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Abstract: High-dimensional/high-fidelity nonlinear dynamical systems ap-
pear naturally when the goal is to accurately model real-world phenomena.
Many physical properties are thereby encoded in the internal differential struc-
ture of these resulting large-scale nonlinear systems. The high-dimensionality
of the dynamics causes computational bottlenecks, especially when these large-
scale systems need to be simulated for a variety of situations such as different
forcing terms. This motivates model reduction where the goal is to replace
the full-order dynamics with accurate reduced-order surrogates. Interpolation-
based model reduction has been proven to be an effective tool for the construc-
tion of cheap-to-evaluate surrogate models that preserve the internal structure
in the case of weak nonlinearities. In this paper, we consider the construction of
multivariate interpolants in frequency domain for structured quadratic-bilinear
systems. We propose definitions for structured variants of the symmetric sub-
system and generalized transfer functions of quadratic-bilinear systems and
provide conditions for structure-preserving interpolation by projection. The
theoretical results are illustrated using two numerical examples including the
simulation of molecular dynamics in crystal structures.

Keywords: model order reduction, quadratic-bilinear systems, structure-pre-
serving approximation, multivariate interpolation

Mathematics subject classification: 30E05, 34K17, 65D05, 93C10, 93A15

Novelty statement: We introduce new formulas for structured subsys-
tem transfer functions to describe quadratic-bilinear systems with internal
differential structures in the frequency domain. We formulate conditions on
projection spaces to enforce structure-preserving interpolation for such trans-
fer functions allowing for structure-preserving model reduction of quadratic-
bilinear systems.
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Figure 1: Schematic illustration of the Toda lattice with ` particles [35]. Atoms in a one-
dimensional crystal structure are represented as point masses and connected by
exponential springs modeling the forces between the particles.

1 Introduction

The accurate modeling of real-world phenomena and processes yields dynamical systems
typically including nonlinearities. Additionally, these systems often inherit some internal
structure from the underlying physical nature of the considered problem. An example
for such internal structures is the description of internal system states by second-order
time derivatives as it is usually the case in the modeling of mechanical structures. Such
nonlinear mechanical systems take the form

M̃ q̈(t) = f
(
q(t), q̇(t), u(t)

)
,

y(t) = Cpq(t) + Cvq̇(t),
(1)

with internal states q(t) ∈ R`, describing the system behavior, the external controls u(t) ∈
Rm that allow the user to change the internal behavior, and the quantities of interest
y(t) ∈ Rp that can be observed from the outside, e.g., by sensor measurements. Thereby,
the first equation in (1) is a second-order differential equation with mass (descriptor)

matrix M̃ ∈ R`×` and the nonlinear time evolution function f : R` × R` × Rm → R`. The
second, algebraic equation describes the quantities of interest as linear combination of the
states and their first-order derivatives. Throughout this paper, we assume for any system
to have homogeneous initial conditions.

The Toda lattice is an example of a nonlinear mechanical system of the form (1). It
is used in solid state mechanics to model the movement of particles in a one-dimensional
crystal structure [33]; see Figure 1. The nonlinear time evolution function contains expo-
nential terms that describe the forces between the different particles:

f
(
q(t), q̇(t), u(t)

)
= −D̃q̇(t)−


ek1(q1(t)−q2(t)) − 1

ek2(q2(t)−q3(t)) − ek1(q1(t)−q2(t))
...

ek`q`(t) − ek`−1(q`−1(t)−q`(t))

 , (2)

with the positive semidefinite diagonal damping matrix D̃ ∈ R`×` and the positive stiffness
coefficients k1, . . . , k`. See [35, Sec. 1.3.3] for the derivation of the differential model from
the underlying Hamiltonian.

In many applications, in particular those involving discretizations of partial differential
equations, the number of differential equations ` in (1), describing the internal system
behavior, is large and increases further with the demand for more accuracy. However,
an increasing amount of differential equations also leads to an increasing demand for
computational resources such as time and memory for simulations of the models or their
use in optimization. A remedy to this problem is model order reduction, which aims
for the computation of cheap-to-evaluate surrogate models described by significantly less
differential equations, r � `, which approximate the input-to-output behavior of the
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original system as
‖y − ŷ‖ ≤ τ · ‖u‖,

in some suitable norms for the output of the reduced model ŷ and all admissible inputs u.
An established approach for model reduction of general (structured) nonlinear systems

such as (1) is proper orthogonal decomposition (POD) [20,23,37], in which time simulations
are used to extract information about the system dynamics for the construction of a basis
matrix to project the system states. Other approaches aim for the extension of balancing-
related model reduction to nonlinear systems using Gramians defined via time simulations
as in the empirical Gramian method [19,24,25] or by new energy measures [21,32] to con-
struct suitable projection matrices. Nevertheless, a problem arising in the general system
case is the approximation of the nonlinear time evolution function f in (1) that circum-
vents the computationally expensive lifting and truncation of the low-dimensional state in
every time step. A solution to that are hyperreduction techniques such as the (discrete)
empirical interpolation method ((D)EIM) [4, 12, 13, 27], which computes a selection oper-
ator to restrict the evaluation of f to its rows most contributing. This introduces another
layer of approximations and needs explicit access to the implementation of the original
time evolution function f .

An alternative to hyperreduction that gained significant popularity in model reduction
in the last decade is quadratic-bilinearization [18]; in optimization also known as Mc-
Cormick relaxation [26]: For f smooth enough, general nonlinear systems can be rewritten
into quadratic-bilinear form by introducing auxiliary variables and differential-algebraic
equations, which then can be reduced directly using the classical projection-based model
reduction approach. In the case of (1), the corresponding quadratic-bilinear system retains
the internal mechanical structure as

0 = Mq̈(t) +Dq̇(t) +Kq(t)

+Hvv

(
q̇(t)⊗ q̇(t)

)
+Hvp

(
q̇(t)⊗ q(t)

)
+Hpv

(
q(t)⊗ q̇(t)

)
+Hpp

(
q(t)⊗ q(t)

)
−

m∑
j=1

Nv,j q̇(t)uj(t)−
m∑
j=1

Np,jq(t)uj(t)−Buu(t),

y(t) = Cpq(t) + Cvq̇(t),

(3)

where M,D,K,Nv,j , Np,j ∈ Rn×n, for j = 1, . . . ,m, Hvv, Hvp, Hpv, Hpp ∈ Rn×n2
, Bu ∈

Rn×m, Cp, Cv ∈ Rp×n, and ⊗ denotes the Kronecker product. Due to the introduction of
auxiliary variables, we have that n ≥ `, which appears counter-intuitive to the actual task
of reducing the number of internal system states in model reduction. However, the new
nonlinearity structure of (3) allows to apply well-established model reduction techniques
without the necessity of the hyperreduction step for the nonlinearity. The Toda lattice
model (Figure 1) can also be rewritten into (3). The process of quadratic-bilinearization
and the derivation of several structured quadratic-bilinear formulations for the Toda lattice
model are shown in [35, Sec. 6.2]. Furthermore, we refer the reader to the numerical
experiments in Section 5.3 for more details.

So far, the literature on the model reduction of quadratic-bilinear systems mainly con-
sidered the case of unstructured, first-order systems of the form

Eẋ(t) = Ax(t) +H
(
x(t)⊗ x(t)

)
+

m∑
j=1

Nx(t)uj(t) +Bu(t),

y(t) = Cx(t),

(4)

Preprint. 2023-04-27



P. Benner, S. Gugercin, S. W. R. Werner: Structured quadratic-bilinear interpolation 4

with E,A,Nj ∈ Rn×n, for j = 1, . . . ,m, H ∈ Rn×n2
, B ∈ Rn×m and C ∈ Rp×n. Model re-

duction methods developed for (4) among others include the interpolation of multivariate
subsystem transfer functions [1,2,6,18], Volterra series interpolation [2,9], balanced trun-
cation [7], learning models from frequency domain data via the Loewner framework [15] or
learning models from time domain data by operator inference [28, 29]. The reformulation
of general nonlinear systems into quadratic-bilinear form (4) has also been proven to be
an effective strategy for classical nonlinear model reduction methods such as POD [22].

