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A B S T R A C T   

The human brain exhibits complex interactions across micro, meso-, and macro-scale organisational principles. 
Recent synergistic multi-modal approaches have begun to link micro-scale information to systems level dy
namics, transcending organisational hierarchies and offering novel perspectives into the brain’s function and 
dysfunction. Specifically, the distribution of micro-scale properties (such as receptor density or gene expression) 
can be mapped onto macro-scale measures from functional MRI to provide novel neurobiological insights. 
Methodological approaches to enrich functional imaging analyses with molecular information are rapidly 
evolving, with several streams of research having developed relatively independently, each offering unique 
potential to explore the trans-hierarchical functioning of the brain. Here, we address the three principal streams 
of research – spatial correlation, molecular-enriched network, and in-silico whole brain modelling analyses – to 
provide a critical overview of the different sources of molecular information, how this information can be utilised 
within analyses of fMRI data, the merits and pitfalls of each methodology, and, through the use of key examples, 
highlight their promise to shed new light on key domains of neuroscientific inquiry.   

1. Introduction 

Neuropsychiatric disorders present a formidable healthcare chal
lenge for which we remain largely bereft of targeted and mechanistically 
informed treatments. Despite substantial progress in recent decades, this 
largely reflects our current inability to delineate the elusive fundamental 
principles governing brain function. This is due in part to the challenges 
presented by the hierarchical organisation of the brain, which exhibits 
complex non-linear interactions across micro-, meso- and macro-scale 
systems (Box 1). Herein, we use the term hierarchical to refer to this 
multi-scale organisation (Hilgetag and Goulas, 2020) integrating nested 
and increasingly polyfunctional elements, which ultimately subserve 
behaviour and cognition (Suárez et al., 2020). To date, efforts to unravel 

this complexity have mostly followed a reductionist approach within 
which each organisational scale is explored independently. For example, 
cognitive neuroscience has benefited enormously from the advent and 
expansion of non-invasive imaging techniques exploring neural mech
anisms at the macro-scale systems level (Bassett et al., 2020). In this 
context, functional magnetic resonance imaging (fMRI) has become the 
principal tool in human research to map mental processes to their 
neurobiological substrates, characterize dysfunction of the brain in a 
variety of clinical conditions, and study the brain’s response to phar
macological challenges. However, the utility of the blood oxygen level 
dependent (BOLD) signal in addressing these core neuroscientific 
questions is constrained by its indirect nature and inherent inability to 
provide information as to the cellular and molecular processes that give 
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rise to it. Together, these limitations leave BOLD fMRI practically and 
conceptually detached from domains of neuroscientific inquiry that 
explore the fine-grain biochemical basis of brain function and 
dysfunction. 

Developing comprehensive accounts of the brain and its disorders 
must therefore bridge the theoretical void between the micro- and 
macro-scale organisation of the nervous system. The human brain shows 
rich variations in myelo-, cyto-, and, crucially, chemo-architecture (van 
den Heuvel and Yeo, 2017). Indeed, recent evidence has shown that 
neuroreceptor densities demonstrate a natural axis of spatial organiza
tion through the cortex, with links to the laminar as well as the func
tional hierarchical organisation of the cortical mantle (Goulas et al., 
2021). This information can be leveraged through mapping particular 
micro- and meso-scale properties of the human brain onto its 
macro-scale haemodynamics, providing neurobiological specificity to 
the BOLD signal and generating novel hypotheses which transcend 
organisational hierarchies. Specifically, these approaches utilise mo
lecular information, such as neurotransmitter systems or expression of 
genes, to examine spatial covariation with measures of brain activation 
or connectivity. This has primarily been made possible by the expansion 
and public availability of receptor density atlases from Positron Emis
sion Tomography (PET) and Single-Photon Emission Computed To
mography (SPECT), as well as transcriptomic data from sources such as 
the Allen Human Brain Atlas (AHBA)(Hawrylycz et al., 2015), which 

have provided an impetus for novel multimodal analyses that exploit 
this molecular information to enrich conventional fMRI methods. At its 
simplest, this involves considering the spatial concordance between 
patterns of resting state functional connectivity (FC) or task-based 
activation and the distribution of different receptor densities or 
expressed genes (Arnatkevic̆iūtė et al., 2019; Fornito et al., 2019a, 
2019b; Richiardi et al., 2015; Selvaggi et al., 2021). Other approaches 
have delineated more complex spatiotemporal relationships. For 
example, Receptor-Enriched Analysis of functional Connectivity by 
Targets (REACT) was recently developed to map the spatiotemporal 
dynamics of the BOLD signal onto the distribution of different receptor 
systems and derive receptor-enriched networks that link biology and FC 
(Dipasquale et al., 2019). Additionally, computational approaches such 
as in silico modelling of whole brain dynamics have been used to explore 
the putative contribution of receptor subsystems to cortical dynamics 
(Jancke et al., 2021). These novel integrative methods, that bring 
together micro-scale information at the molecular level with 
macro-scale neuroimaging features, have shown initial promise in 
helping characterise the brain’s i) functional network architecture and 
its relationship to cognition, ii) perturbation within disease, and iii) 
response to drugs. Crucially, pharmacotherapy is the mainstay of 
neuropsychiatric treatment, and network-level dysfunction charac
terised using fMRI remains abstracted from the molecular-level mech
anisms through which these interventions impart their benefit. Through 

Box 1 
The hierarchical micro-, macro-, and meso-scale organisation of the brain. 

The brain is a complex system whose constitutive parts span vastly different spatial resolutions. Here, we describe these as a hierarchy with 
interactions across micro-, meso-, and macro-scale levels. The definitions of these levels are somewhat arbitrary, but this loose demarcation has 
proven conceptually useful (Fornito et al., 2019a,2019b; Suárez et al., 2020; Swanson and Lichtman, 2016; van den Heuvel et al., 2019; 
Wong-Lin et al., 2021). Firstly, at the micro-scale, molecular processes including − but far from limited to − genetics, transcriptomics, and 
proteomics delineate the morphology and dynamics of neurones. The cytoarchitectonic arrangement of these neurones into circuits constitutes 
the meso-scale, a somewhat underappreciated link between micro-scale processes and macro-scale dynamics. Finally, the macro-scale captures 
how the brain’s network architecture emerges from the activity across regions, collectively constituting larger systems. Crucially, there are 
interactions across the different levels of this hierarchical organisation of the brain, which need not be limited to the relatively straightforward 
example of lower-level features building up to constitute higher-level features. Minute changes in the regional concentrations of neuro
modulatory transmitter systems can enact complex downstream effects through metabotropic receptors at the micro-scale, which can result in 
drastic non-linear effects on emerging network dynamics at the macro-scale (Shine, 2019). Additionally, one scale can constrain another, with 
regions showing similar cytoarchitecture or gene expression potentially showing greater propensity to interact and connect, resulting in a 
constraint on the patterns of emerging macro-scale connectivity between regions (van den Heuvel and Yeo, 2017). Conversely, the pattern of 
macro-scale connectivity may constrain the spread of micro-scale neuropathology, such as misfolded proteins, throughout the brain (van den 
Heuvel and Yeo, 2017; Zhou et al., 2012). The methods outlined herein offer novel tools to explore such relationships and build unified theories 
of brain function that span the different levels of this organisation hierarchy. 

.  
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understanding the disorder- and subject-specific dysfunction of the 
molecular systems underlying disease, we may be able to target treat
ment through links to the known pharmacology and pharmacodynamic 
effects of drugs, bringing theoretical knowledge gained from functional 
neuroimaging closer to the needs of patients. 

This field is now gathering significant momentum, with several 
recent papers showcasing advances in our understanding of the brain by 
linking molecular information to its inherent functional organisation 
(Hansen et al., 2022a), cognition (Hansen et al., 2022a, 2021b), disease 
states (Hansen et al., 2022b), and psychopharmacology (Luppi et al., 
2022a). In this narrative review, we will explore the applications and 
promises of synergistic multimodal analysis of fMRI data. First, we 
provide an overview of the sources of molecular information and their 
respective use cases. Next, we critically outline each of the three main 
methods employed within synergistic multimodal research, including 
their respective strengths and weaknesses (overviewed in Table 1). 
Alongside these methods, we highlight examples of their applications to 
various domains of neuroscientific inquiry, here used to discuss how 
multimodal neuroimaging analyses have advanced our understanding of 
the brain and its perturbation in disease. 

2. Sources of molecular information 

A key commonality of studies enriching fMRI with molecular infor
mation is the requirement for high-quality data delineating the distri
bution of receptors and expression of genes. To date, these have come 
primarily from two sources. Firstly, gradual progress in PET and SPECT 
tracer development, as well as data-sharing practices, have resulted in a 
broad range of openly available and shared atlases providing voxel-wise 
estimates of receptor density averaged across healthy participants 
(Dukart et al., 2021; Hansen et al., 2022a; Knudsen et al., 2020; 
Nørgaard et al., 2021; Tuominen et al., 2014). These include retro
spectively shared data from ongoing applied PET/SPECT research, but 
also a high-resolution multi-receptor serotonergic atlas derived in a very 
large (N = 210) normative sample (Beliveau et al., 2017), which marks 
an important step towards mapping the brain’s ‘receptome’ (Jancke 
et al., 2021). Secondly, large-scale projects such as the AHBA provide a 
rich characterisation of expression patterns with > 20,000 genes across 
3702 tissue samples measured within 6 adult neurotypical human brains 
(Hawrylycz et al., 2015)(for detailed review, see (Arnatkevic̆iūtė et al., 

2019)). EBRAINS (https://ebrains.eu/) also offers a Multilevel Human 
Brain Atlas which provides various micro- and meso-scale facets of brain 
organisation integrated into a high-resolution atlas. However, other 
sources exist. Autoradiography mapping has largely been limited by 
poor whole brain anatomical coverage (Zilles and Palomero-Gallagher, 
2017). Similarly, the Genotype-Tissue Expression (GTEx) project offers 
an additional source of transcriptional information in a larger cohort 
than the AHBA, but only from a select few regions (Aguet et al., 1979). 
Accordingly, the primary focus is on PET estimates of receptor density 
and AHBA measures of gene expression, both of which can be mapped 
onto the same three-dimensional anatomical space as fMRI data, 
allowing for straightforward applications within novel multimodal 
analyses. 

