] and /dɑt/ [CVW]). To correct for multiple 214 

comparisons, we ran cluster-based statistics31. For the consonant contrast we found a significant effect of 215 

consonant frequency in the STG (Figure 5C; cluster statistic: 69.655; p-value: 0.022; frequency range: 4.4 216 

- 9.0 Hz; time range: -0.30 - -0.10 sec; peak t(21)-value: 4.119 at 7.617 Hz, -0.20 sec), but not in the MTG 217 

or IFG (p > 0.05). For the word contrast, we found a significant effect of word frequency in the MTG (Figure 218 

5C; cluster statistic: 66.138, p-value: 0.019; frequency range: 4.4 - 8.5 Hz; time range: -0.25 – 0 sec; peak 219 

t(21)-value: 3.589 at 6.445 Hz, -0.10 sec), but not in the STG or IFG (p > 0.05). In sum, we found a double 220 

dissociation between ROI and trait type. 221 

 To further evaluate the exact phase differences for each ambiguous sound, we computed the 222 

average phase at which participants heard either of the two words. Phases were extracted for each 223 

individual’s peak time-frequency point within the significant cluster (for both morphs separately). The 224 

exact MEG phase was not expected to be identical across participants as it is difficult to determine 225 

excitability levels of an oscillation from MEG phase and individual stimulus processing times might differ. 226 

Rather, high event probabilities should be represented at the same phase, while low event probabilities 227 

are represented at the opposite phase within each participant. We took the word /dɑt/, which had high 228 

frequencies on all traits (CVW word), as a reference word and took the phase difference between the 229 

average phase at which participants heard /dɑt/ and one of the three words (ambiguous words perceived 230 
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as /xɑt/, /xat/, or /dat/). We expected that for high frequency traits the phase difference would be zero, 231 

while for low frequency traits the phase difference would be around π relative to the reference word. To 232 

test this, we performed a v-test that tests for non-uniformity with a specific direction for each of the three 233 

words per ROI. To generate a p-value that combines the three values (as we expected all three contrasts 234 

to be significant), we multiplied the three probabilities yielding the probability of all three events 235 

happening at the same time (assuming independent tests).  236 

 In STG, we found that the average phase difference for the three words /xɑt/, /xat/, or /dat/ was 237 

0.90π, 0.87π, and -0.027π respectively. The three phase differences were close to the expected phase 238 

differences: the low frequency consonants having a phase difference of π, while the high frequency 239 

consonant having a phase difference of zero (Figure 5D). The individual tests showed significance (/xɑt/: 240 

vstat = 10.56, pval < 0.001; /xat/: vstat = 8.47, pval = 0.005; /dat/: vstat = 10.18, pval = 0.001 respectively) 241 

as well as the combined probability (p < 0.001). In MTG, the average phase difference for the three words 242 

/xɑt/, /xat/, or /dat/ was 0.84π, -0.026π, and -0.99π respectively. The phase differences were close to the 243 

expected phase differences: the low frequency words having a phase difference of π and the high 244 

frequency word having a phase difference of zero. The individual tests showed significance (/xɑt/: vstat = 245 

Figure 5. MEG results. A) Behavioral responses in the MEG experiment for part one of the experiment. B) 
Behavioral response for the main experiment. Error bars reflect the standard error of the mean. C) Circular-linear 
correlation results show that in STG phase determines the percept of consonant frequency (top) while in MTG 
phase determines the percept of word frequency (bottom). White outline indicates significance (p < 0.05) 
according to the cluster-based statistical test. D) Phase difference with CVW /dɑt/ at the individual peak time-
frequency point in C. In STG, words with high frequency consonants (Cxx words) had a phase difference of 0, 
while words with low frequency consonants (cxx words) had a phase difference of around π (top). In MTG, high 
frequency words (xxW words) had a phase difference of 0, while low frequency words (xxw words) had a phase 
difference of around π (bottom). 
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5.91.56, pval = 0.037; /xat/: vstat = 9.26, pval = 0.003; /dat/: vstat = 7.36, pval = 0.013 respectively) as well 246 

as the combined probability (p < 0.001). Thus, also for the individual words, the phase differences matched 247 

the neural sensitivity of the underlying region.  248 
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Discussion 249 