In this paper, we extend the idea of quadratic-bilinear subsystem interpolation to sys-
tems with additional internal differential structures such as in the mechanical case (3).
We propose extensions for the definitions of the first three symmetric subsystem trans-
fer functions and the first three generalized transfer functions to the structured system
case and then present subspace conditions for structure-preserving interpolation of these
transfer functions. The effectiveness of resulting model reduction methods based on this
interpolation theory is illustrated on two different structured examples including the Toda
lattice model above. Parts of the theoretical results presented here were derived in the
course of writing the dissertation of the corresponding author [35].

The rest of the paper is organized as follows: In Section 2, we recap the ideas of Volterra
series expansions and unstructured quadratic-bilinear systems in the frequency domain.
We present the definitions of structured transfer functions of quadratic-bilinear systems
in Section 3 and the results on structure-preserving interpolation in Section 4. We employ
the interpolation results for model reduction of two structured numerical examples in
Section 5. The paper is concluded in Section 6.

2 Mathematical preliminaries

In this section, we recap the concept of Volterra series for quadratic-bilinear systems and
two resulting transfer function formulations.

2.1 Volterra series expansions

The Volterra series expansion allows to describe the solution of nonlinear dynamical sys-
tems as a series of solutions of coupled linear systems [31]. A common approach to derive
the Volterra series expansion is by variational analysis [18]. Let a scaled input signal αu(t),
with α > 0, be given for the quadratic-bilinear system (4) and assume the system state to
have an analytic representation of the form

x(t) =

∞∑
k=1

αkxk(t), (5)

with a sequence of states xk(t). Inserting (5) into (4) and extracting the terms corre-
sponding to the same power of the coefficient α yields the states xk(t) to be described
by cascaded subsystems, which are linear in their respective unknown state xk(t). For
example, the first three resulting linear subsystems for (5) are given by

Eẋ1(t) = Ax1(t) +Bu(t),

Eẋ2(t) = Ax2(t) +H
(
x1(t)⊗ x1(t)

)
+

m∑
j=1

Njx1(t)uj(t),

Eẋ3(t) = Ax3(t) +H
(
x1(t)⊗ x2(t) + x2(t)⊗ x1(t)

)
+

m∑
j=1

Njx2(t)uj(t).

(6)
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Applying the variation-of-constants formula to the subsystems in (6) allows the description
of the input-to-output behavior of (4) via its Volterra series expansion:

y(t) =

∞∑
k=1

t∫
0

t1∫
0

· · ·
tk−1∫
0

gk(t1, . . . , tk)
(
u(t− t1)⊗ · · · ⊗ u(t− tk)

)
d tk · · · d t1, (7)

where gk(t1, . . . , tk) are the Volterra kernels of the corresponding representation. The
kernels used in (7) are of the symmetric type [18, 31]. Applying the multivariate Laplace
transformation [31] to (7) results in an equivalent description of the quadratic-bilinear
system (4) in the frequency domain by multivariate transfer functions.

2.2 Subsystem transfer functions of quadratic-bilinear systems

In this work, we restrict ourselves to the presentation of the transfer functions corre-
sponding to the first three coupled linear subsystems for brevity and practical relevance.
General formulas for arbitrarily high levels of multivariate transfer functions for (4) have
been developed in [35, Sec. 2.3.2].

2.2.1 Symmetric subsystem transfer functions

The symmetric subsystem transfer functions are based on the symmetric Volterra kernels
from [31]; cf. (7). Historically, this is the first transfer function type that has been inves-
tigated for the model reduction of (4) in [18]. Here, the term “symmetric” refers to the
fact that the transfer function is invariant with respect to the order of its arguments.

The first symmetric subsystem transfer function corresponds to the linear part of (4)
as it can be seen in (6) such that

Gsym,1(s1) = Cgsym,1(s1) = C(s1E −A)−1B, (8)

with s1 ∈ C. Thereby, the term gsym,1(s1) ∈ Cn×m is used in the following for notational
convenience and denotes the input-to-state transition of the first subsystem. The sec-
ond symmetric subsystem transfer function depends on two complex frequency arguments
s1, s2 ∈ C and is given by

Gsym,2(s1, s2) = Cgsym,2(s1, s2), (9)

where the function describing the input-to-state transition on the right-hand side of (9)
is given by

gsym,2(s1, s2) =
1

2

(
(s1 + s2)E −A

)−1
×
(
H
(
gsym,1(s1)⊗ gsym,1(s2) + gsym,1(s2)⊗ gsym,1(s1)

)
+N

(
Im ⊗

(
gsym,1(s1) + gsym,1(s2)

)))
,

with gsym,1 from (8), Im denoting the m-dimensional identity matrix and the column
concatenation of the bilinear terms as

N =
[
N1 N2 . . . Nm

]
. (10)

Last, the third symmetric subsystem transfer function is defined similarly to (9) by

Gsym,3(s1, s2, s3) = Cgsym,3(s1, s2, s3), (11)
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with s1, s2, s3 ∈ C and the input-to-state transition given via

gsym,3(s1, s2, s3) =
1

6

(
(s1 + s2 + s3)E −A

)−1
×
(
H
(
gsym,1(s1)⊗ gsym,2(s2, s3) + gsym,1(s2)⊗ gsym,2(s1, s3)

+ gsym,1(s3)⊗ gsym,2(s1, s2) + gsym,2(s1, s2)⊗ gsym,1(s3)
+ gsym,2(s1, s3)⊗ gsym,1(s2) + gsym,2(s2, s3)⊗ gsym,1(s1)

)
+N

(
Im ⊗

(
gsym,2(s1, s2) + gsym,2(s1, s3) + gsym,2(s2, s3)

)))
,

using gsym,1 from (8) and gsym,2 from (9).

2.2.2 Generalized transfer functions

In contrast to the symmetric case, the generalized transfer functions do not directly cor-
respond to a Volterra kernel representation. They have been introduced in [15] for the
extension of the data-driven Loewner framework to quadratic-bilinear systems and are in-
spired by the regular transfer functions of bilinear systems, which only consist of products
of the terms of the dynamical system; see, e.g., [3]. The formulation given in [15] for the
single-input/single-output (SISO) system case has been extended to multi-input/multi-
output systems in [35, Sec. 2.3.2].

As in the symmetric case, the first regular transfer function corresponds to the linear
system components, with

G
(B)
gen,1(s1) = C(s1E −A)−1B. (12)

Also the second regular transfer function is uniquely defined resulting from one multipli-
cation with the bilinear terms:

G
(N,(B))
gen,2 (s1, s2) = C(s2E −A)−1N

(
Im ⊗ (s1E −A)−1B

)
. (13)

For the third level however, two different generalized transfer functions exist. The first
one is identical to the third regular bilinear transfer function with

G
(N,(N,(B)))
gen,3 (s1, s2, s3) = C(s3E −A)−1N

(
Im ⊗

(
(s2E −A)−1N

⊗ (Im ⊗ (s1E −A)−1B)
))

;
(14)

see also [10]. The second one involves the quadratic term and is given by

G
(H,(B),(B))
gen,3 (s1, s2, s3) = C(s3E −A)−1H

(
(s2E −A)−1B ⊗ (s1E −A)−1B

)
. (15)

Note that the index levels of the generalized and symmetric transfer functions do not
coincide since the second symmetric subsystem transfer function does contain the quadratic
term in contrast to the second level generalized transfer function, which has only the
bilinear terms.

3 Structured transfer functions of quadratic-bilinear systems

In this section, we extend the transfer function formulations from Section 2 to the set-
ting of structured quadratic-bilinear systems starting with the introductory example of
quadratic-bilinear mechanical systems. Based on this motivation, we introduce the for-
mulas for structured symmetric and generalized transfer functions before we consider the
case of quadratic-bilinear time-delay systems as another example for internal differential
structures at the end of this section.
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3.1 Transfer functions for mechanical systems

In general, any system in second-order form (3) can be rewritten in first-order form (4)

using the concatenated first-order state x(t) =
[
q(t)T q̇(t)T

]T
. The first-order system

matrices are then, for example, given by

E =

[
In 0
0 M

]
, A =

[
0 In
−K −D

]
, B =

[
0
Bu

]
,

C =
[
Cp Cv

]
, Nj =

[
0 0

Np,j Nv,j

]
,

(16)

for j = 1, . . . ,m, with the quadratic term

H = −
[

0 0 . . . 0 0 0 0 . . . 0 0
Hpp,1 Hpv,1 . . . Hpp,n Hpv,n Hvp,1 Hvv,1 . . . Hvp,n Hvv,n

]
. (17)

Thereby, the matrix blocks in (17) are n × n matrix slices of the second-order quadratic
terms in (3), e.g., for Hpp modeling the multiplication of the state with itself we have

Hpp =
[
Hpp,1 Hpp,2 . . . Hpp,n

]
,

with Hpp,j ∈ Rn×n for all j = 1, . . . , n.
Now, we exploit the block structures of the matrices in (16) and (17) to derive the

symmetric and generalized transfer functions of (3). In both transfer function cases, the
first level transfer functions correspond to the linear system case and it can be observed
that for (3) it holds that

Gsym,1(s1) = G
(B)
gen,1(s1) = (Cp + s1Cv)gsym,1(s1)

= (Cp + s1Cv)(s21M + s1D +K)−1Bu,
(18)

where gsym,1(s1) denotes here the input-to-state transition of the second-order state q.
For the next two levels, we concentrate first on the symmetric transfer function case.

