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Abstract  

Efficient language production requires rapid interactions between different brain areas. These 
interactions can be severely affected by brain lesions. However, the neurophysiological correlates 
of the spatiotemporal dynamics during language production are not well understood. The current 
pilot study explores differences in spatiotemporal cortical dynamics between five subjects with 
post-stroke aphasia and five control subjects. Electroencephalography was recorded during 
picture naming in both groups.  

Average-based analyses (event-related potential (ERP), frequency-specific Global Field Power 
(GFP)), reveal a strong synchronization of cortical oscillations, especially within the first 600ms 
post-stimulus, with a time shift between participants with aphasia and control subjects. ERPs and 
the corresponding brain microstates indicate coordinated brain activity alternating mainly 
between frontal and occipital zones. This behavior can be described as standing waves between 
two main sources.  

At the single-trial scale, traveling waves (TW) were identified from both phase and amplitude 
analyses. The spatiotemporal distribution of amplitude TW reveals subject-specific organization 
of several interconnected hubs. In patients with aphasia this spatial organization of TW reveals 
zones with no TW notably in the vicinity of stroke lesions. 

The present results provide important hints for the hypothesis that TW contribute to the 
synchronization and communication between different brain areas especially by interconnecting 
cortical hubs. Moreover, our findings show that cortical dynamics is affected by brain lesions.  

 

Contribution to the Field 

1. Spatiotemporal cortical dynamics of individual trials reveals the presence of phase and 
amplitude traveling waves. 

2. Exploration of traveling waves on the 2D cortical surface reveals the presence of 
interconnected epicenters or hubs in all subjects. 

3. The spatiotemporal distribution of traveling waves shows a higher density in the 
prefrontal area for people with aphasia than for healthy subjects.  

4. For subjects with aphasia, a sparser density of traveling waves is observed in the 
approximated lesion area. 

5. Event-related potential analyses reveal a consistent alternating activity between the 
frontal and occipital regions. 

6. Subjects with aphasia present a larger and/or delayed contribution in the delta range in 
the GFP patterns compared to control subjects.  
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1. Introduction 

Language is organized in distributed networks in the human brain. Across the last decades, our 
knowledge about the functional organization and specialization of language networks has 
considerably improved. Neuroimaging and lesion studies have identified key areas for language 
comprehension and speech production and point towards both overlap and specialization of 
networks for specific linguistic functions (Price, 2000, 2010; Vigneau et al., 2011; Hodgson et al., 
2021). Moreover, recent research provides insight into the spatial dynamics of language 
reorganization after brain lesions (Saur et al., 2006; Stockert et al., 2020). However, less is known 
about the spatiotemporal dynamics of language network organization in the healthy and lesioned 
brain. A better understanding of such processes may help to refine current models of language 
(re-)organization and ultimately improve current treatment approaches for people with speech 
and language impairment after brain lesions.  

To further improve our understanding of language network organization, one needs to clarify the 
link between spatial network organization and temporal dynamics during language processing. 
Relating these dynamics to specific language operations will help better understand its relevance 
at the behavioral level. In parallel, identifying differences in the spatiotemporal dynamics between 
healthy and lesioned brains is of major importance.  

Decades of research in the field of language production have enabled the description of the 
spatiotemporal dynamics of cortical processing in finer details (Vigneau et al., 2006; Llorens et al., 
2011; Pham et al., 2013; Hartwigsen, 2015; Liljeström et al., 2015; Klaus et al., 2019; Piai et al., 
2019; Sarubbo et al., 2020; Ala-Salomäki et al., 2021) and several models of cortical processing 
have been proposed (Strijkers et al., 2010; Indefrey, 2011; Laganaro, 2017). Classical models of 
speech production generally contain two lexical processing stages, a lexical semantic stage in 
which the meaning of a word is accessed, and a lexical phonological stage in which its sound code 
is accessed (e.g., Rapp & Goldrick, 2006; Levelt, Roelofs, & Meyer, 1999; Griffin & Bock, 1998; 
Caramazza, 1997; Dell et al. 1997; see Graves et al., 2007). Existing models differ with respect to 
the degree of discreteness versus seriality of information flow during speech production (Graves 
et al., 2007). Serial models claim that lexical semantic access must be completed before lexical 
phonological access can begin to take place (e.g., Levelt et al., 1999). In contrast, cascade models 
propose that lexical phonological access can begin before lexical semantic access is complete (e.g., 
Humphreys, Riddoch, & Quinlan, 1988). Finally, interactive models propose that processing at the 
lexical phonological level can feed back to the lexical semantic level (e.g., Dell et al., 1997). Despite 
these differences in information flow dynamics, the different models agree that during picture 
naming, lexical semantic information flow normally begins to be accessed prior to lexical 
phonology (see Graves et al., 2007). Accordingly, one may summarize the main steps of the picture 
naming process as follows: visual processing, visual recognition, semantic processing, lemma 
retrieval, phonological encoding, articulation programming, and speech production, in parallel 
with self-monitoring (e.g., Indefrey and Levelt, 2004; Dell, Martin and Schwartz, 2007). 