In the current study we used computational modelling, psychophysics, and MEG recordings to 250 

demonstrate that variations in neural sensitivity to event probability operationalized as phoneme and 251 

word frequency can result in phase-dependent perceptual categorization. We showed that ambiguous 252 

words presented at different phases, either through neural entrainment or by extracting the phase from 253 

MEG, are interpreted as one or another word depending on the time or phase of presentation. Moreover, 254 

in the MEG data we could dissociate these effects to separate cortical regions: phase-dependent 255 

categorization in STG depended on phoneme frequency, while word frequency modulated phase-256 

dependent responses in MTG. The behavioral findings and the double dissociation between STG and MTG 257 

responses matched the results from a computational model that uses oscillations, together with varying 258 

neural sensitivity, to capture categorization responses. These results demonstrate that the neural phase 259 

code relies on ordering based on neural sensitivity, directly linking phase-coding to behavioral outcomes 260 

in a categorization task.  261 

 Most studies investigating the direct link between ongoing oscillatory phase and behavior have 262 

focused on assessing the role of oscillatory phase in modulating overall performance measures, such as 263 

accuracy8,32, detection4,5,33, or reaction times34. These studies are all based on the assumption that 264 

oscillations modulate overall firing rates and subsequent neural processing should be optimized at phases 265 

where neural excitability is high3. We here argue that this view might be too simplistic and does not 266 

provide the full picture of the role of oscillations for neural computation. Instead of merely providing 267 

windows of processing opportunity3,13, oscillations provide a means to organize the complex neural 268 

dynamics by activating neural populations at different neural phases14,20,35. This organizational principle 269 

of phase coding has extensively been shown with invasive recordings in animals36,37. Moreover, prior 270 

computational modelling has shown the computational benefit of this organizational principle, as it 271 

effectively increases the representational space in the brain35 and changes the formal expressive power 272 

of a system38-40.  273 

It has been an open debate what are the organizational principles of phase coding, that is, what 274 

determines when a neuron is activated37. In working memory paradigms, sequence order has often been 275 

implied to be the main organizational principle of phase coding41,42. This is based on studies primarily in 276 

rats that show phase precession in which the order of the phase code is linked to the order of upcoming 277 

locations in an explorative maze task36. In our study, no sequence order can be imposed. Nonetheless, we 278 

find that the behavioral outcome of a phase code is based on the frequency of phonemes and words in 279 
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the Dutch language by using computational modeling, psychophysics, and MEG. This finding suggests that 280 

sequence order is not the only principle that can generate a phase code. Instead, overall event probability 281 

of words within a language modulates the neural sensitivity and can also impose a phase code17. While 282 

the present study is focused on event probability based on the overall frequency of information in a 283 

language, we hypothesize that this finding can be extended to event probability that also depends on 284 

contextual knowledge. Evidently, contextual event probability and sequential order are related: events 285 

that are going to happen earlier in the future are more probable in the short-term. Moreover, events 286 

occurring in the near future have a higher behavioral relevance. Both probability and behavioral relevance 287 

could have a consequence for how excitable individual neural populations are. Therefore, excitability 288 

shifts, rather than solely order or event probability, could be the core principle that organizes the phase 289 

code. 290 

The brain’s sensitivity to varying levels of event likelihood based on the statistics in the world has 291 

been shown in a plethora of studies which demonstrate that the brain is more sensitive to stimuli that are 292 

more likely16. However, the consequence of a probability manipulation in combination with oscillatory 293 

dynamics has rarely been studied. We here provide the first behavioral evidence showing that event 294 

probability and oscillations together provide a phase code which activates event representations on 295 

different phases based on their likelihood. It is unknown how strongly event statistics modulate neural 296 

sensitivity. This could potentially be relevant for the behavior of a neural system as our computational 297 

model suggests a non-linear change in phase-dependent perceptual outcomes for increasing neural 298 

sensitivities (Figure 2E). Probability modulations as tested in the current study are rather static and 299 

depend on word probability in language, which has been learned over the course of one’s life. It would be 300 

interesting to also investigate whether these effects are dynamic by varying event probabilities within the 301 

course of an experiment. If this manipulation also leads to similar phase-dependent categorization, phase 302 

codes would not only be adjusted solely based on long-term hard-coded changes in excitability, but also 303 

based on dynamically changing excitability levels that rely on top-down feedback17.  304 