Inserting (16) and (17) into (9) yields the second symmetric subsystem transfer function
of (3) to be

Gsym,2(s1, s2) =
(
Cp + (s1 + s2)Cv

)
gsym,2(s1, s2)

=
1

2

(
Cp + (s1 + s2)Cv

)(
(s1 + s2)

2M + (s1 + s2)D +K
)−1

×
(
− (Hpp + s2Hpv + s1Hvp + s1s2Hvv)

(
gsym,1(s1)⊗ gsym,1(s2)

)
− (Hpp + s1Hpv + s2Hvp + s1s2Hvv)

(
gsym,1(s2)⊗ gsym,1(s1)

)
+ (Np + s1Nv)

(
Im ⊗ gsym,1(s1)

)
+ (Np + s2Nv)

(
Im ⊗ gsym,1(s2)

))
,

(19)

where gsym,2 denotes the input-to-state transition of the second subsystem, gsym,1 is the
input-to-state transition from the first subsystem in (18), and the bilinear terms are con-
catenated as

Np =
[
Np,1 . . . Np,m

]
and Nv =

[
Nv,1 . . . Nv,m

]
. (20)

Similarly, inserting the block matrices (16) and (17) into the unstructured third symmet-
ric subsystem transfer function (11) leads to the structured third symmetric subsystem
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transfer function representation for (3). Due to the complexity of the resulting formula, we
will not write it out here explicitly but outline some of its features. The third subsystem
transfer function of (4) has a similar structure to (11) and (19) with linear combinations
of the quadratic and bilinear terms multiplied with the previous input-to-state transition
terms gsym,1 and gsym,2 from (18) and (19). Due to the occurrence of the sum of the fre-
quency arguments in the first term of (19), this translates into the frequency dependence
of the second-order quadratic and bilinear terms such that terms of the forms

−
(
Hpp + s3Hpv + (s1 + s2)Hvp + (s1 + s2)s3Hvv

)(
gsym,2(s1, s2)⊗ gsym,1(s3)

)
and

(
Np + (s1 + s2)Nv

)(
Im ⊗ gsym,2(s1, s2)

) (21)

appear. For more details, we refer the reader to the next section, which contains the
definitions of the transfer function formulas for general structures.

For the generalized transfer functions, one can observe that the second level trans-
fer function resembles the corresponding bilinear regular transfer function, for which the
structured system case has been developed in [10]. The resulting transfer function for (3)
is thereby given as

G
(N,(B))
gen,2 (s1, s2) = (Cp + s2Cv)(s22M + s2D +K)−1(Np + s1Nv)

×
(
Im ⊗ (s21M + s1D +K)−1Bu

)
,

(22)

where the bilinear terms are concatenated as in (20). Similarly, the purely bilinear third
level generalized transfer function of (3) is given by

G
(N,(N,(B)))
gen,3 = (Cp + s3Cv)(s23M + s3D +K)−1(Np + s2Nv)

×
(
Im ⊗ (s22M + s2D +K)−1(Np + s1Nv)

×
(
Im ⊗ (s21M + s1D +K)−1Bu

))
.

(23)

On the other hand, the third level generalized transfer function of (3) involving the
quadratic term can be derived by inserting (16) into (15), which yields

G
(H,(B),(B))
gen,3 (s1, s2, s3) = −(Cp + s3Cv)(s23M + s3D +K)−1

× (Hpp + s1Hpv + s2Hvp + s1s2Hvv)

×
(
(s22M + s2D +K)−1Bu ⊗ (s21M + s1D +K)−1Bu

)
.

(24)

Overall, and similar to the linear and bilinear cases, we can observe the occurrence of the
same terms describing the linear, bilinear or quadratic dynamics in the different transfer
functions by means of the given system matrices and the complex variables s1, s2, s3. This
motivates the definitions for the general structured framework in the upcoming section.

3.2 Structured transfer function formulas for quadratic-bilinear systems

Before deriving structured quadratic-bilinear transfer functions, we briefly recall the ideas
from [5], which considered the structured transfer functions for linear dynamical systems in
which frequency-dependent equations are used for describing the dynamics. First, consider
linear first-order (unstructured) systems with the time domain representation

Eẋ(t)−Ax(t) = Bu(t), y(t) = Cx(t). (25)
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By taking the Laplace transform of (25), the dynamical system in (25) can be equivalently
described in the frequency domain as

(sE −A)X(s) = BU(s), Y (s) = CX(s), (26)

with s ∈ C, where U(s), X(s), Y (s) are the Laplace transforms of the inputs u(t), states
x(t), and outputs y(t), respectively. Now consider a linear dynamical system with a
second-order structure with the time domain representation

Mẍ(t) +Dẋ(t) +Kx(t) = Buu(t), y(t) = Cpx(t) + Cvẋ(t). (27)

As in the unstructured case, taking the Laplace transform of (27) yields the representation
in the frequency domain

(s2M + sD +K)X(s) = BuU(s), Y (s) = (Cp + sCv)X(s). (28)

Observe that in both cases of (26) and (28), the system states in the frequency domain can
be described as solution of frequency-dependent linear systems of equations of the form

K(s)X(s) = B(s)U(s), Y (s) = C(s), (29)

where the matrix-valued functions K : C → Cn×n, B : C → Cn×m and C : C → Cp×m
describe the linear dynamics, and the input and output behavior of the system. In par-
ticular, we recover (26) by setting K(s) = sE − A, B(s) = B, and C(s) = B. Similarly,
we recover (28) by setting K(s) = s2M + sD +K, B(s) = Bu, and C(s) = Cp + sCv. We
refer the reader to [5] for further examples of structured dynamics that fit into the general
framework of (29). Then, for every s ∈ C for which K(s) in (29) is invertible, the transfer
function of the underlying linear dynamical system is given by

G(s) = C(s)K(s)−1B(s). (30)

For the extension to structured bilinear systems in [10], a new frequency-dependent func-
tion N : C→ Cn×nm was introduced, modeling the effect of the bilinear terms, where

N (s) =
[
N1(s) . . . Nm(s)

]
,

with Nj : C→ Cn×n for all j = 1, . . . ,m. In this manuscript, we further extend the struc-
tured transfer function framework to the quadratic-bilinear case, which appears ubiqui-
tously in prominent applications as we briefly discussed in Section 1.

First, we consider the symmetric transfer function case. Inspired by (8), (9), and (11),
from the unstructured first-order case, and (18), (19), and (21), we introduce the following
definition for the structured symmetric subsystem transfer functions.

Definition 1. Given matrix-valued functions of the form C : C → Cp×m, K : C → Cn×n,
B : C → Cn×m, N : C → Cn×nm, H : C × C → Cn×n2

, for which there exists an s ∈ C at
which they can be evaluated and K(s) is invertible. The first three structured symmetric
subsystem transfer functions are defined as

Gsym,1(s1) = C(s1)gsym,1(s1),
Gsym,2(s1, s2) = C(s1 + s2)gsym,2(s1, s2),

Gsym,3(s1, s2, s3) = C(s1 + s2 + s3)gsym,3(s1, s2, s3),
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where the input-to-state transitions are recursively given by

gsym,1(s1) = K(s1)
−1B(s1),

gsym,2(s1, s2) =
1

2
K(s1 + s2)

−1
(
H(s1, s2)

(
gsym,1(s1)⊗ gsym,1(s2)

)
+H(s2, s1)

(
gsym,1(s2)⊗ gsym,1(s1)

)
+N (s1)

(
Im ⊗ gsym,1(s1)

)
+N (s2)

(
Im ⊗ gsym,1(s2)

))
,

gsym,3(s1, s2, s3) =
1

6
K(s1 + s2 + s3)

−1
(
H(s1 + s2, s3)

(
gsym,2(s1, s2)⊗ gsym,1(s3)

)
+H(s1 + s3, s2)

(
gsym,2(s1, s3)⊗ gsym,1(s2)

)
+H(s2 + s3, s1)

(
gsym,2(s2, s3)⊗ gsym,1(s1)

)
+H(s1, s2 + s3)

(
gsym,1(s1)⊗ gsym,2(s2, s3)

)
+H(s2, s1 + s3)

(
gsym,1(s2)⊗ gsym,2(s1, s3)

)
+H(s3, s1 + s2)

(
gsym,1(s3)⊗ gsym,2(s1, s2)

)
+N (s1 + s2)

(
Im ⊗ gsym,2(s1, s2)

)
+N (s1 + s3)

(
Im ⊗ gsym,2(s1, s3)

)
+N (s2 + s3)

(
Im ⊗ gsym,2(s2, s3)

))
.