With respect to the underlying neural substrates of language, several key areas have been 
identified for lexical encoding (e.g. posterior middle temporal gyrus), semantic processing (e.g. 
angular gyrus, anterior inferior frontal gyrus), or phonological processing (e.g. inferior frontal 
gyrus, supramarginal gyrus), (Devlin et al., 1998; Vigneau et al., 2006; Moliadze et al., 2019; 
Stockert et al., 2020). However, despite the spatial location of these areas, the mechanisms of their 
synchronization and/or sequential activation, their functional and/or anatomical relationship 
with homologue regions and neighbor brain areas remain unclear and variability among studies 
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is important (Hampshire et al., 2010; Mehrkanoon et al., 2014; Hartwigsen et al., 2020, 2021). 
Consequently, the dynamics of such network interactions remain largely unexplored. In 
particular, it remains unclear how brain lesions affect network interactions and whether a lesion 
changes the spatiotemporal dynamics of language production. 

Across the last decades, several studies have shown that cortical oscillations propagate at the 
surface of the human cortex forming so-called traveling waves (TW, Massimini et al., 2004; Muller 
et al., 2018b; Zhang et al., 2018; Alamia et al., 2019). Such waves are described as a 
spatiotemporally coherent evolution of either the phase or the amplitude of electrophysiological 
signals (sometimes referred to as phase waves and amplitude waves). Complementary studies 
attempted to clarify the functional role of these TW (Alexander et al., 2013; Muller et al., 2018; 
Ermentrout & Kleinfeld, 2001; Beuter et al., 2020; Davis et al., 2020). It seems, that TW per se do 
not carry the information from one region to another but rather contribute to the synchronization, 
optimization of network connectivity and to the processing of sensory inputs. One may thus 
hypothesize that TW indirectly participate in the efficient treatment of neural signals. In other 
words, they appear to play an auxiliary but important functional role. 

Considering such complex and high-level mechanisms, cortical damage resulting from various 
causes (e.g., stroke, trauma, and tumor) inevitably induces physiological disorders. Brain lesions 
induce local changes in the electrical conductivity of neural tissue. As shown by Bessonov et al., 
2019, 2020, these changes may disturb or prevent the passage of TWs and thus yield a poorer 
connectivity which may eventually harm cortical processing and network interactions. These 
disorders affect executive or cognitive capacities with different degrees of severity depending on 
numerous factors. Such factors include the location of the lesion, its spatial spread and depth. 
Stroke lesions in particular disturb the entire connectome (Klingbeil et al., 2019). In response to 
these disturbances, complex plastic changes and reorganization are being observed either by an 
upregulation of domain general areas in the vicinity of the lesioned area or by the recruitment of 
contralateral homologous area depending on the location of the lesion (Hartwigsen, 2016; 
Hartwigsen et al., 2020, 2021). 

In the present pilot study, we recorded the electroencephalogram (EEG) in healthy subjects and 
people with post-stroke aphasia performing a picture naming task. The first aim of this work is to 
investigate the spatiotemporal cortical dynamics by means of both static and dynamic methods. A 
secondary aim of this study is to characterize regular and pathological behaviors to assess the 
influence of stroke lesions as well as plasticity induced changes on cortical activity.  

