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Abstract 32 

One of the potential and promising adjuvant therapies for Alzheimer’s disease is that of non-33 

invasive transcranial neurostimulation to potentiate cognitive training interventions. 34 

Conceptually, this is achieved by driving brain dynamics towards an optimal state for an effective 35 

facilitation of cognitive training interventions. However, current neurostimulation protocols rely 36 

on experimental trial-and-error approaches that result in variability of symptom improvements 37 

and suboptimal progress. Here, we leveraged whole-brain computational modelling by assessing 38 

the regional susceptibility towards optimal brain dynamics from Alzheimer’s disease. In practice, 39 

we followed the three-part concept of Dynamic Sensitivity Analysis by first understanding 40 

empirical differences between healthy controls and patients with mild cognitive impairment and 41 

mild dementia due to Alzheimer’s Disease; secondly, by building computational models for all 42 

individuals in the mild cognitive impairment and mild dementia cohorts; and thirdly, by 43 

perturbing brain regions and assessing the impact on the recovery of brain dynamics to the 44 

healthy state (here defined in functional terms, summarised by a measure of metastability for the 45 

healthy group). By doing so, we show the importance of key regions, along the anterior-posterior 46 

medial line, in driving in-silico improvement of mild dementia and mild cognitive impairment 47 

groups. Moreover, this subset consists mainly of regions with high structural nodal degree. 48 

Overall, this in-silico perturbational approach could inform the design of stimulation strategies 49 

for re-establishing healthy brain dynamics, putatively facilitating effective cognitive 50 

interventions targeting the cognitive decline in Alzheimer’s disease.  51 

Introduction 52 

For the delivery of an effective cognitive intervention, the ongoing state of the patient is surely 53 

important. For example, it is likely that delivering cognitive intervention to a drowsy person will 54 

result in minimal to no improvements. Similarly, neuropathological states such as Alzheimer’s 55 

disease (AD) can prevent a more effective cognitive intervention compared to that of a healthy 56 
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person. The contention here is that neurostimulation can drive the Alzheimer’s brain state to 57 

healthier dynamics so that intervention could be more effective. 58 

 59 

Alzheimer’s disease is a complex neurodegenerative disease resulting in decline of cognitive 60 

functions1. Concerted scientific efforts have been developed to study and understand its 61 

progression across fields such as genetics, molecular biology, and neuroimaging2. These 62 

initiatives have generated a lot of valuable data to study, diagnose and analyse the disease 63 

progression1. Yet, a more mechanistic interpretation is required both for understanding the 64 

disease itself3 and for predicting the outcomes of potential pharmacological interventions, non-65 

invasive electrical stimulations and cognitive training treatments4–6.  66 

 67 

Conceptually, we can consider every neurodegenerative or psychiatric condition, such as 68 

Alzheimer’s, Schizophrenia and Autism, to be depicted by a condition-specific brain state with 69 

altered spatio-temporal dynamics compared to that of a neurotypical (healthy) brain state5. This 70 

opens avenues towards the diagnosis, prognosis, and potential treatment intervention 71 

paradigms7. How to best summarise discrete brain states has been the subject of current focus in 72 

the field8, with the prevailing idea being that a brain state can be described by its spatio-temporal 73 

dynamics, understood in terms of functional networks organised in space, waxing and waning in 74 

time9. This description in turn serves for mechanistic scenarios where in-silico models use 75 

information at lower scales (microscopic or mesoscopic) to causally explain the observed changes 76 

at the large-scale brain state level10. Furthermore, it can serve for stimulation paradigms where 77 

mechanistic explanations are relevant in suggesting adequate protocols4–6. 78 

 79 

In neuroimaging, functional magnetic resonance imaging (fMRI) has revealed statistically 80 

significant alterations in brain signals in various conditions, including AD.  To this date, multiple 81 

studies have demonstrated alterations in AD in terms of resting-state functional connectivity 82 

(FC), i.e., how the signals in different brain areas correlate together over time.  On one hand, an 83 
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overall decrease has been detected in functional connections with both hippocampal11–13 and 84 

posterior cingulate regions14,15. On the other hand, increases in FC were detected between 85 

prefrontal cortex and hippocampus11, as well as prefrontal and posterior cingulate cortices14,15. 86 

For these results, a potential compensatory mechanism driven by the prefrontal cortex was 87 

suggested, especially in the earlier stages of the disease16–18. On the level of intrinsic/resting-state 88 

networks, decreases in the Default Mode Network (DMN)19,20,21 and increases in the 89 

