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OOD-CV-v2 : An extended Benchmark for
Robustness to Out-of-Distribution Shifts of

Individual Nuisances in Natural Images
Bingchen Zhao, Jiahao Wang, Wufei Ma, Artur Jesslen, Siwei Yang, Shaozuo Yu,

Oliver Zendel, Christian Theobalt, Alan Yuille, Adam Kortylewski

Abstract—Enhancing the robustness of vision algorithms in real-world scenarios is challenging. One reason is that existing robustness
benchmarks are limited, as they either rely on synthetic data or ignore the effects of individual nuisance factors. We introduce
OOD-CV-v2 , a benchmark dataset that includes out-of-distribution examples of 10 object categories in terms of pose, shape, texture,
context and the weather conditions, and enables benchmarking of models for image classification, object detection, and 3D pose
estimation. In addition to this novel dataset, we contribute extensive experiments using popular baseline methods, which reveal that: 1)
Some nuisance factors have a much stronger negative effect on the performance compared to others, also depending on the vision
task. 2) Current approaches to enhance robustness have only marginal effects, and can even reduce robustness. 3) We do not observe
significant differences between convolutional and transformer architectures. We believe our dataset provides a rich test bed to study
robustness and will help push forward research in this area. Our dataset can be accessed from http://www.ood-cv.org/challenge.html.

Index Terms—Out-of-distribution generalization, Robustness, 3D pose estimation, Image Classification, 6D Pose estimation,
Multi-tasking

F

1 INTRODUCTION

D EEP learning sparked a tremendous increase in the
performance of computer vision systems over the past

decade, under the implicit assumption that training and test
data are drawn independently and identically distributed
(IID). However, Deep Neural Networks (DNNs) are still far
from reaching human-level performance at visual recogni-
tion tasks in real-world environments. The most important
limitation of DNNs is that they fail to give reliable pre-
dictions in unseen or adverse viewing conditions, which
would not fool a human observer, such as when objects
have an unusual pose, texture, shape, or when objects occur
in an unusual context or in challenging weather conditions
(Figure 1). The lack of robustness of DNNs in such out-of-
distribution (OOD) scenarios is generally acknowledged as
one of the core open problems of deep learning, for exam-
ple by the Turing award winners Yoshua Bengio, Geoffrey
Hinton, and Yann LeCun [4]. However, the problem largely
remains unsolved.

One reason for the limited progress in OOD generaliza-
tion of DNNs is the lack of benchmark datasets that are
specifically designed to measure OOD robustness. Histor-
ically, datasets have been pivotal for advancement of the
computer vision field, e.g. in image classification [10], seg-
mentation [13], [35], pose estimation [49], [55], [57], and part
detection [7]. However, benchmarks for OOD robustness
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have important limitations, which restrict their usefulness
for real-world scenarios. Limitations of OOD benchmarks
can be categorized into three types: Some works measure
robustness by training models on one dataset and test-
ing them on another dataset without fine-tuning [1], [20],
[23], [60]. This cross-dataset performance is only a very
coarse measure of robustness and ignores the effects of
OOD changes to individual nuisance factors such as the
object texture, shape or context. Other approaches artificially
generate corruptions of individual nuisance factors, such as
weather [40], synthetic noise [20] or partial occlusion [51].
However, some nuisance factors are difficult to simulate,
such as changes in the object shape or 3D pose. Moreover,
artificial corruptions, like synthetic noise, only have limited
generalization ability to real-world scenarios. The third type
of approach obtains detailed annotation of nuisance vari-
ables by recording objects in fully controlled environments,
such as in a laboratory [6] or using synthetic data [28].
But such controlled recording can only be done for limited
amount of objects and it remains unclear if the conclusions
made transfer to real-world scenarios.

In this work, we introduce OOD-CV-v2 , a dataset for
benchmarking OOD robustness on real images with annota-
tions of individual nuisance variables and labels for several
vision tasks. Specifically, the training and IID testing set in
OOD-CV-v2 consists of 10 rigid object categories from the
PASCAL VOC 2012 [14] and ImageNet [10] datasets, and the
respective labels for image classification, object detection,
as well as the 3D pose annotation from the PASCAL3D+
dataset [55]. Our main contribution is the collection and
annotation of a comprehensive out-of-distribution test set
consisting of images that vary w.r.t. the training data in PAS-
CAL3D+ in terms individual nuisance variables, i.e. images
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Fig. 1: Computer vision models are not robust to real-world distribution shifts at test time. For example, ResNet50
achieves about 85% accuracy when tested on images that are similarly distributed as the training data (IID). However,
the performance deteriorates significantly when individual nuisance factors in the test images break the IID assumption.
Our benchmark makes it possible, for the first time, to study the robustness of image classification, object detection, 3D
pose estimation and 6D pose estimation to OOD shifts in individual nuisance variables, including OOD changes in shape,
pose, texture, context, weather and partial occlusion.

of objects with an unseen shape, texture, 3D pose, context
or weather (Fig. 1). Importantly, we carefully select the data
such that each of our OOD data samples only varies w.r.t.
one nuisance variable, while the other variables are similar
as observed in the training data. We annotate data with class
labels, object bounding boxes and 3D object poses, resulting
in a total dataset collection and annotation effort more
than 650 hours. Our OOD-CV-v2 dataset, for the first time,
enables studying the influence of individual nuisances on
the OOD performance of vision models. In addition to the
dataset, we contribute an extensive experimental evaluation
of popular baseline methods for each vision task and make
several interesting observations, most importantly: 1) Some
nuisance factors have a much stronger negative effect on the
model performance compared to others. Moreover, the neg-
ative effect of a nuisance depends on the downstream vision
task, because different tasks rely on different visual cues.
2) Current approaches to enhance robustness using strong
data augmentation have only marginal effects in real-world
OOD scenarios, and sometimes even reduce the OOD per-
formance. Instead, some results suggest that architectures
with 3D object representations have an enhanced robustness
to OOD shifts in the object shape and 3D pose. 3) We do not
observe any significant differences between convolutional
and transformer architectures in terms of OOD robustness.
We believe our dataset provides a rich testbed to benchmark
and discuss novel approaches to OOD robustness in real-
world scenarios and we expect the benchmark to play a
pivotal role in driving the future of research on robust
computer vision.

Finally, we note that this article extends the conference
paper [65] in multiple ways: (1) We largely increase the
dataset size by 250% and annotate 6557 additional images,
corresponding to 1600 additional hours of annotation. (2)
We add partial occlusion as additional nuisance variable,
complementing the existing nuisances: context, texture,
shape, pose and weather. (3) We significantly extend the
experimental section by re-running all experiments for clas-
sification, detection and 3D pose estimation on the newly

collected extended dataset. Moreover, we additionally study
the tasks of 6D Pose estimation (Section 4.6), and 3D-aware
classification (Section 4.7) where algorithms need to jointly
estimate the 3D object pose and the class label. (4) We add
an in-depth discussion of the results (Section 5) including
new illustrations where applicable.

2 RELATED WORKS

Robustness benchmark on synthetic images. There has
been a lot of recent work on utilizing synthetic images
to test the robustness of neural networks [20], [32], [40].
For example, ImageNet-C [20] evaluates the performance
of neural networks on images with synthetic noises such
as JPEG compression, motion-blur and Gaussian noise by
perturbing the standard ImageNet [10] test set with these
noises. [40] extends this idea of perturbing images with
synthetic noises to the task of object detection by adding
these noises on COCO [35] and Pascal-VOC [13] test sets.
Besides perturbation from image processing pipelines, there
are also work [16] benchmarks the shape and texture bias
of DNNs using images with artificially overwritten tex-
tures. Using style-transfer [15] as augmentation [16] or
using a linear combination between strongly augmented
images and the original images [22] have been shown as
effective ways of improving the robustness against these
synthetic image noises or texture changes. However, these
benchmarks are limited in a way that synthetic image per-
turbations are not able to mimic real-world 3-dimensional
nuisances such as novel shape or novel pose of objects. Our
experiments in Section 4 also show that style-transfer [15]
and strong augmentation [22] does not help with shape and
pose changes. In addition, these benchmarks are limited to
single tasks, for example, ImageNet-C [20] only evaluates
the robustness on image classification, COCO-C [40] only
evaluates on the tasks of object detection. DomainBed [17]
also benchmarks algorithm on OOD domain generalization
on the task of classification. In our work, we evaluate the
robustness on real world images, while also evaluate the
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robustness across different tasks including image classifica-
tion, object detection, and pose estimation.
Robustness benchmark on real world images. Distri-
bution shift in real-world images are more than just syn-
thetic noises, many recent works [20], [23], [44] focus on
collecting real-world images to benchmark robustness of
DNN performances. ImageNet-V2 [44] created a new test
set for ImageNet [10] by downloading images from Flickr,
and found this new test set causes the model performance
to degrade, showing that the distribution shift in the real
images has an important influence on DNN models. By
leveraging an adversarial filtration technique that filtered
out all images that a fixed ResNet-50 [18] model can cor-
rectly classifies, ImageNet-A [23] collected a new test set and
shows that these adversarially filtered images can transfer
across other architectures and cause the performance to
drop by a large margin. Although ImageNet-A [23] shows
the importance of evaluating the robustness on real-world
images, but cannot isolate the nuisance factor. The Wild-
dash 2 segmenation dataset and benchmark [63] focuses on
difficult road scenes. Their benchmark dataset is grouped
by ten identified nuisances (e.g. interior reflections, unusual
road coverage, overexposure) called visual hazards based on
results of a risk analysis method [62]. The online bench-
mark service calculates performance drops for each nuiance
by comparing average perfomance from IID and nuisance
subsets. Most recently, ImageNet-R [19] collected four OOD
testing benchmarks by collecting images with distribution
shifts in texture, geo-location, camera parameters, and blur
respectively, and shows that not one single technique can
improve the model performance across all the nuisance fac-
tors. There are also benchmarks to test how well a model can
learn invariant features from unbalanced datasets [48]. And
benchmarks composed of many real-world shifts [27]. We
introduce a robustness benchmark that is complementary to
prior datasets, by disentangling individual OOD nuisance
factors that correspond to semantic aspects of an image,
such as the object texture and shape, the context object, and
the weather conditions. Due to rich annotation of our data,
our benchmark also enables studying OOD robustness for
various vision tasks.
Techniques for improving robustness. To close the gap be-
tween the performance of vision models on datasets and the
performance in the real-world, many techniques has been
proposed [42]. These techniques for improving robustness
can be roughly categorized into two types: data augmen-
tation and architectural changes. Adversarial training by
adding the worst case perturbation to images at training-
time [54], using stronger data augmentation [8], [52], image
mixtures [12], [22], [61], and image stylizations [16] during
training, or augmenting in the feature space [19] are all pos-
sible methods for data augmentation. These data augmenta-
tion methods have been proven to be effective for synthetic
perturbed images [16], [22]. Architectural changes are an-
other way to improve the robustness by adding additional
inductive biases into the model. [59] proposed to perform
de-noise to the feature representation for a better adversarial
robustness. Analysis-by-synthesis appoaches [31], [50] can
handle scenarios like occlusion by leveraging a generative
object model and through top-down feedback [58]. Trans-
formers are a newly emerged architecture for computer