2. Materials and Methods 

2.1. Participants 

Ten adult subjects took part in this pilot study. Five of them were healthy subjects and the other 
five subjects suffered from non-fluent post-stroke aphasia. The two groups were matched for age 
and gender (see details in table 1). All subjects were right-handed, assessed using the Edinburgh 
Handedness Inventory (Oldfield, 1971, see scores in table 1). Participants with aphasia (labelled 
AXX) were all diagnosed with Broca’s aphasia and a moderate degree of dysarthria resulting from 
a first-ever ischemic stroke of the left middle cerebral artery affecting the sylvian area. They were 
all in chronic phase, at least six months post stroke. While these criteria were rather restrictive, 
the exact location of the lesioned brain area as well as the severity of their language and/or motor 
disorders varied across subjects. A02, A04, and A05 suffered from severe motor deficits while A01 
and A03 did not. The entire protocol was approved by the local ethics committee (Institutional 
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review board, IRB-Euromov, number 2111D), all tests were conducted with the participants’ 
written informed consent and participants were paid for their involvement. All subjects were 
screened for normal cognitive functions using the Mini-Mental State Examination (score> 20, 
Derouesné et al., 1999; Kalafat et al., 2003). The Language Screening Test (Flamand-Roze et al., 
2011) was realized by participants with aphasia in order to provide a quick and objective measure 
of the type and degree of their aphasia prior to testing without diagnostic purposes. 

All data were acquired during a single session lasting two hours. During these two hours the 
participant realized the aforementioned tests, then the experimenter installed the EEG system on 
the participant (see details in Section 2.3) and the participant realized the naming experiment. All 
tests were conducted in a quiet room. 

 

Subject Age 

(years) 

sex Duration 
since 

stroke 
(years) 

Naming 
score 

(n=100) 

Right 
Handedness 
dominance 

(%) 

Aphasia 
screening 

test 

MMSE Stroke lesion 

C01 49 M n/a 93 100 n/a 24 n/a 

C02 56 M n/a 99 100 n/a 29 n/a 

C03 71 F n/a 92 100 n/a 25 n/a 

C04 71 M n/a 95 100 n/a 28 n/a 

C05 57 F n/a 97 100 n/a 29 n/a 

A01 50 M 3 97 100 13 26 Left frontoparietal  
Deep and 

superficial 

A02 56 M 4.5 97 100 15 28 Left frontoparietal, 
Deep and 

superficial 

A03 70 F 4 88 89 13 22 Left 
temporoparietal, 
posterior sylvian 

area 
Superficial 

A04 71 M 20 88 100 13 27 Left temporal, 
Superficial 

A05 56 F 3 89 100 15 26 Left 
frontotemporal, 

Superficial 

Table 1. Subjects’ details. From left to right: Subject number, age at testing, gender, duration 
since stroke, naming task score (%), Edinburgh test, screening test, cognitive test outcome 
measures and lesion information. 

2.2. Picture naming task 

The participants sat approximately 60 centimeters away from a computer screen. A single 
experimenter sat outside their visual field and provided instructions to the participant. 
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The main task consisted in a free picture naming task. Each trial started with a blank screen for 
1.5 seconds and subjects were allowed to breathe and blink normally. Subjects were then asked 
to fixate a white cross displayed at the center of the screen while limiting facial movements. After 
1.5+/-0.2 seconds a black and white picture was displayed, and subjects had to name the 
recognized object. Subjects were asked to name the objects at their own pace and to provide one 
single response. For each trial, subjects’ oral response was recorded using an external microphone 
located halfway between the participant and the computer screen. The voice onset was 
automatically detected, and a marker was added accordingly to estimate the naming latency. The 
next trial was automatically launched 4s after the voice onset. The coherence of automatic voice 
detection (thresholding) and the actual audio signal was manually verified offline and corrected 
when necessary (e.g., background noise, hesitation, or multiple responses). 