2.1. Selecting a source: binding potential or gene expression? 

The choice of whether to use PET or transcriptomic molecular in
formation is largely contingent on the research question. For instance, 
the AHBA offers a vast array of expression data covering the full breadth 
of the transcriptome, whilst PET data remains constrained to the re
ceptor systems and sub-systems for which ligands have been developed. 
As such, approaches exploring a wide range of molecular systems, or 
analyses of specific systems for which no PET tracer is available, favour 
the breadth of the AHBA. PET data generally provides superior spatial 
resolution, allowing for voxel-wise rather than parcellated region of 
interest (ROI)-based analyses, although recent attempts have been made 
to create vertex/voxel-wise maps of gene expression using machine 
learning (Gryglewski et al., 2018; Markello et al., 2021; Wagstyl et al., 
2022)). Furthermore, the limited sample of six individuals, of which 
only two have both hemispheres sampled, calls into question the gen
eralisability of the AHBA data. Moreover, transcriptomic data has the 
potential limitations that mRNA only approximates actual protein levels 
(due to post-transcriptional regulation, transcript isoforms, splice 
variant expression, and protein buffering) as well as the mismatch be
tween where the mRNA is produced (the soma) and where many pro
teins are expressed (for example, most receptors are located at the 
synapse). The extent of these limitations varies between receptor sys
tems – e.g., while the 5-HT1a binding and expression are closely coupled, 
opioidergic receptors, which are under tighter post-translational regu
lation, are weakly correlated (Rizzo et al., 2014). Similarly, comparison 

Table 1 
Methodologies incorporating molecular information into the analysis of fMRI data. PET: Positron Emission Tomography; AHBA: Allen Human Brain Atlas; PLS: Partial 
Least Squares regression.  

Method Summary Types of molecular 
information 

Advantages Disadvantages Key applications 

Spatial 
correlation 
(Section 3) 

Conventional analysis of fMRI data 
is undertaken and then resulting un- 
thresholded maps are correlated 
with the spatial distribution of 
molecular information  

• Receptor/ 
transporter density 
(PET)  

• Transcriptomics 
(AHBA)  

• Cytoarchitectonics  

• Simple  
• Flexible  
• Easily interpretable  
• Opportunity to scale up 

(PLS)  

• Less insight into 
spatiotemporal 
dynamics  

• Less amenable to 
providing subject- 
specific information  

• Less clear spatial 
localisation  

• Adding as secondary 
outcome to provide 
biological specificity  

• Large scale mapping of 
molecular-functional re
lationships (PLS) 

Molecular- 
enriched 
networks 
(Section 4) 

A multiple regression framework 
creates functional networks 
capturing relationships between 
BOLD signal and spatial distribution 
of molecular information  

• Receptor/ 
transporter density 
(PET)  

• Transcriptomics 
(AHBA)  

• Spatiotemporal insight  
• Can apply conventional 

higher level analyses  

• Interpretation of 
negative functional 
connectivity can be 
challenging  

• Collinearity across PET 
templates requires 
careful consideration  

• Disentangling 
pharmacodynamics  

• Novel biomarkers 

Computational 
modelling 
(Section 5) 

Creation of whole brain models that 
attempt to recapitulate experimental 
data from functional imaging, 
within which molecular information 
can be used to regionally modulate 
different aspects of neuronal micro- 
circuitry and examine the 
counterfactual consequences  

• Receptor/ 
transporter density 
(PET)  

• Transcriptomics 
(AHBA)  

• Requires careful 
hypotheses  

• Allows for 
manipulation and 
mechanistic insight not 
possible experimentally  

• Technically challenging  
• Resource intensive  
• Modelling multiple 

receptor systems and 
their interactions is 
currently difficult  

• Testing hypotheses regarding 
the role molecular 
mechanisms play in shaping 
network dynamics  

• Characterising contribution 
of different receptor 
mechanisms to drug 
pharmacodynamics  
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of AHBA gene expression to protein levels measured with autoradiog
raphy demonstrated substantial variations across different receptors, 
with most correlations being weak (Murgaš et al., 2022). The 
high-resolution multi-receptor atlas of the serotonin system derived 
from 210 individuals has also been compared to AHBA gene expression 
data (Beliveau et al., 2017). Whilst the 5-HT1a receptor showed excellent 
correspondence, it was only moderate for 5-HT4 and 5-HT1b. Moreover, 
the 5-HT2a receptor showed only weak correlation cortically, and no 
correlation subcortically. The serotonin transporter showed no correla
tion, although both expression and binding were high in the dorsal 
raphe, aligning with its presynaptic localisation resulting in terminal 
projections transporter levels being spatially mismatched with gene 
expression (Beliveau et al., 2017; Hoffman et al., 1998; Zhou et al., 
1998), further emphasising the nuanced relationship between these 
measures. More recently, a systematic comparison of 27 neurotrans
mitter receptors found overall poor spatial concordance between PET 
and AHBA data, with the exception of four metabotropic receptors 
(5-HT1a, D2, CB1, and MOR)(Hansen et al., 2021a). As such, studies 
enriching fMRI data with these different sources will likely produce 
divergent findings. Indeed, in a study trying to explain relationships 
between changes in cerebral blood flow using D2 receptor density and 
DRD2 gene expression, the former explained more variance than the 
latter (Selvaggi et al., 2019). However, the [18 F]-Fallypride ligand used 
in that study binds to D2 and D3 receptors (Hsieh et al., 2021; Slifstein 
et al., 2004; Vandehey et al., 2010), and thus additional explained 
variance could come from D3 receptor density not captured by the more 
specific DRD2 gene expression. Thus, extreme care must be taken 
regarding the specificity of findings given the large number of contrib
uting and interacting factors underlying the distribution of receptors and 
their transcripts. For a more detailed discussion of theoretical and 
methodological challenges associated with AHBA-based analyses, see 
(Selvaggi et al., 2021). Altogether, from the available evidence discussed 
above and especially for pharmacoimaging, PET receptor density seems 
to offer a better estimate of receptor distribution than gene expression 
data (Liu et al., 2016; Selvaggi et al., 2021). In the longer term, tran
scriptomics may overcome some of these crucial limitations with higher 
resolution datasets derived from a greater number of individuals. 
Indeed, the extent to which genes and receptors correlate can itself be 
predicted from the differential stability of a gene, suggesting that 
improved consistency in measurement may result in better estimates of 
receptor abundance (Hansen et al., 2021a). In the meantime, future 
studies employing both sources of molecular information may allow for 
side-by-side comparison to help mitigate the generation and propaga
tion of erroneous molecular-functional relationships. 

2.2. Construct validity 

A general assumption made when utilising molecular information 
from PET and SPECT imaging and the AHBA is that the spatial distri
bution of receptors derived in normative, independent cohorts is 
applicable to fMRI data from new samples (Dipasquale et al., 2019; 
Selvaggi et al., 2021). In general, the average distribution of receptor 
density and gene expression seems to offer useful approximations for the 
influence of a given receptor or gene over the BOLD signal in a given 
region (although see Section 2.1 for discussion of gene expression versus 
receptor density). This is primarily evidenced by the fact that 
molecular-enriched analyses to date have found hypothesis-driven 
pharmacodynamic effects in line with the known receptor affinity and 
(ant)agonist activity of different drugs (Craig et al., 2021; Dipasquale 
et al., 2020; Dukart et al., 2018; Lawn et al., 2023, 2022; Luppi et al., 
2022b, 2022a; Daniel Martins et al., 2022a,2022b; Preller et al., 2018; 
Selvaggi et al., 2019; Wong et al., 2022). However, confirmatory studies 
clarifying the extent to which this assumption holds will be important in 
the longer term. In particular, comparisons of molecular-enriched 
analysis conducted using PET and fMRI data from the same subjects to 
fMRI data collected in separate subjects may provide further insight. 

Moreover, the development and open sharing of PET atlases derived 
within large normative samples such as from Beliveau and colleagues 
may prove less susceptible to outliers than those from conventional PET 
studies, which tend to involve drastically fewer participants (Beliveau 
et al., 2017). Despite these potential caveats, it must also be emphasised 
that this molecular information provides a relatively straightforward 
ability to probe systems that would require prohibitively costly and 
invasive multi-tracer studies. Indeed, PET studies are typically con
ducted in under 20 participants, whilst some collaborative fMRI datasets 
now include over a thousand (Smith et al., 2013). Thus, whilst these 
techniques must be utilised with appropriate consideration of these 
limitations, they also provide opportunity for novel large-scale analysis 
of brain function. 

3. Spatial correlation between fMRI results and molecular 
information 

If one assumes that a particular pattern of changes in fMRI data is 
driven by a certain biological process, then it is reasonable that the 
extent to which each region of the brain exhibits a change might be at 
least partially explicable by the relative abundance of the molecular 
machinery underlying this process across regions. The most common 
approach to derive molecular insights from fMRI data is to undertake 
conventional fMRI analyses and then examine how the results do or do 
not overlap with the spatial distribution of different receptors or genes of 
interest (Fig. 1). This approach moves away from trying to identify 
“where” in the brain different cognitive of pathological processes take 
place, towards understanding “how” these processes emerge from 
broader patterns of network activity. The simplicity of this method in 
inferring the relationships between micro-scale information at the mo
lecular level and macro-scale neuroimaging features has led to its 
diverse application across many domains of neuroscience. 

3.1. Methodology 

After parcellating whole brain un-thresholded statistical maps for a 
contrast of interest (e.g., drug vs placebo) as well as molecular infor
mation from potentially explanatory systems (e.g., molecular density or 
gene expression for the receptor(s) upon which the drug acts) using an 
anatomical or functional atlas (e.g., the Desikan–Killiany atlas (French 
and Paus, 2015)), these values can be used to compute measures of 
correlation (typically Pearson’s correlation coefficient) between fMRI 
and molecular data across these brain regions. The correlation, or lack 
thereof, between fMRI results and a given receptor density or gene 
expression profile accordingly provides indirect support for or against 
the relevance of that molecular system for the network-level findings 
from the conventional fMRI analysis. While conceptually simple, 
correlating brain maps that inherently possess a spatially autocorrelated 
structure requires some additional consideration of methods which can 
help avoid inflated results. Since this is a longstanding issue in multi
modal imaging, we cover this topic in further detail below (see Section 
3.6). 