vision [11], [36], [47], and there are works showing that
transformers may have a better robustness than CNNs [5],
[39], although our experiments suggest that this is not the
case. Object-centric representations [37], [53] have also been
show to improve robustness. Self-supervised learned repre-
sentations also show improvement on OOD examples [9],
[21], [64], [67] Our benchmark enables the comprehensive
evaluation of such techniques to improve the robustness of
vision models on realistic data, w.r.t. individual nuisances
and vision tasks. We find that current approaches to enhance
robustness have only marginal effects, and can even reduce
robustness, thus highlighting the need for an enhanced
effort in this research direction.

3 DATASET COLLECTION

In this section, we introduce the design of the OOD-CV-
v2 benchmark and discuss the data collection process to
obtain the OOD images and annotations.

3.1 What are important nuisance factors?
The goal of the OOD-CV-v2 benchmark is to measure the
robustness of vision models to realistic OOD shifts w.r.t.
important individual nuisance factors. To achieve this, we
define an ontology of nuisance factors that are relevant
in real-world scenarios following related work on robust
vision [2], [29], [41], [43], [46], [62] and taking inspiration
from the fact that images are 3D scenes with a hierarchical
compositional structure, where each component can vary
independently of the other components. In particular, we
identify six important nuisance factors that vary strongly
in real-world scenarios: object shape, 3D pose, texture ap-
pearance, surrounding context, weather conditions, and
occlusion. These nuisance factors can be annotated by a
human observer with reasonable effort, while capturing a
large amount of the variability in real-world images. No-
tably, each nuisance can vary independently from the other
nuisance factors, which will enable us to benchmark the
OOD effect of each nuisance individually.

3.2 Collecting images
OOD data can only be defined w.r.t. some reference dis-
tribution of training data. For our dataset, the reference
training data is based on the PASCAL3D+ [56] dataset
which is composed of images from Pascal-VOC [13] and
ImageNet [10] datasets, and contains annotations of the
object class, bounding box and 3D pose. Our goal is to
collect images where only one nuisance factor is OOD w.r.t.
training data, while other factors are similar as in training
data.

To collect data with OOD nuisance factors, we search
the internet using a curated set of search keywords that
are combinations of the object class from the PASCAL3D+
dataset and attribute words that may retrieve images with
OOD attributes, e.g. ”car+hotdog” or ”motorbike+batman”,
a comprehensive list of our search keywords used can be
found in the appendix. Besides using Google as the search
engine as in [65], we also add some Chinese keywords and
search them in Baidu, the most dominant Chinese search en-
gine, to increase the number of images in our dataset. Note
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Fig. 2: Examples from our dataset with OOD variations of individual nuisance factors including the object shape, pose,
texture, context, weather, and occluded conditions.
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Fig. 3: Data is collected from the internet using a predefined set of search keywords. All images are manually filtered to
remove those lacking OOD nuisances or having multiple nuisances. After collecting and splitting the data into different
collections with different nuisance, we label images with object bounding boxes and align a CAD model to estimate the 3D
pose of the object. The CAD models are overlaid on the images in blue. After each image annotation has been verified by
at least two other annotators, we include it in our final dataset.
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TABLE 1: The statistics of the classification subset in our dataset, i.e. the number of images having objects from each
category with individual nuisances. There are 17649 images in total in our test set. Among them, 13762 images are OOD
images (11130 more images than the OOD images in the preliminary version [65]). To benchmark the IID performance, we
also obtain 3887 images from the PASCAL3D+ dataset.

#Instances Context Occlusion Pose Shape Texture Weather IID Total

aeroplane 176 746 215 464 101 262 123 2087
bicycle 244 446 207 253 72 154 262 1638
boat 230 683 171 93 106 183 571 2037
bus 289 315 131 165 149 90 623 1762
car 120 1804 242 151 58 191 321 2887
chair 251 251 103 594 302 54 315 1870
diningtable 29 724 41 164 294 15 238 1505
motorbike 83 396 193 111 71 154 279 1287
sofa 138 75 49 153 111 12 318 856
train 83 339 74 102 118 167 837 1720

Total 1643 5779 1426 2250 1382 1282 3887 17649

that we only use 10 object categories from PASCAL3D+,
as we could not find sufficient OOD test samples for all
nuisances for the categories ”bottle” and ”television”. We
manually filtered images with multiple nuisances and put
an effort in retaining images that significantly vary in terms
of one nuisance only. Following this approach, we collect
1643, 1382, 2250, and 1282 instances with OOD nuisances in
terms of context, texture, shape, and weather, respectively.

We leverage the shape and pose annotations from PAS-
CAL3D+ to create OOD dataset splits regarding 3D pose
and shape. These allow us to split the dataset such that 3D
pose and shape of training and testing set do not overlap.
We augment these OOD splits in pose and shape with
additional data that we collect from the internet. In this way,
we collect 1426 and 2250 instances with OOD nuisances in
3D pose and shape respectively.

Different from the preliminary version [65] of our
dataset, we add occlusion as a new nuisance factor. As in [51],
we use animals, plants, and humans cropped from MS-
COCO dataset [35] as the occluders. To mimic the real-world
occlusions, we superimpose the occluders not only inside
the bounding box of the objects (40-60% of the object area
occluded) but also on the background (20-40% of the context
area occluded). Example images are shown in Figure 2.

To ensure that the test data is really OOD, three an-
notators went through all training data from PASCAL3D+
and filtered out images from the training set that were too
similar to OOD test data.

3.3 Detailed statistics

Statistics of our dataset are shown in Table 1. Overall, the
OOD-CV-v2 benchmark is an image collection with a total of
26181 images composed from PASCAL3D+ and the internet
where 18198 images are from PASCAL3D+ for both training
and testing (IID and occluded data) and 7983 images are
collected and annotated by us testing OOD performance
on 5 nuisances (context, pose, shape, texture, and weather).
On average we have 229 instances per nuisance and object
class which is higher than other datasets, e.g. ImageNet-C
with an average of 50 images. To enable us to benchmark
OOD robustness, the nuisance factors and vision tasks were
annotated as discussed in the next section. Note that due to
the different nature of image classification, object detection,

and pose estimation tasks and the difficulty of annotating
the images, the number of images that are used for different
tasks is different, we provide a detailed statistics of the three
tasks in the supplementary.

3.4 Data annotation
A schematic illustration of the annotation process is shown
in Fig. 3. After collecting the images from the internet,
we first classify the images according to the OOD nuisance
factor following the ontology discussed in Section 3.1. Sub-
sequently, we annotate the images to enable benchmarking
of a variety of vision tasks. In particular, we annotate the
object class, 2D bounding box, and 3D object pose. Note
that we include the 3D pose, despite the large additional
annotation effort compared to class labels and 2D bounding
boxes, because we believe that extracting 3D information
from images is an important computer vision task.

The annotation of the bounding boxes follows the coco
format [35]. We used a web-based annotation tool 1 that
enables the data annotation with multiple annotators in
parallel. Besides, different from [65], we collect additional
bounding box annotations for the newly added images by
using Amazon Mechanical Turk (AMT). For each image, we
have 3 experienced annotators (each has at least 5000 ap-
proved annotations and the approval rate should be higher
than 98%).

The 3D pose annotation mainly follows the pipeline of
PASCAL3D+ [56] and we use a slightly modified annota-
tion tool from the one used in the PASCAL3D+ toolkit 2.
Specifically, to annotate the 3D pose each annotator selects a
CAD model from the ones provided in PASCAL3D+, which
best resembles the object in the input image. Subsequently,
the annotator labels several keypoints to align the 6D pose
of the CAD model to the object in the input image. After
we have obtained annotations for the images, we count the
distribution of number of images in each category and for
categories with fewer images than average, we continue to
collect additional images from the internet for the minority
categories. Following this annotation process, we collected
labels for all 7983 images covering context, pose, shape,
texture, and weather nuisances. Finally, the annotations

1. https://github.com/jsbroks/coco-annotator
2. https://cvgl.stanford.edu/projects/pascal3d.html
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produced by every annotator are verified by at least two
other annotators to ensure the annotation is correct. We have
a total of 5 annotators, and it took about 15 minutes per
image, resulting in around 2000 hours of annotation effort 3.

Dataset splits. To benchmark the IID performance, we split
the 12419 images that we retained from the PASCAL3D+
dataset into 8532 training images and 3887 test images. The
OOD dataset splits for the nuisances ”texture”, ”context”,
and ”weather” can be directly used from our collected data.
As the Pascal3D+ data is highly variable in terms of 3D
pose and shape, we create OOD splits w.r.t. the nuisances
”pose” and ”shape” by biasing the training data using the
pose and shape annotations, such that the training and test
set have no overlap in terms of shape and pose variations.
These initial OOD splits are further enhanced using the data
we collected from the internet. The dataset and detailed
documentation of the dataset splits is available online4.

4 EXPERIMENTS

We test the robustness of vision models w.r.t. out-of-
distribution shifts of individual nuisance factors in Sec-
tion 4.2 and evaluate popular methods for enhancing the
model robustness of vision models using data augmentation
techniques (Section 4.3) and changes to the model architec-
ture (Section 4.4). Finally, we study the effect when multiple
nuisance factors are subject to OOD shiftsin Section 4.5 and
give a comprehensive discussion of our results in Section 5.