Pictures were selected from the Snodgrass corpus (Alario et al., 1999). The set of 100 images was 
divided in two runs of 50 items with a small rest between them. Among the 100 images, three 
items were repeated 10 times each and were referred to as control items (“DOG”, ”APPLE” and 
“BED”) the other 70 images were presented once. Only frequent nouns were included (familiarity 
> 1.3). To avoid ceiling effects, 8 out of 100 words with higher complexity were included 
(familiarity < 2, visual complexity > 4, see Alario & Ferrand, 1999). All items were presented in a 
randomized order. 

During the entire procedure and for each trial, several markers were added to the data. Markers 
1 to 4, respectively correspond to the beginning of the trial, the cross on the screen, the image 
presentation, and the voice onset. In case of incorrect, unclear response or failed voice detection, 
the corresponding trials were manually tagged by the experimenter. The tagged items were then 
retested at the end of the set. This procedure guarantees a correct acquisition of all items. 

Four minutes of resting state recording was performed before and after the picture naming task. 
For the first two minutes, participants were instructed to look at a white fixation cross in the 
middle of the computer screen (eyes-open condition), and then close their eyes for the last two 
minutes (eyes-closed condition). 

2.3. Electroencephalogram 

2.3.1. Device and Software 

All recordings were made using the Starstim-32 system (Neuroelectrics®). Attention was given 
to prevent acoustic and electromagnetic noise during the EEG acquisition. Continuous EEG 
recordings were obtained via 30 contacts (NG Geltrode) placed on the scalp using the electrode 
configuration depicted in Figure 1.A at a sampling frequency of 500 Hz. Two additional 
electroocculography electrodes (EOG) were positioned above and below the right eye to detect 
eye-related artifacts. The reference electrodes (CMS and DRL) were clipped on the right ear lobe. 
The protocol was designed using NIC2 software (Neuroelectrics, Barcelona, Spain), 
PsychoToolbox (Brainard, 1997) and custom Matlab interfaces (Matlab 2021, the Mathworks, 
Natick, CA).  
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Figure 1. (A) Electrode configuration used for EEG recordings. Purple circles represent 30 active 
scalp contacts + 2 EOG contacts. (B) Preprocessing pipeline. 

2.3.2. Preprocessing  

Off-line signal processing and analyses were performed using EEGLAB open-source toolbox 
(Delorme et al., 2004) and custom Matlab scripts. Raw and continuous EEG signals were 
preprocessed using the pipeline described in figure 1.B (EEGLAB functions). The relevance of 
independent component analysis (ICA) components was assessed, and bad components were 
removed. Movement and muscle artifacts were also visually identified and removed when 
necessary. The lowest cut-off frequency of the bandpass filters was fixed at 2Hz to remove slow 
drifts occurring in several datasets (C01, C02, and A05).  

The different trials (n=100+retest) were isolated from the continuous data from 1.5s before image 
presentation to 4s after image presentation, thus resulting in 5.5s-long epochs. Note that while 
most items could be named within this default response window, few trials required more time. 
These trials were analyzed separately, and the actual number of regular epochs is mentioned in 
further analysis. 

2.4 Analysis 

EEG signals were analyzed using different approaches referred to as static and dynamic. The static 
methods included the calculation of frequency spectra as well as event-related techniques.  

 The power spectral density (PSD) was estimated from the epoched data (n=100) using Welch's 
overlapped segment averaging estimator, with Hamming windows of length 5s and overlap of 2.5s 
(spec_topo of EEGLAB and custom Matlab codes). To estimate the peak frequency for each subject, 
the logarithmic aperiodic trend was first subtracted (Zhang et al., 2018; Donoghue et al., 2020). 
The peak frequency was then defined as the median of the individual 