Similarly, we give a definition for the structured variant of the generalized transfer
functions inspired by the first-order case (12)–(15), and second-order case (18) and (22)–
(24) in the following.

Definition 2. Given matrix-valued functions of the form C : C → Cp×m, K : C → Cn×n,
B : C → Cn×m, N : C → Cn×nm, H : C × C → Cn×n2

, for which there exists an s ∈ C
at which they can be evaluated and K(s) is invertible. The first three levels of structured
generalized transfer functions are defined as

G
(B)
gen,1(s1) = C(s1)K(s1)

−1B(s1),

G
(N,(B))
gen,2 (s1, s2) = C(s2)K(s2)

−1N (s1)
(
Im ⊗K(s1)

−1B(s1)
)
,

G
(N,(N,(B)))
gen,3 (s1, s2, s3) = C(s3)K(s3)

−1N (s2)
(
Im ⊗K(s2)

−1N (s1)

×
(
Im ⊗K(s1)

−1B(s1)
))
,

G
(H,(B),(B))
gen,3 (s1, s2, s3) = C(s3)K(s3)

−1H(s2, s1)
(
K(s2)

−1B(s2)⊗K(s1)
−1B(s1)

)
.

In [8], a simplified variant of the generalized transfer functions (12)–(15) has been ex-
tended to systems with polynomial nonlinearities. Based on the structured definitions
above, these simplified generalized transfer functions have then been extended to the
structured case in [17].

Note that in both Definitions 1 and 2, the new matrix-valued functionH : C×C→ Cn×n2

results from the quadratic terms in the time domain.
Both examples of internal system structures considered so far can be represented in

the new structured transfer function framework. Unstructured first-order systems of the
form (4) are given by

C(s) = C, K(s) = sE −A, B(s) = B, N (s) = N, H(s1, s2) = H,
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where the bilinear terms are concatenated as in (10). For the second-order system of the
form (3), the symmetric and generalized transfer functions given in Section 3.1 can be
recovered from Definitions 1 and 2 using

C(s) = Cp + sCv,

K(s) = s2M + sD +K,

B(s) = Bu,

N (s) = Np + sNv,

H(s1, s2) = −(Hpp + s2Hpv + s1Hvp + s1s2Hvv),

with the bilinear terms concatenated as in (20). For the definition of higher level structured
transfer functions for quadratic-bilinear systems see [35, Sec. 6.3].

3.3 Another example structure: Quadratic-bilinear time-delay systems

Before we consider interpolation of the structured transfer functions in Definitions 1 and 2,
we present another example for internal system structures that are covered by the new
structured transfer function framework. Quadratic-bilinear systems with constant time
delays in the linear dynamic components can be written as

Eẋ(t) =
∑̀
k=1

Akx(t− τk) +H
(
x(t)⊗ x(t)

)
+

m∑
j=1

Njx(t)uj(t) +Bu(t),

y(t) = Cx(t),

(31)

with the matrices Ak ∈ Rn×n describing the effect of state delayed by τk ∈ R≥0, for all
k = 1, . . . , `, and the remaining system matrices as defined in (4). Following the variational
analyses from (6), we observe that the time-delay structure only affects the terms with the
linear dynamics. Therefore, the structured transfer functions for (31) are given by using
the matrix-valued functions

C(s) = C, K(s) = sE −
∑̀
k=1

Ake
−τks, B(s) = B, N (s) = N, H(s1, s2) = H

in Definitions 1 and 2. This is in accordance to the results for bilinear time-delay systems
obtained in [10,16].

4 Structured transfer function interpolation

In this section, we present results on the construction of structured interpolants for the
symmetric or generalized transfer functions from the previous section.

4.1 Structure-preserving model reduction via projection

For the construction of interpolating reduced-order models, we will use the projection ap-
proach in this work. Thereby, two constant basis matrices V,W ∈ Cn×r are constructed,
which allow the computation of the reduced-order quantities via multiplication with the
original system matrices. Given the full-order matrix-valued functions C : C → Cp×n,
K : C → Cn×n, B : C → Cn×m, N : C → Cn×nm, H : C × C → Cn×n2

, that describe a
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structured quadratic-bilinear system in the frequency domain, reduced-order model quan-
tities are computed by

Ĉ(s) = CV, K̂(s) = WHK(s)V,

B̂(s) = WHB(s), N̂ (s) = WHN (s)(Im ⊗ V )

and Ĥ(s1, s2) = WHH(s1, s2)(V ⊗ V ),

(32)

where WH := W
T

denotes the conjugate transpose of the matrix W . The Kronecker
product in the multiplication with the concatenation of the bilinear terms in (32) boils
down to the multiplication of each single bilinear term with the two basis matrices as

N̂ (s) =
[
N̂1(s) . . . N̂m(s)

]
=
[
WHN1(s)V . . . WHNm(s)V

]
.

Moreover, the Kronecker product of the basis matrix V for the reduction of the quadratic
term in (32) can be implemented efficiently without explicitly forming V ⊗ V , using tech-
niques from tensor algebra; see, e.g., [6, 7, 35].

Model reduction by projection preserves internal structures by construction. Any ma-
trix-valued function can be decomposed into frequency-affine form, e.g., in the case of the
term describing the linear dynamics, it can be written as

K(s) =

nK∑
j=1

hj(s)Kj , (33)

with nK ∈ N, some frequency-dependent scalar functions hj : C→ C and constant matrices
Kj ∈ Cn×n, for all j = 1, . . . , nK. The reduced-order matrix-valued function is then given
by

K̂(s) = WHK(s)V =

nK∑
j=1

hj(s)W
HKjV =

nK∑
j=1

hj(s)K̂j , (34)

with the reduced-order constant matrices K̂j ∈ Cr×r, for all j = 1, . . . , nK. The frequency-
dependent scalar functions in (34) are the same as in (33), i.e., the internal structure is
preserved and the reduced-order matrices replace their high-dimensional counterparts from
the original system to describe the reduced-order model.

To illustrate the computation of reduced-order quadratic-bilinear systems via projection,
we consider the two motivational differential structures from the previous section. In the
case of second-order quadratic-bilinear systems (3), reduced-order systems are computed
as

Ĉ(s) = CpV + sCvV, K̂(s) = s2WHMV +WHDV +WHKV,

B̂(s) = WHBu, N̂ (s) = WHNp(Im ⊗ V ) + sWHNv(Im ⊗ V ),

with the reduced quadratic terms given by

Ĥ(s1, s2) = −(WHHpp(V ⊗ V ) + s2W
HHpv(V ⊗ V )

+ s1W
HHvp(V ⊗ V ) + s1s2W

HHvv(V ⊗ V )).

Evaluating the matrix products yields the reduced-order matrices that represent the
reduced-order system in the same structure as the original system (3). Similarly, for
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the quadratic-bilinear time-delay system (31), reduced-order systems are computed via

Ĉ(s) = CV, K̂(s) = sWHEV −
∑̀
k=1

WHAkV e
−τks,

B̂(s) = WHB, N̂ (s) = WHN(Im ⊗ V )

and Ĥ(s1, s2) = WHH(V ⊗ V ).

As in the second-order system case, evaluating the matrix products allows to replace the
original, high-dimensional system matrices in (31) by the reduced ones to describe the
reduced-order system using the same structure.

The essential question of projection-based model order reduction is the construction of
the basis matrices V and W . In the following, conditions are derived to enforce inter-
polation of the original symmetric or generalized transfer functions by the corresponding
transfer functions given via the reduced matrix-valued functions (32).