4.1 Experimental Setup

Our OOD-CV-v2 dataset enables benchmark vision models
for three popular vision tasks: image classification, object
detection, and 3D pose estimation. We study robustness
of popular methods for each task w.r.t. OOD shifts in six
nuisance factors: object shape, 3D pose, object texture, back-
ground context, novel occlusion and weather conditions. We
use the standard evaluation metrics of mAP and Acc@π

6 for
object detection and 3D pose estimation respectively. For
image classification, we crop the objects in the images based
on their bounding boxes to create object-centric images, and
use the commonly used Top-1 Accuracy to evaluate the
performance of classifiers. In all our experiments, we control
variables such as the number of model parameters, model
architecture, and training schedules to be comparable and
only modify those variables we wish to study. The models
for image classification are pre-trained on ImageNet [10]
and fine-tuned on our benchmark. As datasets for a large-
scale pre-training are not available for 3D pose estimation,
we randomly initialize the pose estimation models and
directly train them on the OOD-CV-v2 training split.

Implementation Details In the following, we discuss the
detailed training settings for vision models, data splits and
techniques for improving the robustness in our experiments.

Image Classification. For the experiments of image classi-
fication on OOD-CV-v2 datasets, we tested three network

3. We would like to thank the researchers at Austrian Institute Of
Technology (AIT, https://www.ait.ac.at) for their help in annotating
part of the data.

4. http://ood-cv.org/, Also see the supplementary material.

architectures, namely, MobileNetV3-Large [25], ResNet-
50 [18], and Swin-T [36]. We train all three models with
the same hyper-parameter to make a fair comparison. The
Batchsize is set to 256 with a step-decayed learning rate
initialized with 0.03 and then multiplied by 30,60,90 epochs,
we train the network for a total of 90 epochs on the training
set. The resolution of the input images are 224 by 224 which
is also a default value for training networks [18].

We compared the effectiveness of different data augmen-
tation techniques, namely, style transfer [16], AugMix [22],
and PixMix [24]. For all the experiments using style trans-
fer [16], we use the code from the original authors 5 to create
the style augmented images for training. For experiments
with AugMix [22], we adopted a PyTorch-based implemen-
tation 6. For experiments with PixMix [24], we adopted the
official implementation 7.

Object Detection. We mainly used two frameworks for the
task of object detection, namely Faster-RCNN [45] and Reti-
naNet [34]. Similarly, we keep all the hyper-parameter the
same except for the ones we wish to study. The experiments
are mainly conducted using the detectron2 codebase 8. For
strong data augmentation techniques that can be used to
improve the robustness of vision models, AugMix [22] is
relatively harder to implement than the other on object
detection because of the image mixing step, so we only eval-
uated the performance of style transfer. The style transfer
uses the same images generated for image classification.

We train all the object detection models with 18000
iterations with an initial learning rate of 0.02 and a batch-
size of 16, the learning rate is then multiplied by 0.1 at
12000 and 16000 iterations. We adopted the multi-scale
training technique to improve the baseline performance,
each input images will be resized to have a short edge
of [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800], and
when testing, the test input image will be resized to have a
short edge of 800. For experiments with Swin-T as the back-
bone network in the detection framework, we adopted the
implementations from the authors of the swin-transformer 9.

3D pose estimation. For 3D pose estimation, we evaluated
two types of models, Res50-Specific [66] and NeMo [50]. We
adopted the implementation from the original authors 1011.
When training the pose estimation models, we use a batch-
size of 108 and a learning rate of 1e-3. For the pose esti-
mation model for each category, we train the model for 800
epochs.

4.2 Robustness to individual nuisances
The OOD-CV-v2 benchmarks enables, for the first time, to
study the influence of OOD shifts in individual nuisance fac-
tors on tasks of classification, detection and pose estimation.
We first study the robustness of one representative methods
for each task. In Table 2, we report the test performance on
a test set with IID data, as well as the performance under

5. https://github.com/rgeirhos/Stylized-ImageNet
6. https://github.com/psh150204/AugMix
7. https://github.com/andyzoujm/pixmix
8. https://github.com/facebookresearch/detectron2
9. https://github.com/SwinTransformer/Swin-Transformer-Object-

Detection
10. https://github.com/shubhtuls/ViewpointsAndKeypoints
11. https://github.com/Angtian/NeMo
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TABLE 2: Robustness to individual nuisances of popular vision models for different vision tasks. We report the performance
on i.i.d. test data and OOD shifts in the object shape, 3D pose, texture, context and weather. Note that image classification
models are most affected by OOD shifts in the weather, while detection and pose estimation models are mostly affected by
OOD shifts in context and shape, suggesting that vision models for different tasks rely on different visual cues.

Task i.i.d shape pose texture context occlusion weather

Image
Classification

ResNet-50 83.9%±0.2% 68.7%±0.3% 76.1%±0.1% 67.6%±0.4% 65.1%±0.3% 58.5%±0.2% 71.5%±0.3%
MbNetv3-L 79.5%±0.3% 64.3%±0.2% 71.3%±0.6% 62.3%±0.3% 60.2%±0.3% 53.2%±0.4% 64.7%±0.5%

Object
Detection

Faster-RCNN 40.6%±0.3% 34.9%±0.3% 30.4%±0.3% 34.6%±0.5% 27.0%±0.2% 10.0%±0.6% 28.3%±0.4%
RetinaNet 43.9%±0.4% 39.2%±0.3% 33.4%±0.5% 37.4%±0.2% 27.8%±0.6% 16.8%±0.3% 31.3%±0.3%

3D Pose
Estimation

Res50-Specific 62.4%±2.4% 43.5%±2.5% 45.2%±2.8% 51.4%±1.8% 50.8%±1.9% 41.6%±2.1% 49.5%±2.1%
NeMo 66.7%±2.3% 51.7%±2.3% 56.9%±2.7% 52.6%±2.0% 51.3%±1.5% 62.2%±2.7% 49.8%±2.0%

OOD shifts to all six nuisance factors that are annotated in
the OOD-CV-v2 benchmark. We observe that for image clas-
sification, the performance of the classic ResNet50 architec-
ture [18] drops significantly for every OOD shift in the data.
The largest drop is observed under OOD shifts in the occlu-
sion conditions (−15.4%), while the performance drop for
OOD pose is only −7.8%. Occlusion causes the biggest drop
in both classification and detection. The results suggest that
the model On the contrary, for object detection the perfor-
mance of a Faster-RCNN [45] model drops the most under
OOD context (−37% mAP), showing that detection models
rely strongly on contextual cues. While the performance of
the detection model also decreases significantly across all
OOD shifts, the appearance-based shifts like texture, context
and weather have a stronger influence compared to OOD
shifts in the shape and pose of the object. For the task of 3D
pose estimation, we study a ResNet50-Specific [66] model,
which is a common pose estimation baseline that treats
pose estimation as a classification problem (discretizing the
pose space and then classifying an image into one of the
pose bins). We observe that the performance for 3D pose
estimation drops significantly, across all nuisance variables
and most prominently for OOD shifts in the shape and pose.

In summary, our experimental results show that OOD
nuisances have different effect on vision models for dif-
ferent visual tasks. This suggests OOD robustness should
not be simply treated as a domain transfer problem between
datasets, but instead it is important to study the effects
of individual nuisance factors. Moreover, OOD robustness
might require different approaches for each vision tasks, as
we observe clear differences in the effect of OOD shifts in
individual nuisance factors between vision tasks.

4.3 Data Augmentation for Enhancing Robustness
Add discussion with PixMix. Data augmentation techniques
have been widely adopted as an effective means of im-
proving the robustness of vision models. Among such data
augmentation methods, stylizing images with artistic tex-
tures [16], mixing up the original image with a strongly aug-
mented image (AugMix [22]), and PixMix [24] are the most
effective methods. We test these data augmentation methods
on OOD-CV-v2 to find out if and how they affect the OOD
robustness. The experimental results are summarized in Ta-
ble 3. Overall, AugMix [22] improves the OOD robustness
the most for image classification and pose estimation. While
AugMix is not directly applicable to object detection, we
observe that strong data augmentation style transfer [15],

[24] leads to a better improvement compared to adversarial
training. Importantly, these data augmentation methods im-
prove the OOD robustness mostly w.r.t. appearance-based
nuisances like texture, context, and weather.However, in
all our experiments data augmentation slightly reduces the
performance under OOD shape and 3D pose. We suspect that
this happens because data augmentation techniques mostly
change appearance-based properties of the image and do
not change the geometric properties of the object (i.e. shape
and 3D pose). Similar trends are observed across all three
of the tasks we tested, image classification, object detection,
and pose estimation. These results suggest that two cate-
gories of nuisances exists, namely appearance-based nuisances
like novel texture, context, and weather, and geometric-based
nuisances like novel shape and pose. We observe that data
augmentation only improves robustness of appearance-
based nuisances but can even decrease the performance
w.r.t. geometry-based nuisances.

4.4 Effect of Model Architecture on Robustness
In this section, we investigate four popular architectural
changes that have proven to be useful in real world ap-
plications. Paricularly, we evaluate CNNs vs Transformers,
the model capacity, one stage vs two stage detectors, and
models with integrated 3D priors. Note that when we change
the model architecture we keep other parameters such as
number of parameters and capacity the same.
CNNs vs Transformers. Transformers have emerged as
a promising alternative to convolutional neural networks
(CNNs) as an architecture for computer vision tasks re-
cently [11], [36]. While CNNs have been extensively studied
for robustness, the robustness of vision transformers are
still under-explored. Some works [5], [39] have shown that
transformer architecture maybe more robust to adversarial
examples, but it remains if this result holds for OOD ro-
bustness. In the following, we compare the performance of
CNNs and transformers on the tasks of image classification,
object detection and 3D pose estimation on the OOD-CV-
v2 benchmark. Specifically, we replace the backbone the
vision models for each task from ResNet-50 to Swin-T [36].
Our experimental results are presented in Fig. 4. Each
experiment is performed five times and we report mean
performance and standard deviation. It can be observed
that CNNs and vision transformers have a comparable
performance across all tasks as the difference between their
performances are within the margin of error. Particularly, we
do not observe any enhanced robustness as OOD shifts in
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Fig. 4: Performance of CNN and Transformer on our benchmark. Transformers have a higher in-domain performance, but
CNNs and transformers degrades mostly the same on OOD testing examples.