For each EEG channel, event-related potentials (ERPs) were calculated as the across-trials 
average. As a result, the amplitude of ERP signals provides information on the repeatability across 
trials. ERPs are used to investigate main trends relative to a specific event (typically the 
appearance or change in stimulus (see Murray et al., 2008, for a review) with a view of assessing 
the correlation between an objective measure and psychophysical and behavioral observations. 
In the following, stimulus-locked and response-locked ERPs were analyzed. 
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The global field power (GFP, Lehmann et al., 1980, 1984) is defined as the standard deviation 
across channels and may thus relate to localized cortical activation or deactivation. In the present 
study, GFP was calculated either for broadband signals (2-40Hz) or in commonly used brain 
rhythm frequency ranges, i.e., delta (2-4Hz), theta (4-8Hz), alpha (8-12Hz) and beta-1 (12-17Hz), 
beta-2 (17-22Hz), beta-3 (22-30Hz) and gamma (30-45Hz). Very low frequency components 
(<2Hz) in EEG data usually have much larger amplitudes than higher-frequency components. 
Including them drastically smooths the GFP curves. Here, filtering the data above 2Hz has the 
direct consequence of providing finer details in the GFP. Finally, both GFP and ERPs highlight 
timings where the topographic distribution of activity shows a specific pattern. Topographic maps 
were also computed to assess relevant cortical patterns (e.g., Chantsoulis et al., 2017; Laganaro, 
2017; Mheich et al., 2021). 

In the so-called dynamic approach several tools were designed to investigate the spatiotemporal 
cortical dynamics. Preprocessed EEG data were filtered with a 1Hz-wide band centered at nine 
different frequencies logarithmically spaced between 3 and 40 Hz (3, 5, 7, 9, 12, 16, 22, 30 and 40 
Hz). The instantaneous phase of each filtered signal was obtained by computing the Hilbert 
transform. In order to assess the existence of phase waves along a specific line of electrodes we 
implemented a circular-linear regression (Aksenov and Beuter 2021; Fisher 1993; Zhang, et al. 
2018). 

The amplitude information was obtained using the following amplitude tracking technique. For 
each trial, the topographic activity map was computed for each sample (topoplot function) and 
used to locate the peak amplitude. This resulted in 2D trajectories of the peak amplitude. 
Additional treatments were applied on the trajectories to perform various analyses. In section 3.4, 
we first projected the 2D-trajectories extracted for each trial on a simple parceled scalp map (see 
Figure S4) and counted the frequency of occurrence of the maxima of amplitude in each of these 
different regions. This representation enables to evaluate the consistency of amplitude 
trajectories as well as the relative spatial distribution across trials and for each time step. Besides, 
contrary to ERP signals, it is less affected by the across-trial differences in amplitude since it only 
considers the location of the peak amplitude for each time frame and each trial.  

The trajectories of amplitude were also represented in three dimensions to visualize their 
spatiotemporal evolution. We propose a method to perform an automatic segmentation of the 
trajectories in order to isolate specific patterns of cortical activity. From t=0 to the voice onset, we 
defined different polygons. Each polygon Pi was constructed as the projection on the scalp plane 
of the trajectory between ti and ti+Tcycle,where Tcycle is the period associated with the considered 
oscillating frequency. We calculated the Hausdorff distance (Hemanth, 2022) between successive 
cycles (Pi-Pi+1) with a time step of one cycle and the boundaries of each segment were then defined 
as the peaks of this distance. An empirical emergence threshold was applied to identify the main 
peaks of the Hausdorff distance. 

In section 3.5 the following procedure was used to determine the existence of amplitude traveling 
waves. For each time step (sampling rate = 500Hz), the spatial distance between successive 
coordinates i-1 and i was calculated, Di-1, i. If this distance did not exceed an empirical threshold, 
Dmax, samples i-1 and i were attributed to the same wave. The end of a TW was determined as soon 
as Di-1,i exceeded Dmax or if Di-1,i was equal to zero (static activity). Dmax was defined considering a 
maximal wave velocity of 30m/s. Finally, we only considered TW lasting more than 8ms (i.e., four 
samples). Statistics and topographic maps of TW were then performed.  
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We also verified whether the TW identified using the present method could be detected using a 
phase-based approach. For each identified amplitude wave, we determined the closest EEG 
contact for each sample. We then limited our data to a subset of waves passing through (or next 
to) five distinct electrodes. Next, we extracted the instantaneous phase by computing the Hilbert 
transform of these five channels at a time corresponding to the middle of the TW. Finally, we fitted 
the phase values using a circular-linear regression method (Aksenov and Beuter 2021; Fisher 
1993; Zhang, et al., 2018). 

