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Abstract

Incremental object detection (IOD) aims to train an ob-
ject detector in phases, each with annotations for new ob-
ject categories. As other incremental settings, IOD is sub-
ject to catastrophic forgetting, which is often addressed by
techniques such as knowledge distillation (KD) and exem-
plar replay (ER). However, KD and ER do not work well
if applied directly to state-of-the-art transformer-based ob-
ject detectors such as Deformable DETR [59] and UP-
DETR [9]. In this paper, we solve these issues by proposing
a ContinuaL DEtection TRansformer (CL-DETR), a new
method for transformer-based IOD which enables effective
usage of KD and ER in this context. First, we introduce a
Detector Knowledge Distillation (DKD) loss, focusing on
the most informative and reliable predictions from old ver-
sions of the model, ignoring redundant background predic-
tions, and ensuring compatibility with the available ground-
truth labels. We also improve ER by proposing a calibration
strategy to preserve the label distribution of the training set,
therefore better matching training and testing statistics. We
conduct extensive experiments on COCO 2017 and demon-
strate that CL-DETR achieves state-of-the-art results in the
IOD setting.1

1. Introduction
Humans inherently learn in an incremental manner, ac-

quiring new concepts over time without forgetting previ-
ous ones. In contrast, machine learning suffers from catas-
trophic forgetting [21, 35, 36], where learning from non-
i.i.d. data can override knowledge acquired previously. Un-
surprisingly, forgetting also affects object detection [2, 12,
20, 37, 44, 50, 54]. In this context, the problem was formal-
ized by Shmelkov et al. [44], who defined an incremental
object detection (IOD) protocol, where the training samples
for different object categories are observed in phases, re-

1Code: https://lyy.mpi-inf.mpg.de/CL-DETR/
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Figure 1. The final Average Precision (AP, %) of two-phase incre-
mental object detection on COCO 2017. We observe 70 and 10
categories in the first and second phases, respectively. The base-
line is Deformable DETR [59]. “Upper bound” shows the results
of joint training with all previous data accessible in each phase.

stricting the ability of the trainer to access past data.
Popular methods to address forgetting in tasks other than

detection include Knowledge Distillation (KD) and Exem-
plar Replay (ER). KD [11,16,17,26,57] uses regularization
in an attempt to preserve previous knowledge when train-
ing the model on new data. The key idea is to encourage
the new model’s logits or feature maps to be close to those
of the old model. ER methods [5, 29, 32, 33, 41, 52] work
instead by memorising some of the past training data (the
exemplars), replaying them in the following phases to “re-
member” the old object categories.

Recent state-of-the-art results in object detection have
been achieved by a family of transformer-based architec-
tures that include DETR [4], Deformable DETR [59] and
UP-DETR [9]. In this paper, we show that KD and ER
do not work well if applied directly to these models. For
instance, in Fig. 1 we show that applying KD and ER to
Deformable DETR leads to much worse results compared
to training with all data accessible in each phase (i.e., the
standard non-incremental setting).

We identify two main issues that cause this drop in per-
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formance. First, transformer-based detectors work by test-
ing a large number of object hypotheses in parallel. Because
the number of hypotheses is much larger than the typical
number of objects in an image, most of them are negative,
resulting in an unbalanced KD loss. Furthermore, because
both old and new object categories can co-exist in any given
training image, the KD loss and regular training objective
can provide contradictory evidence. Second, ER methods
for image classification try to sample the same number of
exemplars for each category. In IOD, this is not a good strat-
egy because the true object category distribution is typically
highly skewed. Balanced sampling causes a mismatch be-
tween the training and testing data statistics.

In this paper, we solve these issues by proposing Con-
tinuaL DEtection TRansformer (CL-DETR), a new method
for transformer-based IOD which enables effective usage of
KD and ER in this context. CL-DETR introduces the con-
cept of Detector Knowledge Distillation (DKD), selecting
the most confident object predictions from the old model,
merging them with the ground-truth labels for the new cate-
gories while resolving conflicts, and applying standard joint
bipartite matching between the merged labels and the cur-
rent model’s predictions for training. This approach sub-
sumes the KD loss, applying it only for foreground predic-
tions correctly matched to the appropriate model’s hypothe-
ses. CL-DETR also improves ER by introducing a new cal-
ibration strategy to preserve the distribution of object cat-
egories observed in the training data. This is obtained by
carefully engineering the set of exemplars remembered to
match the desired distribution. Furthermore, each phase
consists of a main training step followed by a smaller one
focusing on better calibrating the model.