TABLE 3: Effect of data augmentation techniques on OOD robustness for three vision tasks. We report the performance
of one baseline model for each task, as well as the same model trained with different augmentation techniques: Stylizing,
AugMix [22] and PixMix [24]. We evaluate all models on i.i.d. test data and OOD shifts in the object shape, 3D pose,
texture, context and weather. Strong data augmentation only improves robustness to appearance-based nuisances but even
decreases the performance to geometry-based nuisances like shape and 3D pose.

top-1 i.i.d shape pose texture context weather occlusion

ResNet-50 83.9% 68.7% 76.1% 67.6% 65.1% 71.5% 58.5%
Style Transfer 81.2% 65.6% 75.6% 68.3% 63.4% 69.8% 56.7%
AugMix 84.5% 68.9% 76.2% 67.1% 66.8% 74.5% 59.7%
PixMix 85.3% 69.0% 76.0% 67.9% 66.9% 75.6% 59.8%

(a) Top-1 accuracy results on image classification
mAP i.i.d shape pose texture context weather occlusion

Faster-RCNN 40.6% 34.9% 30.4% 34.6% 27.0% 28.3% 10.0%
Style Transfer 41.9% 36.4% 31.6% 38.0% 31.1% 33.4% 14.0%
PixMix 42.0% 37.4% 32.4% 38.0% 31.3% 34.7% 18.5%

(b) mAP results on object detection
Acc-π

6
i.i.d shape pose texture context weather occlusion

Res50-Spec. 62.4% 43.5% 45.2% 51.4% 50.8% 49.5% 41.6%
Style Transfer 63.1% 41.8% 44.7% 55.8% 54.3% 53.8% 40.5%
AugMix 64.8% 44.1% 44.8% 56.7% 54.7% 55.6% 42.1%

(c) Acc-π
6

results on pose estimation

TABLE 4: OOD robustness of models with different capacities. While the performance degradation of MobileNetv3-Large
(MbNetv3-L) are about the same as those of ResNet-50, training with data augmentation technique has smaller effect on
MbNetv3-L due to the limited capacity.

i.i.d shape pose texture context weather occlusion

ResNet-50 83.9% 68.7% 76.1% 67.6% 65.1% 71.5% 58.5%
+AugMix 84.5% 68.9% 76.2% 67.1% 66.8% 74.5% 59.7%

MbNetv3-L [25] 79.5% 64.3% 71.3% 62.3% 60.2% 64.7% 53.2%
+AugMix [22] 80.9% 64.8% 71.8% 61.8% 61.3% 67.8% 54.2%
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individual nuisance factors lead to a similar decrease in per-
formance in both the transformer and the CNN architecture.
While we observe a slight performance gain on i.i.d. data
in image classification (as reported in many other works),
our results suggest that Transformers do not have any
enhanced OOD robustness compared to CNNs. Note our
findings here contrast with previous work on this topic [3],
we argue that this is because our benchmark enables the
study for individual nuisance factors on real world images,
and the control over different individual nuisances give
us opportunity to observe more errors in current vision
models.
Model capacity. For deployment in real applications,
smaller models are preferred because they can yield better
efficiency than regular models. In the following, we com-
pare image classification performance of MobileNetV3 [25]
in Table 4. Compared to ResNet-50, MobileNetv3 suffers a
similar performance degradation under OOD shifts in the
data. However, data augmentations does not improve the
robustness of MobileNetV3 [25] as much as for ResNet-
50, e.g., performance on context nuisances improved by
3.9% for ResNet-50, but the improvement is only 0.9% for
MobileNetV3. This suggests that OOD robustness is more
difficult to achieve for efficient models with a limited
capacity.
One stage vs two stage for detection. It is a common belief
in object detection community that two-stage detectors are
more accurate, while one-stage detectors are more efficient.
For object detection task, two popular types of architecture
exist, namely one-stage and two stage models. We tested
two representative models from these architecture types,
RetinaNet [34], a one-stage detector, and Faster-RCNN [45],
which is a two-stage detector. From our results in Table 5,
we observe that RetinaNet achieves a higher performance
compared to Faster-RCNN on the OOD-CV-v2 benchmark.
However, when accounting for improved i.i.d performance,
the OOD performance degradation are similar between two
models. These initial result suggests that two-stage methods
achieve a higher score than one-stage methods, but are not
necessarily more robustness.
Models with explicit 3D object geometry. Recently, Wang
et al. [50] introduced NeMo, a neural network architecture
for 3D pose estimation that explicitly models 3D geome-
tery, and they demonstrated promising results on enhanc-
ing robustness to partial occlusion and unseen 3D poses.
In Table 6, we compare NeMo [50] model and a general
Res50-Specific model on task of pose estimation on OOD-
CV-v2 benchmark. NeMo [50] shows a stronger robustness
against geometric-based nuisances (shape and pose), while
robustness on appearance-based nuisances is comparable.
This result suggests that, neural networks with an ex-
plicit 3D object representation have a largely enhanced
robustness to OOD shifts in geometry-based nuisances.
These results seem complementary to our experiments in
the previous section, which demonstrate that strong data
augmentation can help to improve the robustness of vision
models to appearance-based nuisances, but not to geometry-
based nuisances.

We further investigate, if robustness against all nuisance
types can be improved by combining data augmentation
with architectures that explicitly represent the 3D object

geometry. Specifically, we train NeMo [50] with strong aug-
mentations like AugMix [22] and our results in Table 6 show
that this indeed largely enhances the robustness to OOD
shifts in appearance-based nuisances, while retaining (and
slightly improving) the robustness to geometry-based nui-
sances. Result suggests that enhancements of robustness to
geometry-based nuisances can be developed independently
to those for appearance-based nuisances.

4.5 OOD shifts in Multiple Nuisances

In our experiments, we observed that geometry-based nui-
sances have different effects compared to appearance-based
nuisances. In the following, we test the effect when OOD
shifts happen in both of these nuisance types. Specif-
ically, we introduce new dataset splits, which combine
appearance-based nuisances, including texture, context, or
weather, with the geometry-based nuisances shape and
pose. From Table 7, we observe OOD shifts in multiple
nuisances amplify each other. For example, for image
classification, an OOD shift in only the 3D pose reduces
the performance by −11.4% from 85.2% to 73.8%, and
an OOD shift in the context reduces the performance by
−6.6%. However, when pose and context are combined
the performance reduces by −24.5%. We observe a similar
amplification behaviour across all three tasks, suggesting
that it is a general effect that is likely more difficult to
address compared to single OOD shifts.

4.6 OOD Shifts in Partial Occlusion

Partial occlusion is a challenging novel OOD shift that we
added to the OOD-CV dataset for this journal extension
(see examples in Figure 2. Our comprehensive experiments
demonstrate that occlusion is the nuisance that causes the
largest drops in performance across all tasks image clas-
sification, object detection and 3D pose estimation (Table
2). Moreover, data augmentation like StyleTransfer, AugMix
and PixMix only have marginal effects on the robustness to
partial occlusion across vision tasks (Table 3) except for ob-
ject detection. Moreover, the architectural changes between
CNNs and Transformers also only show a rather small effect
on the robustness to partial occlusion. A more promising ap-
proach to enhance robustness to partial occlusion can be ob-
served in the context of 3D pose estimation in Table 6, where
the generative model NeMo significantly outperforms the
ResNet50 baseline. This confirms observations made in prior
works [30], [31], [50], [51] that neural network architectures
which replace the classic fully-connected prediction heads
with a generative model of the neural feature activations,
have a largely enhance occlusion robustness, because they
can localize occluders and subsequently focus on the non-
occluded parts of the object.

4.7 Consistent Classification and Pose estimation

In this section, we refer to Consistent Classification and
Pose estimation (CCP) [26] as the joint estimation of the
3D pose of the object and its class label. We evaluate CCP
performances when several nuisances occur. Our results
in Table 8 show the complexity of performing CCP w.r.t.
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TABLE 5: Comparison between one-stage method and two-stage object detection methods. One-stage methods are more
robust compared to two-stage methods.

i.i.d shape pose texture context weather occlusion

RetinaNet [34] 43.9% 39.2% 33.4% 37.4% 27.8% 31.3% 16.8%
+Style Transfer [16] 44.3% 38.7% 32.1% 39.2% 31.2% 34.6% 17.3%

Faster-RCNN [45] 40.6% 34.9% 30.4% 34.6% 27.0% 28.3% 10.0%
+Style Transfer [16] 41.9% 36.4% 31.6% 37.9% 31.1% 33.3% 14.0%

TABLE 6: Robustness of 3D pose estimation methods. We compare “Res50-Specific”, which treats pose estimation as
classification problem, and “NeMo”, which represents the 3D object geometry explicitly. We observe OOD shifts in shape
and pose leads to more performance degradation. NeMo has a significantly enhanced performance to OOD shifts in object
shape and pose.

i.i.d shape pose texture context weather occlusion

Res50-Specific 62.4% 43.5% 45.2% 51.4% 50.8% 49.5% 41.6%
+AugMix [22] 64.8% 44.1% 44.8% 56.7% 54.7% 55.6% 42.1%

NeMo [50] 66.7% 51.7% 56.9% 52.6% 51.3% 49.8% 50.8%
+AugMix [22] 67.9% 53.1% 58.6% 57.8% 55.1% 56.7% 52.2%

TABLE 7: Robustness to OOD shifts in multiple nuisances.
When combined, OOD shifts in appearance-based nuisances
and geometric-based nuisances amplifies each other, leads
to further decrease compared to effects in individual nui-
sances.

i.i.d texture context weather occlusion

Classification 83.9% 67.6% 65.1% 71.5% 58.5%
+ shape 68.7% 45.7% 44.0% 48.3% 36.7%
+ pose 76.1% 47.1% 43.5% 51.4% 40.1%

Detection 40.6% 34.6% 27.0% 28.3% 10.0%
+ shape 34.9% 10.6% 8.7% 9.4% 3.7%
+ pose 30.4% 10.0% 7.6% 8.9% 5.4%

Pose estimation 62.4% 51.4% 50.8% 49.5% 41.6%
+ shape 43.5% 33.1% 31.0% 29.8% 26.3%
+ pose 45.2% 30.2% 29.7% 28.1% 24.7%

OOD shifts in six nuisance factors. Current state-of-the-
art never exceeds 50% accuracy in any OOD scenarios
when it performs up to an accuracy of almost 74% in
IID scenarios. Additionally, we observe consistently better
performances of generative-based approaches compared to
non-generative-based approaches. Over all nuisances, table
8 shows 2x up to 4x improvements of generative-based
approach RCNet for Acc-π6 and Acc- π

18 respectively, once
again demonstrating the enhanced robustness of models
with a 3D object representation. The conformity of these
results with prior discoveries may be attributed to the inher-
ent resilience of 3D-aware and generative-based approaches
towards disturbances.