Frontoparietal Network (FPN)21 were observed. The DMN results are in line with earlier fMRI 90 

task studies22–25.  91 

 92 

Recently, non-invasive brain stimulation methods targeting the degenerating cortex have been 93 

tested to partially reverse the alterations observed in brain activity in AD26. However, despite its 94 

promising potential, the treatment outcomes of such trial-and-error interventions remain weakly 95 

reliable mainly due to a lack  of a full mechanistic understanding of brain function and the need 96 

for a more principled assessment of the correct perturbations sites to re-establish brain 97 

functional connections and potentially drive clinical improvemen27. Whole-brain network 98 

models, mimicking the dynamic interactions between brain regions at the large-scale, have been 99 

used to further understand the mechanisms that drive alterations in functional connectivity28. 100 

Specifically addressing AD, Demirtas and colleagues used a whole-brain model to show that 101 

noisier local dynamics and lateralization, mainly in the left temporal lobe, drive the observed 102 

changes in FC29. More recently, Perl and colleagues further demonstrated increased stability in 103 

the simulated activity of hippocampal and insular regions when brain atrophy was considered in 104 

the whole-brain model, further suggesting perturbation protocols to drive in-silico recovery 105 

towards the healthy state30. 106 

 107 

Here, our goal was to quantify the level of regional susceptibility to rebalance brain dynamics 108 

from the different AD stages to the optimal brain state. To do so, we followed the three-part 109 

concept of Dynamic Sensitivity Analysis5, where we first summarised the large-scale functional 110 
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organisation of Healthy Controls (HC), Mild Cognitive Impairment due to Alzheimer’s Disease 111 

(MCI) and mild dementia due to Alzheimer’s Disease (AD) cohorts in terms of global brain 112 

connectivity (GBC), metastability and synchrony. Secondly, we built computational models for all 113 

individuals in the MCI and AD conditions. Lastly, we stimulated the brain regions and assessed 114 

the impact on the recovery of brain dynamics to the healthy state (here defined by the measure 115 

of metastability of the HC group). We derived Perturbation Effectivity for Recovery (PER) as the 116 

difference between the simulated and target metastability. Our hypothesis was that both MCI and 117 

AD conditions will have similar in-silico regional perturbation profiles but the intensity of 118 

perturbation needing to drive the transition to the healthy state will be less in the MCI group. 119 

Material and methods 120 

fMRI data 121 

 122 
We used a fMRI dataset from a cohort of 97 participants from the Hospital Clinic de Barcelona, 123 

Barcelona, Spain, classified into 3 groups: 58 HC subjects aged 60.72±6.99 years old 124 

(mean±standard deviation, SD), 20 women; 23 MCI patients aged 69.73±7.77 y.o., 9 women; and 125 

16 AD patients aged 65.00±9.98 y.o., 7 women. The fMRI signals were recorded over 10 minutes 126 

with a sampling rate of 2 seconds and averaged within N=90 regions of interest representing 127 

cortical and subcortical brain regions defined using the AAL atlas31. A more detailed description 128 

of the acquisition and pre-processing steps can be found in29. Clinical and neuropsychological 129 

assessments were recorded to quantify the APOE4 carrier status, the Aβ1–42, p-tau and t-tau 130 

values in CSF, and memory test scores in terms of Buschke AL, AT, RDL and RDT.  131 

 132 

After the pre-processing of the fMRI timeseries, we first demeaned the regional timeseries and 133 

band-pass filtered the data in a narrow range from 0.008 to 0.08 Hz, to exclude physiological noise 134 

confounds, known to be less relevant in this range. The phase of the fMRI signals in this narrow-135 

band was subsequently estimated using the Hilbert transform32. The Hilbert transform expresses 136 

the regional timeseries in terms of a time-varying phase 𝜃(𝑡) and amplitude 𝐴(𝑡) as follows 137 
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𝑥(𝑡) = 𝐴(𝑡) ∗ 𝑒𝑖𝜃(𝑡). The three first and last timepoints of the regional timeseries were excluded 138 

due to the boundary artefacts introduced by the Hilbert transform. 139 

fMRI measures 140 

 141 
We considered in this work measures of fMRI signals to describe brain states that were previously 142 

shown to be significantly altered in patients with Alzheimer’s disease29, namely Global Brain 143 

Connectivity (GBC), metastability and synchrony (Figure 1A).  These measures were calculated 144 

for each fMRI scan and compared statistically between groups. The measure of metastability was 145 

subsequently used to adjust the parameters of the whole-brain network model to approximate 146 

the brain dynamics of MCI and AD participants (Figure 1B) and evaluate the optimal stimulation 147 

sites to approximate HC brain state. 148 

Global Brain Connectivity 149 

For the computation of global brain connectivity (GBC), we first estimated the NxN functional 150 

connectivity matrix as the Pearson correlation between the N=90 band-pass filtered fMRI 151 

timeseries. Then, global brain connectivity was defined as the structural nodal strength  152 

