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Abstract 

Perceptual learning is a powerful mechanism to enhance perceptual abilities and to form robust 

memory representations of previously unfamiliar sounds. Memory formation through repeated 

exposure takes place even for random and complex acoustic patterns devoid of semantic content. 

The current study sought to scrutinise how perceptual learning of random acoustic patterns is 

shaped by two potential modulators: temporal regularity of pattern repetition and listeners’ 

attention. To this end, we adapted an established implicit learning paradigm and presented short 

acoustic sequences that could contain embedded repetitions of a certain sound segment (i.e., 

pattern) or not. During each experimental block, one repeating pattern recurred across multiple 

trials, while the other patterns were presented in only one trial. During the presentation of sound 

sequences that contained either temporally regular or jittered within-trial pattern repetitions, 

participants’ attention was directed either towards or away from the auditory stimulation. Overall, 

we found a memory-related modulation of the event-related potential (ERP) and an increase in 

inter-trial phase coherence for patterns that recurred across multiple trials (compared to non-

recurring patterns), accompanied by a performance increase in a (within-trial) repetition detection 

task when listeners attended the sounds. Remarkably, we show a memory-related ERP effect even 

for the first pattern occurrence per sequence when participants attended the sounds, but not when 

they were engaged in a visual distractor task. These findings suggest that learning of unfamiliar 

sound patterns is robust against temporal irregularity and inattention, but attention facilitates 

access to established memory representations upon first occurrence within a sequence. 
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Introduction 

 Perceptual learning is a powerful mechanism to enhance perception and acquire novel 

memory representations throughout one’s lifetime. It is defined as the experience-dependent gain 

in perceptual capacity through growing experience with a certain, usually previously unfamiliar, type 

of stimulus material (Gibson, 1969; Gilbert et al., 2001; Irvine et al., 2000). In the auditory modality, 

repeated exposure to a novel class of sounds rapidly improves listeners’ abilities to perceptually 

parse them and, for instance, efficiently discriminate different exemplars (Wright & Zhang, 2009). 

This plays a particularly crucial role in challenging listening situation in which different stimulus 

exemplars are hard to distinguish because they are highly similar or the signal quality is suboptimal 

(Banai & Lavie, 2020; Irvine, 2018; Samuel & Kraljic, 2009). In turn, sharpened perception of relevant 

sensory input through experience and efficient recognition of already known information facilitates 

successful interaction and adaptive behaviour in challenging auditory environments (Bregman, 1990; 

Winkler et al., 2009). For instance, repeated exposure not only allows listeners to become more 

sensitive to stimulus details that they could not retain upon first hearing (McDermott et al., 2013) 

and segregate different sound sources more readily (Woods & McDermott, 2018), but also supports 

higher-level cognitive functions including speech and music perception (Irvine et al., 2000; Kraus & 

Banai, 2007; Norris et al., 2003). 

The current study focuses on a specific aspect of perceptual learning, that is the formation of 

item-specific memories for particular (random) stimulus exemplars (out of a pool of perceptually 

highly similar stimuli) through repeated exposure. Other than an overall, item-unspecific increase in 

perceptual capacity as a result of growing experience with a certain type of stimulus material, this 

should be reflected in a selective enhancement of perceptual performance for stimulus exemplars 

that recur across trials compared to others that do not recur over trials. While there is compelling 

evidence that the human auditory system has a remarkable capacity to form robust memories even 

of random and meaningless acoustic patterns (as will be reviewed below), research on how implicit 

perceptual learning of such patterns is modulated by different aspects of the learning context 
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remains rather scarce. The present study investigates the influence of two potential modulators that 

are widely discussed to enhance perceptual and cognitive processing across a variety of different 

contexts: temporal regularity of the sensory input and attention to the stimulation (and, in 

particular, relevant features therein).  

Behavioural and electrophysiological markers of acoustic pattern learning  

 Most studies investigating memory formation for random acoustic patterns used the so-

called implicit noise-learning paradigm (Agus et al., 2010), which was initially established with white 

noise as stimulus material, but later applied to different types of random acoustic patterns (e.g., 

Agus & Pressnitzer, 2021; Bianco et al., 2020; Kang et al., 2017; Ringer et al., 2022a). In their original 

experiment, Agus and colleagues (2010) presented listeners with white noise stimuli that either 

consisted of two seamless presentations of the same segment or of random noise and asked them to 

decide in every trial whether or not the sound contained a repetition. Unbeknownst to the 

participants, one specific segment recurred across multiple trials within an experimental block while 

all other patterns occurred in only one trial. The authors argued that the gradual increase of hit rate 

in the repetition detection task for recurring “reference” noise patterns (relative to other non-

recurring patterns) indicates successful memory formation for reference patterns, which in turn 

improved repetition detection (Agus et al., 2010). Learning was characterised as implicit, since the 

repetitions of the reference pattern across trials happened unbeknownst to the listeners, and it 

occurred fast after just a few presentations of the reference pattern and despite interference of 

irrelevant noises in between. Acquired memory representations proved to be long-lasting and robust 

against temporal and spectral transformation, i.e., the performance benefit persisted over two 

weeks and even for time-compressed or -reversed versions of the reference patten (Agus et al., 

2010).  

 This finding was replicated and extended by multiple subsequent studies. Robust memory 

effects through repeated exposure to a reference pattern were found not only for white noise as 

stimulus material (Agus et al., 2010; Agus & Pressnitzer, 2013; Andrillon et al., 2015, 2017; Dauer et 
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al., 2022; Song & Luo, 2017; Viswanathan et al., 2016), but also for “correlated” noise (Ringer et al., 

2022a), “tone clouds” of varying complexity (Agus & Pressnitzer, 2021; Kumar et al., 2014), 

sequences of short tones (Bianco et al., 2020; Herrmann et al., 2021), and temporal patterns of clicks 

(Kang et al., 2017, 2018, 2021). Successful memory formation was not dependent on immediate 

within-sound repetition (Agus & Pressnitzer, 2013; Ringer et al., 2022a) and occurred even with 

much less frequent repetitions of the reference pattern (i.e., only every three minutes on average; 

Bianco et al., 2020). A recent study showed that, beyond the sensitivity benefit in a perceptual task, 

repeated exposure enabled above-chance behavioural recognition of learnt reference patterns in a 

subsequent surprise two-alternative forced-choice memory test, suggesting at least some degree of 

active accessibility of the memory representations (Ringer et al., 2022a). 

 The memory-related behavioural changes were accompanied by characteristic neural 

signatures, as measured using several different neural markers and neuroimaging methods. A 

magnetoencephalography (MEG) study reported stronger inter-trial phase coherence (ITPC) of low-

frequency oscillations (3-8 Hz) for recurring reference (compared to other) white noise patterns that 

gradually increased over the course of a block along with behavioural sensitivity in the repetition 

detection task (Luo et al., 2013). Remarkably, different reference patterns elicited distinguishable 

neural phase patterns (Luo et al., 2013) and distinguishable spatial activation patterns in planum 

temporale and hippocampus in a functional magnetic resonance imaging (fMRI) study (Kumar et al., 

2014). It was argued that repeated exposure to the reference pattern increased perceptual 

sensitivity to subtle acoustic features via resetting the phase of ongoing low-frequency neural 

oscillations to these features (Luo et al., 2013). A similar increase in ITPC of low-frequency 

oscillations for reference patterns was also found using electroencephalography (EEG; Andrillon et 

al., 2015, 2017). A study using sequences of short tones as stimuli reported an earlier emergence, 

followed by a reduction in magnitude, of sustained neural activity for sequences that contained 

repetitions of recurring reference compared to novel patterns (Herrmann et al., 2021). Another line 

of research investigated event-related potentials (ERPs) relative to the repeating onsets of single 
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pattern repetitions within a continuous auditory sequence. These studies showed a prominent 

fronto-central negativity that peaked around 200 to 300 ms after pattern onset, sometimes 

preceded by an earlier frontal positivity (Andrillon et al., 2015, 2017; Hodapp & Grimm, 2021). The 

overall shape of the waveform was reminiscent of the “noise-locked” negativity reported in 

response to the onset of the repeating sound segment in periodic white noise sequences (Berti et 

al., 2000; Kaernbach et al., 1998; Ringer et al., 2022b), and, critically, its amplitude was modulated 

by the recurrence of a certain reference pattern across multiple trials (Andrillon et al., 2015, 2017; 

Hodapp & Grimm, 2021). Notably, a difference between learnt reference patterns and other 

patterns emerged already after the first pattern presentation per trial, i.e., before any within-trial 

repetition, likely reflecting longer-term memory formation across trials (Andrillon et al., 2015).  