The field has also moved beyond simple spatial correlation analyses 
and started to more broadly link multiple molecular systems to aspects 
of functional imaging and behaviour in a data-driven manner. When 
utilising multiple receptors or genes as explanatory variables to test their 
link with the functional measure of interest within a multiple linear 
regression framework to estimate the relative contribution of each 
variable to the total variance, one must consider that these systems 
frequently demonstrate strong collinearity. A commonly used technique 
to overcome this challenge is partial least squares regression (PLS), 
which reduces the number of explanatory variables to a smaller set of 
uncorrelated components (Krishnan et al., 2011). In this context, PLS 
aims to generate molecular-based components that have maximum 
covariance with fMRI measures. These are then ranked by their 
covariance such that the first few components generally provide an 

T. Lawn et al.                                                                                                                                                                                                                                    



Neuroscience and Biobehavioral Reviews 150 (2023) 105193

5

optimal low-dimensional representation of the covariance across the 
high-dimensional data. However, it must be noted that models into 
which multiple receptor systems are included are not a panacea, and 
attempts to account for collinearities generate results that are chal
lenging to interpret (further discussed in section 4.5). Furthermore, PLS 
regression can also be inaccurate when the number of samples per 
feature is low, resulting in an inability to adequately constrain the model 
(Helmer et al., 2021). In particular, feature weights can be heavily 
biased towards the leading principal component axes, which for gene-set 
enrichment analyses can obscure interpretation with strong associations 
potentially driven by similarities between a given gene and the first 
principal component of gene expression, regardless of the fMRI data. As 
such, an adequate number of samples is required to provide stable es
timates of PLS regression models. Whilst this is highly specific to the 
data and research question, Helmer and colleagues make more specific 
recommendations based on dataset properties (Helmer et al., 2021). 
Another option to examine multiple receptor systems together is prin
cipal component analysis (PCA), within which a set of variables (here, 
molecular systems from PET/AHBA) is reduced down to a smaller set of 
components which explain the majority of the variance of the original 
variables. As with PLS, this allows for large scale examination of mul
tiple molecular mechanisms together, but at the cost of lost interpret
ability of the results. 

3.2. Novel molecular perspectives on the functional architecture of the 
human brain 

The human brain is exquisitely complex, with billions of neurones 
interacting through trillions of shared connections. Understanding this 
complexity necessitates a wide range of tools to provide distinct but 
interrelated perspectives. For example, a substantial body of work has 
examined how the structural connectome shapes the network dynamics 
observed with fMRI (Mîsic et al., 2016; Seguin et al., 2020; Shen et al., 
2015; Suárez et al., 2020; Zimmermann et al., 2016). Analogously, these 
network dynamics are increasingly appreciated through the lens of their 
underlying molecular substrates which modulate the activity across this 
structural connectome. The human brain has been argued to comprise a 
rich club of densely inter-connected hubs, offering short paths for to
pological integration between modules (van den Heuvel and Sporns, 
2011). However, these hubs come at a significant wiring and metabolic 
cost; it has been theorised that evolutionary pressures have struck a 
balance between this cost and the maximisation of integrative capacity 
(Bullmore and Sporns, 2012; van den Heuvel and Sporns, 2011). In 
support of this overarching organisational theory, regions of superior 
and lateral cortex with a high inter-modular degree and long connection 
distance have transcriptional profiles enriched for oxidative metabolism 
and mitochondria (Vértes et al., 2016). Interestingly, many of these 
areas of association cortex that demonstrate long-range cortico-cortical 
connectivity are also enriched with genes uniquely or disproportionately 
expressed in supragranular cortical layers in humans, but not in rodents 

Fig. 1. An overview of simple spatial correlation analyses. First, conventional fMRI results as well as molecular information relating to receptor systems or genes of 
interest from PET and/or the AHBA are parcellated using an anatomical or functional atlas, producing summary statistics of receptor binding, fMRI connectivity/ 
activation, and AHBA gene expression (shown from top-to-bottom) within each region of the chosen parcellation. Relationships between these vectors can then be 
explored, typically with Pearson’s correlation coefficient, to quantify how related the patterns of fMRI connectivity/activation are to the receptor density estimates 
from PET (top) and/or gene expression from the AHBA (bottom). 
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(Krienen et al., 2016). Network strength has also been more broadly 
correlated to the expression of a set of genes from the AHBA which is 
largely linked to synaptic function, especially ion channels (Cioli et al., 
2014; Richiardi et al., 2015). There is a strong correlation between the 
expression of the neuronal MCT2 lactate transporter and the function 
and structure of the brain, offering new evidence for the 
astrocyte-neuron lactate shuttle hypothesis of neuronal energy supply 
(Medel et al., 2022). Furthermore, unsupervised learning applied to the 
AHBA gene expression data and meta-analytic patterns of activity 
associated with multiple domains of cognition from Neurosynth has 
demonstrated a ventromedial–dorsolateral gradient of gene assemblies 
that separates gene sets associated with affective and perceptual func
tions (Hansen et al., 2021b). Such findings also extend to molecular 
systems measured using PET. Patterns of receptor/transporter density 
show greater similarity within intrinsic networks than between them, 
and brain regions that are more functionally connected also demonstrate 
similar receptor patterns (Hansen et al., 2022a). Additionally, including 
information as to the distribution of receptors improves predictions of 
FC from the structural connectome, highlighting the importance of 
considering the interrelationships of such systems in generating the 
network dynamics seen in fMRI. Collectively, these results demonstrate 
the utility of these approaches to span organisational hierarchies and 
provide new perspectives on overarching theories of brain organisation. 
Future work examining the intermediate meso-scale organisation of the 
brain, in the form of different cell types which are associated with 
distinct molecular profiles, may help shed further light on how these 
cellular and molecular building blocks yield the complex network ar
chitecture observed in fMRI data. 

3.3. Molecular systems exert neuromodulatory control over network 
dynamics associated with cognition 

The BOLD signal fluctuations within anatomically distinct cortical 
and subcortical regions exhibit spatiotemporal relationships with each 
other, constituting large-scale patterns of correlated and anticorrelated 
activity (Fox and Raichle, 2007; Ji et al., 2019). Whilst these networks 
rely on a backbone of structural connections, they undergo dynamic 
shifts to support the diverse repertoire of brain states required to engage 
with an ever-changing set of demands (Bassett et al., 2011; Bressler and 
Menon, 2010; Cole et al., 2021, 2013; Gonzalez-Castillo and Bandettini, 
2018; Meehan and Bressler, 2012). These dynamic functional changes 
have been increasingly studied through the lens of modulatory neuro
transmitter systems, which project to overlapping but also distinct brain 
regions to provide local and global influence over these networks (Shine 
et al., 2019). Integrating information as to the spatial distribution of 
these modulatory system’s receptors and transporters offers a new lens 
through which to examine how the micro-scale modulation of neuronal 
activity shifts network dynamics in response to ongoing demands. Shine 
and colleagues explored this systematically, using PCA to derive a 
smaller set of spatially orthogonal principal components that explained 
most of the variance in the BOLD signal across seven cognitive tasks 
(Shine et al., 2019). They then examined relationships between these 
components, which related to different brain networks as well as aspects 
of cognition, and the patterns of gene expression for receptors that 
produce facilitatory (D1, ɑ2a, M1, and 5HT2a) and inhibitory (D2, ɑ1a, and 
5HT1a) neuromodulatory influence on cognition. These groups of re
ceptors showed differential relationships with the first two principal 
components: the first was broadly engaged across all tasks and showed 
positive and negative relationships with the faciliatory and inhibitory 
groups respectively, whilst the second, which was most strongly linked 
to social and language processing, showed positive relationships with 
the catecholamine (dopaminergic and noradrenergic) receptors and 
negative relationships with serotonergic and cholinergic receptors. 
Altogether, this highlights the nuance within neuromodulatory control 
of cognition; whilst there seem to be some domain-general network 
mechanisms engaged across tasks, other systems engage with greater 

specificity and these each associate with different subsets of receptor 
systems. Moreover, how these receptor mechanisms interact remains 
largely unclear at a systems level, with the methodologies discussed in 
subsequent sections offering additional tools to explore these complex 
interrelationships. 

3.4. The pharmacodynamic effect of drugs are partially explicable 
through the distribution of their primary targets 

Despite almost all commonly used drugs having a well-known 
pattern of affinity and (ant)agonist activity at a set of target receptors, 
the relative contribution of each of these receptor systems to the resul
tant large scale pharmacodynamic response of the brain remains chal
lenging to disentangle. For example, the affinity of different ligands for 
receptor sub-systems can be unintuitive with noradrenaline able to act 
on dopamine D1 and D4 receptors under some circumstances (Kobaya
shi et al., 2022; Root et al., 2015). The molecular-informed fMRI ana
lyses described in this section are well suited to overcome this 
longstanding challenge. An early and important proof-of-concept study 
linked spatial correlation of regional cerebral blood flow (rCBF) re
sponses, measured with arterial spin labelling (ASL) fMRI, to PET re
ceptor densities (Dukart et al., 2018), with all seven compounds 
investigated demonstrating correlations consistent with their known 
mechanism of action across glutamatergic (AMPA, NMDA, and Kainate), 
for GABAergic (GABA-A), cholinergic (M1, M2, α4, and β2), noradren
ergic (α1 and α2), serotoninergic (5-HT1a and 5-HT2), and dopaminergic 
(D1 and D2) receptor systems. Similar studies have followed. For 
example, changes in rCBF induced by three antipsychotic drugs were 
shown to be significantly correlated with D2 receptor density and DRD2 
gene expression (Selvaggi et al., 2019). The field has also moved beyond 
these small-scale investigations. For example, a recent meta-analysis 
demonstrated that the pooled estimate of the effect of 
delta-9-tetrahydrocannabinol (THC) across 22 datasets correlated with 
gene expression of the CB1, but not the CB2 receptor (Gunasekera et al., 
2022). Crucially, the functional imaging data included BOLD and ASL 
fMRI, as well as PET, spanning tasks ranging from reward to sensory 
processing. As such, the pattern of activation identified related to a set of 
brain regions engaged under diverse conditions and measured in mul
tiple ways, demonstrating the robustness of this molecular link through 
the known pharmacology of THC. Future meta-analyses incorporating 
molecular information may prove a particularly fruitful avenue to 
delineate robust molecular-functional relationships. However, inter
pretation of such findings still requires careful consideration given that 
CB1 receptors are also expressed on astrocytes (Navarrete and Araque, 
2008). Similarly, glial cells in general express a wide variety of other 
neuromodulatory receptors, such as for the catecholamines (Oe et al., 
2020). Future work teasing apart the contribution of different cell types 
will be a crucial next step to map these mechanisms across different 
scales, with cellular markers such as glial fibrillary acidic protein 
(GFAP) offering additional complementary meso-scale insights. 