𝐺𝐵𝐶𝑚 =  ∑   
𝑛𝜖𝑁 𝐹𝐶𝑚𝑛     (1) 153 

where 𝐹𝐶𝑚𝑛  is correlation between regions m and n, and N is the number of regions. 154 

Furthermore, we define the mean GBC, 〈𝐺𝐵𝐶〉, as the average across brain regions. 155 

Synchrony and metastability 156 

The measure of synchrony describes the average phase coherence of fMRI signals across an entire 157 

scan, and metastability quantifies how much the levels of phase coherence fluctuate in time. To 158 

evaluate the phase coherence over time, the Kuramoto Order Parameter is calculated at each 159 

instant of time as follows: 160 

𝑅(𝑡)𝑒𝑖𝜙(𝑡) =  
1

𝑁
∑  𝑁

𝑛=1 𝑒𝑖𝜃𝑛(𝑡)   (2) 161 

where 𝜃𝑛(𝑡) is the instantaneous phase of each region n at time t. 𝑅(𝑡) is the order parameter 162 

amplitude quantifying the overall coherence of all the regional phases at time t, such that R = 0 163 

when the system is fully desynchronized, and R = 1 when it is fully synchronised. Synchrony and 164 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.20.537688doi: bioRxiv preprint 

https://paperpile.com/c/ffjvEH/GGb1W
https://doi.org/10.1101/2023.04.20.537688
http://creativecommons.org/licenses/by-nc/4.0/


8 

metastability are defined as the mean and standard deviation of the Kuramoto Order Parameter 165 

over time, respectively33. Intuitively, metastability is low when the level of synchrony of the 166 

system is stable in time (either high or low synchrony), with maximal metastability obtained 167 

when the system fluctuates between periods of low and high synchrony over time. 168 

Statistical comparison between conditions 169 

The statistical analysis for the group difference at the empirical level was quantified with 170 

unpaired two-sided t-test statistics (significance threshold of 0.05). We report corrected 171 

(Bonferroni test) and uncorrected p-values visualised by a green and red star respectively. The 172 

statistical testing for non-stimulated and optimal PER values were performed with the same 173 

analysis for two-sided paired t-test statistics. The correlation analysis between PER values and 174 

physiological and cognitive biomarkers was performed with Pearson’s correlation and the results 175 

are reported for uncorrected p-values. The relationship of optimal PER values across brain 176 

regions and their structural hubness was also quantified with Pearson’s correlation. 177 

Whole-brain Computational Model 178 

Structural Connectivity 179 

For the whole-brain model, we used a group-based structural connectivity matrix derived for the 180 

same N=90 brain areas. The group-based structural connectome was obtained from previously 181 

scanned 16 healthy young adults recruited online at Aarhus university (5 females, age 182 

(mean±SD): 24.7 ± 2.54 y.o.). The details of the dataset and pre-processing steps for the derivation 183 

of the structural connectome from diffusion tensor imaging (DTI) are described in34. Individual 184 

undirected structural connectivity matrices 𝐶𝑛𝑝 were defined, where 𝐶 encodes the connectivity 185 

weights in proportion to the number of sampled fibers between regions n and p. To obtain the 186 

group structural connectome, the individual connectomes were averaged across the sixteen 187 

subjects. 188 
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Model equations 189 

We used a whole-brain network model to approximate the brain dynamics of MCI and AD 190 

participants, consisting in a system of coupled oscillators, each oscillating in the ultra-slow 191 

frequency range of fMRI signals, and coupled together according to the weights derived from the 192 

structural connectivity matrix35,36. Such whole-brain models have been previously shown to 193 

reflect the emerging brain dynamics in fMRI35–38.  194 

 195 

The oscillatory dynamics of each brain region (i.e., each node n in the network) is modelled using  196 

the Stuart-Landau equation, which is a canonical model to describe the behaviour of an oscillator 197 

with a supercritical Hopf-bifurcation, i.e., depending on the parameters, it can exhibit either 198 

damped or self-sustained oscillations39.  199 

 200 

In Cartesian coordinates, the oscillatory dynamics of each uncoupled region of interest (n) is 201 

described as follows 202 

𝑑𝑥𝑛

𝑑𝑡
= (𝑎𝑛 − 𝑥𝑛

2 − 𝑦𝑛
2)𝑥𝑛 − 𝜔𝑛𝑦𝑛 + 𝛽𝜂𝑛(𝑡)  (3) 203 

 204 

𝑑𝑦𝑛

𝑑𝑡
= (𝑎𝑛 − 𝑥𝑛

2 − 𝑦𝑛
2)𝑦𝑛 + 𝜔𝑛𝑥𝑛 + 𝛽𝜂𝑛(𝑡)  (4) 205 

where  𝜂𝑛(𝑡) represents added gaussian noise with standard deviation of 𝛽 = 0.02, 𝑎 is the 206 