Temporal regularity and attention as potential modulators of perceptual learning 

While there is compelling evidence for perceptual learning of different types of random 

acoustic patterns through repeated exposure, less is known about how different aspects of the 

learning context shape memory formation. Temporal regularity of the stimulation and participants’ 

attentional focus are commonly known to facilitate perception (for reviews, see, e.g., Chun & Turk-

Browne, 2007; Henry & Herrmann, 2014). Thus, it is plausible to assume that these two factors also 

influence implicit perceptual learning of random acoustic patterns, which recent research began to 

investigate.    

Temporal regularity of auditory stimuli, inherently linked to enhanced predictability, was 

demonstrated to reliably benefit perceptual performance across a variety of tasks, including 

discrimination tasks related to different stimulus features (Barnes & Jones, 2000; Geiser et al., 2012; 

Jones et al., 2002, 2006), concurrent sound stream segregation (Andreou et al., 2011; Sohoglu & 

Chait, 2016), detection of near-threshold stimuli (Lawrance et al., 2014) and stimulus changes 

(Chang et al., 2019; Henry & Obleser, 2012), and repetition detection within continuous sounds 

(Rajendran et al., 2016). Dynamic Attending Theory postulates rhythmic fluctuations of attention 

and perceptual sensitivity that align with temporally regular stimulus sequences (Henry & Herrmann, 
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2014; Jones, 1976, 2019; Large & Jones, 1999) via entrainment of low-frequency neural oscillations 

to the external stimulation (Calderone et al., 2014; Lakatos et al., 2008, 2019), such that peaks in 

neural excitability coincide with critical time windows (Lakatos et al., 2005, 2009; Schroeder & 

Lakatos, 2009). A conducive effect of temporal regularity in the stimulation was also found for 

memory formation (Hanslmayr et al., 2019; Hickey & Race, 2021). Two recent studies that used the 

implicit learning paradigm to investigate perceptual learning of acoustic patterns suggested that 

temporal regularity of pattern repetitions is not a prerequisite for successful memory formation, but 

might have facilitative impact (Dauer et al., 2022; Hodapp & Grimm, 2021). In the EEG, a modulation 

of the pattern-related negativity was observed for reference tone patterns, equally in sequences 

with isochronous and temporally jittered pattern repetitions (Hodapp & Grimm, 2021). Conversely, 

Dauer and colleagues (2022) showed that behavioural learning was reduced by onset uncertainty 

and by temporal irregularity of white noise pattern repetitions. Interestingly, this disadvantage was 

ameliorated as soon as some predictable and isochronous sequences were included in the 

experimental block (Dauer et al., 2022). 

Likewise, attention and memory formation are closely interdependent. Attention acts as a 

selection mechanism to allocate limited processing resources to particularly relevant sensory input 

and to enhance its perceptual representation, which in turn paves the way for the formation of 

robust longer-term memories (Chun & Turk-Browne, 2007). In fact, there is some evidence that 

attention is a necessary requirement for perceptual learning: For instance, perception of noise-

vocoded speech only improved when participants directed their attention to the speech stimuli, but 

not when they focussed on another auditory or visual task during a training phase (Huyck & 

Johnsrude, 2012). Similarly, understanding and subsequent recognition of degraded speech required 

attention, while it was unimpaired by a shift of attention away from the speech stimuli for clear 

speech (Wild et al., 2012). However, there is also a large body of research that demonstrated 

successful memory formation for novel sounds in the absence of attention, suggesting that the 

influence of attention during encoding of the to-be-learnt stimuli depends on perceptual difficulty 
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and is stronger for explicit than for implicit learning (Chun & Turk-Browne, 2007). Even in the 

absence of attention to the auditory stimulation, the emergence of temporal regularities in 

continuous acoustic sequences can be detected, as reflected in an amplitude increase of the 

sustained response (Barascud et al., 2016; Southwell et al., 2017; Southwell & Chait, 2018), and 

exploited to segregate overlapping sound streams (Masutomi et al., 2016). Also, Berti and colleagues 

(2000) showed comparable ERP waveforms relative to the onset of the repeating segment within 

periodic white noise sequences both while participants performed an auditory task or read a book, 

i.e., with and without attention to the stimulation (Berti et al., 2000). While repetition detection as 

such does not require memories of the repeating pattern across multiple trials, it does rely on a 

successful sensory memory comparison within the trial and can be considered at least a preliminary 

stage of perceptual learning on a shorter time scale. Using the implicit learning paradigm, two 

studies probed memory formation across trials for specific white noise patterns during inattention 

(Andrillon et al., 2015, 2017). They found evidence for successful perceptual learning of reference 

patterns, indexed by a significant amplitude increase of pattern-related ERPs relative to other 

patterns, while listeners performed a distractor task (Andrillon et al., 2015) and even during rapid 

eye movement (REM) sleep (Andrillon et al., 2017), suggesting an automatic, pre-attentive nature of 

the memory formation process. However, to date no study has directly compared the memory effect 

between different levels of attention towards the auditory stimulation and, in particular, the pattern 

repetitions therein. Thus, although substantial perceptual learning for random acoustic patterns 

occurred in the absence of attention to the auditory stimulation, it remains unclear whether 

attention improves implicit memory formation.  

The present study 

 The goal of the present EEG study is to scrutinise the effect of two potential modulators on 

perceptual learning of random acoustic patterns: temporal regularity of pattern repetitions within 

auditory sequences and listeners’ attention. Previous studies investigated only either of these two 

factors in isolation, but not their interaction. Also, they mostly only probed the memory effect at 
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separate levels of the factor (e.g., with an auditory task that focussed listeners’ attention on the 

pattern repetitions or with a visual distractor task that directed their attention away from the 

auditory stimulation). To test whether temporal regularity and attention actually modulate the 

memory effect, i.e., whether the memory effect differs significantly in magnitude between factor 

levels, in the present study we manipulated both factors in a two-by-two within-subject design. We 

used an adapted version of the established implicit learning paradigm (Agus et al., 2010) and 

presented to-be-learnt reference patterns embedded either at temporally regular or jittered 

positions within acoustic sequences (i.e., with a fixed or randomly varying duration of the interval 

between pattern occurrences) while listeners’ attention was either directed towards or away from 

the pattern repetitions. As stimulus material we used acoustic patterns that were randomly 

generated and transformed to match statistical properties of natural sounds (see Methods for 

details). This allowed us to study learning of initially unfamiliar, complex, and not semantically 

categorisable sounds that are closer to naturalistic sounds than previously used artificial stimulus 

material (e.g., white noise) and yet carefully acoustically controlled (other than, e.g., actual 

environmental sounds). In accordance with previous literature (see previous section), we defined the 

relevant implicit memory effect as a change in two different EEG markers: Both amplitude of the ERP 

and EEG phase coherence to repeating pattern onsets within a sequence should differ between the 

reference pattern that (unbeknownst to the participants) recurred across trials and other patterns 

that occurred in only one trial throughout the experiment. Note that while we are specifically 

interested in longer-term pattern learning across multiple trials, the detection of repetitions within 

trials requires short-term memory representations itself, which likely form the basis for learning 

across trials. Thus, a particularly critical time window is the first pattern presentation per sequence 

before any within-trial repetition, since any memory effect at this stage cannot be attributed to 

short-term, within-trial memory comparisons and is likely related to longer-term memory formation 

across trials.  
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 We expected that repeated exposure to the reference pattern across multiple trials would 

lead to the formation of memory representations for this specific acoustic pattern. Such perceptual 

learning should be reflected in a significant amplitude difference of ERPs to pattern onsets between 

the learnt reference pattern and other novel, non-recurring patterns, as well as in an increase in 

ITPC. Moreover, memory formation should be accompanied by an increase of behavioural 

performance in an auditory pattern repetition detection task. We assumed that both temporal 

regularity of pattern repetitions and listeners’ attention might shape how acoustic patterns are 

perceptually learnt. Specifically, it is plausible to hypothesise that the memory effect would be 

enlarged in temporally regular compared to jittered sequences and when listeners’ attention is 

direct towards compared to away from the pattern repetitions. Above and beyond a potential 

modulation by temporal regularity and listeners’ attention, a significant memory effect across 

conditions would point towards a flexible learning mechanism that enables the formation of robust 

memories across different, naturally variable learning contexts. 

 In addition to changes in EEG responses and behavioural performance as our key dependent 

measures, we assessed active behavioural recognition of learnt patterns as a more direct correlate 

of memory formation. Participants were asked to complete an unexpected memory test at the end 

of the experimental sessions in which they had to choose which out of two stimuli they felt they had 

heard before. This allowed us to test whether the acquired memory representations can become (at 

least to some degree) actively accessible, and whether more indirect and more direct correlates of 

learning are similarly or differently influenced by temporal regularity and attention.  