Taking an opposing but analogous approach to large-scale molecular 
informed investigation of psychopharmacology, Luppi and colleagues 
endeavoured to map the effects of a wide array of psychoactive com
pounds onto the multi-receptor landscape of the brain (Luppi et al., 
2022a), including the following 9 neurotransmitter and neuro
modulatory systems: dopamine (D1, D2, DAT), norepinephrine (NET), 
serotonin (5-HT1a, 5-HT1b, 5-HT2a, 5-HT4, 5-HT6, 5-HTT), acetylcholine 
(α4β, M1, VAChT), glutamate (mGluR5, NMDA), GABA (GABA-A), his
tamine (H3), cannabinoid (CB1), and opioid (MOR). As would be ex
pected, regions with similar chemoarchitecture demonstrated similar 
changes in FC across different pharmacological challenges spanning 
psychedelics, anaesthetics, and cognitive enhancers. In a subsequent 
data-driven PLS regression analysis, psychedelics, and anaesthetics were 
found to relate to divergent transmitter systems. Moreover, despite these 
differences, the effects of all drugs mapped onto several hierarchical 
gradients across multiple domains of anatomy and physiology. These 
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findings highlight the potential key relevance of high CBF, connectivity, 
and receptor density of parts of transmodal association cortex in medi
ating the powerful effects of these compounds on cognition and sub
jective experience. Finally, brain regions which demonstrated 
susceptibility to pharmacological manipulation also related to patterns 
of structural pathology associated with a range of neuropsychiatric 
disorders, including 22q11.2 deletion syndrome, 
attention-deficit/hyperactivity disorder, autism spectrum disorder, 
idiopathic generalized epilepsy, right temporal lobe epilepsy, left tem
poral lobe epilepsy, depression, obsessive-compulsive disorder, schizo
phrenia, bipolar disorder, and Parkinson’s disease. This study 
constitutes a significant extension of the basic spatial correlational an
alyses that preceded it and offers a new perspective on the longstanding 
challenge of understanding how multiple receptor systems interact to 
mediate the profound and diverse effects of psychoactive substances on 
various facets of consciousness and cognition. 

The molecular targets of pharmacological interventions can also 
offer cellular-level insights. For example, propofol is known to act pri
marily through GABA-A receptors in the mammalian brain (Brown et al., 
2010; Trapani et al., 2012). However, there are a host of different 
cortical GABAergic interneuron subtypes, some of which propofol may 
preferentially modulate. Craig and colleagues demonstrated that regions 
in which functional connectivity was significantly reduced under pro
pofol anaesthesia also showed high expression levels of genes that mark 
the presence of parvalbumin interneurons (Craig et al., 2021). In doing 
so, these data linked known molecular information from the basic 
pharmacology of a compound to insights at both the cellular and systems 
level, resulting in mechanistic insights that span the principal hierar
chies of brain function. In the longer term, the vision is that drug actions 
may no longer be only characterised by their receptor level occupancy, 
but also potentially by the cell types that express these receptors and 
mediate the subsequent cellular level effects downstream. Whilst con
crete demonstrations of this are lacking, these techniques may prove an 
important additional tool in drug discovery as well as targeted pre
scription within clinical settings. As a general note, while studies 
attempting to link distinct cell types to neuroimaging phenotypes based 
on the spatial distribution of their transcriptional profiles have been 
increasingly common, substantial methodological challenges remain. 
For instance, these analyses necessitate knowledge of the transcriptional 
profile of each cell category in the human brain, for which there remains 
no consensus. Thus far, transcriptional profiles have been defined based 
on a handful of studies sampling tissue from different regions of the 
post-mortem human brain. However, as single cell transcriptomics 
studies grow, it is becoming clear that even specific cell types may show 
differences in transcription within regions. As high throughput tran
scriptomic techniques continue to characterise distinct neuronal cell 
types (Zeng and Sanes, 2017) better resources will hopefully become 
available and allow for more reliable and in-depth cellular decoding of 
neuroimaging phenotypes. 

3.5. Molecular information links pathophysiology through to network 
changes in neuropsychiatric disorders 

A key challenge in neuropsychiatric disorders is the multiplicity of 
implicated mechanisms. As such, linking mechanisms with theorised 
causal roles in driving symptomatology through to specific measurable 
perturbations of brain function would be hugely valuable. For instance, 
several neurodegenerative disorders are associated with hyper
phosphorylation, misfolding, and aggregation of the tau protein, with 
variations in the gene encoding it (MAPT) conferring susceptibility to 
regional brain dysfunction (Goris et al., 2007; Simón-Sánchez et al., 
2009). Rittman and colleagues exploited the known distribution of 
MAPT from the AHBA to examine the relationships between regional tau 
protein and network level dysfunction in progressive supranuclear palsy 
(PSP), hypothesising that higher expression would confer greater sus
ceptibility (Rittman et al., 2016). Indeed, regions with high MAPT 

expression also demonstrated a strong level of connectivity (hubs), 
which predicted network perturbation within PSP patients as well as 
those with Parkinson’s disease. Furthermore, executive cognition was 
impaired in proportion to diminished hub connectivity. Moreover, these 
findings were not mirrored with another gene (SNCA) which encodes for 
an additional protein implicated in neurodegenerative pathophysiology. 
In doing so, they link genetic information through to network function 
as well as dysfunction and concomitant impacts on cognition within 
neurodegenerative disorders, showcasing the utility of 
molecular-enriched analyses to bridge across levels of analysis and 
further our understanding of how neuropathology might lead to 
system-level dysfunction. 

Ji and colleagues took an alternative approach and examined a 
heterogeneous cohort of patients with psychosis-spectrum disorders 
(PSD) with the aim of mapping cognition and psychopathology to im
aging data trans-nosologically (Ji et al., 2021). In their initial analyses, 
they found that the clinical measures could be distilled down to five key 
components using principal components analysis and that these 
demonstrated substantially stronger relationships to global brain con
nectivity (GCB; a measure of FC) than the conventional psychometric 
measures. Then, using transcriptomic data from the AHBA, they mapped 
these brain-behaviour relationships onto select molecular systems 
known to be impacted in the pathogenesis of PSD, including seroto
nergic and GABAergic receptor subunits as well as markers for in
terneurons. For example, the map relating to the third principal 
component strongly correlated with the HTR1E gene, encoding the 
5-HT1e receptor, for which there are currently no available ligands. 
Data-driven decomposition methods applied to symptomatology 
trans-nosologically and systematically mapped onto underlying molec
ular systems may constitute a high throughput means by which to 
facilitate the move towards biologically-informed targeted treatments. 

Recently, we have taken a conceptually similar approach to inves
tigate the role of immunomodulatory drugs in mood and fatigue (Mar
tins et al., 2022a,2022b). Inflammation has attracted considerable 
attention in recent years as a possible new mechanism contributing to 
neuropsychiatric disorders in at least some patients. How exactly in
creases in peripheral inflammation interact with the brain and its in
flammatory machinery and might lead to circuit dysfunction is 
nevertheless under dispute. We used resting state fMRI data from two 
cohorts of patients treated with interferon-alpha (a pro-inflammatory 
drug) or anti-TNF-alpha drugs (an anti-inflammatory drug) to map 
regional changes in response to both treatments and investigate whether 
these regional changes show spatial concordance with regional distri
bution of the molecular and cellular neuroinflammatory machinery. We 
demonstrated links between the pattern of brain changes after 
interferon-alpha and the expression of genes involved in glial neuro
inflammation. Importantly, we showed that it was possible to predict 
depressive symptoms four weeks after treatment initiation, by using a 
summary score that quantifies the spatial alignment between each pa
tient’s brain map of treatment changes in connectivity and the canonical 
signature of neuroinflammatory genes in the brain. This work provides 
an important example of how integrating molecular information in an
alyses of neuroimaging data might help to build better mechanistic 
models of the action of complex drugs, such as immunomodulatory 
therapies. 

3.6. Methodical considerations and limitations 

The principal challenge associated with the use of correlation ana
lyses to probe associations between brain maps (i.e. fMRI statistical map 
and PET or gene expression maps) is the inherent spatial autocorrelation 
that dominates these data, in which functional connectivity, receptor 
density, and gene expression are more strongly correlated within 
contiguous brain regions than with more anatomically distant regions 
(Botvinik-Nezer et al., 2020; Burt et al., 2020; Eklund et al., 2016; 
Fulcher et al., 2021; Roberts et al., 2016; Shinn et al., 2022; Song et al., 
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2014; Váša and Mǐsić, 2022; Wiedermann et al., 2016). This can artifi
cially inflate p-values, as two significantly autocorrelated spatial maps 
are more likely to show strong spatial correlation than maps with 
random values (Fulcher et al., 2021; Markello and Misic, 2021). The 
ubiquity of spatial autocorrelation in brain data requires that any study 
making claims regarding correlations between molecular and fMRI data 
must demonstrate that this is not solely attributable to lower-order 
organisational principles. Whilst in-depth discussion of all possible 
methodological approaches to this problem goes beyond the scope of the 
manuscript (see in-depth overviews by (Fulcher et al., 2021; Markello 
and Misic, 2021; Váša and Mǐsić, 2022)), we briefly describe some of the 
options available. A common approach has been to try and remove the 
effect of physical distance through regression (Arnatkevic̆iūtė et al., 
2019; Ji et al., 2014). Another is the spin method, which uses the 
randomised rotation of spherical representations of the cortical surface 
to randomise anatomical alignment between fMRI and molecular dis
tributions, resulting in a null model that accounts for SA (Alexander-
Bloch et al., 2018). However, this presents the obvious limitation of only 
being applicable to cortical surface maps. A more generalisable method 
is to generatively model surrogate maps which preserve spatial auto
correlation by matching it to the level present in the input data (Burt 
et al., 2020, 2018; Vos de Wael et al., 2020). Widespread implementa
tion of these approaches will be crucial to identifying meaningful 
multimodal relationships, and the development of novel statistical 
methods must keep pace with advances in molecular-enriched analyses 
in order to maintain statistical rigour. 

4. Molecular-enriched network analyses 

Despite offering initial insights through ease of use, the spatial cor
relation analyses described above are limited in their ability to exploit 
the rich spatiotemporal dynamics of brain-wide BOLD fluctuations. In 
order to overcome this, novel analytical approaches have been devel
oped to enrich fMRI data with the molecular information provided by 
PET and SPECT imaging (Cercignani et al., 2021; Dipasquale et al., 
2020, 2019; Lawn et al., 2023, 2022; Daniel Martins et al., 2022a,2022b; 
Wong et al., 2022), as well as gene expression data from the AHBA 
(Salvan et al., 2022). Compared to the spatial correlation analyses, the 
derivation of molecular-enriched networks offers two key benefits. 
Firstly, it exploits both the spatial and temporal domains of the BOLD 
signal, providing more nuanced insights into the neurobiology. Sec
ondly, it allows for network-based fMRI analyses that provide additional 
information regarding receptor specificity while also spatially locating 
regions of differential FC, allowing for conceptual links to prior molec
ular, neuroanatomical, and neurocognitive work. In short, 
molecular-enriched functional networks show the analytic flexibility of 
conventional network analyses but more directly engage with the un
derlying neurobiology. Thus, despite similarities with spatial correlation 
analyses, molecular-enriched networks allow for targeted and 
hypothesis-driven delineation of pharmacological effects and disease 
states, offering opportunities to link these through novel diagnostic and 
predictive biomarkers. 