bifurcation parameter that positions each brain region at different dynamic regimes (for  𝑎 = 0 207 

at the bifurcation point, 𝑎 < 0 in the fixed point dominated by 𝛽𝜂𝑛 gaussian noise, and 𝑎 > 0 in 208 

the stable limit cycle with oscillations at the intrinsic frequency of 𝑓𝑛 = 𝜔𝑛/2𝜋 Hertz, where 𝜔 is 209 

defined in radians). The values of 𝜔𝑛 are derived for each region of interest n and for each patient 210 

from the empirical fMRI data by taking the peak frequency of the gaussian-smoothed power-211 

spectrum of the band-pass filtered (0.04-0.08Hertz) fMRI signals. Then, we coupled the regional 212 

equations according to the structural connectivity (C) that approximates the large-scale white-213 

matter connectivity of the human cortex35,40. The coupling term, connecting the different regional 214 

equations in the whole-brain network, is modelled as a common difference coupling (the linear 215 
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term of a general coupling function) and weighed by the matrix C. It is to be noted that we don’t 216 

consider the other non-linear terms of the Taylor expansion of the coupling term41,42. Then, the 217 

equations 2 and 3 become: 218 

 219 

𝑑𝑥𝑛

𝑑𝑡
= (𝑎𝑛 − 𝑥𝑛

2 − 𝑦𝑛
2)𝑥𝑛 − 𝜔𝑛𝑦𝑛 + 𝐺 ∑  𝑁

𝑝=1 𝐶𝑛𝑝(𝑥𝑝 − 𝑥𝑛) + 𝛽𝜂𝑛(𝑡)  (5) 220 

𝑑𝑦𝑛

𝑑𝑡
= (𝑎𝑛 − 𝑥𝑛

2 − 𝑦𝑛
2)𝑦𝑛 + 𝜔𝑛𝑥𝑛 + 𝐺 ∑  𝑁

𝑝=1 𝐶𝑛𝑝(𝑦𝑝 − 𝑦𝑛) + 𝛽𝜂𝑛(𝑡)  (6) 221 

 222 

with 𝐶𝑛𝑝(𝑥𝑝 − 𝑥𝑛) describing the difference coupling between region p and n weighted by its 223 

structural weight 𝐶𝑛𝑝 . The matrix C was rescaled for parameter range consistency with previous 224 

works as follows < 𝐶 > = 0.235,36. The variable G, representing the global coupling strength, is the 225 

free parameter used for fitting the whole-brain models to the approximate metastable dynamics 226 

of fMRI signals in each patient. The bifurcation parameter a was set to -0.02 in the simulations. 227 

The dynamic variable 𝑥𝑛 represents the simulated fMRI signal for every node n35,36. 228 

Objective Function 229 

For the model fitting we calculated the metastability of the simulated fMRI signals obtained for a 230 

range of the free parameter G (from G = 0.01 to G = 0.5).  To compare the measures of the 231 

simulated signals with the empirical ones, we calculated the absolute difference between the 232 

measures of synchrony, metastability and mean GBC. To compare the GBC of each brain region, 233 

we calculated the mean squared error between simulations and empirical values. We fitted the 234 

model for each measure separately to show their convergence toward an optimal working point 235 

for each patient in every group. Then, for each patient we used the global coupling G associated 236 

to the minimum of the absolute difference of metastability. 237 

 238 
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Driving transitions between bran states 239 

For the perturbation protocol, we used the bifurcation parameter 𝑎𝑎 to alter bilaterally regional 240 

dynamics either towards a more noise-driven (𝑎𝑎<0) or oscillatory regime (𝑎𝑎>0). After each 241 

stimulation to bilateral areas, we calculated the absolute difference between the metastability of 242 

the simulated signals and the average metastability measured empirically in the HC group. For 243 

both the AD and MCI groups, we systematically perturbed the bilateral regions (in total 45 pairs 244 

of regions) and compared the metastability of the simulated signals under perturbation to that of 245 

the target state (Figure 1C).  246 

 247 

 248 

Figure 1. Study Overview. A) Describing Brain States. Each brain state – here describing healthy, MCI and 249 

AD brain dynamics can be summarised with various measures. We measured Global Brain Connectivity, 250 

Metastability and Synchrony. B) Modelling Brain States. We built individualised models for the MCI and AD 251 

group by minimising the difference between the empirical and model Metastability measure. C) Driving 252 

Transition Between Brain States i.e. “Dynamic Sensitivity Analysis”. We performed in-silico bilateral 253 

perturbations to achieve the optimal protocol for a transition between the diseased brain states and the 254 

healthy (target) brain state (described by the mean empirical metastability for the healthy group).  255 