It has been proposed that speech comprehension involves first parsing speech into separate 305 

temporal chunks using neural oscillations43-45. This segmentation is hypothetically done by aligning theta 306 

band oscillations with syllables in an ongoing speech stream44. In this way, one can parse and identify 307 

individual syllables and use them for higher order linguistic operations46. In our study, it is difficult to 308 

separate segmentation or ‘chunking’ from any kind of process of interpretation. If a word is first 309 

‘segmented’ or ‘chunked’ by theta oscillations, the information about the phase would be lost in 310 
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subsequent operations. However, in our study, it is exactly the phase of the theta oscillation that 311 

determines how a word is interpreted. Note also that the reported effects are strikingly close to the 6.25 312 

Hz frequency we found in our previous study11. Therefore, our study shows that segmentation or chunking 313 

through oscillations cannot be treated as a wholly separate process from word recognition, because 314 

oscillations also provide a categorization mechanism alongside any potential segmentation or ‘chunking’ 315 

operation (see also 47,48l49).  316 

We have previously argued that during natural speech and language processing temporal 317 

information can be used to infer information content, in other words, time can be a cue for content (also 318 

see 17,50). This time-content relation is governed by the observation that words that are more likely in the 319 

current context are uttered with shorter inter-word-intervals17,51,52. Combining this observation with 320 

theories of oscillatory tracking results in more likely words being naturally presented at earlier, less 321 

excitable phases, which we confirmed with our computational model17. This type of phase code can aid 322 

speech comprehension: when information is ambiguous, the phase of an oscillation, and thereby the time 323 

of word presentation, can be used to determine the percept. Notably, our current study does put some 324 

limitations on this use of phase-dependent categorization. Our behavioral analysis shows that this phase-325 

dependent categorization works mostly when trait features across the word are all either frequent or non-326 

frequent. Yet, it is not clear how likelihood information that varies based on the level of linguistic analysis 327 

interacts with timing in natural speech. To investigate this, one would need to show how top-down 328 

feedback modulates phase-dependent categorization in sentence context as top-down feedback strongly 329 

influences the sensitivity of individual word nodes as well as the timing of speech17.  330 

In our computational model, we postulated a separate phonological and lexical level of analysis. 331 

This is in line with neuroscientific results, which show that speech analysis is split up in separate analytical 332 

levels across the cortex23,24,53. Specifically, it is suggested that STG is sensitive to phonological content, 333 

while MTG is sensitive to lexical access and word content. It is known that anatomical and functional 334 

connectivity between these regions operate via early auditory cortex. There are direct connections 335 

between early auditory cortex and STG and MTG, but also connections between STG and MTG54-56. Our 336 

model currently relies primarily on the direct connections. An additional area strongly involved in the 337 

language network is the IFG. We could not find any phase-dependent categorization in the IFG. This null 338 

finding is not necessarily surprising as IFG has mostly been associated with higher-order language 339 

processes that involve temporal integration across words and syntactic analysis27,28,57. IFG might simply 340 

be less sensitive to phonological or word-level likelihood differences. Alternatively, it is possible that we 341 
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did not find phase-dependent effects simply because there is too much temporal variability in the IFG 342 

responses to speech. As we map phase of a cortical region directly to the onset of the presented sound, 343 

any variability will reduce the accuracy of the phase estimation in relation with the behavioral outcome. 344 

It can be expected that an area high up the processing hierarchy such as IFG has relatively high temporal 345 

variability of the neural response to speech. 346 

 To conclude, we show that word categorization depends on the oscillatory phase of the neural 347 

populations in regions where lexical and phonological information effects are typically observed. The 348 

categorization bias is mediated by the trait or linguistic unit frequency that is putatively represented in 349 

the region, perhaps through variation in sensitivity of diverse neural populations. We find a double 350 

dissociation in which the phase in STG biases participants to the low or high frequent consonant percept, 351 

while the phase in MTG biases participants to the low or high frequent word percept. These results 352 

demonstrate that oscillations provide a temporal ordering of neural activation based on the excitability 353 

of neural populations. Moreover, our study highlights the role of low frequency oscillations to organize 354 

neural activation patterns along a gradient of event probability and provide an outlook for further 355 

investigating the fundamental mechanisms that may be expressed via population rhythmic activity.   356 
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Online Methods  357 

