Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Phase-dependent word perception emerges from region-specific sensitivity to the statistics of language

MPG-Autoren
/persons/resource/persons275245

Titone,  Lorenzo
Max Planck Research Group Language Cycles, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Oever_2024.pdf
(Verlagsversion), 898KB

Oever_pre.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)

Oever_2024_Suppl.pdf
(Ergänzendes Material), 3MB

Zitation

Oever, S. T., Titone, L., Rietmolen, N. t., & Martin, A. E. (2024). Phase-dependent word perception emerges from region-specific sensitivity to the statistics of language. PNAS, 121(23): e2320489121. doi:10.1073/pnas.2320489121.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-0988-0
Zusammenfassung
Neural oscillations reflect fluctuations in excitability, which biases the percept of ambiguous sensory input. Why this bias occurs is still not fully understood. We hypothesized that neural populations representing likely events are more sensitive, and thereby become active on earlier oscillatory phases, when the ensemble itself is less excitable. Perception of ambiguous input presented during less-excitable phases should therefore be biased toward frequent or predictable stimuli that have lower activation thresholds. Here, we show such a frequency bias in spoken word recognition using psychophysics, magnetoencephalography (MEG), and computational modelling. With MEG, we found a double dissociation, where the phase of oscillations in the superior temporal gyrus and medial temporal gyrus biased word-identification behavior based on phoneme and lexical frequencies, respectively. This finding was reproduced in a computational model. These results demonstrate that oscillations provide a temporal ordering of neural activity based on the sensitivity of separable neural populations.