 256 

Results 257 

Describing Brain States across conditions  258 

 259 
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We first assessed differences in fMRI signals between HC, MCI, and AD conditions to appropriately 260 

characterise the altered dynamics in the different brain states so those metrics can be recovered 261 

in the models. Mean Global Brain Connectivity was altered between HC and AD group as well as 262 

HC and MCI group and non-significant between MCI and AD groups (unpaired uncorrected t-test, 263 

mean GBC: HC vs. AD p-val = 0.0045, HC vs. MCI p-val = 0.0169., MCI vs AD p-val >0.05, Figure 2A 264 

top left). This can be further appreciated in Figure 2A top right, where the GBC values for 265 

individual regions are rank ordered, clearly indicating a decrease in both MCI and AD stages for 266 

regions with high values of GBC in the HC group. We further calculated Metastability (unpaired 267 

uncorrected t-test, HC vs. AD p-val = 0.0045, HC vs. MCI p-val = 0.0099., MCI vs AD p-val = n.s., 268 

green star <0.05 Bonferroni corrected, Figure 2B), and Synchrony (HC vs. AD p-val = 0.0040, HC 269 

vs. MCI p-val = 0.0096, MCI vs AD p-val = n.s., green star <0.05 Bonferroni corrected, Figure 2C) 270 

as measures of the collective dynamics of brain regions. 271 

 272 

 273 

 274 

Figure 2. Characterisation of Brain States. A) Left Mean Global Brain Connectivity (unpaired uncorrected 275 

t-test, HC vs. AD p-val = 0.0045, HC vs. MCI p-val = 0.0169, MCI vs AD p-val = n.s., green star <0.05 Bonferroni 276 

corrected, red star <0.05 uncorrected). Right Ranked Global Brain Connectivity showing collapse of the 277 

functional hub regions in MCI and AD groups. B) Metastability (unpaired uncorrected t-test, HC vs. AD p-val = 278 

0.0045, HC vs. MCI p-val = 0.0099., MCI vs AD p-val = n.s., green star <0.05 Bonferroni corrected). C) Synchrony 279 

(HC vs. AD p-val = 0.0040, HC vs. MCI p-val = 0.0096, MCI vs AD p-val = n.s., green star <0.05 Bonferroni 280 

corrected). 281 

 282 
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Modelling Brain States for Alzheimer’s 283 

 284 
For the model fitting, we chose metastability as a representative measure of brain spatio-285 

temporal dynamics due to its strong ability to separate the AD and MCI from the HC group and 286 

due to this measure’s reliability in Alzheimer’s Disease29. As such, we fitted each patient's whole 287 

brain model by minimising the absolute difference between empirical and simulated 288 

metastability for the free parameter of global coupling G (Figure 3A). The optimal fit was 289 

different for each group, with an average global coupling G = 0.200 ± 0.076 for the HC group, G = 290 

0.178 ± 0.074 for the MCI group and G = 0.134 ± 0.043 for the AD group. The simulated 291 

metastability values for each subjects at optimal G were 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.125 ± 0.024 292 

for the HC group, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.114 ± 0.022 for the MCI group and 293 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.102 ± 0.018 for the AD group (Figure 3B-D). 294 

 295 

296 

Figure 3. Model Fitting. A) Fitted personalised whole-brain models for HC, MCI and AD groups to the measure 297 

of Metastability. B) The Global coupling parameter G for each group (G = 0.200 ± 0.076 for the HC group, G = 298 

0.178 ± 0.074 for the MCI group and G = 0.134 ± 0.043 for the AD group). C) The simulated metastability 299 

values for each group at optimal G were 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑠𝑖𝑚 = 0.125 ± 0.024 for the HC group, 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑠𝑖𝑚 300 

= 0.114 ± 0.022 for the MCI group and 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑠𝑖𝑚 = 0.102 ± 0.018 for the AD group. D) Empirical 301 

metastability reported here for visual comparison to the simulated values of metastability of each group. 302 

 303 

Driving Transitions between Alzheimer’s and a healthy brain state 304 

 305 
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 306 
To assess how the MCI and AD groups can be driven in-silico to a more optimal healthy brain 307 

dynamics, we used Dynamic Sensitivity Analysis to rebalance the MCI- and AD- fitted models to 308 

the healthy target state as defined by the mean metastability of the HC group. For the AD group, 309 

we systematically perturbed the bilateral regions (45 pairs of regions) and compared the 310 

metastability of the simulated signals under perturbation to that of the target state (Figure 4A 311 

left). Perturbation with a negative bifurcation parameter didn’t improve the difference of 312 

metastability between target state and simulated AD state under stimulation, whereas 313 

perturbation with a positive bifurcation parameter in specific pairs of bilateral brain regions 314 

resulted in a minimisation of the difference, indicating a recovery of the metastable dynamics. We 315 

highlight regions in green to be driving the improvement of the AD model at an optimal 316 

stimulation intensity of a = 0.24 (Figure 4A right).  317 

 318 
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 319 

Figure 4 Results of the Stimulation Protocol: A - Left: Perturbation brain map for transition between AD to 320 