 

Materials & Methods 

Participants  

 A total of 29 healthy adults (26 of them female, three male) participated in the study. They 

were between 18 and 32 years old (M = 21.38 years, SD = 3.21 years). All of them reported normal 

hearing, normal or corrected-to-normal vision and no history of any neurological or psychiatric 
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disorder. Three participants were left-handed, the remaining 26 right-handed, as assessed with the 

short form of the Edinburgh Handedness Inventory (Oldfield, 1971). All participants were psychology 

undergraduate students and received course credits for their participation. They were naïve 

regarding the purpose of the study and gave written informed consent before the testing started. All 

experimental procedures were in accordance with the Declaration of Helsinki and the study was 

approved by a local ethics committee.  

Stimuli 

As auditory stimulus material we used sequences of so-called correlated noise, which is described in 

detail elsewhere (McDermott et al., 2011). Correlated noise was recently used to study auditory 

perceptual learning (Ringer et al., 2022a) and comes with the advantage that it is randomly 

generated, and particular exemplars are unfamiliar to the listeners, while it shares statistical 

properties with natural sounds. We created correlated noise sequences with a duration of 3500 ms, 

including 5-ms onset and offset ramps (half-Hanning windows) using the Gaussian Sound Synthesis 

Toolbox (http://mcdermottlab.mit.edu/Gaussian_Sound_Code_for_Distribution_v1.1) in Matlab 

(version R2021a; The MathWorks Inc., USA). Randomly generated white noise sequences were 

transformed using a generative model, such that the resulting correlated noise sequences contained 

a correlative structure, i.e., correlations of spectral energy values between temporally and spectrally 

adjacent sampling points in the spectrogram that decreased in strength with increasing temporal 

and spectral distance. Specifically, the strength of the correlation decreased with -0.065 per time 

window (20 ms) along the temporal dimension and with -0.075 per frequency window (0.196 

octaves) along the spectral dimension. These decay constants were chosen to match our artificially 

generated stimuli with the correlative structure of natural sounds such as speech stimuli or 

environmental sounds (McDermott et al., 2011).  

In accordance with previous studies using the implicit noise-learning paradigm (e.g., Agus et 

al., 2010), we created three types of sequences. “Noise” sequences (N) consisted of 3500 ms of 

random correlated noise, without any repetitions in the sound. In “repeated noise” sequences (RN), 
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a certain 200-ms segment was repeated over the course of the sequence such that it occurred in 

total six times within the sound. “Reference repeated noise” (RefRN) sequences had the same 

structure as RN sequences and only differed from them in that they included the exact same 

repeated pattern in several trials within an experimental block, while all RN and N sequences (and 

200-ms patterns contained in them) occurred in just exactly one trial throughout the whole session. 

200-ms patterns were created separately for the respective trial (or block in the case of RefRN) and 

inserted into the 3500-ms sequences at certain time points (see below). As the repetition of a fixed 

200-ms pattern throughout RN and RefRN sequences inevitably introduced a local change in the 

correlative structure of the sounds, we controlled for that by including such local changes also in the 

N sequences. Concretely, for each N trial, six (different) 200-ms segments were created and inserted 

into the sequence. That way, the three types of sequences only differed with regard to whether or 

not a specific pattern occurred repeatedly, but not with regard to local disruptions in the correlative 

structure. To avoid noticeable clicks at segment boundaries due to abrupt changes in the spectrum, 

cross-fading (using 5-ms half-Hanning windows centred 2.5 ms relative to the beginning and -2.5 ms 

relative to the end of an inserted 200-ms segment) was applied at all transitions in all sequences. In 

addition to the manipulation of the within- and across-sequence pattern repetitions (N, RN, RefRN), 

sequences varied with regard to the temporal Regularity of the repetitions of the repeated 200-ms 

pattern, such that pattern onsets within the sequence were either regular or jittered. In the regular 

sequences, patterns were repeated with a constant interval of 300 ms between patterns. In the 

jittered sequences, patterns were repeated at variable intervals, such that each interval between 

two consecutive pattern occurrences was randomly chosen between 50 ms and 550 ms (around a 

mean of 300 ms), with the restriction that two adjacent inter-pattern intervals must differ in 

duration by at least 50 ms. Across both regular and jittered sequences, the first pattern started at a 

randomly selected time point between 50 ms and 500 ms relative to sound onset. The structure of 

the acoustic sequences in the different conditions is illustrated in Figure 1A. Audio files with example 
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stimuli can be found in the online supplemental material 

(https://osf.io/r8gea/?view_only=4580e185befa474eac7a2d0efb3c615e). 

Procedure 

General procedure 

Each participant completed two EEG sessions, each of which lasted between two and three 

hours. The two sessions took place on separate days, with an average interval of 13 days in between. 

Attention was manipulated between sessions, such that in one session the listeners’ attention was 

directed towards and in the other session away from the pattern repetitions within the auditory 

sequences. In the first session (no-attention), they performed a visual distractor task while 

instructed to ignore the auditory sequences. In the second session (attention), they were asked to 

perform a repetition detection task and indicate after each sequence whether or not it contained a 

repetition. This session order was fixed for all participants in order to avoid that they were aware of 

the repetitions in the auditory stimulation in the no-attention session after performing the auditory 

repetition detection task in the session before. As previous studies suggested that memory 

representations of learnt patterns persist over several weeks (Agus et al., 2010; Bianco et al., 2020; 

Viswanathan et al., 2016), different patterns were used for RefRN sequences in both sessions (while 

the same RN and N sequences, which occurred only once per session, were used for both sessions). 

The experimental design and an exemplary trial sequence are illustrated in Figure 1B and 1C. 

During the experiment, participants were seated in an acoustically and electrically shielded 

chamber. Instructions for the respective task and visual stimuli were displayed on a computer screen 

behind a window outside the cabin at approximately 80 cm distance from the participants’ eyes. 

Auditory stimuli were delivered binaurally via headphones (Sennheiser HD-25-1, Sennheiser GmbH & 

Co. KG, Germany). Stimulus presentation and response registration was controlled using the 

Psychophysics Toolbox extension (PTB-3; Brainard, 1997; Kleiner et al., 2007) in GNU Octave (version 

5.2.0; Eaton et al., 2020). Participants’ behavioural responses were captured with a response time 

box (Suzhou Litong Electronic Co., China). 
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In each session, participants completed ten experimental blocks, five with regular and five 

with jittered sequences, in a random order. One block lasted about six minutes and breaks could be 

taken between blocks as required. Within each block, 60 auditory sequences were presented, 50% of 

which were N sequences, and 25% RN and RefRN sequences, respectively. Sequence order was 

pseudorandomised with the restriction that two RefRN sequences must not immediately follow each 

other. The duration of the silent interval between two sequences was jittered between 2175 and 

2625 ms (in steps of 50 ms) around a mean of 2400 ms.  

Repetition detection task in the attention session 

In the second session (attention), participants were asked to perform a repetition detection 

task, deciding for every sequence whether it contained a repetition or not. At the beginning of the 

session, they had the chance to familiarise themselves with the different types of sequences, which 

were introduced to them as having either “regular” repetitions (RN/RefRN regular), “irregular” 

repetitions (RN/RefRN jittered), or no repetition at all (N regular/jittered). An example sequence 

(which was not part of the actual stimulus pool) was provided for each of the three types of 

sequences and participants could listen to the examples as often as they wanted. They were 

informed that some blocks would contain only regular and other blocks only irregular sequences, 

and that 50 % of the sequences per block contained repetitions. During auditory sequence 

presentation, a white fixation cross was displayed in the centre of the screen against a grey 

background. After the end of the sequence, the two response options (repetition/no repetition) 

were displayed on the screen until a response was given or a maximum response interval of 2000 ms 

expired. Participants gave their responses by pressing either the left or the right button on the 

response time box (with the corresponding index finger). Response sides were counterbalanced 

across participants. At the end of each block, feedback, i.e., the percentage of correct responses, 

was provided.  
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Visual distractor task in the no-attention session 

In the first session (no-attention), additional visual stimulation was delivered concurrently. 

The visual display consisted of a white fixation cross against a grey background in the centre of the 

screen, surrounded by eight squared frames (width/height: 0.50° visual angle) that were arranged in 

a circle (radius: 2.11° visual angle) at equal distance from each other. In each block, 240 visual trials 

were presented with no temporal or other systematic relationship to the auditory stimulation. In 

each visual trial, a white square appeared for 150 ms at one of the eight frame positions. 

Participants were instructed to monitor the appearances of the white square, while fixating the cross 

in the centre, and press a button as quickly as possible whenever the current position of the white 

square was identical to the position two trials before (2-back task). The visual stimulus onset 

asynchrony was jittered between 1425 and 1575 ms (in steps of 10 ms) around a mean of 1500 ms. 