We also propose a more realistic variant of the IOD
benchmark protocol. In previous works [12, 44], in each
phase, the incremental detector is allowed to observe all im-
ages that contain a certain type of object. Because images
often contain a mix of object classes, both old and new, this
means that the same images can be observed in different
training phases. This is incompatible with the standard def-
inition of incremental learning [16, 33, 41] where, with the
exception of the examples deliberately stored in the exem-
plar memory, the images observed in different phases do not
repeat. We redefine the IOD protocol to avoid this issue.

We demonstrate CL-DETR by applying it to dif-
ferent transformer-based detectors including Deformable
DETR [59] and UP-DETR [9]. As shown in Fig. 1, our
results on COCO 2017 show that CL-DETR leads to signif-
icant improvements compared to the baseline, boosting AP
by 4.2 percentage points compared to a direct application
of KD and ER to the underlying detector model. We further
study and justify our modelling choices via ablations.

To summarise, we make four contributions: (1) The
DKD loss that improves KD for knowledge distillation by

resolving conflicts between distilled knowledge and new ev-
idence and by ignoring redundant background detections;
(2) A calibration strategy for ER to match the stored ex-
emplars to the training set distribution; (3) A revised IOD
benchmark protocol that avoids observing the same images
in different training phases; (4) Extensive experiments on
COCO 2017, including state-of-the-art results, an in-depth
ablation study, and further visualizations.

2. Related Work

Incremental learning. Incremental learning (also known
as continual learning [2, 10, 34] and lifelong learning [1, 6,
8]) aims at learning models in phases that focus on differ-
ent subsets of the label space. Recent incremental learning
methods can be divided into two categories: (i) Knowledge
Distillation (KD) tries to preserve the knowledge capture in
a previous version of the model by matching logits [26,41],
feature maps [11], or other information [18, 39, 45, 48, 51]
in the new model. (ii) Exemplar Replay (ER) methods
build a reservoir of samples or exemplars from old train-
ing rounds [3, 33, 40, 41, 43] and replay them in successive
training phases as a way of recalling past knowledge. KD
and ER are the starting point of our method.

Incremental object detection (IOD). IOD applies incre-
mental learning to object detection specifically. This is
more challenging than incremental image classification, as
images can contain multiple objects, both of old and new
types, with only the new types being annotated in any given
training phase. Both KD and ER have been applied to
detection before. [44] applies KD to the output of Faster
R-CNN [13]. Inspired by this, recent IOD methods ex-
tended the KD framework to other detectors (e.g., Faster-
RCNN [42] and GFL [25]) by adding KD terms on the in-
termediate feature maps [12,55,58] and region proposal net-
works [7, 14, 37]. [19] proposes instead to store a set of ex-
emplars and fine-tune the model on the exemplars after each
incremental step. [30] proposes an adaptive sampling strat-
egy to achieve more efficient exemplar selection for IOD.

However, existing IOD methods are designed based
on conventional detectors such as Faster-RCNN [42] and
GFL [25]. In this work, we show that a direct application of
KD and ER to current state-of-the-art transformer-based de-
tectors such as Deformable DETR [59] and UP-DETR [9]
does not work well and we propose fixes to this issue.

Transformer-based object detection. DEtection TRans-
former (DETR) [4] proposes an elegant architecture for ob-
ject detection based on a visual transformer [49]. Compared
to pre-transformer approaches, DETR eliminates the need
for non-maximum suppression in post-processing because
self-attention can learn to remove duplicated detection by it-
self. This is achieved by using the Hungarian loss, matching
each object hypothesis to exactly one target or background
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using bipartite matching [47]. Deformable DETR [59] im-
proves the performance of DETR, particularly for small ob-
jects, via sparse attention on multi-level feature maps. UP-
DETR [9] leverages unsupervised learning to pre-train the
parameters of the encoder and decoder in DETR to further
boost the performance.

Our method does not fundamentally change these de-
tectors and is in fact applicable to all similar ones. In-
stead, it proposes broadly-applicable changes that make
transformer-based detectors work well in combination with
KD and ER for the IOD problem.