4.8 Robust 6D Pose Estimation

Category-level 6D pose estimation involves joint 3D object
detection and pose estimation. 6D pose estimation is evalu-
ated by both the pose error and the average distance metric
(ADD). We evaluate the 6D pose estimation performance
under various nuisances and the results are reported in
Table 9. We notice significant drop in performance for state-
of-the-art category-level 6D pose estimation methods such

TABLE 8: Consistent Classification and Pose estimation
(CCP) results on OOD-CV dataset. We observe a big perfor-
mance degradation when performing complex tasks such
as CCP in OOD scenarios. However, we see that methods
using a 3D object representation as prior (e.g., RCNet)
outperforms considerably non-generative approaches (e.g.,
Resnet50) [26].

Acc-π
6
↑ i.i.d shape pose texture context weather occlusion

Resnet50 73.9 15.7 12.6 22.3 15.5 23.4 24.9
RCNet 85.8 52.9 21.5 55.4 50.2 55.3 59.2

Acc- π
18
↑ i.i.d shape pose texture context weather occlusion

Resnet50 45.6 5.7 5.7 4.3 6.1 5.4 12.4
RCNet 61.5 19.7 8.2 28.6 20.8 34.5 27.0

as Faster R-CNN [45] and RTM3DExt [33], under various
OOD scenarios. Moreover, we find that C2F-NF [38] with a
3D neural feature representation demonstrates a comparable
or stronger robustness for all nuisances. This is consistent
with the findings in other tasks that generative methods
with 3D geometry representations are more robust to the
nuisances considered in our OOD-CV dataset.

4.9 Summary and Discussion

Our results highlight a general and fundamental research
problem that is inherent to current vision algorithms: A lack
of robustness to OOD shifts in the data for all state-of-the-
art vision models across several important computer vi-
sion tasks. Going beyond prior works, our OOD-CV dataset
enables us to study the effect of OOD shifts in individual
nuisance factors in real images for several vision tasks.
One important observation of our experiments is that the
nuisance factors have a different effect on different vision
tasks, suggesting that each vision task might need a differ-
ent solution for enhancing the OOD robustness. From our
experiments we can also clearly observe that the nuisance
variations can be categorized into two sets: appearance-based
nuisances like texture, context, or weather, and geometry-based
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TABLE 9: Robust 6D pose estimation on OOD-CV dataset.
When evaluated on OOD scenarios, we notice a clear degra-
dation of performance for all state-of-the-art models. We
also find that C2F-NF with a 3D neural feature representa-
tion demonstrates a comparable or stronger robustness for
all nuisances.

Acc-π
6
↑ i.i.d. context occlusion pose shape texture weather

FRCNN 52.4 35.3 33.9 14.6 40.0 43.0 41.3
RTM3DExt 46.1 34.5 34.9 11.7 35.2 40.7 39.5
C2F-NF 58.7 37.2 45.4 15.9 39.4 46.3 46.5

Acc- π
18
↑ i.i.d. context occlusion pose shape texture weather

FRCNN 20.5 10.8 10.3 3.5 11.8 16.3 18.7
RTM3DExt 16.2 13.6 11.4 2.2 10.4 15.1 14.8
C2F-NF 25.7 13.7 13.7 15.9 11.7 18.4 23.0

Med-ADD ↓ i.i.d. context occlusion pose shape texture weather

FRCNN 0.64 1.82 1.26 2.26 0.65 1.38 1.02
RTM3DExt 1.92 2.21 2.95 2.74 1.30 2.91 2.13
C2F-NF 0.85 1.26 2.06 0.52 0.47 2.09 1.84

nuisances such as shape or pose. We showed that strong data
augmentation enhances the robustness against appearance-
based nuisances, but has very little effect on geometric-
based nuisances. On the other hand, neural network archi-
tectures with an explicit 3D object representation achieve
an enhanced robustness against geometric-based nuisances.
While we observe that OOD robustness is largely an un-
solved and severe problem for computer vision models,
our results also suggest a way forward to address OOD
robustness in the future. Particularly, that approaches to
enhance the robustness may need to be specifically designed
for each vision tasks, as different vision tasks focus on
different visual cues. Moreover, we observed a promising
way forward to a largely enhanced OOD robustness is to
develop neural network architectures that represent the 3D
object geometry explicitly and are trained with strong data
augmentation to address OOD shifts in both geometry-
based and appearance-based nuisances combined.

5 CONCLUSION

Our study makes several major contributions:
1) We raise attention for the fundamentally important

problem of out-of-distribution robustness, and the pressing
issues it implies for autonomous agents that shall interact
within a real-world scenarios.

2) We introduce the first benchmark for out-of-
distribution robustness with real images and detailed an-
notation of nuisance variables for various important vision
tasks.

3) Despite being largely acknowledged, progress in OOD
robustness is limited as highlighted in our study. Based
on our results, a promising way forward to resolve this
fundamental problem is to design neural network archi-
tectures that have explicit 3D representations of objects to
generalize under geometry-based OOD shifts, paired with
advanced data augmentation to enhance appearance-based
OOD robustness.
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Fig. 5: Example images that are filtered out from the original
PASCAL3D+ dataset. These images has nuisances that are
similar to the ones we collected in the OOD-CV-v2 dataset,
so they are removed from the training set.
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Fig. 6: Example images with multiple nuisance. From
our internet search, we also collected many images with
multiple nuisance factors, these images are later removed
to ensure that we are testing with only one controllable
nuisances.

APPENDIX A
Images filtered from the original PASCAL3D+ dataset This
section shows example images that we filtered out from
the original PASCAL3D+ dataset [13] in order to make the
OOD-CV-v2 test set really OOD. The images are removed
because they are too similar to the images in the OOD-CV-
v2 test set.

In our anonymous repository, we provide all the images
that we removed from the original PASCAL3D+ dataset.

Example images with multiple nuisances We also re-
moved the images that have multiple nuisances from our
internet search, we give examples of multiple nuisances
in Fig. 6.

The user interface of our annotation tools Here we
also provide the user interface of our used annotation
tools for bounding boxes annotation and 3D pose annota-
tions. The annotation tools are taken and slightly modified
from a GitHub project 12 and the original PASCAL3D+

12. https://github.com/jsbroks/coco-annotator

dataset 13. Identifying informations have been removed
from the screenshots.

Fig. 7: The user interface of the detection annotation tool.

Fig. 8: The user interface of the 3D pose annotation tool.

APPENDIX B
This section provides information on a paper that is cur-
rently unpublished but has been referenced in our main
paper [26]. This unpublished paper contains relevant and
supplementary details that support the findings and con-
clusions presented in our research.

13. https://cvgl.stanford.edu/projects/pascal3d.html
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Abstract

In real-world applications, it is essential for deep net-
works to classify objects robustly in out-of-distribution
(OOD) scenarios, i.e. when the test data does not come
from the same distribution as the training data. Inspired
by the robustness of render-and-compare approaches at
3D pose estimation, we propose a novel network architec-
ture (termed RCNet) that follows a render-and-compare
approach and achieves largely enhanced robustness at ob-
ject classification. RCNet represents an object category
as a 3D cuboid mesh composed of feature vectors at each
mesh vertex. During inference, the model searches for the
category mesh and corresponding 3D pose that best recon-
structs a target feature map. Importantly, the neural tex-
tures on each mesh are trained in a discriminative manner
to enable classification. To achieve an efficient inference
the model combines the 3D-aware head with a standard
(non-robust) fully-connected head while retaining robust-
ness. Our experiments show that RCNet is exceptionally
robust on a range of real-world and synthetic distribution
shifts while performing on par with state-of-the-art archi-
tectures on in-distribution data. Moreover, the predicted
3D pose of RCNet is competitive with baseline models
that were explicitly designed for robust pose estimation.

*Joint first authors
†Joint senior authors

Figure 1: Current state-of-the-art architectures for object
classification work well when the training and test data are
drawn from a similar distribution (left), but their perfor-
mance decreases significantly in out-of-distribution sce-
narios (right). In contrast, our proposed RCNet architec-
ture achieves unprecedented robustness in OOD scenar-
ios while performing on par with baseline models on IID
data (results show object classification accuracy obtained
on the OOD-CV dataset [40]).
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1 Introduction
Deep neural networks, achieve very high performance at
image classification [7, 12, 20, 22, 30], under the implicit
assumption that the training and test data are drawn inde-
pendently and identically distributed (IID) from the same
distribution. Unfortunately, this is not a realistic assump-
tion in the real world. For example, having learned to
classify buses from a large labeled dataset, a model will
still encounter unusual buses in the wild that were not
observed during training. As a practical consequence,
the performance of today’s best deep networks decreases
significantly when evaluated in out-of-distribution (OOD)
scenarios (Figure 1). Overcoming this lack of robustness
is essential for deploying deep networks in safety-critical
applications, and has been identified as a core open prob-
lem of deep learning, for example by Yoshua Bengio, Ge-
offrey Hinton, and Yann LeCun [2]. However, the prob-
lem largely remains unsolved.