To investigate brain connectivity, we automatically located the main hubs revealed by TW 
topographic map. To do so, we stored the coordinates of both the source and destination of each 
TW detected using the previous algorithm. We then computed the density map of each set of 
coordinates using a square grid of 10-by-10 bins (Note that the default grid resolution of 
topographic representations is 67-by-67 pixels). For each dataset, main hubs were finally defined 
as the first ten maxima of the density map. Note that we did not consider hubs located at the edges 
of the interpolation grid since their accuracy is less dependable. 

In the following, we display the findings from specific subjects. However, the same analyses were 
performed for all trials in all subjects. The corresponding figures are accessible in supplementary 
materials. 

3. Results 

3.1. Behavioral results 

All participants were able to complete the protocol. The percentage of correct naming ranges from 
92 to 99% for healthy subjects and between 88 and 97% for participants with aphasia. Depending 
on participants, false responses can be categorized as semantic paraphasia (“Fourchette” for 
”Cuillère” i.e., “Fork” for ”Spoon”) potentially reflecting a lack of inhibition, phonemic paraphasia 
(phoneme substitution, addition, or anticipation. e.g., “thermoter” for ”thermomètre” i.e., 
“thermoter” for ”thermometer”), failure in memory retrieval, in particular for words that are 
known but not frequently used. In most failed trials it could be noticed that subjects with aphasia 
were aware of providing a false response. In a few other trials, they provided a correct answer 
while being convinced that they failed. Most participants with aphasia also showed different 
degrees of dysarthria. However, for these participants we consider these errors to result from a 
difficulty in associating phonetic and phonemic information rather than actual motor disorders 
(Blumstein et al., 1982; Kohn, 1988; Laganaro et al., 2010).  

The naming latencies were also estimated from voice detection markers (median latency = 
1530ms, sd = 3664ms for subjects with aphasia; median latency = 1376ms, sd = 1114ms for 
controls). The reasons for these relatively long naming latencies are discussed in Section 4. In few 
occurrences, participants with aphasia were not able to provide an answer at all or provided a 
wrong answer after a long period of time. The naming latency could thus not be estimated for 
these trials. In the following analysis, the exact number of considered epochs is stated. To evaluate 
whether subjects with aphasia required a longer period of time for the entire process of picture 
naming, we compare the naming latencies from successful trials only. A significant difference was 
found on the naming latency (for successful trials) between the two groups (t(933) = 3.50, p 
<0.001, mean difference = 215.5 ms). Figure S1 illustrates the distribution of naming latencies 
across groups. 
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3.2. Frequency spectrum 
As expected, most spectra exhibited a clear maximum in the theta and alpha frequency bands 
except for C02 and C04. For subjects A01 and C02 the methods described by Zhang et al. failed to 
determine the peak frequency, the value was thus defined as the local maximum of the mean 
power spectral density for these two subjects. The corresponding values are reported in Figure 2. 
The mean peak frequency was 9.4 Hz (sd = 0.95Hz) and 8.6 Hz (sd = 2.24Hz) for healthy and 
participants with aphasia respectively. Note that A04 and A05 showed a peak frequency in the 
theta region. However, our small sample size did not yield any significant group effect.  

 

Figure 2. Power spectral density averaged across trials (n=100) for each participant (Cxx - 
healthy control participant, Axx - patient with aphasia). Grey lines represent power spectral 
density of individual electrodes, thick lines represent the average power spectral density. 
Vertical lines indicate the alpha peak frequency estimated after detrending. 

3.3. Event Related Potential Analysis 

3.3.1. Global field power (GFP) 

The average GFP calculated separately for both groups exhibited four main peaks located at 112, 
176, 258 and 388ms post-stimulus for healthy subjects and at 120, 200, 264 and 410ms for 
participants with aphasia (see Figure 3.A). GFP patterns were consistent in both timing (four main 
peaks delayed by 20.5ms on average for subjects with aphasia) and amplitude for both groups 
across subjects.  
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Figure 3. (A) Global field power for healthy subjects (black solid line) and participants with 
aphasia (dashed grey line). Data contain 100 epochs for each participant and were filtered 
between 2 and 40 Hz. Vertical lines indicate median naming latency. (B) Global field power in 
different frequency bands considering all trials from subject C01. High frequency ranges (Beta and 
higher) are displayed in the bottom subplot with an adapted scale for clarity. Vertical lines from 
left to right indicate the image presentation (t=0), the minimum, and median naming latency 
across the considered trials. 