3. Methodology

After defining the incremental detection problem
(Sec. 3.1) and providing the necessary background
(Sec. 3.2), we introduce ContinuaL DEtection TRansformer
(CL-DETR), a new method for incremental object detection
that extends DETR-like detectors with knowledge distilla-
tion (KD; Sec. 3.3) and exemplar replay (ER; Sec. 3.4).

3.1. Incremental object detection

In incremental object detection (IOD) the goal is to
train a detector in phases, where in each phase the model
is only given annotations for a subset of the object cate-
gories. Formally, let D = {(x, y)} be a dataset of im-
ages x with corresponding object annotations y, such as
COCO 2017 [27], and let C = {1, . . . , C} be the set of ob-
ject categories. We adapt such a dataset for benchmarking
IOD as follows. First, we partition D and C into M subsets
D = D1 ∪ · · · ∪ DM and C = C1 ∪ · · · ∪ CM , one for each
training phase. For each phase i, we modify the samples
(x, y) ∈ Di so that y only contains annotations for objects
of class Ci and drop the others.2

In phase i of training, the model is only allowed to
observe images Di with annotations for objects of types
Ci ⊂ C. Notably, images can and do contain objects of
any possible type C, but only types Ci are annotated in this
phase. After phase i is complete, training switches to the
next phase i + 1, so the model observes different images
Di+1 and annotations for objects of different types Ci+1.

For exemplar replay, we relax this training protocol and
allow the model to memorise a small number of exemplars
Ei ⊂ Di from the previous phases. In this case, the model is
trained on the union Di ∪ E1:i−1 where E1:i−1 = E1 ∪ · · · ∪
Ei−1 forms the exemplar memory.

Note that this is a stricter and improved protocol com-
pared to prior works in IOD [12, 44]. In these works, the
model is still presented a subset of annotations restricted to
classes Ci in each phase; however, Di ⊂ D is defined as the
subset of all images that contain objects of type Ci. Because

2In this way, some images end up containing no annotated objects.

images contain a mix of object categories that can span dif-
ferent subsets Ci, this means that different subsets Di can
overlap, so that the same images can be observed multiple
times in different phases. This violates the standard defi-
nition of incremental learning [16, 33, 41] which assumes
that different samples are observed in different phases. Our
setting retains this property.

3.2. Transformer-based detectors

State-of-the-art methods like DETR [4, 9, 28, 47, 56, 59]
build on powerful visual transformers to solve the object
detection problem. In order to motivate and explain our
method, we first review briefly how they work.

With reference to Fig. 2, the model Φ takes as input an
image x ∈ R3×H×W and outputs the object predictions ŷ =
Φ(x) using a number of attention and self-attention layers.
The output ŷ = (ŷj)j∈N is a sequence N = {1, . . . , N}
of object predictions ŷj = (p̂j , b̂j), consisting of a class
probability vector p̂j : C ∪ {ϕ} → [0, 1] and a vector bj ∈
[0, 1]4 specifying the centre and size of the object bounding
box relative to the image size. Note that the support of p̂j
includes element ϕ that denotes the background class, or
‘no object’ (hence, p̂j has C + 1 dimensions).

The object predictions correspond to a fixed set of object
queries internal to the model. Each query is thus mapped to
an object instance or background. The order of the queries
is conceptually immaterial, but queries are fixed and non-
interchangeable after training. For instance, ŷ1 is always the
prediction that corresponds to the first query in the model.
This is relevant for the application of KD.

For supervised training, the model is given ground truth
object annotations y = ((pj , bj))j∈N where pj is the indi-
cator vector of the category of the object and bj ∈ [0, 1]4

is its bounding box. Images usually contain fewer objects
than the number N of hypotheses, so y is padded with back-
ground detections for which pi(ϕ) = 1 and bi is arbitrary.
The model is trained end-to-end to optimise the loss,

LDETR(ŷ, y) =
∑
i∈N
⟨− log p̂σ̂i

, pi⟩+ 1c(pi )̸=ϕLbox(b̂σ̂i
, bi),

(1)
where c(pi) = argmaxc∈C∪{ϕ} pi(c) is the class encoded
by pi, Lbox(b̂σ̂i

, bi) = γ1LIoU(b̂σ̂i
, bi) + γ2∥b̂σ̂i

− bi∥1 is
the bounding box prediction loss and σ̂ is the best associ-
ation of ground truth labels to object hypotheses, obtained
by solving the matching problem,