HC for varying stimulation intensity. Optimal stimulation, defined as the mean minimum across brain regions, 321 

was achieved at positive (synchronous) stimulation of 0.24 (green line). Black line signifies the fitted model to 322 

the AD group before stimulation.  A - Right: Perturbation Effectivity for Recovery (PER) shows a subset of 323 

regions (green) minimising the distance to the optimal metastable dynamics. Again the green line signifies the 324 

optimal perturbation across all brain regions and black line indicates the model fit before stimulation. B - Left: 325 

Perturbation brain map for transition between MIC to HC for varying stimulation intensity. Optimal 326 

stimulation, defined as the mean minimum across brain regions, was achieved at positive (synchronous) 327 

stimulation of 0.12 (green line). Black line signifies the fitted model to the MCI group before stimulation.  B - 328 

Right: PER shows a subset of regions (green) minimising the distance to the optimal metastable dynamics. 329 
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Again the green line signifies the optimal perturbation across all brain regions and black line indicates the 330 

model fit before stimulation. 331 

 332 

When we plotted these regions on a brain surface, a pattern of regions along the anterior-333 

posterior midline axis was observed with the precuneus, the cuneus, the anterior, middle and 334 

posterior cingulate cortices, the frontal superior medial gyrus, the frontal medial-orbital gyrus, 335 

the calcarine and the olfactory gyrus being among the most statistically significant (Figure 5A-B 336 

top, red: pval<0.005, orange: pval<0.01, yellow: pval<0.05, white: pval<n.s.). We introduced the 337 

same analysis to the MCI-modelled brain state. As in the AD case, perturbation with negative 338 

bifurcation parameters didn’t improve the difference in metastability to the target state, whereas 339 

bilateral perturbation with a positive bifurcation parameter in specific brain regions resulted in 340 

minimisation of the difference (Figure 5A-B bottom). Notably, the optimal stimulation intensity 341 

to restore metastability in-silico was lower for the MCI group (a = 0.12) compared to the AD group 342 

(a =0.24). This is in line with the hypothesis that the MCI brain state requires less stimulation for 343 

recovery towards the target state. Again, we highlight regions in green which drive the 344 

improvement of the MCI model at an optimal stimulation intensity of a = 0.12 (Figure 5C top). In 345 

this instance, the frontal superior medial gyrus, the precuneus and the cuneus are the most 346 

statistically different brain regions. In addition, as in the AD case, a pattern is observed with all 347 

the anterior and posterior cingulate cortices, calcarine and rectus gyrus, as well as the frontal 348 

medial-orbital gyrus and the superior motor area (Figure 5C bottom, red: pval<0.005, orange: 349 

pval<0.01, yellow: pval<0.05, white: pval<n.s.). 350 

Correlation with structural nodal degree 351 

The propensity of a brain region to rebalance metastable dynamics correlates with structural 352 

nodal degree, i.e., how strongly individual regions are connected within the structural network, 353 

suggesting that targeting brain hubs has a higher chance of driving the optimal outcome (AD to 354 

HC corr = -0.401 p-val = 0.0001, MCI to HC corr = -0.4235 p-val <0.00003). While it might be 355 

intuitive that regions with higher connectivity will be more impactful to the overall state of the 356 
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in-silico brain dynamics, this effect seems to reflect this phenomenon only partially as there are 357 

also regions with high structural nodal degree but low influence on the improvement of the 358 

aberrant brain dynamics (Figure 5D). 359 

 360 

 361 

Figure 5 Results of the Stimulation Protocol: A) Top: Stimulation brain map for transition between AD to 362 

HC at positive (synchronous) stimulation of 0.24. Bottom: Stimulation brain map for transition between MCI 363 

to HC at positive (synchronous) stimulation of 0.12 B) Top: Paired t-test statistics between the AD (original) 364 

and target state (HC). Bottom: Paired t-test statistics between the MCI (original) and target state (HC). Colours 365 

represent different statistical thresholds - burgundy p-val<0.005, orange p-val<0.01, yellow p-val<0.05 and 366 

white p-val = n.s. C) Top: Rank ordered region of AD group by the distance to the HC (target) state. Bottom: 367 

Rank ordered region of MCI group by the distance to the HC (target). The green dots represent the strongest 368 

14 regions enabling the transition to the healthy state. D) Top: Correlation between the nodal distance in AD 369 

group to the HC (target) state and structural nodal strength derived from the structural connectome. Bottom: 370 