In contrast to computer vision, human vision is highly
robust and generalizes well under occlusion or envi-
ronmental changes. Cognitive studies suggest that the
robustness of human visual perception arises from an
analysis-by-synthesis process [27, 39]. Current AI sys-
tems implement analysis-by-synthesis through a render-
and-compare process, where a generative forward model
(typically a graphics pipeline) is used together with an ex-
plicit 3D representation of the object (e.g., a CAD model)
to generate images of an object class. During inference,
a given test image is analyzed by searching for the model
parameters that best reconstruct the image. Render-and-
compare has found wide applicability in 3D and 6D pose
estimation [4,5,15,16,21], where it was also shown to be
exceptionally robust [24, 36]. However, for object classi-
fication, render-and-compare approaches are rare and un-
derstudied.

In this work, we introduce RCNet, a deep network
architecture that implements a render-and-compare ap-
proach for object classification and achieves unprece-
dented robustness in out-of-distribution scenarios. Fol-
lowing prior works on render-and-compare that were de-
signed for 3D pose estimation [16, 36], RCNet represents
an object category as a cuboid mesh and learns a genera-
tive model of the neural feature activations at each mesh
vertex. To classify images, RCNet first extracts a feature
map of the target image and subsequently searches the

category mesh and corresponding 3D pose that best re-
constructs the target feature map. Intuitively, robustness
in RCNet emerges, because it has a causal generative un-
derstanding of the 3D structure of the object, and hence
can better generalize, e.g. to unseen views of an object or
when parts are occluded.

We make several contributions to enable this render-
and-compare approach to object classification. First, we
train the neural textures of object categories using con-
trastive learning to be distinct between different classes,
while also being invariant to instance-specific details
within an object category. Second, to avoid comput-
ing the render-and-compare optimization for all category
meshes, the model uses a fully-connected head (FC-head)
that makes an initial (non-robust) prediction of the object
class and pose. We show how the 3D-aware head can
verify the output of the (non-robust) FC-head to reach a
sweet spot at which the fast-to-compute FC-head is used
when test data is easy to classify while falling back to
the more expensive but reliable 3D-aware head in diffi-
cult OOD cases.

We evaluate RCNet under real-world OOD shifts on the
OOD-CV dataset [40], and synthetic OOD shifts on the
corrupted-PASCAL3D+ [13] and occluded-PASCAL3D+
[36]. Our experiments show that RCNet is exceptionally
more robust compared to other state-of-the-art architec-
tures (both CNNs and Transformers) at object classifi-
cation while performing on par with in-distribution data.
Moreover, we show that the predicted 3D pose of RCNet
is competitive with baseline models that were explicitly
designed for robust 3D pose estimation. Our contribu-
tions are as follows:

1. We introduce RCNet, a 3D-aware neural network
architecture that follows a render-and-compare ap-
proach and leverages discriminatively trained neural
textures to perform object classification.

2. We integrate the 3D-aware head with a standard
(non-robust) fully-connected head to considerably
speed up the render-and-compare inference while re-
taining classification accuracy and robustness.

3. We show that RCNet is exceptionally robust at object
classification and performs competitively with SOTA
methods at 3D pose estimation.



2 Related Work
Robust Image Classification. Image Classification is a
significant task in computer vision. Multiple influential
architectures including ResNet [12], Transformer [35],
and recent Swin-Transformer [22] have been designed for
this task. However, these models are not robust enough
to handle partially occluded images or out-of-distribution
data. Efforts that have been made to close the gap can be
mainly categorized into two types: data augmentation and
architectural design. Data augmentation includes using a
learned augmentation policy [6], and data mixture [14].
Architectural changes propose robust pipelines. For in-
stance, [18] proposes an analysis-by-synthesis approach
for a generative model to handle occlusions. In addi-
tion, challenging benchmarks that use common synthetic
corruptions [13] and real out-of-distribution images [40]
showed that the performance of standard models drops by
a large margin in such scenarios. We show that our RCNet
model is exceptionally robust in these challenging OOD
scenarios.

Feature-level render-and-compare. Render-and-
compare methods optimize the predicted pose by reduc-
ing the reconstruction error between 3D-objects projected
feature representations and the extracted feature represen-
tations. It can be seen as an approximate analysis-by-
synthesis [11] approach, which has been proven to be
much more robust against out-of-distribution data at 3D
pose estimation [17, 36] compared to classical discrimi-
native methods [26, 34, 41].

Inspired by these results, we introduce the first
render-and-compare approach to object classification, that
demonstrates exceptional robustness on a wide range of
distribution shifts while performing on par with the most
competitive image classification architectures.

Combining feed-forward networks with generative
models. As the optimization process in render-and-
compare methods is computationally expensive, some
works combined feed-forward neural networks to speed
up the inference process, particularly in the context of
3D face reconstruction [28, 31], where generative mod-
els are widely applied [9]. However, to the best of our
knowledge, no prior work has studied the integration of
deep networks and generative models to retain a fast but
at the same time robust prediction output. We take inspi-
ration from these approaches and combine the fast (but

not robust) inference of a feed-forward fully-connected
predictor with the robustness of our generative approach
to obtain a fast and robust object classification within a
render-and-compare approach.

3 RCNet: A 3D-aware Deep Net-
work with Render-and-Compare

We first review the concept of feature-level rendering
(Section 3.1). Subsequently, we describe in Section 3.2
how object classification using render-and-compare is im-
plemented within the architecture of RCNet, and the RC-
Net architecture can be further extended by combining
the proposed 3D-aware classification head with a (non-
robust) fully-connected (FC) head to enhance inference
time. We introduce a principled way of formulating
the render-and-compare approach to object classification
within a probabilistic framework in Section 3.3 and de-
scribe the training in detail in Section 3.4.

3.1 Feature-level Rendering with Neural
Textures

Following the approach of deferred neural rendering [32]
and applications of it in pose estimation [16,36], we repre-
sent an object category y as a mesh My = {vn 2 R3}N

n=1

and a neural texture Ty on the surface of the mesh My .
The neural texture is stored as a matrix of feature vectors
for each vertex on the mesh Ty 2 RN⇥c, with c being
the number of channels in the feature vector. Each mesh
is a cuboid with a fixed number of vertices and a fixed
scale. Hence every object category is represented as a tu-
ple Oy = {My, Ty} of mesh and corresponding neural
texture. We can render the object mesh Oy into a feature
map using standard computer graphics rasterization:

Fy(↵) = R(Oy,↵), (1)

where ↵ is the 3D pose of the mesh in the camera view.
Ultimately, we aim to perform classification by compar-
ing this rendered feature map to a target feature map F of
an input image as described in the following section.



Figure 2: An overview of our RCNet pipeline. For each image, the network � extracts a feature map F . Meanwhile,
we render feature maps F 0

y using our class-specific trained Neural Mesh Models Oy and optimize the pose ↵y using
a feature-level render-and-compare approach. Lastly, we compare the different losses Ly(F, O,↵) to infer the object
category ŷ. We visualize the pose prediction for two different object categories. Note that for illustration purposes,
we visualize a projection of a CAD model but our RCNet is using cuboid meshes with much lower detailed geometry
and we omit the background model B and the subscript LRec in the loss notation.

3.2 RCNet Architecture

In this section, we give a conceptual overview of the
model architecture and inference process. Figure 2 il-
lustrates the architecture and inference process of RC-
Net. An input image I is first processed by a shared deep
network backbone � into a feature map �(I) = F 2
RH⇥W⇥D. The shared backbone is an important differ-
ence from other approaches that use feature-level render-
ing for 3D reconstruction [17, 36], as it enables our ar-
chitecture to be trained discriminatively across classes.
Based on the feature map F , the model minimizes the
reconstruction loss (Eq. 3) through gradient-based opti-
mization using a render-and-compare process to obtain
the optimal pose ↵̂y for each object category Oy , and
to determine the category ŷ that achieves the lowest re-
construction error (hence minimizing Eq. 4). The key to
achieving an accurate object classification using the RC-
Net architecture lies in training the feature extractor � for
the optimal neural textures {Ty} such that the reconstruc-
tion loss LRec indicates the correct class.

Efficient Inference via Proposal Verification A chal-
lenge in our render-and-compare approach to object clas-
sification is that a naı̈ve implementation requires running
the optimization for every object class, which is computa-
tionally expensive. We address this challenge by combin-
ing the 3D-aware classification head in RCNet with the

output of a FC-head as illustrated in Figure 2. The FC-
head predicts the corresponding probability for the ob-
ject class p(y|I;w) and object pose p(↵|I;w) respec-
tively for a given input image I , with w being the learned
weights of the model. We propose a three-step process to
integrate the 3D-aware head with the FC-head to achieve
an efficient and robust prediction in OOD scenarios.

(1) Handle simple cases using CNN predictions. We
take advantage of the ability of deep neural networks to
approximately estimate the confidence of their predic-
tion [10, 19] and retain the class prediction ŷcnn if the
confidence exceeds a threshold p(ycnn|I;w) >= ⌧1 with
⌧1 = 0.95 being experimentally defined. Subsequently,
we fine-tune the initial pose prediction with the render-
and-compare optimization to obtain a final result.

(2) Verify feed-forward proposals with generative mod-
els in difficult cases. In cases where the FC-head output
is unreliable (i.e. p(ycnn|I;w) < ⌧1), its output is veri-
fied by the 3D-aware head in a ”top-down” manner. No-
tably, such bottom-up and top-down processing was also
advocated in classical prior works for object segmenta-
tion [3, 33] or face reconstruction [29]. In particular, we
use the predicted top-3 classes and respective top-3 poses
of the FC-head to compute the respective reconstruction
losses using the 3D-aware head. We start a complete
render-and-compare optimization process for each class



candidate, from the pose candidate that achieves the low-
est reconstruction loss.

(3) Resort to full render-and-compare optimization
when uncertain. The final reconstruction loss of the 3D-
aware head can indicate if the render-and-compare opti-
mization has converged to a good solution (Section 4).
For those test images, where the reconstruction loss is
above a threshold (⌧2 = 0.8), we run the full inverse ren-
dering process from several randomly initialized starting
points and keep the best solution as described in Section
4.1.

This principled integration of the fast but not robust FC-
head with our proposed 3D-aware head, significantly re-
duces the overall computation time compared to a naı̈ve
implementation of RCNet while retaining robustness. We
note that this process is optional and only applies if a re-
duced computation time is desired.