4.2 Interpolating symmetric transfer functions

In this section, we consider the interpolation of the structured symmetric subsystem trans-
fer functions from Definition 1. The following proposition states some first results for the
general interpolation of the first two symmetric subsystem transfer functions at different
frequency points.

Proposition 1 ([35, Cor. 6.3]). Let G be a quadratic-bilinear system, described by its sym-
metric subsystem transfer functions Gsym,k from Definition 1, and Ĝ the reduced-order
quadratic-bilinear system constructed by (32), with its reduced-order symmetric subsys-
tem transfer functions Ĝsym,k. Also, let σ1, σ2 ∈ C be interpolation points such that the
matrix-valued functions C,K,B,N ,H and K(.)−1 are defined in these points and their sum.
Construct the basis matrix V by

V1,1 = K(σ1)
−1B(σ1),

V1,2 = K(σ2)
−1B(σ2),

V2 = K(σ1 + σ2)
−1(H(σ1, σ2)(V1,1 ⊗ V1,2) +H(σ2, σ1)(V1,2 ⊗ V1,1)

+N (σ1)(Im ⊗ V1,1) +N (σ2)(Im ⊗ V1,2)
)
,

span(V ) ⊇ span
([
V1,1 V1,2 V2

])
,

and let W be an arbitrary full-rank matrix of appropriate dimensions. Then, the symmetric
subsystem transfer functions of Ĝ interpolate those of G in the following way:

Gsym,1(σ1) = Ĝsym,1(σ1),

Gsym,1(σ2) = Ĝsym,1(σ2),

Gsym,2(σ1, σ2) = Ĝsym,1(σ1, σ2).

Note that using [35, Thm. 6.2], the basis matrix V in Proposition 1 can be extended such
that the third symmetric subsystem transfer function is interpolated as well. In practice
however, this result is barely used due to the exponential increase of terms to evaluate for
the construction of the projection space and the corresponding computational complexity.
Therefore, it is omitted here.

The next proposition considers a similar interpolation result as in Proposition 1 by
setting conditions on the second basis matrix as well.
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Proposition 2 ([35, Lem. 6.4]). Given the same assumptions as in Proposition 1, let the
matrices V1,1 and V1,2 be as in Proposition 1. Construct the two basis matrices such that

span(V ) ⊇ span
([
V1,1 V1,2

])
,

span(W ) ⊇ span
(
K(σ1 + σ2)

−HC(σ1 + σ2)
H
)
,

and let V and W be of the same dimension. Then, the symmetric subsystem transfer
functions of Ĝ interpolate those of G in the following way:

Gsym,1(σ1) = Ĝsym,1(σ1),

Gsym,1(σ2) = Ĝsym,1(σ2),

Gsym,1(σ1 + σ2) = Ĝsym,1(σ1 + σ2),

Gsym,2(σ1, σ2) = Ĝsym,2(σ1, σ2).

The result of Proposition 2 allows to enforce the same and more interpolation condi-
tions than in Proposition 1 in an implicit way using the second basis matrix. This reduces
the computational complexity of the construction of the basis matrices, since no nonlin-
ear terms are involved, and allows to match more interpolation conditions with smaller
reduced-order models.

The choice of interpolation points for the different subsystem levels is crucial for the
quality of the computed reduced-order model. Good or even optimal choices of interpo-
lation points are currently unknown. However, an advantageous choice to minimize the
amount of basis contributions necessary for the interpolation of higher level subsystem
transfer functions in the symmetric case is σ1 = σ2 = σ3 = σ. The following theorem
states the interpolation conditions for this particular selection of interpolation points and
also gives conditions for the interpolation of the third subsystem transfer function.

Theorem 1. Let G be a quadratic-bilinear system, described by its symmetric subsystem
transfer functions Gsym,k as in Definition 1, and Ĝ the reduced-order quadratic-bilinear
system constructed by (32), with its reduced-order symmetric subsystem transfer func-
tions Ĝsym,k. Also, let σ ∈ C be an interpolation point such that the matrix-valued func-
tions C,K,B,N ,H and K(.)−1 are defined at σ as well as at 2σ and 3σ. Construct the
matrices

V1 = K(σ)−1B(σ),

V2 = K(2σ)−1
(
H(σ, σ)(V1 ⊗ V1) +N (σ)(Im ⊗ V1)

)
,

V3 = K(3σ)−1
(
H(2σ, σ)(V2 ⊗ V1) +H(σ, 2σ)(V1 ⊗ V2) +N (2σ)(Im ⊗ V2)

)
,

and
W1 = K(2σ)−HC(2σ)H,

W2 = K(3σ)−HC(3σ)H.

Then, the following statements hold true:

(a) If the basis matrix V is such that

span(V ) ⊇ span
([
V1 V2 V3

])
,

and W is full-rank and of the same dimension as V , then the symmetric transfer
functions of Ĝ interpolate those of G in the following way:

Gsym,1(σ) = Ĝsym,1(σ),

Gsym,2(σ, σ) = Ĝsym,2(σ, σ),

Gsym,3(σ, σ, σ) = Ĝsym,3(σ, σ, σ).
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(b) If the basis matrices V and W are such that

span(V ) ⊇ span (V1) and span(W ) ⊇ span (W1) ,

and have the same dimension, then the symmetric transfer functions of Ĝ interpolate
those of G in the following way:

Gsym,1(σ) = Ĝsym,1(σ),

Gsym,1(2σ) = Ĝsym,1(2σ),

Gsym,2(σ, σ) = Ĝsym,2(σ, σ).

(c) If the basis matrices V and W are such that

span(V ) ⊇ span
([
V1 V2

])
and span(W ) ⊇ span (W2) ,

and both of appropriate dimensions, then the symmetric transfer functions of Ĝ
interpolate those of G in the following way:

Gsym,1(σ) = Ĝsym,1(σ),

Gsym,1(3σ) = Ĝsym,1(3σ),

Gsym,2(σ, σ) = Ĝsym,2(σ, σ),

Gsym,3(σ, σ, σ) = Ĝsym,3(σ, σ, σ).

Proof. Part (a) is an extension of Proposition 1 to the third symmetric subsystem transfer
function with the special selection of interpolation points and follows immediately from [35,
Thm. 6.2]. Part (b) follows directly from Proposition 2 such that only Part (c) is left to be
proven. The first three interpolation conditions follow from previous results, therefore we
concentrate on the third symmetric subsystem transfer function. Inserting the selection
of interpolation points into Definition 1 yields

Ĝsym,3(σ, σ, σ) =
1

2
Ĉ(3σ)K̂(3σ)−1

(
Ĥ(2σ, σ)(V̂2 ⊗ V̂1)

+ Ĥ(σ, 2σ)(V̂1 ⊗ V̂2) + N̂ (2σ)(Im ⊗ V̂2)
)
,

where
V̂1 = K̂(σ)−1B̂(σ) and

V̂2 = K̂(2σ)−1
(
Ĥ(σ, σ)(V̂1 ⊗ V̂1) + N̂ (σ)(Im ⊗ V̂1)

)
.

Using the projector PV = V (WHK(σ)V )−1WHK(σ) onto the space spanned by the columns
of V , it follows that

V V̂1 = V1 and V V̂2 = V2

hold due to the construction of the space spanned by the columns of V via the columns of
V1 and V2. Using the projector PW = W (WHK(σ)V )−HV HK(σ)H onto the space spanned
by the columns of W , it also holds that

Ĉ(σ)K̂(σ)−1WH = C(σ)K(σ)−1,
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such that the final result of the theorem holds via

Ĝsym,3(σ, σ, σ) =
1

2
Ĉ(3σ)K̂(3σ)−1WH

(
H(2σ, σ)(V V̂2 ⊗ V V̂1)

+H(σ, 2σ)(V V̂1 ⊗ V V̂2) +N (2σ)(Im ⊗ V V̂2)
)

=
1

2
C(3σ)K(3σ)−1

(
H(2σ, σ)(V2 ⊗ V1)

+H(σ, 2σ)(V1 ⊗ V2) +N (2σ)(Im ⊗ V2)
)

= Gsym,3(σ, σ, σ).

4.3 Interpolating generalized transfer functions

In this section, we investigate conditions on the projection spaces for the interpolation of
the structured generalized transfer functions from Definition 2. The following proposition
can be seen as an analog to Proposition 1 for the generalized case.