Correlation between the nodal distance in MCI group to the HC (target) state and structural nodal strength 371 

derived from the structural connectome. 372 

 373 

Relation with Physiological and Cognitive scores 374 

To investigate how well the PER measure relates to the physiological and cognitive scores of 375 

individual AD patients, we analysed the relationship between the PER measure and the APOE4 376 
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allele carrier, CSF and cognitive biomarkers. We computed the correlation between the PER 377 

values at the optimal stimulation for the AD group, i.e., how well did the patient’s brain dynamics 378 

approximate the optimal healthy brain dynamics, and the APOE4 carrier status and CSF 379 

biomarkers. We chose the Superior Frontal Gyrus, Precuneus and Posterior Cingulate Cortex for 380 

the exploratory analyses (the statistical significance between the non-stimulated PER (stim=0) 381 

and the optimal PER at stim of 0.24 for the three regions was p-val = 0.006, 0.0056, 0.009, 382 

respectively). We found a significant correlation of the Superior Frontal Gyrus with the t-tau 383 

(pearson's r = -0.51, p = 0.044) and p-tau (pearson's r = -0.59, p = 0.016) concentration, the CSF 384 

biomarker index (pearson's r = -0.50, p = 0.049) and Buschke AL cognitive score (pearson's r = -385 

0.52, p = 0.040) (Figure 6A). Posterior Cingulate Cortex values correlated also with the Buschke 386 

AL cognitive score (pearson's r = -0.50, p = 0.048, Figure 6B), while precuneus had all correlation 387 

comparisons non-significant (Figure 6C). Interestingly, this demonstrates that the amount of in-388 

silico recovery alone cannot determine physiological and cognitive biomarkers, but that the 389 

specific anatomic site is important. 390 

 391 

 392 
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Figure 6 Regional perturbation results and physiological and cognitive scores: A) Left: Perturbation 393 

map for Frontal Superior Medial Gyrus. Stim = 0 signifies the unperturbed metastability distance of the 394 

individual patients in the AD group compared to the average metastability of HC group. Middle: Statistical 395 

significance between the non-stimulated (stim=0) perturbational distance at stim = 0.24 (p-val = 0.006, paired 396 

t-test). Right: Correlations between patient’s cognitive scores and perturbational distance at the optimal 397 

stimulation (stim = 0.24). Significant Pearson’s correlation between t-tau, p-tau, buschke AL and index 398 

(Pearson’s R = -0.51, -0.59, 0.52, -0.50 and p-val = 0.044, 0.016, 0.040, 0.049 respectively). B) Left: Perturbation 399 

map for Precuneus. Stim = 0 signifies the unperturbed metastability distance of the individual patients in the 400 

AD group compared to the average metastability of HC group. Middle: Statistical significance between the 401 

non-stimulated (stim=0) perturbational distance at stim = 0.24 (p-val = 0.0056, paired t-test). Right: There 402 

was no significant correlation for Precuneus. C) Left: Perturbation map for Posterior Cingulate Cortex. Stim = 403 

0 signifies the unperturbed metastability distance of the individual patients in the AD group compared to the 404 

average metastability of HC group. Middle: Statistical significance between the non-stimulated (stim=0) 405 

perturbational distance at stim = 0.24 (p-val = 0.009, paired t-test). Right: Correlations between patient’s 406 

cognitive scores and perturbational distance at the optimal stimulation (stim = 0.24). Significant Pearson’s 407 

correlation between CSF index (Pearson’s R = -0.50 and p-val = 0.048 respectively).  408 
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Discussion 409 

 410 
In this work, we used whole-brain models to design non-invasive stimulation strategies for re-411 

establishing healthy brain dynamics, and facilitation of effective cognitive interventions in 412 

Alzheimer’s disease. Following the concept of Dynamic Sensitivity Analysis, we quantified the 413 

empirical differences between the HC, MCI and AD groups in terms of their metastability 414 

alterations, and fitted subject-specific whole-brain models to the altered brain states of MCI and 415 

AD5. Using an in-silico stimulation protocol and the Perturbation Effectivity for Recovery index, 416 

we were able to rank brain regions according to their proclivity to drive an increase in 417 

metastability levels from the levels detected in MCI and AD brain states towards the average 418 

metastability detected in healthy controls. These were mainly along the brain’s medial axis both 419 

in the anterior and posterior parts. The required intensity of stimulation for successful outcome 420 

was lower for the MCI brain state suggesting less impacted brain dynamics compared to the AD 421 

brain state. Furthermore, the proclivity of a region to rebalance the dynamics to healthier brain 422 

state was correlated with the structural nodal degree. 423 

 424 

Using in-silico perturbations as a dynamic sensitivity analysis, one can understand brain state 425 

differences from a dynamic system perspective. Such approach complements traditional 426 

functional connectivity analysis, where brain states are differentiated via signal detection theory. 427 