2-back targets occurred randomly in 10 % of the trials, with the restrictions that the first five trials 

per block were always non-targets and each target was followed by at least two non-targets. Targets 

occurred equally often at each of the eight frame positions, while the square positions were 

randomly chosen for the non-target trials. To engage the participants in the visual distractor task at 

the beginning of the block, auditory stimulation began only five seconds after the visual stimulation. 

Before the actual experiment started, participants completed a short training (24 trials) on the visual 

task in the absence of concurrent auditory stimulation. During this training, feedback was provided 

in each trial (correct/incorrect; displayed below the circle of squared frames for 500 ms), while 

during the ten experimental blocks feedback (percentage of hits and false alarms, mean reaction 

time) was only provided at the end of each block.  

Active auditory memory test 

At the end of each session, participants were asked to complete an additional unexpected 

two-alternative forced-choice auditory memory test. In each trial of this test block, they were 

presented with two 200-ms patterns, separated by 1000 ms of silence, one of which was a 

previously learnt reference pattern and the other one a random unfamiliar pattern. They should 
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then select the pattern that they felt they had already heard before during one of the ten blocks. As 

in the repetition detection task, the silent inter-trial interval (between the offset of the second 

sound and the onset of the first sound of the following trial) was jittered between 2175 and 2625 ms 

and the maximum response interval was 2000 ms. The order of the reference pattern (i.e., target) 

and the random filler stimulus (i.e., non-target) was counterbalanced across trials, such that the 

reference noise did not occur in the same position in more than three trials in a row. Each of the ten 

reference patterns was presented four times during the test block. Patterns were presented in the 

same order as during the experimental blocks before and this fixed order (RefRN1, RefRN2, RefRN3, 

…) was repeated four times, in order to avoid that the same reference pattern could occur in two 

immediately successive trials. To make sure that participants could not base their responses solely 

on pattern repetition within the test block, we used ten random filler patterns as non-targets and 

presented each of them equally often as each reference pattern (i.e., four times). These filler 

patterns were assigned to the trials pseudo-randomly, such that the same stimulus did not occur in 

two trials in a row. No feedback was provided in the test block. 

EEG data acquisition  

 EEG was recorded continuously from 64 active Ag/AgCl electrodes mounted in an elastic cap 

according to the extended international 10-20 system. Four electrodes were placed on the outer 

canthus of each eye and above and below the right eye to capture horizontal and vertical eye 

movements. Additionally, signals were recorded from left and right mastoids (M1, M2) and one 

electrode placed on the tip of the nose served for later offline referencing. During preparation, we 

made sure that all electrode offsets were kept below 30 μV. Signals (referenced to the CMS-DRL 

ground) were amplified with a BioSemi ActiveTwo amplifier (BioSemi B.V., Amsterdam, The 

Netherlands) and digitised with a sampling rate of 512 Hz. 

Data analysis and statistical inference 

Behavioural data 

 Analysis of behavioural data was done in RStudio (version 4.0.2, RStudio Inc., USA). 
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 Visual distractor task 

 We computed hit rates (proportion of correctly detected 2-back targets), false alarm rates 

(proportion of non-targets erroneously classified as targets) and mean reaction times (of correct 

target detections) across blocks for each participant. Means and standard deviations across 

individuals are reported for these three performance measures to demonstrate that, on average, 

participants complied with the task instructions and performed above chance in the visual task.  

 Repetition detection task 

 Repetition detection performance was quantified within the framework of signal detection 

theory, an approach that is commonly used to separate response accuracy from response bias in 

perceptual categorisation tasks (Macmillan, 2001). Hits were defined as the trials in which the 

sequence contained repetitions and participants correctly responded that they heard a repetition, 

and false alarms as trials in which the sequence did not contain repetitions, but participants 

erroneously responded that they heard a repetition. For each participant, we computed d’ sensitivity 

indexes for RefRN and RN sequences from the respective hit rates and the false alarm rates in 

regular and jittered blocks, respectively. To avoid computation with infinite values, we applied the 

so-called log-linear transformation (Hautus & Lee, 2006).  

A two-way repeated-measures ANOVA (implemented in the package “ez”; Lawrence, 2016) 

with the factors Repetition Type (RefRN, RN) and Regularity (regular, jittered) was used to 

statistically test for a memory effect and its modulation by temporal regularity. Substantial learning 

of reference noises, i.e., a significantly higher sensitivity for RefRN compared to RN, would be 

reflected in a significant main effect of Repetition Type, and a substantial modulation by temporal 

regularity in a significant interaction with Regularity. Greenhouse-Geisser correction was applied to 

correct for non-sphericity (as indicated by a significant Mauchly’s test with p < .05). Statistical 

significance was defined by the standard .05 alpha criterion. In addition to the frequentist tests, we 

computed complementary Bayesian tests and report Bayes Factors (BF10), using the package 

“BayesFactor” (Morey & Rouder, 2011; Morey et al., 2018; Rouder et al., 2009, 2012). Reported 
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Bayes Factors were computed by comparing evidence for models that include the effect of interest 

against reduced matched models that do not include the effect of interest (in accordance with 

recommendations by Bergh et al., 2020). In accordance with widely used conventions (Lee & 

Wagenmakers, 2014), BF10 > 3 (10) was considered moderate (strong) evidence for the alternative 

hypothesis and BF10 < 0.33 (0.1) was considered moderate (strong) evidence for the null hypothesis, 

while values in between were deemed inconclusive. 

Memory test  

 Active pattern recognition performance was measured as the percentage of correct 

responses in the memory test. First, performance was tested against 50-% chance level using a one-

sided one-sample t-test for the regular and jittered condition in the attention and no-attention 

session, respectively. Second, we compared the performance between conditions by means of a 

two-way repeated-measures ANOVA with the factors Regularity (regular, jittered) and Attention 

(attention, no-attention). Where applicable, a correction for non-sphericity was used as described 

above, and the frequentist analysis was again complemented with a Bayesian ANOVA. 

EEG data  

 EEG data were processed offline in Matlab (version R2022a), using the EEGLAB (version 14.1.2; 

Delorme & Makeig, 2004) and the FieldTrip (Oostenveld et al., 2011) toolbox. Subsequent statistical 

analysis of mean amplitudes was done in RStudio (version 4.0.2, RStudio Inc., USA).  

 Pre-processing 

 Data were pre-processed separately for each EEG recording session (i.e., two per 

participant). First, data were referenced to the channel located on the tip of the nose. Noisy 

channels were excluded from pre-processing and later spherically spline interpolated (as a last pre-

processing step) if their signal variance exceeded an absolute z-score of 3.0. Data of the remaining 

channels were high-pass and low-pass filtered with Kaiser-windowed sinc finite impulse response 

(FIR) filters at 0.2 Hz (transition bandwidth: 0.4 Hz, maximum passband deviation: 0.001, filter order: 

4638) and 35 Hz (transition bandwidth: 5 Hz, maximum passband deviation: 0.001, filter order: 372). 
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The filtered continuous data were cut into epochs that ranged from -100 ms to 4000 ms relative to 

the onset of the 3500-ms auditory sequences. We then used an independent component analysis 

(ICA) to clean the epoched data from physiological and technical artefacts. To improve signal-to-

noise ratio for decomposition, ICA was computed on a copy of the data filtered with a 1-Hz high-pass 

filter (transition bandwidth: 0.5 Hz, maximum passband deviation: 0.001, filter order: 3710) and the 

same 35-Hz lowpass filter. Data were epoched as described above and epochs with a peak-to-peak 

difference that exceeded 750 µV were discarded. To shorten computation time, data were down-

sampled to 128 Hz before the ICA decomposition. ICA weights were obtained with an infomax 

algorithm implemented in EEGLAB’s runica function and transferred to the dataset that was pre-

processed using the final filter parameters. Independent components were classified using the IC 

Label plugin for EEGLAB (Pion-Tonachini et al., 2019) and artefactual components classified as eye 

blinks, muscle activity, cardiac activity, line noise or channel noise were automatically selected and 

removed. To minimise influences of visual processing and motor responses on auditory event-

related potentials during the visual distractor task in the first session (no-attention), auditory events 

within 500 ms before and after a button press as well as within the 500-ms interval prior to visual 

targets were excluded from the analysis.  