σ̂ = argmax
σ∈SN

∑
i∈N

1c(pi) ̸=ϕ

{
−⟨p̂σi , pi⟩+ Lbox(b̂σi , bi),

}
(2)

using the Hungarian algorithm [22, 46] (see [4] for details).
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Figure 2. (a) Classical knowledge distillation. There are two issues when directly applying KD [15, 26] to the transformer-based detec-
tors [4, 9, 59]. (i) Transformer-based detectors work by testing a large number of object hypotheses in parallel. Because the number of
hypotheses is much larger than the typical number of objects in an image, most of them are negative, resulting in an unbalanced KD loss.
(ii) Because both old and new object categories can co-exist in any given training image, the KD loss and regular training objective can
provide contradictory evidence. (b) Detector knowledge distillation (ours). We select the most confident foreground predictions from
the old model and use them as pseudo labels. We purposefully ignore background predictions because they are imbalanced and they can
contradict the labels of the new classes available in the current phase. Then, we merge the pseudo labels for the old categories with the
ground-truth labels for the new categories and use bipartite matching to train the model on the joint labels. This inherits the good properties
of the original formulation such as ensuring one-to-one matching between labels and hypotheses and avoiding duplicate detections.

3.3. Detector knowledge distillation

In a multi-phase learning scenario, at the beginning of a
new phase, the model is initialized as Φ← Φold where Φold

is the model trained in the phase before. As the new data
for the current phase is received, training the model Φ as
normal by minimising eq. (1) leads to forgetting.

KD [15, 26] reduces forgetting by maintaining a copy
of the old model and making sure that the outputs of the
new and old models stay close. Applied to our transformer-
based detectors, given a new training image-label pair
(x, y), one computes the old model’s output ŷold = Φold(x)
and, minimizes the sum of the LDETR(ŷ, y) loss with the
knowledge distillation loss

LKD(ŷ, ŷ
old) =

∑
j∈N

[∑
c∈C
−p̂j(c) log p̂old

j (c)

]
+Lbox(b̂j , b̂

old
j ).

This loss compares the output tokens of the new and old
models, which makes sense since they depend on the same
object queries, at least initially, and are thus in correspon-
dence. However, we find that this loss is dominated by
background information because most of the tokens pre-
dict background. Furthermore, transformer-based detec-
tors aim to find one-to-one matchings between predictions
and ground-truth labels without duplicates, which is not ac-
counted for by the classical KD loss.

The key issue is that summing losses LDETR + LKD as
in standard KD fails to properly account for the structure of
the labels, which is crucial for detection problems, particu-
larly in an incremental learning setting. Specifically, the old
model knows about all categories seen so far during training
except the new categories that are annotated in the current
phase. However, the new training images contain multiple
objects, including the old types, which are thus not anno-

23802



tated in the current phase. This means that LDETR and LKD
provide potentially contradictory supervision.

We thus suggest that, in a detection context, new and
old knowledge should be fused in a structured manner. As
illustrated in Fig. 2, we do so by selecting the most confi-
dent foreground predictions from the old model and using
them as pseudo labels. We purposefully ignore background
predictions because they are imbalanced and they can con-
tradict the labels of the new classes available in the current
phase. Then, we merge the pseudo labels for the old cat-
egories with the ground-truth labels for the new categories
and use bipartite matching to train the model on the joint la-
bels. This inherits the good properties of the original formu-
lation such as ensuring one-to-one matching between labels
and hypotheses and avoiding duplicate detections.

Formally, given the predictions ŷold from the old model,
we first identify the subset F ⊂ N of the ones that are
predicted as foreground: F = {j ∈ N : ∀c ∈ C : p̂old

j (c) >

p̂old
j (ϕ)}. Of these, we pick the subset P ⊂ F , |P| = K

formed by the K most confident predictions, i.e.,

∀i ∈ P, j ∈ F − P : max
c∈C

p̂old
i (c) > max

c∈C
p̂old
j (c).

Finally, we further restrict the predictions to the subset
Q ⊂ P that does not overlap too much with the ground-
truth labels for the new categories:

Q = {j ∈ P : ∀i ∈ N : c(pi) ̸= ϕ⇒ IoU(b̂old
j , bi) ≤ λ}.