4.1. Methodology 

This employs the same two-step multiple linear regression approach 

Fig. 2. : An overview of the dual regression approach utilised within conventional RSN and REACT analyses. Example templates of molecular systems from 
PET are shown in the top left, analogous to the RSN templates derived from independent components analyses shown in the bottom left. These can be vectorised and 
entered into the same two-step multiple linear regression framework as shown on the right. In the example of REACT, during stage 1 PET receptor density infor
mation is used as a spatial matrix and regressed against the whole brain fMRI data to generate the temporal dynamics associated with each molecular system. In stage 
2, these temporal dynamics are then regressed against the BOLD time series in each voxel to generate molecular-enriched FC maps. Finally, these maps can be 
compared across different experimental conditions such as drug vs placebo. NAT; noradrenaline transporter. DAT; dopamine transporter. SERT; serotonin trans
porter. VAChT; vesicular acetylcholine transporter. MGluR5; metabotropic glutamate receptor 5. VIS1; medial visual network. DMN; default mode network. SM; 
somatomotor network. AUD; auditory network. EC; executive control network. FPN; frontoparietal network. 
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used within conventional resting state network (RSN) analyses to esti
mate subject-specific RSNs from group-level probabilistic maps derived 
within independent components analysis (Nickerson et al., 2017). 
However, instead of conventional RSN templates, these novel methods 
project the fMRI data onto the space of specific neurotransmitters 
derived from PET and SPECT imaging, or from the AHBA, to derive 
biologically informed networks of functional connectivity (Fig. 2). This 
approach was named REACT by Dipasquale and colleagues the first time 
it was defined and applied in a pharmacological dataset (https://github. 
com/ottaviadipasquale/react-fmri (Dipasquale et al., 2019; Dipasquale 
and Frigo, 2021)). REACT typically uses in vivo templates of the dis
tribution density of receptors and transporters, estimated by averaging 
PET and SPECT data of datasets of healthy controls, as a set of spatial 
regressors in a first general linear model (GLM) against single-subject 
fMRI data to extract the dominant BOLD fluctuations associated with 
the distribution of those molecular systems. In this step, regions with 
higher molecular density contribute more to the estimation of the BOLD 
fluctuations related to the molecular system than those with lower 
density. The output of the first GLM is then used in a second GLM against 
the single-subject fMRI data to estimate subject-specific molecular-
enriched functional maps for each molecular system investigated. 
REACT-derived molecular-enriched networks can be thought of as 
delineating regions whose time series are functionally coupled (i.e., 
positively correlated) or un-coupled (i.e., negatively correlated) to the 
BOLD fluctuations within ‘core’ regions for a certain transmitter system, 
i.e., regions highly enriched with that neurotransmitter. The resulting 
molecular-enriched networks can be compared between groups (e.g., 
patients vs controls), conditions (e.g., rest vs naturalistic stimuli), or 
states (e.g., drug vs placebo) as well as correlated with variables of in
terest (eg: clinical, psychometric, or pharmacokinetic measures). This 
approach integrating molecular information into fMRI networks has 
been recently extended to gene expression data and used to examine 
receptor-enriched networks in both mice and humans using gene 
expression data from the Allen Mouse/Human Brain atlases to derive 
so-called “serotonin receptor networks (SRNs)” (Salvan et al., 2022). 

The vast majority of molecular-enriched fMRI analyses to date have 
focussed upon resting state data, largely due to its relative simplicity, 
abundance, and possibility to explore across a range of basic neural 
mechanisms u without being restricted to a specific cognitive phenom
enon. However, there are limits to which insights can be gleaned from 
rest alone, with dynamic neural activity associated with task-based data 
seemingly better placed to capture behaviourally relevant variability 
(Finn, 2021). Moreover, some molecular systems are differentially 
engaged under different conditions and brain states. For example, 
noradrenergic modulation seems to produce largely opposite effects on 
network dynamics during task and rest (Coull et al., 1999; Pfeffer et al., 
2021; Shine et al., 2018). As such, studies investigating noradrenergic 
circuits solely at rest will likely miss fundamental insights into the 
mechanisms through which they shape network dynamics and cogni
tion. This interplay between brain state and pharmacological manipu
lation is highly unlikely to be limited to noradrenaline. REACT offers 
two additional options to assess task-based changes in 
molecular-enriched connectivity. Firstly, a modification of the general
ised psycho-physiological interaction analysis (gPPI) can be conducted 
in which the subject-specific dominant BOLD fluctuation related to a 
certain molecular system, derived from the first GLM of a REACT anal
ysis, is combined with the task regressor by means of scalar multipli
cation, to produce an interaction regressor to be used in the second GLM 
to estimate a molecular-enriched task-dependent network (Wong et al., 
2022). When expanding this approach to different molecular systems 
and tasks, the resulting networks can be used to examine the differential 
engagement of those systems under different task conditions. Alterna
tively, the standard analytical REACT pipeline can be used to examine 
cognitive and perceptual systems using naturalistic stimuli engaging 
lower-level sensory processes (e.g., audition) as well as higher-level 
cognition (e.g., processing and comprehension of the auditory 

content) without necessitating behavioural responses. This allows for 
REACT to be applied across the entire fMRI time series, which can 
subsequently be compared to a baseline of true ’resting state’ (Lawn 
et al., 2023). As a future development step, novel features to explore task 
data, and in general to explore the dynamical shifts in functional con
nectivity, will be important to better exploit the rich information con
tained within fine-grained temporal features (Hutchison et al., 2013). To 
date, only static measures of connectivity have been utilised within 
molecular-enriched network analyses, with significant scope to examine 
how these systems are shaped over time by naturalistic stimuli or an 
acute pharmacological challenge. 

4.2. Molecular-enriched networks can help disentangle receptors’ 
contribution to the brain’s pharmacodynamic response 

As seen in Section 3.3, many drugs have rich pharmacology with 
actions on a multitude of receptors, which makes the disentanglement of 
their relative contribution to the large-scale pharmacodynamic response 
challenging. Molecular-enriched analyses show promise in bringing new 
perspectives to these network changes, by mapping them onto putative 
receptor mechanisms. For example, methylphenidate binds to both the 
dopamine transporter (DAT) and the norepinephrine transporter (NAT), 
with a lack of consensus as to the relative importance of these two 
systems for mediating its actions. Recently, REACT has demonstrated 
that this drug produces significant effects on connectivity within the key 
sensorimotor regions of the functional network related to the former, but 
not the latter, potentially indicating a greater contribution of dopami
nergic circuits to its pharmacodynamics (Dipasquale et al., 2020). 
Similarly, LSD is thought to act primarily through the 5HT2a receptor 
(Kraehenmann et al., 2017; Preller et al., 2018, 2017), although it also 
shows affinity and agonist activity at the 5-HT1a/b, 5-HT6, 5-HT7 as well 
as D1 and D2 receptors (de Gregorio et al., 2016; Marona-Lewicka et al., 
2002; Nichols, 2004; Passie et al., 2008). A recent exploratory study 
using REACT found that dopaminergic-enriched FC within 
somato-motor, superior parietal and insular/opercular regions was 
related to aspects of psychedelic phenomenology including disembodi
ment and impaired control/cognition induced by LSD (Lawn et al., 
2022). Importantly, these did not correlate with the connectivity of 
serotonergic receptor sub-systems within the same regions. Delineating 
the receptors through which drugs impart their effects opens many doors 
within drug development. For example, all pharmacological compounds 
produce side effects. Through understanding the key molecular targets, 
compounds which more selectively interact with these can be devel
oped, improving tolerability and expanding the therapeutic window. 

4.3. Novel diagnostic and predictive neuroimaging biomarkers 

There is a substantial ongoing drive to develop novel biomarkers for 
brain disorders. However, typical fMRI measures such as correlation of 
BOLD signal between regions remain extremely challenging to translate 
into clinically meaningful applications, with fMRI-based biomarkers 
having extremely limited implementation in clinical practice to date. 
There are a host of interrelated reasons for this (Woo et al., 2017), but 
one key issue is that conventional fMRI biomarkers remain abstracted 
from the underlying molecular-level disease mechanisms to which we 
wish to target interventions. Providing a biological grounding to FC 
holds significant promise for novel biomarkers and the concomitant 
development of targeted treatments informed by biological mecha
nisms. In a recent study, mapping molecular-enriched networks with 
REACT has provided novel insights into aberrant brain function and 
pharmacotherapy in the context of social processing in autism (Wong 
et al., 2022). First, the authors demonstrated that serotonin transporter 
(SERT) enriched FC was greater during the presentation of emotional 
faces than shapes (faces>shapes) within a range of regions implicated in 
facial emotion processing including the superior temporal gyrus, supe
rior parietal lobule, posterior cingulate, amygdala, prefrontal cortex, 
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striatum, and fusiform gyrus. Furthermore, individuals with autism had 
reduced SERT-enriched faces>shapes responses within the 
right-ventromedial prefrontal cortex. Moreover, the authors showed 
that this deficit was partially normalised towards neurotypical levels by 
citalopram, a selective serotonin reuptake inhibitor (SSRI) acting on the 
SERT. 

In another study, REACT has also provided promising findings in 
chronic pain (Daniel Martins et al., 2022a,2022b), which is increasingly 
understood to be partially driven by, and produce, perturbations in 
supraspinal functional circuits (Barroso et al., 2021). However, treat
ment responses are highly heterogeneous, likely due to divergent un
derlying mechanisms within patients sharing the same diagnoses 
(Woolf, 2010). Prospective stratification based on psychophysics has 
shown some promise for the targeted prescription of analgesics (Demant 
et al., 2014), but novel and effective predictive biomarkers are desper
ately needed (Tracey et al., 2019). In this REACT-based study, patients 
suffering from osteoarthritis demonstrated increases in NET- and 
SERT-enriched FC compared to healthy controls within predominantly 
frontal regions as well as decreases in SERT-enriched FC in the mid
dle/superior temporal gyrus (Daniel Martins et al., 2022a,2022b). 
Moreover, baseline noradrenaline transporter (NAT)- and 
SERT-enriched FC across diverse regions spanning frontal, parietal, and 
occipital cortices showed predictive value as to which of these patients 
would respond to duloxetine, a drug acting primarily on these two 
transporter systems (Bellingham and Peng, 2010). Additionally, baseline 
DAT-enriched FC within the right opercular and parietal cortex was 
predictive of placebo responders, in line with dopaminergic roles in 
expectancy and placebo mechanisms (de la Fuente-Fernández et al., 
2001; Scott et al., 2008, 2007) as well as associations between rCBF in 
osteoarthritis and dopamine D2 receptor expression (Vamvakas et al., 
2022). This work provides preliminary proof-of-concept evidence sup
porting the idea that molecular-enriched analyses such as REACT might 
be helpful not only to characterise the dysfunction of 
molecular-enriched functional networks in disease, but also to 
sub-stratify patients based on the underlying mechanisms of dysfunc
tion, allowing for targeted prescription of analgesics. Subsequent work 
within different chronic pain populations and using other analgesic 
drugs will be crucial to demonstrate the generalisability and scalability 
of molecular-enriched functional networks as novel biomarkers within 
chronic pain (Soliman et al., 2023). Additionally, characterising those 
who may be placebo responders may offer additional opportunities to 
exploit these effects for therapeutic benefit, as within open-label placebo 
(Carvalho et al., 2016; Finniss et al., 2010; Kaptchuk and Miller, 2015). 