Event-related potential analysis 

For an overview of the electrophysiological response to the full auditory sequence, we 

extracted epochs that ranged from -100 ms to 3000 ms relative to the onset of the first 200-ms 

pattern, covering all six pattern presentations per sequence. Epochs were baseline-corrected to the 

100-ms interval prior to the first pattern onset. Any epoch with a peak-to-peak difference that 

exceeded 300 µV was excluded from the analysis. The remaining epochs were re-referenced to the 

algebraic mean of both mastoid electrodes (M1, M2) and, for each individual, averaged for N, RN 

and RefRN sequences in each Regularity and Attention condition, respectively. From these within-

participant averages, grand averages were computed for each condition (using the grandaverage 

plugin for EEGLAB, authored by Andreas Widmann; https://github.com/widmann/grandaverage). 
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 For the analysis of pattern-related responses to single pattern occurrences, we extracted 

epochs that ranged from -100 ms to 500 ms relative to the onset of each 200-ms pattern. Epochs 

were baseline-corrected to the 100-ms interval prior to pattern onset. Any epoch with a peak-to-

peak difference that exceeded 150 µV was excluded from the analysis, and the remaining epochs 

were re-referenced to the algebraic mean of both mastoid electrodes. Computation of within-

participant averages and grand averages followed the same procedure as described above for the 

response to the full sequence. Subsequent analysis steps were done separately for different pattern 

positions within the sequence: a) averaged across position two to six, i.e., the first to the fifth 

pattern repetition per sequence, and b) for the first presentation per sequence only, i.e., before any 

within-sequence pattern repetition. 

Time windows of interest for the statistical comparison of mean amplitudes between 

conditions were defined using a non-parametric cluster-based permutation approach. Specifically, 

we performed a cluster-based permutation test to identify clusters of significant amplitude 

differences between RefRN and RN at temporally and spatially adjacent samples (Maris, 2012; Maris 

& Oostenveld, 2007). In accordance with recent recommendations on how to avoid bogus effects 

due to selective choice of analysis parameters in ERP research (Luck & Gaspelin, 2017), we collapsed 

RefRN and RN waveforms across the four Regularity and Attention conditions and fed these 

condition averages into the cluster-based permutation test. That way, we reduce the risk that 

potential differences between Regularity and Attention conditions are merely a result of a biased 

selection of the time window for statistical analysis. The cluster-based permutation test was 

performed in a time window ranging from 0 to 500 ms relative to pattern onset, applying an alpha 

level and cluster alpha of 0.05 and using a Monte Carlo approximation with 1000 permutations to 

estimate cluster-level significance probability. Based on the results of the cluster-based permutation 

tests, we identified relevant time windows for analysis in which a memory effect occurs (on average 

across conditions) that ranged from 140 to 220 ms relative to pattern onset for the average across 

pattern position two to six, and from 260 to 500 ms for the first pattern presentation per sequence. 
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 From these time windows, mean RefRN and RN amplitudes were extracted for each of the 

four Regularity and Attention conditions at electrode Fz (since both the current data and previous 

studies suggested a fronto-central distribution of the memory effect in the ERP, e.g., Andrillon et al., 

2015; Hodapp & Grimm, 2021). Moreover, RefRN-minus-RN difference waveforms were computed 

for the four Regularity and Attention conditions.  

Statistical evaluation of mean amplitudes was done independently for the average across 

pattern position two to six and the first pattern presentation per sequence. We used a three-way 

repeated-measures ANOVA with the factors Repetition Type (RefRN, RN), Regularity (regular, 

jittered) and Attention (attention, no-attention), respectively. A significant main effect of Repetition 

Type would indicate a substantial memory effect, and any significant interaction with Repetition 

Type a substantial modulation of the memory effect by the respective factor. Where applicable, a 

correction for non-sphericity was used as described above, and we again computed both frequentist 

and Bayesian tests. 

Time-frequency analysis 

For the time-frequency analysis, we extracted epochs that ranged from -200 ms to 800 ms 

relative to within-sequence pattern repetition onsets, i.e., the onsets of the 200-ms pattern at 

position two to six. Epochs were de-meaned and any epoch with a peak-to-peak difference higher 

than 150 µV was excluded from the analysis. We applied a convolution with Morlet wavelets to 

extract phase information from single epochs, with 1500 ms of zero-padding at both ends of the 

epoch. Parameters of the Morlet wavelet were adjusted linearly from three to seven wavelet cycles 

over a frequency range from 1 to 10 Hz in steps of 0.2 Hz. From the results of the wavelet 

convolution, we computed ITPC (between individual epochs) at electrode Fz for each participant at 

each frequency and sampling point, separately for RefRN and RN in each Regularity and Attention 

condition. For statistical analysis, a frequency window of interest ranging from 3 to 6 Hz was chosen 

based on previous literature (e.g., Luo et al., 2013) and visual inspection of the spectrograms of the 

current data. Note that this low-frequency range does on purpose not include 2 Hz as the 
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stimulation frequency in the regular condition, in order to avoid a bias between Regularity 

conditions that is driven by direct entrainment to the stimulus rhythm in regular sequences. 

Analogous to the ERP analysis, the time window of interest was defined using a cluster-based 

permutation test performed on RefRN and RN waveforms collapsed across the four Regularity and 

Attention conditions between 0 and 500 ms relative to pattern onset (see above for detailed 

parameters of the cluster-based permutation test). Based on the results of the test, we identified a 

relevant time window of RefRN-minus-RN differences that ranged from 0 to 190 ms relative to 

pattern onset.  

From this time window, we extracted mean ITPC in the frequency range from 3 to 6 Hz for 

RefRN and RN in each of the four Regularity and Attention conditions. ITPC coefficients were 

statistically compared by means of a three-way repeated-measures ANOVA with the factors 

Repetition Type (RefRN, RN), Regularity (regular, jittered) and Attention (attention, no-attention). 

Where applicable, a correction for non-sphericity was used as described above, and we again 

computed both frequentist and Bayesian tests. 

 

Results 

Behavioural data 

Visual distractor task 

 Participants detected on average 74.3 ± 11.8 % (M ± SD) of the visual 2-back targets. False 

alarms occurred in 2.4 ± 2.8 % of the non-target trials. The mean reaction times in the trials in which 

participants correctly detected n-back targets was 608 ± 66 ms. These data suggest that the task was 

challenging, and performance was rather far from perfect, but participants, on average, performed 

well above chance. Thus, we conclude that they complied with the instruction to focus on the visual 

task and the task successfully directed their attention towards the visual (and away from the 

auditory) stimulation.  
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Repetition detection task 

  Repetition detection performance is shown in Figure 2. On average, listeners detected 

pattern repetitions above chance in both RN and RefRN sequences across regular and jittered blocks, 

with no significant overall performance difference between regular and jittered repetitions (main 

effect of Regularity: F(1, 28) = 3.22, p = .084, partial η2 = .10, BF10 = 2.15). Importantly, we found a 

significant memory effect across regularity conditions (main effect of Repetition Type: F(1, 28) = 

29.64, p < .001, partial η2 = .51, BF10 = 224.67). Thus, recurrence of reference patterns across 

multiple trials led to an increase in repetition detection performance (i.e., a higher sensitivity index 

d’) for RefRN sequences relative to RN sequences, which contained patterns that only occurred in 

exactly one trial. This memory-related performance increase was not substantially modulated by the 

temporal regularity of pattern repetitions within a sequence (Repetition Type x Regularity 

interaction: F(1, 28) = 1.99, p = .169, partial η2 = .07, BF10 = 0.46).  

Active memory test  

 Performance in the active memory test did not significantly exceed 50 % in either Regularity 

or Attention condition (all p’s > .196, all BF10’s < 0.45). Thus, participants were unable to recognise 

previously learnt reference patterns above chance. Moreover, recognition performance was 

unaffected by manipulations of the temporal regularity of pattern repetitions during learning and 

listeners’ attention towards the pattern repetitions (both main effects and Regularity x Attention 

interaction: all p’s > .134, all BF10’s < 0.82).  

EEG data 

Event-related response to the full sequence 

 As shown in Figure 3, a negative sustained potential emerged in all conditions after the 

onset of the first pattern. Note that the absence of a typical sound onset response in the average 

ERP is due to the variable interval between sound onset and first pattern onset (50 to 500 ms) across 

trials. Across conditions, amplitudes of the sustained potential were larger in the attention 

compared to the no-attention session, in line with earlier reports of increased sustained potential 
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amplitudes in response to attended compared to ignored auditory stimuli (Picton et al., 1978). On 

top of the sustained response, the isochronous onsets of the repeating pattern (i.e., every 500 ms) in 

RN and RefRN sequences were reflected in a periodic amplitude modulation in regular blocks 

independent of the listeners’ attention. In jittered blocks, any response time-locked to the onset of 

the repeating pattern is levelled out on average across trials due to phase shifts between sequences. 

A difference between RefRN and RN sequences, i.e., a memory effect through recurrence of the 

reference pattern across trials, is visible in the attention session (across both regular and jittered 

blocks), most pronounced between around 250 and 1500 ms relative to the first pattern onset.  No 

such memory-related amplitude difference between RefRN and RN sequences is observable in the 

no-attention session. 