Computational modelling 358 

We used a modified version of the Speech Tracking in a Model Constrained Oscillatory Network 359 

(STiMCON) model17. In this model, a population of neural nodes is modulated by an oscillation and 360 

individual nodes are additionally modulated based on their connectivity pattern with sensory input (see 361 

formula (1). In the original model individual nodes are also modulated based on feedback). Each node is 362 

governed by a non-linear inhibition function: 363 

𝑖𝑛ℎ𝑖𝑏(𝑇𝑎) =  {
−3 ∗ 𝐵𝑎𝑠𝑒𝐼𝑛ℎ𝑖𝑏, 𝑇𝑎

3 ∗ 𝐵𝑎𝑠𝑒𝐼𝑛ℎ𝑖𝑏, 20 ≤ 𝑇𝑎 ≤ 100
𝐵𝑎𝑠𝑒𝐼𝑛ℎ𝑖𝑏, 𝑇𝑎 > 100

     (2) 364 

in which BaseInhib is a constant factor for the base inhibition level (set to -0.2, same as in 17). Initiation of 365 

the inhibition function is governed by the activation threshold (by default set on 1, but varies with neural 366 

sensitivity, see main text). First, this function creates suprathreshold activation after which nodes are 367 

inhibited. The oscillatory function is as follows:  368 

𝑜𝑠𝑐(𝑇) = 𝐴𝑚 ∗ 𝑒2𝜋𝑖𝜔𝑇+𝜄𝜑      (3) 369 

in which Am is the amplitude of the oscillator (set to 1),  the frequency (set to 6.25Hz in accordance with 370 

11), and  the phase offset (variable). For the psychophysics experiment the phase offset is equalized with 371 

the phase of the stimulus input. In the model, sensory input is directed to two different levels of analysis, 372 

a phonetic level and a word level of analysis. Sensory input itself is modelled as a linear function ranging 373 

between 0 to 1 in arbitrary units to the individual nodes lasting half a cycle. The maximum strength of the 374 

sensory input depends on the morph level presented (see main text).  375 

 376 

Behavioral experiment 377 

Participants. In total 36 (28 female; age range = 18-40; mean age = 24.3) and 28 (20 female; age range = 378 

20-59; mean age = 27.6) Dutch native speakers completed the session for the consonant and vowel 379 

experiment respectively. All participants reported normal hearing and did not have any history of 380 

language related disorders. Participants gave informed consent online. The study was approved by the 381 

Ethics Board of the Social Sciences Faculty of Radboud University in Nijmegen. Participants received 382 

monetary reimbursement for their participation.  383 
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Materials. Google text-to-speech was used to utter the Dutch word daad (IPA [international 384 

phonetic alphabet]: /dat/; translation: deed) and gaat (IPA: /xat/; translation: go). We spliced the audio-385 

file to only contain the /da/ and /xa/ parts. We max-normalized these spliced audio fragments. In praat58 386 

we equalized the pitch contours of /da/ and /xa/ to lie in the middle of the original pitch contours of the 387 

two sounds. For the consonant manipulation we morphed the two sounds together by taking a weighted 388 

average of the two audio fragments in 11 spaced steps. Note that this step is different than in our original 389 

study11 in which we changed the formants directly, but it was necessary as we could not achieve a guttural 390 

/x/ made in Dutch by using a formant change only. While for syllable perception this procedure is not a 391 

problem (even though the sound is then closer to a /ga/ than a /xa/), for the chosen words a guttural /x/ 392 

is needed to understand the words. For the vowel manipulation, we subsequently changed the temporal 393 

modulation (for all 11 morphs) of the original /a/ sound to be 0.75 of the original duration using PSOLA59 394 