In the experiments, we set λ = 0.7. With remain with a
filtered set of pseudo-labels:

ŷpseudo = (ŷold
j )j∈Q. (3)

Next, we distill knowledge from the current labels y and
the pseudo-labels obtained from the old model into a single,
coherent set of labels

ydistill = (yi)i:c(pi )̸=ϕ ⊕ ŷpseudo ⊕ ybg, (4)

where we concatenate the object labels for the new cate-
gories, the pseudo-labels, and enough background labels
ybg to pad ydistill to contain N elements.

In this manner, the distillation occurs at the level of the
labels. The model is still trained by using eq. (1) as before,
resulting in the detector knowledge distillation (DKD) loss:

LDKD(ŷ, y
distill) = LDETR(ŷ, y

distill). (5)

Besides the usage of the distilled labels, the main difference
between eqs. (1) and (5) is that, while the class distribu-
tion pi for the new label is deterministic, it is not for the
pseudo-labels. Plugged in eq. (1), this results in the stan-
dard distillation effect for categorical distributions trained
using the cross entropy loss.

Algorithm 1: CL-DETR (the i-th phase)
Input: new category data Di; old category

exemplars E1:i−1; old model Φold.
Output: new model Φ; exemplars E1:i.

1 Get Di and load E1:i−1 from memory;
2 Let Φ← Φold;
3 for epochs do
4 for mini-batches (x, y) ∈ Di ∪ E1:i−1 do
5 Let ŷold ← Φold(x);
6 Get ŷpseudo from ŷold and y using eq. (3);
7 Get ydistill from ŷpseudo and y using eq. (4);
8 Let ŷ ← Φ(x);
9 Get σ̂ by matching ydistill to ŷ using eq. (2);

10 Compute LDKD(ŷ, y
distill) using eq. (5);

11 Update Φ via a gradient step.
12 Build the exemplar set E1:i using Algorithm 2;
13 for epochs do
14 for mini-batches (x, y) ∈ E1:i do
15 Let ŷ ← Φ(x);
16 Compute LDETR(ŷ, y) using eq. (1);
17 Update Φ via a gradient step;
18 Save E1:i to the memory.

Algorithm 2: Exemplar selection (the i-th phase)
Input: new category data Di; old category

exemplars E1:i−1; target number of
exemplars Ri.

Output: exemplars E1:i.
1 Let Ei ← {};
2 repeat
3 Select e ∈ Di according to eq. (6);
4 Let Ei ← Ei ∪ {x};
5 until Ri times;
6 Let E1:i ← Ei ∪ E1:i−1.

3.4. Distribution-preserving calibration

ER methods, which store a small number of exemplars
and replay them in future phases, are shown to be effective
in preserving the old category knowledge in IOD [19, 30],
but can suffer from the severe imbalance between old and
new category annotations. Incremental learning methods
for classification [16,31,53] usually use re-balancing strate-
gies to address the imbalance problem. They create a
category-balanced subset of the data and finetune some
model components (e.g., the classifier) on it. However, such
strategies do not apply directly to the IOD setting. First, the
class distribution in detection is far from balanced, and a
better strategy is to match the natural data distribution in-
stead of the uniform one. Second, because there are multi-
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Setting Method Detection baseline AP AP50 AP75 APS APM APL

70+10

ERD [12] UP-DETR 36.2±0.3 54.8±0.4 39.3±0.4 20.8±0.3 39.3±0.5 47.9±0.3

CL-DETR (ours) UP-DETR 37.6±0.2 56.5±0.4 39.4±0.3 20.5±0.3 39.1±0.4 49.9±0.3

LwF [26] Deformable DETR 24.5±0.3 36.6±0.2 26.7±0.4 12.4±0.2 28.2±0.4 35.2±0.4

iCaRL [41] Deformable DETR 35.9±0.4 52.5±0.3 39.2±0.3 19.1 ±0.3 39.4±0.5 48.6±0.3

ERD [12] Deformable DETR 36.9±0.4 55.7±0.4 40.1±0.4 21.4±0.3 39.6±0.3 48.7±0.3

CL-DETR (ours) Deformable DETR 40.1±0.3 57.8±0.4 43.7±0.3 23.2±0.3 43.2±0.2 52.1±0.3