Proposition 3 ([35, Thm. 6.13]). Let G be a quadratic-bilinear system, described by its

generalized transfer functions G
(.)
gen,k from Definition 2, and Ĝ the reduced-order quadratic-

bilinear system constructed by (32), with its reduced-order generalized transfer functions

Ĝ
(.)
gen,k. Also, let σ1, σ2, σ3 ∈ C be interpolation points such that the matrix-valued functions

C,K,B,N ,H and K(.)−1 are defined at these points. Compute

V1,1 = K(σ1)
−1B(σ1),

V1,2 = K(σ2)
−1B(σ2),

V2 = K(σ2)
−1N (σ1)(Im ⊗ V1,1),

V3,1 = K(σ3)
−1N (σ2)(Im ⊗ V2),

V3,2 = K(σ3)
−1H(σ2, σ1)(V1,2 ⊗ V1,1),

and construct the basis matrix V such that

span(V ) ⊇ span
([
V1,1 V1,2 V2 V3,1 V3,2

])
.

Let W be an arbitrary full-rank matrix of appropriate dimensions. Then, the generalized
transfer functions of Ĝ interpolate those of G in the following way:

G
(B)
gen,1(σ1) = Ĝ

(B)
gen,1(σ1),

G
(B)
gen,1(σ2) = Ĝ

(B)
gen,1(σ2),

G
(N,(B))
gen,2 (σ1, σ2) = Ĝ

(N,(B))
gen,2 (σ1, σ2),

G
(N,(N,(B)))
gen,3 (σ1, σ2, σ3) = Ĝ

(N,(N,(B)))
gen,3 (σ1, σ2, σ3),

G
(H,(B),(B))
gen,3 (σ1, σ2, σ3) = Ĝ

(H,(B),(B))
gen,3 (σ1, σ2, σ3).

Remark 1. As for the symmetric subsystem transfer functions, it is possible to reduce the
dimensions of the constructed projection space by choosing suitable interpolation points
and, also as in the symmetric subsystem transfer function case, this can be achieved by
choosing σ1 = σ2 = σ3. However, only marginal savings in terms of basis contributions
and computational costs can be achieved by this since in Proposition 3, only the matrix
V1,2 can be omitted.
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Note that in Proposition 3, the basis contribution from V3,1 results in the interpolation

of the third generalized transfer function with two bilinear terms G
(N,(N,(B)))
gen,3 . It may

happen that no interpolation conditions are imposed for this transfer function such that
the subspace dimensions can be reduced by omitting V3,1. As in the case of symmetric
subsystem transfer functions, the second basis matrix W can be used to reduce the minimal
dimension of the constructed subspaces and to simplify the construction of the subspaces.
These results are given in the following corollary.

Corollary 1. Let G be a quadratic-bilinear system, described by its generalized trans-

fer functions G
(.)
gen,k from Definition 2, and Ĝ the reduced-order quadratic-bilinear system

constructed by (32), with its reduced-order generalized transfer functions Ĝ
(.)
gen,k. Also, let

σ1, σ2 ∈ C be interpolation points such that the matrix-valued functions C,K,B,N ,H and
K(.)−1 are defined at these points. Let the basis matrices V and W be constructed by

span(V ) ⊇ span
(
K(σ1)

−1B(σ1)
)
,

span(W ) ⊇ span
(
K(σ2)

−HC(σ2)H
)
,

and are of the same dimension. Then, the generalized transfer functions of Ĝ interpolate
those of G in the following way:

G
(B)
gen,1(σ1) = Ĝ

(B)
gen,1(σ1),

G
(B)
gen,1(σ2) = Ĝ

(B)
gen,1(σ2),

G
(N,(B))
gen,2 (σ1, σ2) = Ĝ

(N,(B))
gen,2 (σ1, σ2),

G
(H,(B),(B))
gen,3 (σ1, σ1, σ2) = Ĝ

(H,(B),(B))
gen,3 (σ1, σ1, σ2).

Proof. The result follows directly from [35, Lem. 6.15] by restriction to two interpolation
points.

Similar to Proposition 2, the result in Corollary 1 states that the interpolation of higher
level transfer functions is possible in an implicit way without evaluating any of the non-
linear terms. Corollary 1 shows the version of the implicit interpolation result with the
smallest achievable minimal subspace dimensions for the interpolation of the third level
generalized transfer function with quadratic term. The choice of identical interpolation
points will not further reduce the dimensions of the projection spaces, but allows to replace
the interpolation of the first level generalized transfer function in two points by matching
the transfer function value and its derivative in one point; see [5] and [35, Lem. 6.15].

5 Numerical experiments

Now, we employ the interpolation results from above for constructing structured reduced-
order quadratic-bilinear systems in two numerical examples. The experiments were run
on compute nodes of the Greene high-performance computing cluster of the New York
University using 16 processing cores of the Intel Xeon Platinum 8268 24C 205W CPU at
2.90 GHz and 32 GB main memory. We used MATLAB 9.9.0.1467703 (R2020b) running
on Red Hat Enterprise Linux release 8.4 (Ootpa). The source code, data and results of
the numerical experiments are open source/open access and available at [36].
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5.1 Experimental setup

In both numerical examples, we compute reduced-order models via structure-preserving
interpolation of the symmetric subsystem transfer functions and the generalized transfer
functions, denoted by SymInt and GenInt, respectively. We compute models using either
(i) only the construction of the basis matrix V and a one-sided projection by setting W =
V , which we abbreviate further on by V, or (ii) by also constructing the left basis matrix
W for a two-sided projection following the results in Theorem 1 and Corollary 1, which
we abbreviate by VW. For simplicity, the interpolation points are chosen logarithmically
equidistant on the imaginary axis in all cases. If we compute only the basis matrices for
interpolation without additional information, this is denoted by equi. On the other hand,
if we oversampled the frequency range of interest and compressed the resulting basis to a
prescribed dimension, e.g., using pivoted QR, this is denoted by avg; cf. [35, Rem. 3.3].
In all cases, we focus on the interpolation of either (i) the first two symmetric subsystem
transfer functions or (ii) the first two levels of the generalized transfer functions and the
third level generalized transfer function containing the quadratic term. The following
overview summarizes the considered interpolation methods:

SymInt(V, equi) is the interpolation of symmetric subsystem transfer functions via one-
sided projection by constructing the basis matrix V .

SymInt(VW, equi) is the interpolation of symmetric subsystem transfer functions via two-
sided projection. Additional interpolation points are selected for the construction of
W to match the dimension of V .

SymInt(V, avg) is the approximation of an interpolation basis for symmetric subsys-
tem transfer functions using only samples for the construction of V and one-sided
projection.

SymInt(VW, avg) is the approximation of left and right interpolation bases for symmetric
subsystem transfer functions using samples for the construction of V and W and two-
sided projection. Additional interpolation points are selected for the construction of
W to match the computational work to the construction of V .

GenInt(V, equi) is the interpolation of generalized transfer functions via one-sided pro-
jection by constructing the basis matrix V . Samples from the second and third level
transfer functions are taken alternating.

GenInt(VW, equi) is the interpolation of generalized transfer functions via two-sided
projection. For the construction of V , samples from the second and third level
transfer functions are taken alternating. Additional interpolation points are selected
for the construction of W to match the dimension of V .

GenInt(V, avg) is the approximation of an interpolation basis for generalized transfer
functions using only samples for the construction of V and one-sided projection. At
all interpolation points, second and third level samples are taken.

SymInt(VW, avg) is the approximation of left and right interpolation bases for generalized
transfer functions using samples for the construction of V and W and two-sided
projection. For the construction of V , second and third level samples are taken at all
interpolation points. Additional interpolation points are selected for the construction
of W to equalize the computational work to the construction of V .
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As an additional comparison, we have computed reduced-order models via proper or-
thogonal decomposition (POD). All POD models have been trained via simulations of
the unit step response to remove the correlation of the training and test input signals.
For a fair comparison, the trajectory lengths used for POD are chosen with respect to
comparable amounts of computational work to the interpolation methods. We consider
therefore:

POD, which has a computational workload similar to SymInt(V, equi) and GenInt(V,

equi), and

POD(avg), which uses similar to SymInt(V, avg) and GenInt(V, avg) an oversampling
and computes the orthogonal basis via truncated singular value decomposition.