 

Next, we were interested in individual subject data. Individual GFP were thus calculated for all 
subjects. Figure 3.B shows a typical example of GFP calculated for subject C01 for broadband 
signals (2-40Hz) and in commonly used brain rhythm frequency ranges (see Section 2.4). 
Additional figures are provided in supplementary materials, Figure S2. Broadband data were very 
consistent with the group-level pattern (Figure 3.A), exhibiting between three and five main peaks 
of GFP within the first 600ms post-stimulus, depending on subjects.  

In narrow frequency ranges, the largest values of GFP were also observed within the first 600ms. 
In the high frequency ranges (alpha and above) GFP patterns seem modulated by a slow 
component (~1Hz). From a theoretical point of view, such a behavior can be obtained with the 
superposition of several oscillating sources with slight frequency differences (Volpert et al. 2022). 
It may also reflect the existence of frequency coupling (Lakatos et al., 2005; Klimesch, 2018). 
Potential implications for our understanding of the cortical dynamics are discussed below. 

Of note, specific features of the broadband pattern of GFP resulted from the contributions of 
distinct frequency ranges. For all control subjects, the broadband GFP pattern was dominated by 
a theta component within the first 500ms. Moreover, in all control subjects, the first peak of GFP 
resulted from a theta and delta components, the second from theta and alpha components, while 
the third and fourth peak showed a large contribution of the delta component. This distribution 
of contributions was consistent across control subjects. In contrast, for subjects with aphasia, GFP 
patterns were much more heterogeneous. In particular, A01, A02, and A03 showed a larger 
contribution of the delta range relative to control subjects while A04 showed a delayed 
contribution of the delta component up to 1000ms (see Figure S2). This increased contribution of 
slow oscillations might reflect a pathological cortical activity as reported by several studies 
(Kamada et al., 1997; Meinzer et al., 2004; Spironelli et al., 2009). 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2023. ; https://doi.org/10.1101/2023.04.27.538530doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.27.538530
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

To quantify the across-trials variability at the individual level we computed the GFP patterns for 
ten sets of twenty-five randomly selected epochs for each subject. We then measured the latencies 
of the four first peaks of GFP as well as the standard deviation across these ten iterations. At the 
individual level, a high across-trials consistency was found (see table 2). The most stable results 
were observed for the first peak post-stimulus in the theta and alpha bands. Overall, data from 
subjects with aphasia show a slightly poorer stability across the ten iterations (mean difference 
of 5.45ms across groups).  

Peak 
number 

1st  2nd  3rd  4th  

Group Healthy Aphasic Healthy Aphasic Healthy Aphasic Healthy Aphasic 

Broadband 10.76 13.49 10.91 15.03 11.10 19.25 11.26 23.57 

delta 7.84 10.80 9.13 11.29 10.13 16.63 12.93 16.29 

Theta 6.86 4.99 8.10 9.14 10.00 9.69 10.62 9.85 

alpha 6.04 13.36 8.84 20.88 9.71 20.60 9.81 20.55 

Table 2. Consistency of the latency of the first four peaks of GFP patterns measured as the 
standard deviation of the peak’s latency for 10 random subsets of 25 epochs (in ms). 

This strong consistency in the latency of the peaks of GFP reflects an important synchrony of brain 
states across subjects and across trials. Hence the latency of GFP pattern (and the associated 
cortical microstates) is unlikely to predict the response latency of participants. To investigate the 
relationship between GFP curves and naming latencies, we compared the amplitudes of the peaks 
for short-latency trials (i.e., naming latency <1.5s) and long-latency trials (i.e., naming latency 
>1.5s). A two-way analysis of variance was carried out on the amplitude of the two main peaks of 
GFP (namely the second and third peaks post stimulus) with factors Latency (Short/Long), Group 
(Aphasic/Control). For both peaks, a significant main effect of Latency was found, for the third 
peak, a significant main effect of Groups was also found. No interactions between factors were 
observed (see table 3).  