40+40

ERD [12] UP-DETR 35.4±0.4 55.1±0.3 38.3±0.3 17.9±0.4 39.0±0.3 49.8±0.3

CL-DETR (ours) UP-DETR 37.0±0.2 56.2±0.2 39.1±0.4 20.9±0.2 38.9±0.3 49.2±0.3

LwF [26] Deformable DETR 23.9±0.2 41.5±0.3 25.0±0.3 12.0±0.4 26.4±0.3 33.0±0.5

iCaRL [41] Deformable DETR 33.4±0.4 52.0±0.3 36.0±0.2 18.0±0.3 36.4±0.3 45.5±0.4

ERD [12] Deformable DETR 36.0±0.2 55.2±0.2 38.7±0.3 19.5±0.2 38.7±0.3 49.0±0.4

CL-DETR (ours) Deformable DETR 37.5±0.3 55.1±0.4 40.3±0.2 20.9±0.2 40.8±0.4 50.7±0.2

Table 1. IOD results (%) on COCO 2017. In the A + B setup, in the first phase, we observe a fraction A
A+B

of the training samples with
A categories annotated. Then, in the second phase, we observe the remaining B

A+B
of the training samples, where B new categories are

annotated. We test settings A + B = 40 + 40 and 70 + 10. Exemplar replay is applied for all methods except for LwF [26]. We run
experiments for three different categories and data orders and report the average AP with 95% confidence interval.

ple objects in each image, it is non-trivial to create a subset
of exemplar images with a set number of objects for each
category. We address these issues next.

Selecting exemplars to match the training distribution.
Called during phase i, Algorithm 2 produces a new exem-
plar subset Ei whose distribution matches as well as pos-
sible the distribution of categories in the subset Di of the
data. This is achieved by adding to Ei a set number Ri of
one exemplar e∗ ∈ Di, one at a time, chosen by minimizing
the Kullback-Leibler divergence [23] between the category
marginals of Ei and Di:

e∗ ←
∑
c∈Ci

pDi
(c) log pEi∪{e}(c), (6)

where pD(c) denotes the probability of category c in dataset
D. Then, the overall exemplar set E1:i = Ei ∪ E1:i−1 is ob-
tained as the union of the new subset just found and the pre-
vious exemplar et E1:i−1. Because classes in different sub-
sets Di are disjoint, this also means that, by the end of the
training, the distribution of classes in E1:M approximates
the one of the overall training set D.

Learning using balanced data. In order to use the avail-
able data as well as possible while balancing the detector Φ,
in each phase we update it in two steps. In the first step, the
model is trained using the DKD loss on all the available data
Di∪E1:i−1 given by the union of the current data subsetDi

and the exemplar memory E1:i−1 carried over the previous
training phases. In the second step, the model is fine-tuned
using the new exemplar set E1:i, ignoringDi and using only
the DETR loss, using fewer data but achieving better cali-
bration. The overall algorithm is given in Algorithm 1.

4. Experiments

We evaluate CL-DETR on COCO 2017 using two
transformer-based detectors, Deformable DETR and UP-
DETR [9, 59] as the baselines and achieve consistent im-
provements compared to the baselines and a direct appli-
cation of KD and ER. Below we describe the dataset and
implementation details (Sec. 4.1) followed by results and
analyses (Sec. 4.2).

4.1. Dataset and implementation details

Dataset and evaluation metrics. We conduct IOD exper-
iments on COCO 2017 [27], which is widely used in re-
lated works [9, 12, 38, 59]. Following [12], the standard
COCO metrics are used for evaluation, i.e., AP , AP50,
AP75, APS , APM , and APL. In the ablation study, we
introduce a new metric, forgetting percentage points (FPP),
measuring the difference between the AP of the first and last
phase models on the categories observed in the first phase.

Experiment setup. We conduct IOD experiments in the
following setting. Two-phase setting: In the A + B setup,
in the first phase, we observe a fraction A

A+B of the training
samples with A categories annotated. Then, in the second
phase, we observe the remaining B

A+B of the training sam-
ples, where B new categories are annotated. We test set-
tings A+B = 40+40 and 70+10. Multiple-phase setting:
In the 40+X×Y setup, in the first phase, we observe half of
the training samples with 40 categories annotated. In each
following phase, we observe 1

2Y of the training samples we
have never seen before with annotations for X new cate-
gories. We run experiments for 40+20×2 and 40+10×4.
We repeat each experiment three times, randomizing the or-
der of categories and data in the different phases, and report
the average APs. The total memory budget for the exem-
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Figure 3. IOD results (AP/AP50, %) on COCO 2017 in the 40+20×2 and 40+10×4 settings. Our method is based on Deformable DETR.
Comparing methods: Upper Bound (the results of joint training with all previous data accessible in each phase), ERD [12], SID [38], and
RILOD [24]. The results of the related works are from [12]. We use the same data split as [12] for a fair comparison.