(which can maintain pitch while changing temporal rate). Then we changed the spectral content of the 395 

second formant in 11 steps from 1300-1700 Hz during the vowel utterance using the burgs LPC method60. 396 

This morph generates the phoneme /ɑ/. We again max-normalized the output of these morphs. We 397 

spliced from the original /dat/ sound fragment the /t/, shortened it to 0.9 of the original length (to 398 

improve the sound audibility) and concatenated the /t/ at the end of all created morphs. The amplitude 399 

of the last 0.2 seconds was linearly dampened. This whole procedure created a total of 11×11 morphs, 400 

morphing between the four extreme sounds /xat/, /dat/, /xɑt/, and /dɑt/. Note that from all these morphs 401 

we only used a total of 11×4–4 sounds, that is, the sounds at which either the consonant or vowel was at 402 

its most extreme value. We choose these words as they are dissociable in vowel, consonant and word 403 

frequency (see table 1). 404 

For the psychophysics experiment, we presented a rhythmic sequence of broadband noise at 6.25 405 

Hz before the word. Broadband noise consisted of 50 ms (with 5 ms linear amplitude ramp up and down) 406 

between 1.1 and 3.1 kHz. Sequences lasted randomly 2, 3, or 4 seconds. Stimulus onset asynchrony (SOAs) 407 

of the word relative to the final noise in the sequence was set to be between 0.1 to 0.42 in 12 equidistant 408 

steps (covering two cycles of 6.25 Hz).   409 

Procedure. All procedures were done online using Django web development, running under 410 

Apache. In the first part of the experiment, we determined the most ambiguous stimulus as the morph 411 

for which participants heard on of the two extremes of the morph 50% of the time. In both experiments, 412 

this entails two morph spectra: for the consonant experiment the /dat/-/xat/ and /dɑt/-/xɑt/ spectra; for 413 

the vowel experiment the /dat/-/dɑt/ and /xat/-/xɑt/ spectra. To do so, we presented all 22 morphed 414 
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sounds for the respective experiment and participants had to indicate what word they heard. A trial 415 

consisted of a silent period of 0.5 seconds followed by the presentation of the audio fragment. 0.25 416 

seconds after the sound, participants viewed the response options and could indicate via a button press 417 

which sound they heard. Participants received two response options corresponding to the two extremes 418 

of the spectrum to which the sound morph belonged to. In total, each sound was presented 12 times, 419 

corresponding to 264 trials divided into two blocks. In total, the first part lasted about 8 minutes. 420 

Immediately after this part for both spectra a psychometric logit function was fitted, and the most 421 

ambiguous sound was determined.  422 

The second, main, part of the experiment consisted of 14 blocks in which we presented the 423 

rhythmic sequences with the final words. In total we presented 648 experimental trials: nine repetitions, 424 

three sequence lengths, twelve SOAs, and two sound types. We added 5% of filler trials consisting of the 425 

extreme sound types (at random sequence length and SOAs) resulting in a total of 680 trials. These trials 426 

were added to test that participants were performing the task and not randomly pressing buttons and to 427 

make sure that in some instances there was also a clear correct answer. Again, after the button press 428 

there was an interval of 0.5 seconds. Throughout the experiment we adapted the ambiguous sound when 429 

participants heard the same sound too often in a row. Specifically, if participants categorized the 430 

ambiguous sound as the same word for 10 times in a row (for each spectra), we adjusted the ambiguous 431 

sound one morph step away from the perceived word. 432 

Behavioral analysis. For the first part of the experiment, we fitted a psychometric curve using the 433 

curve_fit function in the scipy toolbox in python and extracted the most ambiguous stimulus for each 434 

participant. We had difficulty to ensure that participants maintained an ambiguous percept either during 435 

the psychometric determination or during the main experiment. We therefore had to exclude quite a few 436 

participants from the analysis. This is likely due to the online procedure that needed to be done during 437 

the COVID pandemic to which we had to rely on the audio of the participants at their home situation. As 438 

the experimental results hinge on having an ambiguous percept, we needed to exclude participants who 439 

could not maintain an ambiguous word perception throughout the experiment. During the first part of 440 

the experiment, we could not fit an ambiguous sound that stood in between the 10th and 90th percentile 441 

of the morph spectrum for 7 and 4 participants for consonant and vowel experiment, respectively. Also, 442 

during the main experiment, 6 and 11 participants reported low perceived differences between the two 443 

unambiguous words in the corresponding spectrum, respectively (under 20% difference between the 444 

answers to the two unambiguous words; likely due to a failure to comply with the task or difficulties with 445 
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the task itself). An additional 5 and 1 participants reached morphs outside the 10 th and 90th percentile 446 

ranges for more than half the duration of the main experiment, respectively. This ended us with 18 and 447 