Event-related responses to pattern repetitions at position 2-6 

 As shown in Figure 4A, repetitions of a certain 200-ms pattern in RN and RefRN sequences 

elicited a pattern-related response that was time-locked to the onset of the repeating pattern at 

position two to six within the sequence (i.e., the first to the fifth pattern repetition). In all Regularity 

and Attention conditions, the pattern-related response was characterised by a prominent negativity 

between around 150 and 400 ms, with a peak between 250 and 300 ms, relative to pattern onset, 

preceded by a weaker positivity within the first 150 ms after pattern onset. No such characteristic 

modulation of the ERP was observed for N sequences, suggesting that the response is in fact related 

to the repetition of a specific pattern and not (only) to the disruption of the local correlative 

structure of the acoustic sequence. Especially in the attention session, the negativity tended to have 

a narrower peak shape and peak amplitudes of the negativity tended to be higher for RefRN 

compared to RN sequences, resulting in a somewhat steeper slope.  

Pattern-related ERP response 

 In the previously identified time window of interest between 140 and 220 ms after pattern 

onset, we found a significant difference in amplitude between RefRN and RN sequences (main effect 

of Repetition Type: F(1, 28) = 15.80, p < .001, partial η2 = .36, BF10 = 199.01). Amplitudes during this 
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time window in the slope between positive and negative peak were less negative for RefRN 

compared to RN sequences, likely related to the narrower peak shape. As illustrated in Figure 4B, the 

memory effect consistently pointed to this direction and exhibited a fronto-central topography 

across all four Regularity and Attention conditions. The ANOVA results suggested that the memory 

effect was not substantially modulated by Regularity (Repetition Type x Regularity interaction: F(1, 

28) = 0.04, p = .848, partial η2 < .01, BF10 = 0.22), Attention (Repetition Type x Attention interaction: 

F(1, 28) = 1.22, p = .279, partial η2 = .04, BF10 = 0.32) or an interaction between both factors 

(Repetition Type x Regularity x Attention interaction: F(1, 28) = 0.20, p = .656, partial η2 = .01, BF10 = 

0.23). Beyond the memory effect of interest, amplitudes were overall larger in the attention 

compared to the no-attention session (main effect of Attention: F(1, 28) = 6.44, p = .017, partial η2 = 

.19, BF10 = 112.62), but not significantly influenced by Regularity (main effect of Regularity: F(1, 28) = 

1.92, p = .177, partial η2 = .06, BF10 = 0.33; Regularity x Attention interaction: F(1, 28) = 0.25, p = 

.623, partial η2 = .01, BF10 = 0.23).  

 ITPC 

 As depicted in Figure 5, ITPC was overall highest at low frequencies around 2 Hz within a 

time range around pattern onset. Crucially, we found differences in ITPC between RefRN and RN 

sequences in a frequency window beyond the stimulation frequency (i.e., 2 Hz), covering low 

frequencies between 3 and 6 Hz, which can be attributed to learning of reference patterns.  

 In the time window of interest ranging from 0 to 190 ms relative to pattern onset, ITPC was 

stronger in RefRN compared to RN sequences (main effect of Repetition Type: F(1, 28) = 11.52, p = 

.002, partial η2 = .29, BF10 = 824.96). This memory effect might have been influenced by Attention, 

such that it was stronger in the attention than in the no-attention session, although Bayesian 

evidence for a modulation by Attention was inconclusive (Repetition Type x Attention interaction: 

F(1, 28) = 5.30, p = .029, partial η2 = .16, BF10 = 0.93. In contrast, Regularity did not substantially 

modulate the memory effect (Repetition Type x Regularity interaction: F(1, 28) = 0.06, p = .801, 

partial η2 < .01, BF10 = 0.40; Repetition Type x Regularity x Attention interaction: F(1, 28) = 1.33, p = 
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.259, partial η2 = .05, BF10 = 0.17). Beyond the memory effect, phase coherence was overall 

increased in the attention compared to the no-attention session (main effect of Attention: F(1, 28) = 

21.90, p < .001, partial η2 = .44, BF10 = 3.79*105). Moreover, ITPC was stronger in jittered than in 

regular blocks (main effect of Regularity: F(1, 28) = 18.13, p < .001, partial η2 = .39, BF10 = 42.95), 

especially so in the attention session (Regularity x Attention interaction: F(1, 28) = 11.47, p = .002, 

partial η2 = .29, BF10 = 27.75). This incidental finding might be related to the structure of the jittered 

sequences that (with maximal and minimal intervals between pattern onsets of 750 and 250 ms, 

respectively) could activate a broader range of frequencies (1.33 to 4 Hz), occasionally (by chance) in 

a coherent manner across several trials. Thus, other than for regular sequences, the frequency 

window of interest for the ITPC analysis (spanning 3 to 6 Hz) partly overlaps with possible local 

stimulation frequencies in jittered sequences.  

Event-related response to the first pattern presentation at position 1 

 At the first pattern position within the sequence, pattern onset was followed by a negative 

deflection that emerged around 100 ms after pattern onset in all conditions (see Figure 6A). The 

negative shift in potential across conditions is due to the first pattern presentation falling into an 

early phase of the sequence during which the sustained response is building up before reaching its 

sustained phase. Critically, we found condition differences between RefRN and RN on top of this 

overall negative shift even before any within-sequence pattern repetition, thus the effect likely 

reflects pattern recognition based on across-trial memories.  

In the time window of interest between 260 and 500 ms after pattern onset, we found a 

significant amplitude difference between RefRN and RN sequences (main effect of Repetition Type: 

F(1, 28) = 13.27, p = .001, partial η2 = .32, BF10 = 81.00). This memory effect was substantially 

modulated by Attention (Repetition Type x Attention interaction: F(1, 28) = 16.36, p < .001, partial η2 

= .37, BF10 = 34.29). Specifically, only in the attention session amplitudes of the negative potential 

were larger for RefRN compared to RN sequences, and this effect was again fronto-centrally 

distributed (as illustrated in Figure 6B). Beyond that, the memory effect was not further modulated 
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by Regularity (Repetition Type x Regularity interaction: F(1, 28) = 0.35, p = .560, partial η2 = .01, BF10 

= 0.21; Repetition Type x Regularity x Attention interaction: F(1, 28) = 0.15, p = .703, partial η2 = .01, 

BF10 = 0.25). Again, amplitudes were overall larger in the attention compared to the no-attention 

session (main effect of Attention: F(1, 28) = 37.86, p < .001, partial η2 = .57, BF10 = 1.57*1014), but not 

significantly influenced by Regularity (main effect of Regularity: F(1, 28) = 2.64, p = .115, partial η2 = 

.09, BF10 = 0.30; Regularity x Attention interaction: F(1, 28) = 0.21, p = .653, partial η2 = .01, BF10 = 

0.21). 

 

Discussion 

 The aim of the present EEG study was to test whether and how temporal regularity of 

pattern repetitions and listeners’ attention modulate perceptual learning of random acoustic 

patterns. To this end, we presented participants with correlated noise sequences that contained 

either temporally regular or jittered repetitions of a certain pattern (manipulation of temporal 

regularity) while they either performed an auditory repetition detection task or a visual distractor 

task (manipulation of listeners’ attention towards or away from the pattern repetitions).  

We found evidence for the implicit formation of robust memory representations through 

repeated exposure, reflected in ERP amplitude and behavioural performance differences between 

reference patterns that recurred across multiple trials and other patterns that were presented in just 

one trial. Specifically, behavioural sensitivity to pattern repetitions within an auditory sequence 

increased for the learnt reference patterns compared to other patterns, in line with previous 

findings with the same or similar types of random acoustic patterns (Agus et al., 2010; Agus & 

Pressnitzer, 2013, 2021; Bianco et al., 2020; Ringer et al., 2022a; Song & Luo, 2017; Viswanathan et 

al., 2016). At the electrophysiological level, a negative potential emerged within the first 500 ms 

relative to the onset of the first pattern presentation and remained sustained throughout the 

sequence. On top of this sustained potential, pattern-related responses to pattern repetition onsets 

within a sequence were characterised by a prominent negative deflection between 150 ms and 400 
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ms (relative to pattern onset), preceded by a weaker positivity. Overall, this combined pattern of 

sustained potential and pattern-related ERPs, both with a fronto-central distribution, is in line with 

earlier reports of EEG responses to pattern repetitions embedded in continuous acoustic sequences 

(Andrillon et al., 2015, 2017; Barascud et al., 2016; Berti et al., 2000; Herrmann et al., 2021; 

Herrmann & Johnsrude, 2018; Hodapp & Grimm, 2021; Kaernbach et al., 1998; Ringer et al., 2022b). 