Row
Knowledge Joint Pseudo Exemplar Distribution All categories ↑ Old categories ↑ FPP ↓
distillation bipartite label replay preserving

AP APS APM APL AP APS APM APL AP APS APM APL(KD) matching selection (ER) calibration

1 4.2 1.6 4.7 5.8 0.7 0.2 0.8 0.8 42.6 25.6 45.1 56.7
2 ✓ 24.5 12.4 28.2 35.2 24.0 12.3 27.7 34.4 19.3 13.5 18.2 23.1
3 ✓ ✓ 30.3 19.5 33.0 39.0 33.4 21.8 36.4 43.2 9.9 4.0 9.5 14.3
4 ✓ ✓ ✓ 33.9 16.3 37.1 49.2 33.9 16.6 36.8 50.0 9.4 9.2 9.1 7.5

5 ✓ ✓ ✓ ✓ 37.9 20.8 40.9 50.4 39.0 21.6 41.7 52.3 4.3 4.2 4.2 5.2
6 ✓ ✓ ✓ ✓ 40.1 23.2 43.2 52.1 41.8 24.5 44.7 54.6 1.5 1.3 1.2 2.9

Table 2. Ablation results (%) for KD and ER, using Deformable DETR [59] on COCO 2017 in the 70+10 setting. “All categories” (higher
is better) denote the results of the last phase model on 80 categories. “Old categories” (higher is better) denote the results of the last phase
model on 70 categories observed in the first phase. “Forgetting percentage points (FPP)” (lower is better) show the difference between the
AP of the first-phase model and the last-phase model on 70 categories observed in the first phase. The baseline (row 1) is finetuning the
model without IOD techniques. Our method (CL-DETR) is shown in row 6.

plars is set as 10% of the total dataset size.

Implementation details. We follow [9, 59] and use an
ImageNet pre-trained ResNet-50 backbone. For the ex-
periments on Deformable DETR [59], we use the standard
configurations without their iterative bounding box refine-
ment mechanism and the two-stage Deformable DETR. We
train the model for 50 (Deformable DETR) and 150 epochs
(UP-DETR), following the original implementations [9,59].
In order to apply our distribution-preserving calibration
(Sec. 3.4), we train the coarse Deformable DETR (UP-
DETR) model for 40 (120) epochs and perform calibration
for 10 (30) epochs to preserve the total number of epochs.

4.2. Results and analyses

Two-phase setting. Table 1 shows that, in the two-phase
settings 70 + 10 and 40 + 40, applying CL-DETR to De-
formable DETR [59] and UP-DETR [9] consistently per-
forms better than the state-of-the-art [12] and other IOD
methods [26, 41]. In particular, Deformable DETR [59] w/
ours achieves the highest AP, e.g., 40.1% and 37.5% in the
70+10 and 40+40 settings, respectively. The performance

gap is larger with more categories in the 1-st phase. E.g., the
AP differences between our method and [12] are 3.2 and 1.5
percentage points when we observe 70 and 40 categories in
the first phase, respectively, likely due to CL-DETR bene-
fiting more from a well-pre-trained model.

Multiple-phase setting. Figure 3 evaluates CL-DETR in
the multiple-phase setting with large gains compared to
other IOD methods in both the 40+20× 2 and 40+10× 4
experimental variants. The relative advantage of CL-DETR
increases with the number of phases. For instance, our
method improves the AP of [12] by 2.9 percentage points
in the 40 + 20 × 2 setting and by 7.4 percentage points in
the 40 + 10× 4 setting. This suggests that the advantage of
CL-DETR shows more in challenging settings, where the
forgetting problem is stronger due to the larger number of
training phases.