12 participants for the consonant and vowel experiment, respectively. Trials in which morph estimations 448 

were outside of the 10th and 90th percentile ranges were excluded from the analysis. 449 

For those participants who met our criteria, we created a time course across the twelve SOAs 450 

used. For each participant we subtracted the mean of the time course. Then we averaged all time-courses 451 

and fitted a 6.25 Hz sinusoid to the data (with varying amplitude and phase) and extracted the explained 452 

variance. We generated a null distribution by randomly permuting (n = 10,000) the average time course 453 

and refitting the sinusoid. One-sided p-values were extracted by comparing the proportion of the 454 

observed explained variance with the explained variance of the null distribution. 455 

 456 

MEG experiment  457 

Participants. 23 Dutch native speakers (13 females; age range: 18-59; mean age = 34.3; one author 458 

participated as well) participated in the study. 22 were right-handed (one reported no preference in 459 

hand). All reported normal hearing, had normal or corrected-to-normal vision, and did not have any 460 

history of dyslexia or other language-related disorders. Participants performed a screening for their 461 

eligibility in the MEG and MRI and gave written informed consent. The study was approved by the ethical 462 

Commission for human research Arnhem/Nijmegen (project number CMO2014/288). All participants 463 

were reimbursed for their participation. One participant was excluded for not maintaining an ambiguous 464 

percept throughout the experiment. 465 

Procedure. Just as the behavioral experiment, the MEG experiment consisted of two parts. In the 466 

first part, we repeated the presentation of the psychometric function to determine the most ambiguous 467 

sounds. After the sound was finished the response options were immediately shown. The next sound was 468 

presented at random interval between 0.5-1.5 seconds after the response. In the MEG experiment, we 469 

only used the consonant morphs. During the main part of the experiment, we presented 50% of the time 470 

ambiguous (n = 160 per spectrum) and 50% of the time non-ambiguous sounds (n = 80 for each extreme 471 

per spectrum). All trial types were presented in pseudo-random order. After sound presentation, there 472 

was a 1 second interval before the sound options were shown. The next sound was presented at a random 473 

interval between 2 and 4 seconds after the response. After 80 sounds participants had a break. The 474 

response options of participants (pressing left or right for /d/ vs /x/, respectively) were switched halfway 475 
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through the experiment to ensure that the effects were not due to motor plans. Half of the participants 476 

started with /d/ as the left option and the other half with /x/ as the left option. During the experiment, 477 

the morph was changed if the participant reported the same percept for the ambiguous sound within one 478 

spectrum for 10 consecutive answers. At the end of the experiment, we collected an auditory localizer 479 

(data not analyzed here) and a scalp digitization using the Polhemus Fastrak digitizer. All stimulus 480 

presentation was programmed in Psychtoolbox61 and run in the linux environment.  481 

MEG pre-processing. Surface-based source models from the MRI were made using grid points that 482 

were defined on the cortical sheet of the automatic segmentation of freesurfer6.0 [50] in combination 483 

with pre-processing tools from the HCP workbench1.3.2 [51] to down-sample the mesh to 4k vertices per 484 

hemisphere. The MRI was co-registered to the MEG by using the previously defined fiducials as well as an 485 

automatic alignment of the MRI to the Polhemus headshape using the Fieldtrip20211102 software [52]. 486 

Head models were based on the SPM segmentation incorporated in Fieldtrip. Regions of interest (ROIs) 487 

were the superior temporal gyrus (STG), the middle temporal gyrus (MTG) and the inferior frontal cortex 488 