These studies exemplify the potential of molecular-enriched analyses 
to provide novel insights into the molecular underpinnings of cognition 
and perturbation in disease as well as providing further links to phar
macology. The application of these methods to neuropsychiatric disor
ders more broadly may contribute to efforts to finally transcend non- 
specific accounts of network-level dysfunction and bring fMRI closer 
to real clinical applications. 

4.4. Methodical considerations and limitations 

There are some important considerations for molecular-enriched 
network analyses which merit discussion. However, before discussing 
the more specific limitations of this methodology, it is worth noting that 
the same challenges that apply to conventional network-based analyses 
also apply here. For example, psychosocial variables such as education 
or socioeconomic status can confound between group or regression an
alyses whilst sources of physiological noise can shape BOLD dynamics, 
requiring careful data pre-processing (Chang et al., 2009). Furthermore, 
small sample sizes present a similar challenge within 
molecular-enriched analyses to conventional fMRI analyses, and 
crucially these depend on the research question, design of the study, and 
magnitude of the expected effects. As such, whilst one-size-fits-all rec
ommendations would be unhelpful here, we emphasise the need to 

consider sample size and power of molecular-network enriched ana
lyses, especially in contexts where samples have been consistently small, 
such as psychedelic pharmacoimaging. 

Firstly, one of the key assumptions behind the use of molecular- 
enriched networks is that they might capture facets of neurotransmis
sion, which so far has not been rigorously demonstrated. In humans, 
testing this working model has been mostly restricted to pharmacolog
ical interventions targeting specific neurotransmitter systems. Here, 
plausible links between drug targets and target-enriched FC have been 
demonstrated (Dipasquale et al., 2020, 2019; Lawn et al., 2023, 2022; 
Daniel Martins et al., 2022a,2022b; Wong et al., 2022), strengthening 
the confidence that molecular-enriched networks are sensitive to vari
ations in concomitant neurotransmission. However, the complex pat
terns of affinity of most drugs and the risk of non-specific vascular effects 
that might affect neuroimaging signals necessitate further confirmatory 
studies. One unexplored avenue is the use of blocking studies, within 
which the effects of a drug on molecular networks can be examined with 
and without an antagonist to the primary target, providing a causal 
manipulation of the system of interest which should be reflected in the 
molecular-enriched functional networks. Another option would be to 
utilise manipulations of molecular systems within animal models, as 
recently done by Salvan and colleagues (Salvan et al., 2022) to show that 
pharmacological and optogenetic manipulation of the serotonergic 
system modulates the SRNs in a receptor sub-system-specific manner. A 
similar study has also recently shown that the serotonin receptor gene 
expression patterns explain a large proportion of the variance in the 
BOLD signal following optogenetic stimulation of the dorsal raphe 
(Hamada et al., 2022). Future methodological work expanding the scope 
of this approach beyond serotonin will be an important step forward to 
inspect construct validity across neurotransmitter systems. Moreover, 
with multimodal data acquisition protocols gaining traction, future 
studies investigating how inter-individual differences in 
molecular-enriched network connectivity relate to those in neuro
chemistry (i.e., as assessed with PET/SPECT or magnetic resonance 
spectroscopy) could constitute an interesting way forward. This may 
also offer opportunities to explore the varying timescales over which 
different measures fluctuate such as simultaneously acquired PET and 
fMRI data (see (Cecchin et al., 2017) for a detailed review), offering 
additional opportunities to expand these analyses beyond static con
nectivity and explore time-varying molecular-functional relationships. 

Secondly, the choice of receptor systems employed requires careful 
consideration. Broadly speaking, two approaches have been taken. 
Studies examining drug effects generally select a priori receptor systems 
for which the compound has known affinity and (ant)agonist activity 
(Dipasquale et al., 2020, 2019; Lawn et al., 2023; Wong et al., 2022). 
However, in other circumstances where there is generally a less clear 
rationale for highly specific receptor sub-system involvement, e.g., when 
exploring the brain mechanisms underlying a certain disorder or 
examining differences in the reconfiguration of receptor-enriched net
works between task and rest, the most common approach has been to use 
the spatial distribution of the transporters that are engaged in the 
movement of neurotransmitters across synaptic and vesicular mem
branes, which provide a coarse grain marker for the influence of a given 
neurotransmitter system over a given brain region (Cercignani et al., 
2021; Lawn et al., 2023; Daniel Martins et al., 2022a,2022b). Follow-up 
analysis employing specific receptor subsystems can then be used to 
probe significant findings associated with a transporter-related network. 
This is especially effective when investigating the modulatory neuro
transmitters (such as the monoamines and acetylcholine) whose wide
spread arborisation from small brainstem, midbrain, and forebrain 
nuclei produces a spatiotemporal influence over the BOLD signal that 
lends itself well to REACT. For example, if a study were to find differ
ences in connectivity enriched with the DAT, a follow-up analysis could 
employ the distributions of the dopamine D1 and D2 receptors to 
attempt to gain further insights into the receptor specificity of these 
findings. 
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Thirdly, the applicability of PET and AHBA data derived in norma
tive cohorts to those with substantial differences remains contentious. 
Many molecular systems, such as noradrenergic modulatory projections 
from the locus coeruleus (Betts et al., 2017; Clewett et al., 2016; 
Hämmerer et al., 2018; Lee et al., 2018; Liu et al., 2020, 2019; Manaye 
et al., 1995; Porat et al., 2022; Shibata et al., 2006), change as a function 
of age. No studies to date have examined the significance of such dif
ferences on the derivation of molecular-enriched networks within older 
cohorts, despite this wide ranging and robust evidence for age-related 
noradrenergic changes. Direct comparison of PET maps matched to 
demographics for a given cohort to those conventionally used may be of 
benefit, although hindered by data availability. Similarly, neuropa
thology can and does affect different neurotransmitter systems, calling 
into question the use of distributions from normative samples. For 
example, in Parkinson’s disease (PD) patients showing dopaminergic 
denervation (Lotharius and Brundin, 2002), one would expect to find 
network changes related to the spatial distribution of the dopaminergic 
receptors. However, it is important to point out that as with classic RSN 
analysis, where network templates obtained from an independent 
dataset of healthy controls are used to estimate the subject-specific RSNs 
of healthy and pathological datasets, the templates used in 
molecular-enriched analyses have the principal purpose of weighting 
the BOLD signal according to the importance of each region in a specific 
molecular system. Although the use of molecular templates of healthy 
subjects on clinical populations could be seen as a sub-optimal strategy, 
the use of patient-based templates is associated with at least two major 
disadvantages. First, if the molecular template is estimated from data 
belonging to a separate cohort of patients, it is likely that the molecular 
alteration defined in the template will only partly overlap with the 
dataset under exam due to factors that might differentially impact the 
molecular substrate (e.g., different stages of pathology, mechanistic 
heterogeneity within diagnostic categories, comorbidity, etc). Second, 
the functional networks estimated from such templates might not 
properly weight the contribution of the core regions of the molecular 
systems examined. This might result in networks that do not fully cap
ture the features of the molecular systems. 

Finally, there is a certain degree of spatial overlap between different 
molecular systems (Beliveau et al., 2017; Dipasquale et al., 2019; Lawn 
et al., 2023, 2022). To account for this, it is important to include all 
molecular systems within the same model, instead of running separate 
models for each system, which would lead to an omitted-variable bias. 
This bias occurs when a statistical model (here, multiple linear regres
sion) omits an independent variable (a molecular system) that is both a 
determinant of the dependent variable (the BOLD signal) and correlated 
with one or more of the included independent variables. This yields an 
unpredictable attribution of the effects of the missing variables to those 
variables that are included. However, as noted above in relation to PLS 
regression (3.1), doing so does not solve the collinearity issue. One po
tential path forward may be to derive components from the different 
receptor system maps, in order to identify low dimensional molecular 
representations which separate out shared and independent variance. 
However, given the associated challenges of interpretability, using 
dimensionality reduction approaches might be only an attractive alter
native when the model presents severe multicollinearity, while for cases 
of moderate correlation between molecular templates, it would be 
acceptable to include them in their original form. Variance inflation 
factors (VIF) provide a measure of multicollinearity within a regression 
model, quantifying the correlation between predictor variables, as done 
by Lawn and colleagues to test the collinearity of five molecular systems 
(Lawn et al., 2023). Typically, VIFs higher than 1 and up to 5 suggest 
that there is a moderate correlation, but it is not severe enough to 
warrant corrective measures, while values greater than 5 represent 
critical levels of multicollinearity where the coefficients are poorly 
estimated and alternative analytic approaches, such as the dimension
ality reduction mentioned above, are hence required (García et al., 
2014; Kim, 2019; Kovács et al., 2005; O’Brien, 2007). 

5. Computational modelling approaches to link molecular and 
functional systems 

Advances in computational neuroscience have increasingly allowed 
for the modelling of whole-brain dynamics in silico (Breakspear, 2017), 
offering novel opportunities to explore how different receptor systems 
contribute to dynamic brain activity. Whilst the methods described thus 
far attempt to reason from systems-level dynamics down towards mo
lecular mechanisms, whole-brain computational models attempt to 
build up from the fundamentals of neuronal microcircuitry to simulate 
systems level dynamics (Breakspear, 2017; Cofré et al., 2020; Stinson 
and Sullivan, 2017). As with the spatial correlation analyses in Section 3, 
this moves away from simply localising brain regions associated with a 
cognitive or clinical mechanism of interest and towards a 
trans-hierarchical account of how complex systems interact across scales 
and regions. Compared to the non-generative approaches described in 
previous sections, this comes with two important strengths. First, it of
fers a platform to easily test multiple competing hypotheses about spe
cific changes in microcircuitry and how they could lead to macro-scale 
changes by fitting and comparing different models. Second, rather than 
relying on post hoc interpretations, using generative models requires 
formalizing hypotheses as to possible mechanisms a priori, improving 
precision, rigour, and transparency. 