Ablation study for DKD. In Tab. 2 (Rows 1–4) we ab-
late our DKD approach. By comparing row 2 to row 1, we
observe that classical KD significantly improves the IOD
performance compared to the baseline (i.e., finetuning the
model without IOD techniques), but still results in large
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Row Setting AP AP50 AP75 APS APM APL

1 K=5 39.7 57.4 43.1 22.7 42.6 52.7
2 K=10 40.1 57.8 43.7 23.2 43.2 52.1
3 K=20 39.9 57.8 43.2 23.5 42.9 51.7

4 p≥0.1 39.3 57.1 42.9 22.6 42.3 52.5
5 p≥0.3 39.6 57.5 43.0 23.2 42.4 52.2
6 p≥0.5 39.2 56.8 42.4 22.3 41.9 51.8

Table 3. Ablation result (%) for different pseudo label selection
strategies on COCO 2017 using the 70 + 10 setting. Rows 1–3
show the results for using different K when selecting top-K most-
confident non-background predictions. Rows 4–6 show the results
for using different thresholds p of the prediction scores to select
the non-background predictions.

overall forgetting: 19.3 FPP. Comparing row 3 to row 2, we
can see that joint bipartite matching works well and boosts
the AP of all categories by 5.8 percentage points compared
to conventional KD. The reason is that joint bipartite match-
ing helps ensure a one-to-one matching between objects and
hypotheses and discourages duplicate detections. Compar-
ing row 4 to row 3, our pseudo label selection further im-
proves the AP and reduces forgetting, helping the model to
ignore the redundant background information and reducing
conflicts between old and new labels.
Ablation study for ER. In Tab. 2 (Rows 5–6), we ablate
our ER method. Comparing row 6 to row 5, we can see
that the calibration strategy of Sec. 3.4 boosts both the all-
category and old-category performance, by 1.8 and 2.1 per-
centage points respectively, compared to using conventional
ER [30, 41]. It also helps to overcome the catastrophic for-
getting problem in IOD, reducing the AP forgetting by 2.1
percentage points. This is because the conventional ER bal-
ances the sample distributions, changing the category dis-
tribution of the training set, whereas our method preserves
it, thus improving performance.
Ablation study for pseudo label selection strategies. In
Tab. 3, we show the results for two pseudo-label selec-
tion strategies: (1) selecting top-K most-confident non-
background predictions (Rows 1–3); and (2) selecting the
predictions using a threshold for the prediction scores
(Rows 4–6). We observe the first strategy works better, with
peak AP when K=10. The maximum performance differ-
ence is only 0.4 percentage points when using different val-
ues for K. This indicates our method is robust to its hyper-
parameter settings.
Visualizations. Figure 4 visualizes the old category
pseudo (blue) and ground-truth (green) bounding boxes in
some training samples in COCO 2017. In Fig. 4 (a, b), CL-
DETR generates accurate pseudo bounding boxes that ex-
actly match the ground-truth ones. This shows the effective-

(a) (b) (c) (d)

Figure 4. Visualizations of the old category pseudo (blue)
and ground-truth (green) bounding boxes on COCO 2017 us-
ing the 70 + 10 setting. (a, b): Our method generates accurate
pseudo bounding boxes that exactly match the ground-truth ones.
(c, d): When there are too many annotations in the images, gen-
erated pseudo bounding boxes cannot cover all ground-truth ones.
However, the pseudo bounding boxes are still focused on the fore-
ground objects.

ness of our pseudo-label selection strategy. In Fig. 4 (c, d),
CL-DETR fails to generate pseudo bounding boxes for all
objects in the images when there are too many. This is
explained by our strategy of selecting the top-K most-
confident non-background bounding boxes as the pseudo-
labels followed by removing the ones that overlap with the
new category ground-truth labels excessively. In this man-
ner, the number of pseudo bounding boxes is always smaller
than K. The trade-off, justified by our improvements in the
experiments, is to prefer correct although possibly incom-
plete annotations to contradictory or noisy ones.

5. Conclusions

This paper introduced CL-DETR, a novel IOD method
that can effectively use KD and ER in transformer-based
detectors. CL-DETR improves the standard KD loss by in-
troducing DKD which selects the most informative predic-
tions from the old model, rejecting redundant background
predictions, and ensuring that the distilled information is
consistent with the new ground-truth evidence. CL-DETR
also improves ER by selecting exemplars to match the dis-
tribution of the training set. CL-DETR is fairly generic and
can be easily applied to different transformer-based detec-
tors, including Deformable DETR [59] and UP-DETR [9],
achieving large improvements. We have also defined a more
realistic IOD benchmark protocol that avoids using dupli-
cated images in different training phases. In the future, we
plan to extend our method to more challenging settings such
as online learning.

Ethics. We use the COCO dataset in a manner compati-
ble with their terms; this data contains personal information
(faces). For further details on ethics, data protection, and
copyright please see https://www.robots.ox.ac.
uk/˜vedaldi/research/union/ethics.html.
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