(IFG). Parcellations were based on the Freesurfer parcellations. 489 

Preprocessing of MEG involved epoching the data both between -2 and 0 seconds and -1 to +1 490 

seconds relative to sound onset. This separate epoching was necessary to ensure that for the pre-stimulus 491 

analyses no data from the post-stimulus interval could leak into the pre-stimulus interval due to filtering 492 

during preprocessing. Data was then padded for 0.5 seconds at the end of the epoch with the last value 493 

of the epoch. Data was low-passed at 100 Hz and DFT notch filters were applied at 50, 100 and 150 Hz. 494 

Then, data was down-sampled to 300 Hz and the padded interval was removed again. ICA was performed 495 

to remove heartbeat-related signals and eye blinks and movements. On average 4.3 components (range: 496 

3-6 components) were removed from the analysis. After that, trials with excessive noise were removed 497 

via visual inspection with an average of 12.7 removed trials (range: 4-22 trials). We calculated a common 498 

spatial filter using lcmv filter based on the post-stimulus data with a lambda of 5%. Many spatial filters 499 

have a center of the head bias, resulting in stronger activity in the center compared to the cortical 500 

surface29. This bias is often counteracted by having a clear baseline period for each trial to which the data 501 

is referenced to. However, for our analysis no clear baseline period can be defined as we were interested 502 

in the pre-stimulus period. Therefore, to counteract the center of head bias we used an array-gain 503 

beamformer which normalized the spatial filter29. This filter was applied to all single trial estimates of the 504 

pre-stimulus data. To extract a single time course representative of our ROIs we extracted the first PCA 505 

for each ROI. 506 
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MEG analysis: We performed a time-frequency analysis on all source trials using a wavelet 507 

approach extracting frequencies from 1 to 15 Hz in steps of 0.5 Hz at widths matching 700 milliseconds 508 

for the timepoints -0.5 up to 0 seconds in steps of 0.05 seconds extracting the phase of the complex 509 

Fourier spectra. Data corresponding to the ambiguous sounds were then split according to the response 510 

of the participants based on two different contrast binning: 511 

1) Consonant frequency binning: responses where the ambiguous word was interpreted as a word 512 

with a low frequency consonant (/xɑt/ and /xat/) versus a word with a high frequency consonant 513 

(/dɑt/ and /dat/). 514 

2) Word frequency binning: responses where the ambiguous word was interpreted as a low 515 

frequency word (/dat/ and /xɑt/) versus a high frequency word (/dɑt/ and /xat/). 516 

For these two contrasts, low frequency traits were labeled with a zero and high frequency traits 517 

with a one. A circular-linear correlation was performed between the pre-stimulus phase and the response 518 

of the participant for all time and frequency points. This analysis produced a correlation value and a p-519 

value for each participant. As the exact correlation value is influenced by the number of trials included in 520 

the correlation, we performed statistics using the inverse of the normative cumulative distribution based 521 

on the p-value of the correlation of the individual participants (also see62). Group statistics were 522 

performed by statistically testing these z-values against zero using a one-sample t-test. To control for 523 

multiple comparisons across all time-frequency points we performed cluster-based permutation tests31. 524 

To further inspect the effect of the two contrasts we split the data based on all four possible 525 

response options. Then, we extracted for each participant and for each of the possible perceived words 526 

the average phase at which participants reported perceiving that specific word. We calculated the phase 527 

difference between the average phase at which participants perceived the word /dɑt/ and the other three 528 

options. The logic of this analysis was as follows: /dɑt/ has high frequency features for all investigated 529 

feature dimensions. Words that also have a high frequency content should therefore show a phase 530 

difference of zero with /dɑt/, but words that have a low frequency content should show a phase difference 531 

of  with /dɑt/. We statistically tested whether the phases were non-uniform around the expected phase 532 

using the v-test statistic63,64. This test will show a significant effect only when the data is both non-uniform 533 

and the phase is around the expected phase. 534 

For the power analysis, we used the same wavelet approach as for the time-frequency plots 535 

(Figure 4C) and converted the data in z-scores across the whole time-frequency window. For the power 536 
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spectra (Figure 4B), we cut the data from -1 to 0, padded the data out to 5 seconds and extracted the 537 

power using Hanning tapers.   538 
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