3.3 Classification via Render-and-Compare
We formulate RCNet as a probabilistic generative model
of neural feature activations. Following related work
in 3D face reconstruction [28] we define the likelihood
model as:

p(F |y)=p(F |Oy,↵y, B)=
Y

i2FG
p(fi|Oy,↵)

Y

i02BG
p(f 0

i |B),

(2)
where the foreground FG is defined as the area of the
projected mesh and BG is the background context, and B
are the parameters for the background model.

Note that conditional independence makes it simple to
”robustify” the likelihood with an outlier model [8, 18].
The foreground p(fi|Oy,↵) and background likelihoods
p(fi0 |B) are modeled as Gaussian distributions. Assum-
ing unit variance, the negative log-likelihood reduces to
[36]:

LRec(F, Oy,↵y, B) = � log p(F |y)

=
X

i2FG
kfi � ty,nk2 +

X

i02BG
kf 0

i � Bk2 + const. (3)

Here, ty,n is the corresponding vertex n on the object
mesh that projects onto the pixel i on the image plane,
↵ are the camera extrinsic parameters, and B 2 Rd are
the parameters for the background model. We refer to this

term as the reconstruction loss, since it measures the er-
ror between the target feature map and the rendered neural
texture and background.

Object Classification as Maximum Likelihood Es-
timation. In contrast to prior work, which simply per-
formed 3D reconstruction of a known object class within
such a probabilistic framework [28, 36], our model needs
to compare the reconstruction quality across classes to
perform classification. This requires us to maximize the
likelihood (i.e. minimize the reconstruction error) over
the category label y and the mesh pose ↵y jointly, to find
the mesh that best explains the target feature map F :

{ŷ, ↵̂ŷ} = arg min
y,↵y

LRec(F, Oy,↵y, B), (4)

where {ŷ, ↵̂ŷ} are the object class and corresponding ob-
ject pose with minimal reconstruction error. This maxi-
mum likelihood inference process is implemented within
the architecture of RCNet as described in Section 3.2.

3.4 Training RCNet
To train the feature extractor �, the neural texture {Ty}
and the background model B jointly, we utilize the EM-
type learning strategy as originally introduced for key-
point detection in CoKe [1]. Specifically, the feature ex-
tractor is trained using stochastic gradient descent while
the parameters of the generative model {Ty} and B are
trained using momentum update after every gradient step
in the feature extractor. Which was found to stabilize
training convergence [1].

We use three training losses in total. First, the model
parameters need to optimize the reconstruction loss LRec
(Eq.3). To achieve this, we use the ground-truth 3D pose
annotation to obtain correspondence between the mesh
vertices and corresponding pixel locations in the respec-
tive feature maps as well as masks for the background BG
regions in each training image.

We further use a contrastive loss [1] to maximize the
distance between features far from each other on the 3D
mesh, as well as between features on the object and the
background. This contrastive property of features was
found [36] to reduce the local optima in the feature-level
reconstruction loss (Eq. 3), and hence enhances conver-
gence in the render-and-compare process. To compute the
loss, we first randomly sample a set of features from the



visible part of the object in the feature map fu,v, (u, v) 2
FG. For each sampled feature fu,v , we sample a set of
negative training examples (u

0
, v

0
) 2 N ⇢ FG that are a

certain distance away k(u0
, v

0
)� (u, v)k2 > ⌧ , where ⌧ is

a threshold for controlling the spatial discriminability. To-
gether, with the features from the background region BG
we compute a contrastive loss that maximizes the feature
distance [36]:

Lcon(F, My,↵, B) = �
X

(u,v)

X

(u0 ,v0 )

kfu,v � fu0 ,v0 k2

�
X

i2FG

X

j2BG
kfi�fjk2, (5)

which encourages the features at different positions on the
object to be distinct from each other (first term) while also
making the features on the object distinct from the fea-
tures in the background (second term).

We further introduce a critical additional loss encour-
aging the neural textures among different meshes to be
distinct from each other:

Lclass({Ty}) = �
YX

y=1

YX

ȳ=1\{y}
kµ(y) � µ(ȳ)k2, (6)

where µ(y) =
PN

k=1 Tk,y/N is the mean of the neural
texture Ty of class y. Our full model is trained by opti-
mizing the joint loss:

Ljoint = LRec + Lcon + Lclass, (7)

where the individual losses are weighted to be approxi-
mately in the same range.

Training the FC-head. After the training of the 3D-
aware head and backbone feature extractor have con-
verged, we train a fully-connected head on the output of
the feature extractor using the class and pose label in the
training data.

4 Experiments
In this section, we first describe the experimental setup in
Section 4.1. Subsequently, we study the performance of
RCNet in IID and OOD scenarios for different tasks in
Sections 4.2-4.4. Finally, we perform an ablation for our
3D-aware head and our Speed-up approach in Sections
4.5-4.6.

4.1 Setup

Datasets. We evaluate RCNet on four datasets: PAS-
CAL3D+ (P3D+) [38], occluded-PASCAL3D+ [37],
corrupted-PASCAL3D+ [13, 25], and Out-of-
Distribution-CV (OOD-CV) [40]. PASCAL3D+ includes
12 object categories, and each object is annotated with
3D pose, object centroid, and object distance. The dataset
provides a 3D mesh for each category. We split the
dataset into a training set of 11045 images and a valida-
tion set with 10812 images, referred to as L0. Building
on the PASCAL3D+ dataset, the occluded-PASCAL3D+
dataset is a benchmark that evaluates robustness under
different levels of occlusion. It simulates realistic
occlusion by superimposing occluders on top of the
objects with three different levels: L1: 20%-40%, L2:
40%-60%, and L3:60%-80%. corrupted-PASCAL3D+
corresponds to PASCAL3D+ on which we apply 12 types
of corruptions [13, 25] to each image of the original
P3D+ test dataset. We choose a severity level of 4 out of
5 for each applied corruption. Note that for fairness in
the comparison, we didn’t include any noise corruptions
since the latest baselines (e.g., ConvNext, ViT) include
some data pre-processing that reduces the noise level.
The OOD-CV dataset is a benchmark dataset that in-
cludes OOD examples of 10 object categories varying in
terms of 5 nuisance factors: pose, shape, context, texture,
and weather.

Implementation details. RCNet consists of a
category-specific neural mesh and a shared feature extrac-
tor backbone. Each mesh contains approx. 1100 vertices
that are distributed uniformly on the cuboid. The shared
feature extractor � is a ResNet50 model with two upsam-
pling layers. The size of the feature map F is 1

8 of the in-
put size. All images are cropped or padded to 640 ⇥ 800.
The feature extractor and neural textures of all object cat-
egories are trained collectively, taking ⇠ 20 hours on 8
RTX 2080Ti.

RCNet inference follows Section 3.2. We extract a fea-
ture map F from an input image using our shared feature
extractor, then apply render-and-compare to render each
neural mesh into a feature map F 0

y . For initializing the
pose estimation, we follow [36] and sample 144 poses (12
azimuth angles, 4 elevation angles, 3 in-plane rotations)
and choose the pose with the lowest reconstruction error
as initialization. We minimize the reconstruction loss of



Dataset P3D+ occluded-P3D+ OOD-CV
Nuisance L0 L1 L2 L3 Mean Context Pose Shape Texture Weather Mean
Resnet50 99.3 93.8 77.8 45.2 79.6 45.1 61.2 55.2 48.3 47.3 51.4
Swin-T 99.4 93.6 77.5 46.2 79.7 63.0 71.4 65.9 61.4 59.6 64.2
Convnext 99.4 95.3 81.3 50.9 81.8 53.6 61.2 60.8 57.2 47.1 56.0
ViT-b-16 99.3 94.7 80.3 49.4 80.9 57.8 67.3 61.0 54.7 54.5 59.0
Ours 99.1 96.1 86.8 59.1 85.3 85.2 88.2 84.6 90.3 82.4 86.0
Ours++ 99.4 96.8 87.2 59.2 85.7 85.1 88.1 84.1 88.5 82.7 85.4

Table 1: Classification accuracy results on PASCAL3D+, occluded-PASCAL3D+ and OOD-CV datasets. L0 corre-
sponds to unoccluded images from Pascal3D+, and occlusion levels L1-L3 are from occluded-PASCAL3D+ dataset
with occlusion ratios stated in 4.1. RCNet performs similarly in IID scenarios, while steadily outperforming all base-
lines in OOD scenarios.

Dataset P3D+ corrupted-P3D+

Nuisance L0
defocus

blur
glass
blur

motion
blur

zoom
blur snow frost fog brightness contrast

elastic
transform. pixelate jpeg mean

Resnet50 99.3 67.6 41.4 73.5 87.5 84.4 84.3 93.9 98.0 90.0 46.4 82.1 95.5 78.7
Swin-T 99.4 60.7 37.1 70.9 81.3 88.5 91.6 95.4 97.9 92.1 56.3 79.2 95.3 78.9
Convnext 99.4 70.1 58.7 76.5 90.0 92.3 92.9 98.5 99.2 98.4 67.6 84.2 98.7 85.6
ViT-b-16 99.3 64.5 78.1 80.3 88.2 91.2 94.1 90.5 98.7 85.1 84.8 96.9 98.7 87.6
Ours 99.1 90.1 66.9 86.8 84.9 81.3 88.1 98.2 97.9 96.8 96.7 96.9 98.1 90.2
Ours++ 99.4 89.9 66.4 87.3 87.2 83.3 89.8 98.4 98.0 96.9 96.5 96.7 98.4 90.4

Table 2: Classification accuracy results on corrupted-PASCAL3D+ under 12 different types of common corruptions.
RCNet outperforms the baseline network that is was built upon (ResNet50) by a wide margin, and also outperforms
other state-of-the-art architectures (even though RCNet is trained from plain images only, without any data augmen-
tation).



Dataset P3D+
occluded-

P3D+
corrupted-

P3D+ OOD-CV

Resnet50 39.0 15.8 15.8 18.0
Swin-T 46.2 16.6 15.6 19.8
Convnext 38.9 14.1 24.1 19.9
ViT-b-16 38.0 15.0 21.3 21.5
NeMo 62.9 30.1 43.4 21.9
Ours 61.6 27.2 43.8 25.5
Ours++ 65.1 28.8 43.9 24.8

Table 3: Pose Estimation results for different datasets.
A prediction is considered correct if the angular error is
lower than ⇡

18 . Higher is better. Even though RCNet was
not designed for robust 3D pose estimation, it performs
similarly to the current state-of-the-art.