For the comparison of the reduced-order models in time domain, we simulate the models
over finite time intervals using input signals taken from a Gaussian process GP(µ,K), with
constant mean µ ∈ R and the squared exponential kernel

K(x, y) = exp

(
−|x− y|

2

2ς2

)
,

where ς ≥ 0 is a smoothing parameter. The parameters µ and ς are chosen independently
for the two examples and are given below. For visualization, we compute and plot the
maximum pointwise relative errors

relerr(t) := max
j

∣∣∣∣yj(t)− ŷj(t)yj(t)

∣∣∣∣ .
Also, we compute discretized approximations of the relative L2 and L∞ errors via

relerrL2 :=
‖vec(yh − ŷh)‖2
‖vec(yh)‖2

and relerrL∞ :=
‖vec(yh − ŷh)‖∞
‖vec(yh)‖∞

,

where yh, ŷh ∈ Rp×nh are the discretized output signals of the original and reduced-order
model, respectively, in the time interval [0, tf ], and vec(.) is the vectorization operator.

In frequency domain, we consider the pointwise relative spectral norm errors defined as

relerr(ω) :=
‖Gsym,1(iω)− Ĝsym,1(iω)‖2

‖Gsym,1(iω)‖2
and

relerr(ω1, ω2) :=
‖Gsym,2(iω1, iω2)− Ĝsym,2(iω1, iω2)‖2

‖Gsym,2(iω1, iω2)‖2
,

over the limited frequency intervals ω, ω1, ω2 ∈ [ωmin, ωmax]. Additionally, we compute ap-
proximations to the relative L∞-norm errors for the first and second symmetric subsystem
transfer functions via

relerr
(1)
L∞ :=

max
ω
‖Gsym,1(iω)− Ĝsym,1(iω)‖2

max
ω
‖Gsym,1(iω)‖2

and

relerr
(2)
L∞ :=

max
ω1, ω2

‖Gsym,2(iω1, iω2)− Ĝsym,2(iω1, iω2)‖2
max
ω1, ω2

‖Gsym,2(iω1, iω2)‖2
,

using 500 logarithmically equidistant sampling points in the frequency interval of inter-
est [ωmin, ωmax].

For further details on the experimental setup, we refer the reader to the accompanying
code package [36].
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Table 1: Errors computed as shown in Section 5.1 for the time-delay example: POD com-
putes the worst performing reduced-order model, while POD(avg) is only as good
as the worst interpolation-based models. Here, SymInt(VW, avg) performs best

w.r.t. three out of the four error measures, while according to relerr
(1)
L∞ , the best

reduced-order model is computed by GenInt(VW, avg).

relerrL2 relerrL∞ relerr
(1)
L∞

relerr
(2)
L∞

SymInt(V, equi) 8.1604e-07 1.8475e-06 2.5851e-06 3.4393e-06
SymInt(V, avg) 3.1414e-08 4.9411e-08 3.4598e-08 1.0957e-06
SymInt(VW, equi) 1.0181e-05 4.9409e-05 1.0705e-07 4.3354e-06
SymInt(VW, avg) 6.1325e-09 2.4509e-08 4.9776e-10 2.5239e-09

GenInt(V, equi) 3.2373e-06 4.3868e-06 1.1713e-05 5.3102e-06
GenInt(V, avg) 3.9579e-08 6.7805e-08 3.1402e-08 1.0562e-06
GenInt(VW, equi) 1.1332e-05 2.9810e-05 7.0970e-07 2.1736e-06
GenInt(VW, avg) 1.0280e-08 4.3505e-08 1.1418e-10 4.1712e-09

POD 5.2902e-04 1.0422e-03 6.2910e-04 2.8691e-04
POD(avg) 2.1228e-05 5.1048e-05 9.8140e-06 3.7744e-05

5.2 Quadratic time-delayed reaction-diffusion model

As first example, we consider the time-delayed heated rod with bilinear feedback from [11,
16], to which we append a quadratic reaction term to obtain

∂tν(ζ, t) = ∆ν(ζ, t)− 2 sin(ζ)ν(ζ, t) + 2 sin(ζ)ν(ζ, t− τ)

− 2 sin(ζ)ν(ζ, t)2 +
m∑
j=1

bj(ζ)(ν(ζ, t) + 1)uj(t),

with (t, ζ) ∈ (0, tf)× (0, π), boundary conditions ν(t, 0) = ν(t, π) = 0 for all t ∈ [0, tf ], and
the constant time delay τ = 1. After spatial discretization with central finite differences,
we obtain a quadratic-bilinear time-delay system of the form

Eẋ(t) = Ax(t) +Adx(t− τ) +H(x(t)⊗ x(t)) +

m∑
j=1

Nkx(t)uj(t) +Bu(t),

y(t) = Cx(t),

with E,A,Ad, Nj ∈ Rn×n, for j = 1, . . . ,m, H ∈ Rn×n2
, B ∈ Rn×m and C ∈ Rp×n. For

our experiments, we have chosen n = 2 000, m = 2 and p = 2, where u1 controls the
temperature of the first third of the rod and u2 the rest, and y1 observes the temperature
of the first half of the rod and y2 of the second half. The system has zero initial conditions
x(t) = 0 for all t ≤ 0.

The reduced-order models are computed as explained in Section 5.1 with a reduced
order of r = 24. In Table 1, we can see that all reduced-order models perform well for
this example. However, the interpolation-based models provide smaller errors than those
generated by POD, where the better POD model computed by POD(avg) performs mildly
worse than the worst interpolation-based reduced-order models. Comparing the differ-
ent interpolation approaches we can observe that mostly, the interpolation of symmetric
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Figure 2: Time simulation of the time-delay example: The best reduced-order models
from each generating approach are shown. All reduced-order models can re-
cover the system behavior for the given input signal, but the interpolation-based
reduced-order models perform around four orders of magnitude better in terms
of accuracy than the model generated by POD(avg).

transfer functions performs better in the time simulations and in frequency domain than
the interpolation of the generalized transfer functions. For the reduced-order models that
provide exact interpolation (equi), the sampling of higher-order terms in the generalized
transfer function needed to be restricted to match the reduced basis dimension. This re-
striction is removed in avg such that more information about the bilinear and quadratic
terms can be obtained in sampling the generalized transfer functions compared to the sym-
metric transfer function setting, but this does only lead to a better reduced-order model

when measured with relerr
(1)
L∞ .

Figure 2 shows the time simulation of the full-order model and the best performing
reduced-order models from each method over the time interval [0, 30] s. We restricted
Figure 2a to only the first output signal for clarity, but the pointwise relative errors in
Figure 2b are computed over both output entries. For the input signals, we have chosen
the mean µ = 2 and the parameter ς = 0.25. The interpolation-based methods clearly
outperform POD(avg) by approximately four orders of magnitude. There is no significant
difference between the errors of SymInt(VW, avg) and GenInt(VW, avg).

Similar results can be observed in frequency domain. The first symmetric subsystem
transfer functions are shown in Figure 3, while Figure 4 illustrates the pointwise relative
errors of the second symmetric subsystem transfer functions. In both cases, we only show
the best performing methods in the frequency interval ω, ω1, ω2 ∈ [10−3, 103] rad/s. As
in the time domain, the interpolation-based methods outperform POD(avg) by several
orders of magnitude in terms of accuracy. Further plots of the other methods in time and
frequency domain can be found in the accompanying code package [36].

5.3 Particle motion in one-dimensional crystal structures

As second example, we consider the motion of particles in a one-dimensional crystal struc-
ture described by the Toda lattice model from the introduction; see Figure 1. The original
system with exponential nonlinearities (2) can be rewritten into quadratic-bilinear form
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Figure 3: Sigma plots showing ‖G(iω))‖2 of the first symmetric subsystem transfer func-
tion of the time-delay example: The best reduced-order models from each gen-
erating approach are shown. All reduced-order models can recover the system
behavior for the given input signal, but the interpolation-based reduced-order
models perform around six orders of magnitude better in terms of accuracy than
the model generated by POD(avg).

by introducing the auxiliary variables

zj(t) =

{
ekj(qj(t)−qj+1(t)) − 1 for j < `,

ek`q`(t) − 1 for j = `.
(35)

By differentiating (35) twice, the Toda lattice model can be written as a system of
quadratic-bilinear ordinary differential equations of the form

0 = Mq̈(t) +Dq̇(t) +Kq(t) +Hvv

(
q̇(t)⊗ q̇(t)

)
+Hpv

(
q(t)⊗ q̇(t)

)
+Hpp

(
q(t)⊗ q(t)

)
−Npq(t)u(t)−Buu(t),

y(t) = Cvq̇(t),

(36)

with the dimensions as in (3) and m = 1 input and p = 1 output. The exact param-
eterization of the matrices in (36) can be found in [35, Sec. 6.5]. For our experiments,
we use the same setup as in [35, Sec. 6.5] with ` = 2 000 particles such that (36) has the
order n = 4 000.