5.1. Methodology 

The full details of generating whole brain models are beyond the 
scope of this review, though Cofre and colleagues provide a detailed 
overview of the key methodological aspects (Cofré et al., 2020). In short, 
they require a parcellation of the brain to delineate the different regions 
for which local dynamics and global interactions will be modelled, an 
anatomical connectivity matrix that provides an approximation of the 
white-matter fibre connectivity between these regions, and a model of 
local dynamics for which a vast array of different options have been 
proposed (Breakspear, 2017; Cofré et al., 2020)(Fig. 3). Common 
choices for local dynamics include neural mass and mean field models, i. 
e., a series of differential equations constituting an abstracted yet real
istic model of neuronal interactions that can approximate the observed 
emergent macroscale dynamics in experimental data (Breakspear, 2017; 
Cofré et al., 2020). As such, causal manipulation of the constituent 
components (parameters of the model) of these models allows for sys
tematic examination of the counterfactual consequences of modifying 
different facets of brain function (the biological mechanisms relating to 
those parameters). 

In the context of molecular-enriched analyses, PET receptor density 
information can be incorporated into these models (Deco et al., 2018; 
Jancke et al., 2021; Luppi et al., 2022b) to explore their capacity to 
model experimental data under conditions in which that receptor system 
is putatively engaged. However, these biological mechanisms of interest 
must be integrable into specific model parameters. This is particularly 
tractable in the context of pharmacological manipulation of neuro
modulatory systems, in which the effects of a drug can be modelled by 
including the scaling of neural gain according to the relative distribution 
of a receptor system to try to capture the change in dynamics observed 
experimentally. This provides a powerful means by which to test explicit 
hypotheses regarding the role a given receptor plays in, for example, 
producing the network changes seen under the effects of a drug that 
putatively binds to it. As such, these sources of molecular information 
from PET or the AHBA can be thought of as a source of heterogeneity 
across the whole brain model, with the opportunity to shape many 
additional parameters such as the time constant tau, resting membrane 
potential, action potential threshold, and maximum neural firing rate 
(Bomkamp et al., 2019; Demirtaş et al., 2019). 
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5.2. Modelling the psychedelic state 

To date, whole brain models that incorporate molecular information 
have largely been applied in the context of pharmacological challenges, 
often with psychedelic compounds. This has primarily been undertaken 
with an emphasis on demonstrating the utility of these methods as well 
as advancing the biophysical complexity. In an early example of this, 
Deco and colleagues explored the pharmacodynamics of LSD (Deco 
et al., 2018). First, they generated a dynamical-mean field model which 
tried to approximate FC during a placebo condition. They then included 
5-HT2a receptor density information from PET to modulate neural gain 
by selectively altering the recursive excitatory and inhibitory local mi
crocircuits of different brain regions based on its local density. The logic 
of this approach is analogous to the aforementioned spatial correlation 
and molecular-enriched network analyses; the pharmacodynamic effects 
of the drug are at least partially explicable by the distribution of its 
primary targets. Incorporating the 5-HT2a receptor distribution pro
duced a better fit between the simulated and experimental data under 
the LSD condition than the other serotonergic receptors (5-HT1a, 5-HT1b, 
5-HT4, and 5-HTT). However, the 5-HT1a receptor model performed 
significantly better than the others and nearly as well as that using 
5-HT2a, highlighting the need to consider the effects of multiple receptor 
systems. 

Burt and colleagues generated a similar model using AHBA tran
scriptomic data to simulate the effects of LSD on global brain connec
tivity, but also examined the differential contribution of excitatory and 
inhibitory microcircuitry as well as attempted to fit the model at a 
subject-specific level (Burt et al., 2021). Their results were most parsi
monious with LSD producing an increase in excitation-inhibition ratio 

mediated by 5-HT2a modulation of cortical pyramidal neurones, 
although many of the other serotonergic and dopaminergic targets also 
resulted in moderate concordance between simulated and experimental 
data. Another interesting approach diverges from whole brain models 
but applies the same fundamental logic to network control analysis 
(Parker Singleton et al., 2022). Specifically, the authors examined the 
energy landscape of the brain and quantified the energy required to 
transition between recurrent network states during the psychedelic state 
and placebo, which features prominently in the REBUS model of psy
chedelic action (Carhart-Harris and Friston, 2019). Akin to the whole 
brain modelling, incorporating the 5-HT2a receptor molecular density 
from PET reduced the resulting transition energies, mirroring those 
within the psychedelic condition (Parker Singleton et al., 2022). Simi
larly, whilst the 5-HT2a was the most effective at reducing transition 
energies, the 5-HT1a/1b receptors also produced a substantially greater 
effect than a spatial uniform control map. Collectively, these studies 
demonstrate the power of these approaches to examine the specific 
contributions of receptor sub-systems to the large-scale pharmacody
namic response of the brain to psychedelic compounds. However, whilst 
they collectively allude to the key role of the 5-HT2a receptor, they also 
highlight the pharmacological complexity interactions across organisa
tional hierarchies as well as the likely relevance of other receptor sys
tems which also show reasonable goodness of fit. 

In a significant advance upon these initial papers modulating gain 
based on the distribution of the 5-HT2a receptor, Kringelbach and col
leagues developed a mutually coupled neuronal-neurotransmitter whole 
brain model which attempts to better grapple with the biophysical 
complexity of neuromodulatory control over network dynamics during 
the administration of psilocybin (Kringelbach et al., 2020). A standard 

Fig. 3. An overview of the necessary multimodal constituents for a whole brain computation model. A parcellation defines a series of nodes (brain regions) which are 
connected based upon structural connectivity from diffusion tensor imaging (DTI). Each node is modelled through biophysically plausible excitatory (E; NMDA) and 
inhibitory (I; GABA) dynamics as shown in the local model on the right. In addition, molecular density information from PET can be incorporated into the model to 
shape specific aspects of the model such as neuronal gain. 
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whole-brain model was created to simulate the placebo condition. 
However, to model the slow serotonergic metabotropic 
receptor-mediated effects of the drug, they employed a separate set of 
differential equations which characterise release and re-uptake dy
namics coupled to the standard pools of excitatory and inhibitory neu
rones in each brain region through the structural connectivity of the 
raphe nucleus to the rest of the brain (Joshi et al., 2017). The neuro
transmitter currents in each region are also scaled by the density of the 
5-HT2a from PET. Finally, the reverse coupling is also modelled from the 
neuronal compartments back to the population by incorporating the 
raphe nucleus neuronal firing rate into the release and re-uptake equa
tions. Overall, the interaction between these different dynamical sys
tems was found to be fundamental for explaining the empirical data 
observed during the administration of psilocybin. In systematically 
removing different aspects of the model (e.g., by removing feedback 
dynamics or using a reshuffled version of the 5-HT2a receptor map), they 
demonstrate that each is important for fitting to the empirical data. This 
more complex recurrent modelling approach provides an exciting op
portunity to bring these models towards biological plausibility. A crucial 
next step will be to explore how multiple interacting neuromodulatory 
systems work in concert to shape network dynamics under drugs with 
rich pharmacology, and disease states in which a multiplicity of receptor 
systems are implicated. One option may be to utilise the novel multiscale 
dynamic mean-field models with synaptic gating equations linked to 
neurotransmitter concentrations, but with heterogeneity across regions 
included as a function of receptor density or gene expression (Naskar 
et al., 2021). 

5.3. Beyond psychedelia: using mean field models to understand the 
effects of propofol on consciousness 

A longstanding question in consciousness research is to what extent 
diverse states of unconsciousness, such as anaesthesia or clinical disor
ders of consciousness (DOC), result from shared or divergent mecha
nisms. Utilising a similar framework to the aforementioned psychedelic 
studies, Luppi and colleagues explored whether the characteristic 
network changes seen in the anaesthetic state and DOC result from in
hibition and connectome perturbation (Luppi et al., 2022b). They first 
generated a mean-field model fit to experimental data in awake healthy 
individuals before examining whether scaling the inhibitory local gain 
in proportion to the GABA-A receptor density derived from PET could 
improve the fit of the model to experimental data collected in the same 
individuals under propofol anaesthesia. Specifically, they introduce the 
ionotropic receptors in the excitatory/inhibitory balance of the popu
lation equations. This GABA-A receptor-mediated scaling improved 
goodness-of-fit between simulated and empirical imaging data in the 
anaesthetised state, over and above that seen for both a modified 
randomly permuted “scrambled” or uniform density versions of the re
ceptor density map. This strongly implicates GABA-A-mediated inhibi
tion in the characteristic macroscale dynamics observed during propofol 
anaesthesia. Fascinatingly, the GABA-A-informed modelling also 
improved the capacity to model network architecture associated with 
DOC, suggesting that altered inhibitory tone is associated with aberra
tions in consciousness more broadly. However, this was seen for both the 
actual distribution of GABA-A receptors as well as the randomly 
permuted version, suggesting that whilst propofol anaesthesia is spe
cifically contingent on the regional specificity of altered inhibition, this 
occurs on a more global level in DOC. Finally, they also sought to 
examine whether meso-scale knowledge as to the spatial distribution of 
different inhibitory interneurons (determined using transcriptomic 
profiles from the AHBA) through which this inhibition might be medi
ated could allow for regional variability in the inhibitory scaling enacted 
through the GABA-A receptor. No significant differences were seen in 
model fit by including this additional information, although this premise 
holds significant potential, and subsequent work which provides inter
mediate links through meso-scale organisational principles offers an 

enticing unexplored avenue for these methods. This cross examination 
of pharmacology and pathophysiology utilising GABAergic molecular 
information highlights the potential of these techniques, allowing for a 
nuanced dissection of similarities and differences between these analo
gous but distinct brain states hitherto relatively un-interrogable by 
conventional fMRI techniques. 