This is achieved by considering a stimulation scenario where a regional proclivity to rebalance 428 

brain dynamics to a target state is quantified. Here, we showed that regions along the medial axis, 429 

belonging mainly to the anterior and posterior default mode network, have the greatest impact 430 

on rebalancing brain dynamics towards healthier brain state. In fact, this is in line with previous 431 

literature demonstrating regions of the default mode network to be impacted in AD stages19,20,21. 432 

Interestingly, medial regions of the fronto-parietal network are also implicated in the possible 433 

rebalancing towards the optimal target state. Indeed, previous literature has shown increases in 434 

the activation of FPN in AD21. The fact that dynamic sensitivity analysis is agnostic towards the 435 

direction of the activity alterations as demonstrated here for DMN and FPN, might reflect the fact 436 
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that as long as regional alterations exist, they will be reflected in the ability of the system to 437 

rebalance back towards a healthier target state. 438 

 439 

Beyond dynamic sensitivity analysis, such in-silico perturbation protocols can be used for non-440 

invasive brain stimulation with tools such as Transcranial Magnetic Stimulation (TMS) and 441 

transcranial Direct and Alternating Current Stimulation (tDCS and tACS)43. Empirical studies have 442 

shown the feasibility of non-invasive stimulation in AD for effective cognitive intervention. Thus 443 

far, most studies have focused on the stimulation of frontal and parietal lateral regions6,44,45. 444 

Indeed, this is in line with the results here showing that regions with highest impact to rebalance 445 

healthy brain dynamics lie in the frontal and posterior regions. Although, our analysis indicated 446 

that regions in frontal and posterior areas along the medial line are the ones more likely to drive 447 

the change. Taken together, such empirical and simulated synthesis might be achieved through 448 

left-right lateral stimulation where both lateral and medial frontal and parietal regions are 449 

impacted as opposed to anterior-posterior stimulation. 450 

 451 

Here, we focused on the intrinsic stimulation paradigm where the dynamical regime of the 452 

regional Hopf model is altered either towards oscillatory or noise-driven regime. In this respect 453 

such stimulations can be thought of as phenomenological. Alternatively, such in-silico modelling 454 

paradigms can describe an external perturbation protocol whereby parameters of driving 455 

oscillations such as the frequency and amplitude are used to quantify brain regions prone to force 456 

the transition towards a healthy brain state. Indeed, in the context of whole-brain modelling such 457 

external stimulations have been considered46,47. Moreover, it has been shown how unclear and 458 

often paradoxical the signal that propagates in cortical circuits after non-invasive 459 

neurostimulation is48. Hence, this further motivates modelling studies in investigating local 460 

external stimulations affecting whole-brain changes. 461 

 462 
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In the Dynamic Sensitivity Analysis paradigm, one important aspect is the description of a brain 463 

state. Indeed, how to adequately describe a brain state has been of much focus in modern 464 

neuroscience7. It is clear that a brain state is linked with the dynamics of the brain, particularly in 465 

terms of large-scale network organisations evolving in time, but how to best capture these 466 

dynamics across space and time remains a key question7. In this study, we chose to summarise 467 

brain states in terms of their metastability measure which quantifies the amount of regional 468 

variability across the whole-brain and has been shown as a robust differentiator of AD stages29. 469 

Complimentarily, other measures describing brain states in terms of dynamical system’s theory 470 

can be considered, such as the Probabilistic Metastable Substates shown to capture differences 471 

between sleep stages36 and distinguish responders and non-responders to psilocybin treatment 472 

to depression49. Alternatively, novel methods from non-equilibrium and turbulent systems have 473 

been considered to further expand the notion of a brain state for future in-silico exploration for 474 

the Dynamic Sensitivity Analysis8,50. 475 

 476 

Rebalancing brain states has also received attention from control network theory where 477 

strategies are implemented to drive trajectory within a complex system from an initial to a target 478 

brain state51–53.  Such an approach differs from the methods applied in this study where we 479 

describe the target state in terms of its dynamical regime with a certain property (here in terms 480 

of metastability for example)54,55. This is important as in that regard we don’t specify the 481 

trajectory but rather approximate the optimal target brain state in terms of its dynamics, and via 482 

in-silico perturbation let the system to approximate or rebalance itself towards that dynamic 483 

regime. 484 

Conclusions 485 

In-silico perturbations have the potential to reconceptualise the impacts of stimulation from 486 

nodal to whole-brain specific outcomes and guide clinical trials in a more computationally driven 487 

way. We used Dynamic Sensitivity Analysis for description, explanation, and prediction to suggest 488 
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neurostimulation for effective cognitive intervention for Alzheimer’s disease. Here, we 489 

demonstrate an individual's region's susceptibility to affect global brain dynamics of Alzheimer’s 490 

patients towards those observed in healthy controls. This is driven by structural hub regions 491 

known to affect the global network in the most impactful way. 492 
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