Critically, amplitudes of the pattern-related ERPs and ITPC differed between reference patterns 

(RefRN) and other patterns (RN): At pattern position two to six within the sequence, ERP amplitudes 

were less negative between 140 and 220 ms and ITPC was increased within the first 190 ms relative 

to pattern repetition onset in RefRN compared to RN sequences. These two measures are closely 

linked and together suggest that memory representations formed through previous exposure to 

specific reference patterns enhance phase alignment of neural responses to pattern repetitions, 

which on average across trials leads to respective ERP differences. This pattern of results replicates 

and brings together previous findings from studies that reported different neural signatures of 

memory formation for random acoustic patterns: The strengthened phase alignment of pattern-

related responses for implicitly memorised patterns is reflected in stronger ITPC (Andrillon et al., 

2015; Luo et al., 2013) and a narrower, but larger negativity in the ERP, in turn resulting in decreased 

amplitudes during the slope (Hodapp & Grimm, 2021) and increased amplitudes at the peak 

(Andrillon et al., 2015; Andrillon et al., 2017). Strikingly, we also found a significant memory-related 

difference in the event-related potential already before any within-sequence pattern repetition: The 

negative amplitude shift was larger for RefRN compared to RN sequences between 260 and 500 ms 

relative to the first pattern presentation per sequence.  

 While repeated exposure to the reference pattern across multiple trials increased 

behavioural repetition detection performance and modified pattern-related ERP amplitudes, 

memory formation was not reflected in above-chance behavioural recognition of learnt patterns, 

unlike in a previous study with the same type of stimulus material (Ringer et al., 2022a). Thus, albeit 

the implicitly acquired memory representations for the reference patterns improved perceptual 
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sensitivity, they could not be actively accessed during the subsequent unexpected memory test 

(regardless of the manipulations of temporal regularity and listeners’ attention during learning). This 

discrepancy between more direct and more indirect correlates of memory formation may relate to 

the fact that active selection of the recognised pattern during the memory test requires more 

cognitive effort than repetition detection, which rather takes place on a perceptual level. There are 

several differences in the stimulus design that might explain why above-chance recognition of learnt 

reference patterns was found in the previous (Ringer et al., 2022a), but not in the current study: In 

the current study, we presented shorter reference patterns (200 ms in the present vs. 500 ms in the 

previous study), which decreased the probability that a pattern by chance contained a short 

characteristic spectral feature that made it easier to memorise. The patterns occurred embedded in 

a continuous sequence during learning and were presented as short sounds in isolation in the 

subsequent memory test, whereas there was no such (strong) difference in presentation format 

between learning and recall in the previous study. Moreover, the number of to-be-learnt reference 

pattern was larger (10 vs. 3) and the retention interval between implicit learning of a pattern and 

active recall during the memory test was longer in the current study (up to an hour vs. several 

minutes). Taken together, all these aspects increased the difficulty of active recognition of previously 

learnt reference patterns in the unexpected memory test and might have rendered above-chance 

recognition performance impossible.  

Substantial pattern learning in both regular and jittered sequences 

 We found that the memory effect was not significantly modulated by the temporal 

regularity of pattern repetitions. Listeners were able to form memory representations of recurring 

reference patterns regardless of whether they occurred in regular or jittered auditory sequences. 

Learning was reflected in a substantial increase of behavioural repetition detection performance and 

a significant modulation of pattern-related ERPs for both the first and the remaining pattern 

presentations per sequence (at least in the attention session). No significant difference in magnitude 

of the memory effect between regularity conditions was found for either of these behavioural and 
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electrophysiological markers. This appears inconsistent with the hypothesis that temporal regularity 

improves perception (Jones, 1976, 2019; Henry & Herrmann, 2014; Large & Jones, 1999), which in 

turn might facilitate longer-term memory formation, and with a previous study that reported a 

reduction of the behavioural memory effect for reference patterns in temporally jittered (compared 

to isochronous) sequences (Dauer et al., 2022). Conversely, Hodapp & Grimm (2021) found no 

amplitude modulation of the pattern-related negativity by temporal regularity, just like the current 

study. 

Discrepancies between studies with regard to the effect of temporal regularity on pattern 

learning might stem from differences in the stimulus material. For instance, due to the correlative 

structure inherent in correlated compared to white noise, characteristic spectral features (which the 

randomly generated stimulus contains by chance) are more likely to perceptually “pop out” and 

facilitate repetition detection. It is plausible to assume that temporal regularity does not enhance 

perception and memory to the same degree under all circumstances, and that listeners might 

particularly benefit from rhythmic, predictable stimulus presentation in challenging situations, such 

as when they are asked to detect repetitions in acoustic material with minimal spectro-temporal 

structure (e.g., white noise). In contrast, when the task is easier and repetitions are more salient 

(even in jittered sequences), the facilitation by temporal regularity might become insignificant, such 

as in the current study.  

 More generally, there are several possible explanations why temporally regular (compared 

to jittered) stimulus presentation does not per se improve perceptual pattern learning, which might 

also account for the absence of a significant modulation of the memory effect by temporal regularity 

in the current data. One explanation is the extensive experience with temporal jitter in natural 

sounds during everyday listening situations. Many natural sounds, including environmental sounds, 

speech, and music, contain temporal regularities at characteristic frequencies, which listeners 

exploit to sharpen perception (Ding et al., 2017; Doelling & Poeppel, 2015; Giraud & Poeppel, 2012; 

Poeppel & Assaneo, 2020). However, most of these regularities are not strictly isochronous, but only 
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quasi-periodic (Obleser et al., 2017; Rimmele et al., 2018). Although the brain is naturally tuned to 

periodic rhythms at different time scales, it exhibits flexibility towards some temporal variability, 

e.g., cortical tracking was observed also for stimulus rhythms that are not strictly periodic (Breska & 

Deouell, 2017; Morillon et al., 2016; Obleser et al., 2017; Rimmele et al., 2018). Thus, the human 

auditory system is highly trained in dealing with temporal jitter in the order of up to a few hundreds 

of milliseconds, and the jittered condition in our experiment might actually resemble demands of 

naturalistic listening situations. 

Another possibility is that memory formation in jittered blocks primarily happened in trials in 

which the sequence by chance contained several (adjacent) inter-pattern intervals that were similar 

in length (or some other rhythm of shorter and longer inter-pattern intervals). We tried to avoid 

incidentally (almost-) isochronous sequences in the jittered condition by including the restriction 

that two adjacent inter-pattern intervals must differ in duration by at least 50 ms. However, this 

cannot fully prevent that the variance in inter-pattern interval duration differs between sequences, 

resulting in “more jittered” and “less jittered” sequences. Similarly, some sequences contained more 

shorter inter-pattern intervals (below 300 ms) than others, which, due to less interfering sensory 

input between consecutive pattern presentations, might also facilitate repetition detection and 

memory formation. Previous studies reported successful pattern learning from just two pattern 

presentations per trial (Agus et al., 2010; Agus & Pressnitzer, 2013; Ringer et al., 2022a; Viswanathan 

et al., 2016) and an amelioration of the disadvantageous effect of temporal jitter when some 

sequences with isochronous pattern onsets were included in an experimental block (Dauer et al., 

2022). Thus, in line with the interpretation by Dauer and colleagues (2022), memories of the 

reference patterns might have been formed in trials that were incidentally “less jittered” or 

contained more short inter-pattern intervals and translated to “more jittered” trials. Future studies 

could clarify whether this hypothesis holds true by systematically manipulating the variation in inter-

pattern interval duration.  
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Taken together, we found evidence for a comparable memory effect across temporally 

regular and jittered sequences in the current study, suggesting a flexible learning across different 

degrees of temporal structure. Whether pattern learning relies on the exact same mechanisms in 

regular and jittered sequences remains to be clarified. We cannot exclude that listeners employed 

different strategies in regular and jittered blocks, which still resulted in comparable behavioural 

performance (in the auditory repetition detection task); in fact, the introduction of separate blocks 

with either regular or irregular repetitions in the instruction might have even encouraged them to 

tune their perceptual strategy to the demands of the current block. Moreover, it might be plausible 

that the temporal regularity of pattern repetitions would play a larger role in different 

(experimental) learning contexts (e.g., with different stimulus material, a different task, or an even 

larger amount of jitter). That is, the current findings do not rule out the possibility that – at least 

under certain circumstances – temporal regularity has a significant beneficial impact on memory 

formation for random acoustic patterns. 

Attention to pattern repetitions boosts learning  

 Our data provided evidence that attention to the pattern repetitions improved perceptual 

learning of random acoustic patterns. We found that the memory effect was larger at the first 

pattern position per sequence when participants directed their attention towards the auditory 

stimulation compared to when they performed a visual distractor task. Thus, enhanced perceptual 

representations through an attentional focus on the auditory stimulation supported the formation of 

longer-term memories for initially unfamiliar acoustic patterns. In particular, attention might have 

facilitated access to established memory representations for previously presented patterns upon 

first occurrence with a sequence. 