Dataset P3D+
occluded-

P3D+
corrupted-

P3D+ OOD-CV

Resnet50 45.6 15.9 14.4 5.4
Swin-T 46.1 13.3 13.8 9.3
Convnext 38.8 12.4 22.5 4.5
ViT-b-16 37.9 13.3 20.2 8.0
Ours 61.5 26.6 43.4 24.9
Ours++ 65.0 28.0 43.4 24.4

Table 4: Consistent Class and Pose estimation (CCP) re-
sults for different datasets. A prediction is considered cor-
rect if the angular error is lower than ⇡

18 with a right class
label prediction. Higher is better. RCNet exhibits a sub-
stantial performance improvement over all baselines.

each category (Equation 3) to estimate the object pose.
The category achieving the minimal reconstruction loss is
selected as the class prediction. Inference takes ⇠ 0.8s on
8 RTX 2080Ti.

Evaluation. We evaluate the tasks classification, pose
estimation, and Consistent Classification and Pose esti-
mation (CCP). The 3D pose estimation involves predict-
ing azimuth, elevation, and in-plane rotations of an object
with respect to a camera. Following [41], the pose esti-
mation error is calculated between the predicted rotation
matrix Rpred and the ground truth rotation matrix Rgt as

� (Rpred, Rgt) =
klog m(RT

predRgt)k
Fp

2
. We use two com-

mon thresholds ⇡
18 and ⇡

6 (see Supplementary for ⇡
6 re-

sults) to measure the prediction accuracy. We note that
for a correct CCP, the model must estimate both the class
label and 3D object pose correctly.

Baselines. We compare our RCNet to 4 baselines. We
consider the pose estimation problem as a classification
problem by using 42 intervals of ⇠8.6� for each parame-
ter (azimuth angle, elevation angle, and in-plane rotation).
For each baseline, we replaced the original head with 2
smaller heads: one for object classification, and one for
pose estimation. In order to make baselines more robust,
we apply some data augmentation (i.e., scale, translation,
rotation, and flipping) for each baseline during training.
It is important to note that we do not apply any such
augmentation for RCNet during training. We also com-
pare to NeMo [36] for 3D pose estimation, which is also
a render-and-compare approach. We trained it for each
dataset using the publicly available code and obtained
similar performances to the ones reported in [36] (i.e.,
NeMo-SingleCuboid). The baselines we compare to, have
proven their robustness in OOD scenarios [23, 36].

4.2 Robust Object Classification

We first evaluate the performance of our model on inde-
pendently and identically distributed data (IID). As the L0
(clean images) column of Table 1 shows, RCNet achieves
a classification score of more than 99% on IID data, which
is comparable to other classical approaches.

Furthermore, RCNet manages to robustly classify im-
ages in various out-of-distribution scenarios. From Ta-
ble 1, we can see RCNet outperforms all other traditional
baselines with around 5% accuracy on average for dif-



ferent levels of occlusions and with up to 30% accuracy
boost for images under five different types of nuisances in
OOD-CV.

We also evaluate robustness under different corruptions
in Table 2. We observe that some baselines (e.g., Con-
vNext, ViT) perform better under some corruptions. We
can easily explain that by the fact that they have been pre-
trained on massive amounts of data, sometimes including
these corruptions. As a result, these corruptions become
IID and the comparison might not be completely fair. De-
spite this consideration, RCNet performs better on aver-
age compared to all baselines.

Based on these evidences, RCNet has made a great
improvement in OOD scenarios while maintaining
cutting-edge accuracy for IID data for classification. Fi-
nally, it is also worth noting that RCNet is much more
consistent than all baselines (i.e., results’ standard devi-
ations are 15.8 and 9.7 for ViT and Ours, respectively).
Independently of the nuisance’s nature, RCNet tends to
have consistent performances. We think that 3D-aware
networks are less likely to learn shortcuts than traditional
CNNs or Transformers.

4.3 Robust 3D Pose Estimation

As previously mentioned, due to its generative nature,
RCNet is capable of performing 3D pose estimation. Ac-
cording to the results presented in Table 3, RCNet outper-
forms all feed-forward baselines significantly across all
datasets. In addition, RCNet competes with NeMo, the
current state-of-the-art method for robust 3D pose esti-
mation. On average, RCNet performs better than NeMo
across all datasets, except for occluded-Pascal3D+, where
NeMo, designed specifically for occluded 3D pose esti-
mation, holds a slight advantage. Despite not being ex-
plicitly designed for robust 3D pose estimation, we can
conclude that RCNet achieves comparable performance to
state-of-the-art architectures that are specifically tailored
for this task.

4.4 Consistent Class and Pose estimation

RCNet can make consistent class label prediction and 3D
pose estimation in a single passing. In Table 4, we can
see that when considering accuracy for predictions with

Metric CCP@ACC ⇡
18

" Computation cost #
(in % of the reference)

Datatset P3D+ occluded-P3D+ P3D+ occluded-P3D+
FC-Head 45.6 15.9 3 3
Ours 61.5 26.6 100 100
prev.+S1 61.3 26.4 25 88
prev.+S2 63.8 24.7 8 29
prev.+S3 65.0 28.0 12 75

Table 5: Ablation of the performance and inference cost
of our model components at Consistent Class and Pose
Estimation (CCP) on P3D+ (L0) and occluded-P3D+ (L1-
L3). FC-head refers to our trained backbone with a fully-
connected-head. Ours refers to RCNet described in 3.2.
We subsequently add the three stages of our proposal ver-
ification approach (S1-S3), where ”prev.” refers to previ-
ous line. Ours+S1 +S2 +S3 is equivalent to Ours++ in
other tables.

both right class label and low pose estimation error, RC-
Net outperforms all baselines by a large margin.

We believe, these enhanced capabilities come from the
consistency between both tasks of object classification
and 3D pose estimation. This illustrates that RCNet, un-
like naive multi-head architectures, learns latent connec-
tions between object pose and object category. RCNet
uses information from 3D poses to make classification
more accurate, and it has turned out, both intuitively and
experimentally, that such information is extremely help-
ful for enhanced robustness in the case of classification
against OOD images.

In Figure 3, we provide qualitative results. Every im-
age is OOD data with different nuisances. We can see that
these scenarios are very likely to be encountered by clas-
sification models in the real world. From the correct mesh
selected and the correct pose the mesh has aligned, and we
can see how RCNet successfully predicts both the object
category and object pose for these challenging images.

4.5 3D-aware head ablation
To assess the significance of our 3D-aware head, we con-
ducted an ablation study by replacing it with a conven-
tional fully connected head that predicts the object class
and 3D pose. It is trained on the same data while freezing
the backbone that has been trained as described in Sec-



tion 3.4. The results in Table 5 indicate that the conven-
tional classifier is not as effective in utilizing the extracted
features for Consistent Class and Pose estimation (CCP)
as compared to our 3D-aware head model (referred to as
”Ours”). The drop of 15.9% and 10.7% in unoccluded
and occluded scenarios, respectively, demonstrates that
the 3D-aware head is capable of interpreting the learned
features in a more meaningful way. This finding once
again suggests that FC models, and CNNs more broadly,
tend to take some shortcuts during the learning process.

4.6 Speed-up by Proposal Verification

We seek to reduce the computational cost of our method
while retaining the performance and robustness, as intro-
duced in Section 3.2. Hence, we evaluate our proposal
verification approach using two metrics: computational
cost and accuracy. We analyze the effect of each compo-
nent of our verification strategy separately for CCP with a
threshold of ⇡

18 (i.e., strictest task since a classification or
pose estimation drop would induce a drop in CCP):

S1: Handle simple cases with FC-head. We define
the threshold ⌧1 = 0.95 experimentally to maximize the
true positives while minimizing the false positives, i.e.,
the FC-head predicts the wrong category with high confi-
dence. It allows us to reduce the processing requirements
by 75% and 22% for the unoccluded and occluded sub-
sets, respectively.

S2: Propose-and-verify with FC-head. Using the FC-
head output as initialization reduces computation by al-
most a factor of 4 for the occluded dataset. Furthermore,
it is interesting to note that our proposed initialization
scheme is very beneficial in unoccluded cases and leads
to an improvement of more than 2% in accuracy while
reducing computation by 10. We do not observe an ac-
curacy gain for occluded images, which provides further
evidence that feed-forward models are less reliable in
OOD scenarios.

S3: Full render-and-compare when uncertain. For
19% of the test images, the render-and-compare optimiza-
tion does not converge to a good solution. By applying
a threshold on the reconstruction loss ⌧2 = 0.8, we can
recover 92% of these wrong predictions that the feed-
forward models, at the cost of higher computation cost.
These thresholds generalize well under different OOD

scenarios and we study their sensitivity in the Supplemen-
tary.

In short, we observe a synergistic effect in many sit-
uations, leading to improved performance in terms of
computation and even accuracy when combining standard
(non-robust) fully-connected heads with our 3D-aware
head.

5 Conclusion

In this work, we introduce RCNet, a 3D-aware neural net-
work architecture that utilizes a render-and-compare ap-
proach for object classification. Our model represents
objects as cuboid meshes with discriminatively trained
neural textures and performs classification along with 3D
pose estimation in a unified manner through inverse ren-
dering. We integrate the 3D-aware head with a standard
(non-robust) fully-connected head to considerably speed
up the render-and-compare inference and reach a sweet
spot that further enhances the performance while also
greatly reducing the computational cost at inference time.
Our experiments demonstrate that RCNet robustly classi-
fies objects in a variety of OOD scenarios while also per-
forming competitively at 3D pose estimation. We believe
our work showcases the potential of integrating render-
and-compare approaches and deep networks to achieve
high performance with robustness in OOD scenarios. Fur-
thermore, we strongly encourage future research to eval-
uate their methods on more challenging datasets to ob-
tain better estimates of their performance in complex real-
world scenarios.
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