5.4. Network dynamics through the lens of transcriptomic-informed 
whole-brain models 

Beyond the pharmacological studies attempting to model psycho
pharmacological effects through receptor densities of the drug’s primary 
targets, whole brain models have also incorporated transcriptomic data 
from the AHBA to study the functional relevance of excitatory and 
inhibitory receptor expression (Deco et al., 2021). By comparing 
different micro- and meso-scale organisational properties’ ability to 
constrain regional heterogeneity and tune the dynamics of each brain 
region, whole-brain models can begin to delineate their relative 
importance to recapitulate the complex dynamics in fMRI data. Specif
ically, the authors examined excitatory and inhibitory (AMPA, NMDA, 
and GABA) receptor expression, the dominant mode of brain-specific 
gene expression (the first principal component of 1926 brain-specific 
genes (Burt et al., 2018)), and T1weighted/T2weighted ratios (a mye
loarchitectural proxy for cortical hierarchy (Burt et al., 2018)). Inter
estingly, the balance of excitatory and inhibitory receptor expressions 
most faithfully reproduced experimental measures of both static and 
dynamic FC as well as provided the greatest ignition capacity (i.e., the 
capacity for a sensory stimulus to trigger self-supporting, transient, 
metastable, and distributed activity across a network, which is thought 
to be necessary for it to be consciously experienced (Deco et al., 2021; 
Dehaene and Changeux, 2011; Mashour et al., 2020)). This represents 
only the most basic initial application of this approach, but it highlights 
the utility of these models to explore organisational principles. Specif
ically, they allow for causal manipulation of constituent components in a 
manner ethically and practically infeasible in human subjects. In doing 
so, increasingly complex models may allow for fundamental insights 
into what micro- and meso-scale mechanisms shape different facets of 
network dynamics more broadly. 

5.5. Modelling neuropsychiatric disease states 

In the longer term, these models may provide an important theo
retical link between the network dysfunction increasingly characterised 
in clinical populations to the underlying driving cellular and molecular 
mechanisms to which we can target interventions (Deco and Kringel
bach, 2017, 2014; Gilson et al., 2020; Jancke et al., 2021; Kringelbach 
and Deco, 2020). Indeed, different neurotransmitter systems such as 
dopamine and serotonin have been implicated in shaping selected RSNs 
(Conio et al., 2019), which in turn have been hypothesised to underlie 
different neuropsychiatric disorders such as schizophrenia and bipolar 
disorder, highlighting the need to disentangle these relationships to 
delineate disorder- and symptom-specific mechanisms. Whilst early 
work has indicated the utility of modelling disease-related network 
dysfunction (Joana Cabral et al., 2012; J. Cabral et al., 2012), the 
application of molecular-informed whole-brain models to address this 
question remains relatively unexplored and offers an important avenue 
for future mechanistic elucidation. One example of such work is using 
The Virtual Brain (TVB; thevirtualbrain.org) neuroinformatics platform 
(Ritter et al., 2013; Sanz-Leon et al., 2015) to model the perturbed 
network dynamics seen in patients with Alzheimer’s disease (Stefa
novski et al., 2019). Despite being central to pathology of Alzheimer’s, 
the causal role of the amyloid beta protein in producing the hallmark 
symptoms of dementia remain contentious (Tolar et al., 2019). By 
including spatial information as to the distribution of the amyloid beta 
protein from PET, Stefanovski and colleagues demonstrated that their 
whole brain models within which amyloid beta modulates regional 
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excitation-inhibition balance could reproduce previously described 
slowing of frequencies in local field potentials and simulated electro
encephalograms. Interestingly, this was reversible by modelling the ef
fects of the NMDA receptor antagonist memantine. This work highlights 
the capacity of such models to additionally work with electroencepha
lography data as well as investigate treatment mechanisms. In doing so, 
a causal understanding of putative treatments may be examined in a 
high-throughput way, potentially providing a crucial new tool for 
therapeutic development. 

5.6. Methodical considerations and limitations 

To date, whole brain models have considered only one receptor 
system or examined different receptor systems in isolation. Future 
models incorporating multiple receptors and accounting for their com
plex non-linear interactions will be important to meaningfully capture 
the full set of mechanisms through which the effects of drugs and disease 
are enacted. However, this poses additional computational and infer
ential challenges, such as overfitting models to noise when applied to 
empirical data. The existing work has also only utilised parcellated data 
whose spatial resolution may overlook more fine-grained pharmacody
namic effects. However, recent analytic and numerical advances have 
already reduced the computational expense of dynamic mean field 
models, with good concordance between parcellations of 100 and 1000 
regions, making these methods more accessible to the broader neuro
scientific community (Herzog et al., 2022). Similarly, different parcel
lations will likely affect model fitting, especially if they do not include 
subcortical regions or specific key regions such as the claustrum, which 
is putatively important for the mechanisms of psychedelic drugs (Doss 
et al., 2022). As with all multimodal analyses, these computational 
models rely upon high-quality data. For example, the 
tractography-based connectome generally used in these models is also 
known to be incomplete, and better connectivity parameters will likely 
improve future models (Herzog et al., 2020; Markov et al., 2014). 
Finally, the combined use of bulk transcriptomics and single-cell 
RNA-sequencing may allow for the application of other methods, such 
as multicompartment models, which explore the meso-scale contribu
tion of specific cell types to pharmacological mechanisms (Burt et al., 
2021, 2018; Lake et al., 2016). This endeavour would benefit from ef
forts trying to map single-cell gene expression at higher spatial resolu
tions (i.e., cortical layers), which are starting to emerge yet are still 
confined to very few regions of the human brain. 

6. Conclusion 

The novel methodologies outlined here bring together micro-scale 
molecular level information with macro-scale systems dynamics, offer
ing important insights into the trans-hierarchical functional organisa
tion of the brain in both health and disease. Despite offering initial 
opportunities through ease of use, spatial correlation analyses are 
increasingly being used for large scale mapping of multiple molecular 
systems to multivariate fMRI measures. Receptor-enriched network 
analyses allow for the characterisation of spatiotemporal relationships 
between the BOLD signal and the distribution of molecular systems, with 
maps of receptor-enriched connectivity amenable to conventional inter- 
subject analyses, including voxel-wise regression with behavioural and 
clinical measures of interest. Finally, whole brain modelling allows for 
the systematic and causal manipulation of micro- and meso-scale facets 
of brain structure and function, such as the contribution of different 
receptor systems, to examine the counterfactual consequences on 
resultant simulated network dynamics. Moreover, in linking system- 
level dynamics to their molecular substrates, we can begin to tran
scend the fragmentation of neuroscience as a field by bringing together 
findings across multiple levels of analysis. We hope that this may ulti
mately help catalyse the formation of all-important ‘big-picture’ theories 
of brain function and dysfunction, offering novel testable hypotheses 

which can be examined with the full suite of tools available to modern 
neuroscience, both within and across micro- and macro-scales. Addi
tionally, the enticing ability to link clinical symptomatology, through 
characterising trans-nosological molecular dysfunction, to mechanisti
cally informed pharmacotherapy may help finally bring functional im
aging closer to clinical reality. 
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Burt, J.B., Demirtaş, M., Eckner, W.J., Navejar, N.M., Ji, J.L., Martin, W.J., 
Bernacchia, A., Anticevic, A., Murray, J.D., 2018. Hierarchy of transcriptomic 
specialization across human cortex captured by structural neuroimaging topography. 
Nat. Neurosci. 21, 1251–1259. https://doi.org/10.1038/s41593-018-0195-0. 

Burt, J.B., Helmer, M., Shinn, M., Anticevic, A., Murray, J.D., 2020. Generative modeling 
of brain maps with spatial autocorrelation. Neuroimage 220, 117038. https://doi. 
org/10.1016/J.NEUROIMAGE.2020.117038. 

Burt, J.B., Preller, K.H., Demirtas, M., Ji, J.L., Krystal, J.H., Vollenweider, F.X., 
Anticevic, A., Murray, J.D., 2021. Transcriptomics-informed large-scale cortical 
model captures topography of pharmacological neuroimaging effects of LSD. Elife 
10. https://doi.org/10.7554/ELIFE.69320. 

Cabral, J., Kringelbach, M.L., Deco, G., 2012. Functional graph alterations in 
schizophrenia: a result from a global anatomic decoupling? Pharmacopsychiatry 45 
(Suppl 1), S57–S64. https://doi.org/10.1055/S-0032-1309001/ID/R0898-0030. 

Cabral, Joana, Hugues, E., Kringelbach, M.L., Deco, G., 2012. Modeling the outcome of 
structural disconnection on resting-state functional connectivity. Neuroimage 62, 
1342–1353. https://doi.org/10.1016/J.NEUROIMAGE.2012.06.007. 

Carhart-Harris, R.L., Friston, K.J., 2019. REBUS and the Anarchic Brain: Toward a 
Unified Model of the Brain Action of Psychedelics. Pharm. Rev. 71, 316–344. 
https://doi.org/10.1124/PR.118.017160. 

Carvalho, C., Caetano, J.M., Cunha, L., Rebouta, P., Kaptchuk, T.J., Kirsch, I., 2016. 
Open-label placebo treatment in chronic low back pain: a randomized controlled 
trial. Pain 157, 2766. https://doi.org/10.1097/J.PAIN.0000000000000700. 

Cecchin, D., Palombit, A., Castellaro, M., Silvestri, E., Bui, F., Barthel, H., Sabri, O., 
Corbetta, M., Bertoldo, A., 2017. Brain PET and functional MRI: why simultaneously 
using hybrid PET/MR systems? The quarterly journal of nuclear medicine and 
molecular imaging: official publication of the Italian Association of Nuclear 
Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), 
[and] Section of the Society of. 61, 345–359. https://doi.org/10.23736/ 
S1824–4785.17.03008-4. 

Cercignani, M., Dipasquale, O., Bogdan, I., Carandini, T., Scott, J., Rashid, W., Sabri, O., 
Hesse, S., Rullmann, M., Lopiano, L., Veronese, M., Martins, D., Bozzali, M., 2021. 
Cognitive fatigue in multiple sclerosis is associated with alterations in the functional 
connectivity of monoamine circuits. Brain Commun. 3. https://doi.org/10.1093/ 
BRAINCOMMS/FCAB023. 

Chang, C., Cunningham, J.P., Glover, G.H., 2009. Influence of heart rate on the BOLD 
signal: the cardiac response function. Neuroimage 44, 857–869. https://doi.org/ 
10.1016/J.NEUROIMAGE.2008.09.029. 

Cioli, C., Abdi, H., Beaton, D., Burnod, Y., Mesmoudi, S., 2014. Differences in human 
cortical gene expression match the temporal properties of large-scale functional 
networks. PLoS One 9, e115913. https://doi.org/10.1371/JOURNAL. 
PONE.0115913. 

Clewett, D. v, Lee, T.H., Greening, S., Ponzio, A., Margalit, E., Mather, M., 2016. 
Neuromelanin marks the spot: identifying a locus coeruleus biomarker of cognitive 
reserve in healthy aging. Neurobiol. Aging 37, 117–126. https://doi.org/10.1016/J. 
NEUROBIOLAGING.2015.09.019. 
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