It has been observed in [35] that the internal block structures of the matrices in (36)
resulting from the original and auxiliary variables should be preserved for stability of
the reduced-order models. Therefore, we follow the suggestion in [35, Sec. 6.5] and use
the split congruence transformation approach [14, 30, 34]. That is, given a basis matrix

V =
[
V H
1 V H

2

]H ∈ C2`×r, we construct the extended basis matrix

Ṽ =

[
V1 0
0 V2

]
∈ C2`×2r,

and similarly for a left basis matrix W . The extended basis matrices are then used for
model reduction by projection. We apply this approach in our experiments to modify all
projection basis matrices computed as described in Section 5.1. By construction, it holds
that

span(V ) ⊆ span(Ṽ ).
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Figure 4: Second symmetric subsystem transfer function relative approximation errors
relerr(ω1, ω2) of the time-delay example: The best reduced-order models from
each generating approach are shown. The errors of both interpolation-based
reduced-order models are at least four orders of magnitude better than those of
the POD(avg) model.

Therefore, if V was constructed to satisfy any subspace conditions in Section 4 for interpo-
lation, the basis matrix Ṽ also satisfies these conditions such that interpolation properties
are preserved.

For the comparison in our experiments, we have chosen the reduced order of all com-
puted models to be 2r = 120. The results are shown in Table 2. The best performing
model in terms of time simulation error is SymInt(V, equi) followed by its counterpart
for the generalized transfer functions GenInt(V, equi). None of the models resulting
from a two-sided projection has a stable time-domain simulation, which appears to be
a consequence of loosing additional mechanical properties by V 6= W . Also none of the
POD generated models performs stable in the time-domain simulation. Here, the large
frequency domain errors indicate that the approximation quality is not sufficient to ap-
proximate the system behavior well enough. In frequency domain, we observe similarly
to the previous numerical example that SymInt(VW, avg) and GenInt(VW, avg) perform
best in terms of approximating the first symmetric subsystem transfer function.

The time-domain simulations of the full- and the best performing reduced-order models
from each method are shown in Figure 5 in the time interval [0, 100] s. For the input
signal, we have chosen the mean µ = 0 and the smoothing parameter ς = 2. POD(avg)

performs visibly stable only until around 60 s, while the other two models follow the system
behavior over the complete time interval. The pointwise relative errors in Figure 5b reveal
POD(avg) to be more accurate than SymInt(V, equi) and GenInt(V, equi) for the first
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Table 2: Error table of the Toda lattice example: The errors are computed as shown in
Section 5.1. Only the interpolation methods with one-sided projections provide
reduced-order models that are stable in the time simulation. The models with∞
error are unstable. SymInt(V, equi) outperforms GenInt(V, equi) by around
a factor of 2.

relerrL2 relerrL∞ relerr
(1)
L∞

relerr
(2)
L∞

SymInt(V, equi) 2.4797e-04 4.1415e-04 4.5518e-03 4.6131e-02
SymInt(V, avg) 1.4565e-02 1.7264e-02 1.4862e-02 9.4341e-02
SymInt(VW, equi) ∞ ∞ 3.7049e-03 4.4699e-02
SymInt(VW, avg) ∞ ∞ 2.3354e-05 2.3035e-01

GenInt(V, equi) 5.0036e-04 8.4421e-04 1.0227e-02 5.6204e-02
GenInt(V, avg) 4.2052e-03 8.5704e-03 1.8517e-03 2.6190e-02
GenInt(VW, equi) ∞ ∞ 1.3348e-02 1.3706e+01
GenInt(VW, avg) ∞ ∞ 8.2451e-06 4.5499e-02

POD ∞ ∞ 8.1769e-01 7.7696e-01
POD(avg) ∞ ∞ 4.6483e-01 6.2382e-01

half of the time interval before it assumes the same error level as the other two methods
and finally becomes unstable. SymInt(V, equi) and GenInt(V, equi) have overall a
similar error behavior, with the errors of GenInt(V, equi) being mildly larger.

On the other hand, in frequency domain, we can observe a similar behavior compared to
the previous numerical example. The results for the same reduced-order models that per-
formed best in time domain can be seen in Figures 6 and 7, with the frequency interval of
interest ω, ω1, ω2 ∈ [10−3, 103] rad/s. The POD generated models perform worst, with the
exception of GenInt(VW, equi). The models based on oversampling generalized transfer
functions perform better than those based on oversampling the symmetric transfer func-
tions due to the additional information obtained from the nonlinear terms. However, in
this example we can observe that the oversampling procedure may produce larger errors
than exact interpolation. In particular, models computed via avg provide worse approx-
imation errors for larger frequencies, where the transfer functions are converging to zero,
while the models with equi preserve the system behavior due to the exact interpolation.
Further plots of the other methods in time and frequency domain can be found in the
accompanying code package [36].

6 Conclusions

We have extended the structure-preserving interpolation framework to quadratic-bilinear
systems. Based on two motivating structured examples, we have introduced the struc-
tured variants of the symmetric subsystem and generalized transfer functions of quadratic-
bilinear systems. For both transfer function types, we provided subspace conditions en-
abling the computation of interpolating structured reduced-order models by projection.
The theoretical findings are then used to compute structured reduced-order models in two
numerical examples. The theory presented here can be applied to a much broader class of
structures than those used here for illustrations.

Preprint. 2023-04-27



P. Benner, S. Gugercin, S. W. R. Werner: Structured quadratic-bilinear interpolation 25

0 20 40 60 80 100
−2

−1

0

1

time t (s)

am
p
li
tu
d
e
y
(t
)

(a) Time simulation.

0 20 40 60 80 100
10−16

10−7

102

time t (s)

re
le
rr
(t
)

(b) Maximum pointwise relative errors.

FOM SymInt(V, equi) GenInt(V, equi) POD(avg)

Figure 5: Time simulation of the Toda lattice example: The best reduced-order mod-
els from each generating approach are shown. Only the interpolation-based
reduced-order models recover the system behavior over the full time interval,
while POD(avg) becomes unstable after about 60 s.

The numerical results suggest that the interpolation of symmetric transfer functions
provides more accurate reduced-order models than the generalized transfer functions for
the same reduced order. This is most certainly a consequence of the restriction to only
products of system terms in the generalized transfer functions. However, we have seen
that when the basis matrices are first constructed by oversampling and then compressed,
the generalized transfer function interpolation framework provides more accurate reduced-
order models for the same computational costs as for the symmetric transfer functions due
to additional information obtained from the nonlinear terms. The authors of [17] extend
on this oversampling idea and the definition of structured generalized transfer functions for
quadratic-bilinear systems from this paper to propose structure-preserving model reduc-
tion for systems with polynomial nonlinearities based on the interpolation of generalized
transfer functions with at most one nonlinear component. While this gives a first efficient
approach to simulation-free model reduction for polynomial systems, there are many open
questions left. One related to our observations in this work is the question whether exact
interpolation of transfer functions based on Volterra kernels may perform better than an
oversampling procedure. This needs a thorough investigation of interpolation conditions
for polynomial systems, which we will address in some future work.

Another transfer function type for quadratic-bilinear systems are regular subsystem
transfer functions. These have been omitted in this paper since for the choice of identical
interpolation points, the projection spaces of regular and symmetric subsystem transfer
functions coincide. The formulas for structured variants of regular transfer functions and
results on interpolation conditions will be presented in a separate work.

For simplicity of exposition, we have restricted the numerical experiments to only loga-
rithmically equidistant interpolation points on the imaginary axis. While such a procedure
is often sufficient in practice, the question of good or even optimal interpolation points
remains open and crucial for the success of such model reduction methods. This is still
an unresolved issue even in the case of structured linear systems and needs further inves-
tigation in the future.
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Figure 6: First symmetric transfer function of the Toda lattice example: Only the best per-
forming methods from the time simulation are shown. All reduced-order models
recover the transfer function behavior of the original system. For low frequen-
cies, POD(avg) performs two order of magnitude worse than the interpolating
methods.
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