 It is important to note that, despite the modulation of the memory effect by attention, 

perceptual learning was still possible during inattention. This is in line with previous studies that 

reported a significant memory effect during an auditory distractor task (Andrillon et al., 2015) or 

REM sleep (Andrillon et al., 2017). Clear evidence for a modulation of the memory effect by 
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attention was observed for the first pattern presentation within a sequence in the current data, 

which suggests that listeners’ attentional state specifically affects certain aspects of learning and 

recognition of random acoustic patterns. We suspect that the reduction of the memory effect might 

have resulted from a delayed onset of the effect within the block in the absence of attention, which 

consequently led to a diminished memory effect when averaging over the whole block. To test this 

hypothesis, we conducted a supplementary analysis and compared pattern-related ERP amplitudes 

at the first pattern position per sequence between reference and other patterns separately for an 

early trial group (i.e., when not much learning should have happened yet) and a late trial group (i.e., 

after learning could have happened) within the block (see Supplemental Material). This analysis 

showed a similar increase of the memory effect from the beginning to the end of the block across all 

regularity and attention conditions. These findings support our idea that the difference between 

attention conditions does not arise from a difference in magnitude of the memory effect after 

learning has taken place, but likely from a speed-up of learning through attention to the pattern 

repetitions.  

 The fixed session order (i.e., no-attention first, attention second) can be considered a 

shortcoming of our experimental design. We chose this procedure to avoid that participants were 

aware of the pattern repetitions in the auditory stimulation during the no-attention session after 

performing the repetition detection in the session before. However, one might argue that the 

enlarged memory effect in the attention session cannot only be attributed to the listeners’ 

attentional focus on the auditory pattern repetitions (instead of away from them), but could also 

stem from increased (passive) familiarisation with the stimulus material during the preceding no-

attention session. Nevertheless, we argue that this methodological limitation does not question the 

interpretability of the attention effect: While passive exposure to the stimulus material might have 

improved overall repetition detection, it is unlikely that it explains the item-specific memory effect 

for particular reference patterns, since we used different reference patterns in both sessions and 

previous studies showed striking differences in learning success between blocks (Agus et al., 2010), 
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suggesting no straightforward relationship between experience with the stimulus material and 

memory formation for single specific patterns. 

 Taken together, although inattention does not preclude perceptual learning of random 

acoustic patterns, memory formation appears to benefit from attention to pattern repetitions in the 

auditory stimulation. This finding extends previous research by directly contrasting memory 

formation with and without attention, whereas earlier studies only focussed on either condition in 

isolation. 

Memory effect is most pronounced at the beginning of the sequence  

 We found that the memory effect was most pronounced at the first pattern position early in 

the auditory sequence. This time window is particularly critical for assessing longer-term learning 

because before the first within-sequence pattern repetition any effect should be related to memory 

formation across trials. Only few studies investigated neural correlates of perceptual learning at the 

first pattern presentation per sequence, and only few studies statistically analysed the first and later 

pattern positions separately. Hodapp & Grimm (2021) found no evidence for a memory effect at the 

first position, whereas there was a significant effect at later positions (Hodapp & Grimm, 2021). 

Conversely, Andrillon and colleagues (2015) did report a significant cluster of ERP difference 

between the learnt reference and other patterns already after the first pattern onset (Andrillon et 

al., 2015). Similarly to our current data, visual inspection of EEG responses to the whole sequence 

suggests that the memory effect in pattern-related ERP amplitude tended to decrease at later 

pattern positions throughout the sequence (Andrillon et al., 2015). A plausible explanation for this 

observation is that sequences that contain the learnt reference pattern differ most from sequences 

that contain repetitions of a novel pattern right at the beginning: Only the occurrence of the 

reference pattern allows to anticipate upcoming pattern repetitions (since the reference pattern 

always occurs in sequences that contain repetitions) based on memory representations formed in 

previous trials, while repetitions of a novel pattern can be detected at the earliest at the second 

pattern position. Throughout the remaining sequence, repetitions become salient and 
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distinguishable from sequences without repetitions irrespective of whether the reference or another 

pattern is repeated. Previous findings (e.g., Barascud et al., 2016) suggest that repetitions are 

detected as early as during the second pattern occurrence, which was likely also the case in the 

present study (just the response was delayed via the task instruction for the repetition detection 

task to avoid contamination of the auditory ERPs with motor activity). Furthermore, this early phase 

of the sequence appears to be most susceptible to a processing benefit through attention, which 

might facilitate (implicit) recognition of the reference pattern upon its first occurrence.  

 

Conclusions 

 The current study sought to scrutinise a potential modulation of perceptual learning of 

random acoustic patterns by temporal regularity of pattern repetitions and listeners’ attention. Our 

results support previous findings of implicit memory formation for specific, initially unfamiliar 

acoustic patterns through repeated exposure. Furthermore, we showed that the learning 

mechanism is flexible and allows to successfully build up memory representations across both 

temporally regular and jittered sound sequences. While learning does not necessarily require 

attention to the repetitions in the stimulation, attentional focus benefits, i.e., speeds up, memory 

formation and, in particular, facilitates the access to established memory representations upon first 

occurrence within a sequence. These findings both highlight the flexibility of perceptual learning 

mechanisms across naturally varying auditory environments and provide insights about how features 

of the learning context can boost memory formation.  
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Figure 1. A: Illustration of the acoustic stimulus sequences. B: Experimental design. Participants took 

part in two EEG sessions (in a fixed session order). Different reference patterns were used in both 

sessions. C: Exemplary trial sequence. Trials were presented in a random order, with the only 

restriction that two RefRN trials must not immediately follow each other. 
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Figure 2. Behavioural repetition detection performance in the attention session, measured by the 

sensitivity index d’, separately for RefRN (containing repetitions of the reference pattern that 

reoccurred across trials) and RN sequences (containing repetitions of a pattern that occurred in only 

one trial throughout the experiment) in regular and jittered blocks. Error bars indicate ± 1 standard 

error of means (SEM). 
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Figure 3. ERP response to the full auditory sequence relative to the onset of the first pattern per 

sequence (0 ms) at electrode Fz for N, RN and RefRN sequences in the four Regularity (regular, 

jittered) and Attention (attention, no-attention) conditions. The structure of the stimulus sequences 

is illustrated schematically above the ERP plot, with vertical lines indicating pattern onset and 

blue/orange boxes representing the repeating pattern (in RN and RefRN sequences) within the 

continuous sequence (grey box). Note that the pattern onset times in the jittered condition only 

refer to one exemplary trial and were actually jittered between individual sequences. Shaded areas 

indicate ± 1 SEM. 
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Figure 4. A: Middle panels: Pattern-related response relative to the onset of the repeating pattern at 

position two to six within the sequence (0 ms) at electrode Fz for N, RN and RefRN sequences in the 

four Regularity (regular, jittered) and Attention (attention, no-attention) conditions. Outer panels: 

Mean amplitudes in the time window of interest (140 to 220 ms relative to the first pattern onset; 

marked with dotted boxes) for RefRN and RN sequences. B: Upper row: Difference waveforms 

(RefRN-minus-RN) for the four Regularity and Attention conditions. Lower row: Topographies of the 

RefRN-minus-RN difference in the time window of interest. Right panel: Mean amplitudes of the 

difference waveforms. Shaded areas in the ERP plots and error bars in the bar plots indicate ± 1 SEM. 
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Figure 5. Results of the phase coherence analysis at electrode Fz for the four Regularity (regular, 

jittered) and Attention (attention, no-attention) conditions. For each condition: Left side, upper 

panels: Inter-trial phase coherence (ITPC) over frequencies and time relative to pattern onset (0 ms) 

for RefRN and RN sequences. Left side, lower panel: Mean ITPC extracted from the time-frequency 

window of interest (3 to 6 Hz, 0 to 190 ms relative to pattern onset; marked with dotted boxes) for 

RefRN and RN sequences. Right side: RefRN-minus-RN differences in ITPC over frequencies and time. 

Error bars in the bar plots indicate ± 1 SEM. 
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Figure 6. A: Middle panels: Pattern-related response relative to pattern onset at the first pattern 

position within the sequence (0 ms) at electrode Fz for N, RN and RefRN sequences in the four 

Regularity (regular, jittered) and Attention (attention, no-attention) conditions. Outer panels: Mean 

amplitudes in the time window of interest (260 to 500 ms relative to the first pattern onset; marked 

with dotted boxes) for RefRN and RN sequences. B: Upper row: Difference waveforms (RefRN-minus-

RN) for the four Regularity and Attention conditions. Lower row: Topographies of the RefRN-minus-

RN difference in the time window of interest. Right panel: Mean amplitudes of the difference 

waveforms. Shaded areas in the ERP plots and error bars in the bar plots indicate ± 1 SEM. 
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