 

 Factors Sum 
Squares 

degrees 
of 

freedom 

Mean 
Squares 

F p-value 

Peak 
#2 

Latency 0.285 1 0.285 5.318 0.035 

Groups 0.147 1 0.147 2.739 0.117 

Latency*Groups 0.077 1 0.077 1.441 0.247 

Error 0.858 16 0.054 [] [] 

Total 1.367 19 [] [] [] 

Peak 
#3 

Latency 0.301 1 0.301 4.735 0.045 

Groups 0.319 1 0.319 5.027 0.039 

Latency*Groups 0.035 1 0.035 0.555 0.467 
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Error 1.016 16 0.064 [] [] 

Total 1.672 19 [] [] [] 

Table 3. Output statistics from the two-way ANOVA performed across factors Groups, Latency for 
the two main peaks of the GFP pattern in the delta range. 

 

Post-hoc t-tests indicate that the amplitude of the second (average latency =290ms) and third 
peaks (average latency =424ms) of GFP in the delta range is significantly larger for the short-
latency trials (Peak number 2, t(9)=2.43, sd=0.31, p=0.037; peak number 3, t(9)=2.89, sd=0.27, 
p=0.018 ). This may suggest that delta activity is involved in this specific cortical processing and 
that its contribution is larger for subjects with aphasia compared to control subjects. Even though 
the normality assumption was verified for this data, to account for the relatively low number of 
subjects, we also performed a non-parametric Kruskal-Wallis test to evaluate the effect of latency. 
It yielded a significant effect of latency for the second peak of GFP (χ²=4.17, df=1, p=0.0413) but 
not for the third (χ²=2.77, df=1, p=0.0903). 

3.3.2. Topographic representations 

Figure 4 displays examples of ERP signals (top row) and the scalp maps computed at the peaks of 
the GFP (illustrated by vertical lines). 

 
Figure 4. (A) ERP signals (colored lines) and global field power (thick line) for the stimulus-
locked data. (B) Scalp maps corresponding to the timing represented by vertical lines in panel 
(A). (C) ERP signals (colored lines) and global field power (thick line) for the response-locked 
data. (D) Scalp maps corresponding to the timing represented by vertical lines in panel (C). Data 
for 93 successful trials of subject C01 filtered in the theta band. 

 

Similar analyses were performed for all subjects and the same frequency ranges used in GFP 
analysis (see Section 2.4). In most cases, the same topographic organization was found in the delta, 
theta, and alpha ranges, with a dominant activity alternating between the occipital and the frontal 
area within the first 500ms after visual stimulus. This observation is consistent with the results 
reported by Laganaro, 2017 and Mheich et al., 2021 and is characteristic of the presence of 
oscillatory sources. 

The response-locked patterns also revealed the activation of localized oscillatory sources. 
However, within the 200ms prior to the oral response these activations could mainly be observed 
in the frontal, parietal and central regions which also seem consistent with the source localization 
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results from Laganaro, 2017. Interestingly, ERP signals could either show a strong synchrony 
across channels (i.e., in-phase channels) or a strong asynchrony (out of phase channels, see Figure 
S3). 

3.4. Cortical dynamics 

ERP measures provide an overview of potentially interesting patterns in the cortical activity. 
However, as argued by Alexander et al., 2013, averaging recordings such as cortical activity 
drastically reduces the intrinsic information. Since cortical activity is constantly changing and 
evolving, averaging multiple trials inevitably erases most of the information since it will only 
highlight the contribution of phase-synchronized physiological signals. In the following analysis, 
we aim at assessing the presence of regularity and repeatable patterns in the cortical dynamics at 
the single trial scale and the multiple trials scale using the amplitude trajectories obtained using 
the method described in Section 2.4.  

Amplitude trajectories for each trial were projected on the parceled scalp map (Figure S4). Figure 
5 displays six examples resulting from this method (C01, A01, A02, C04, A04, and A05). As an 
example, Figure 5.A shows that at t=252ms post-stimulus 45% of epochs showed a maximum of 
amplitude in the occipital region while for the remaining 55% of epochs, the peak amplitude was 
indistinctly distributed across the different scalp regions. At t=420ms 35% of epochs showed a 
peak amplitude in the central area and between 10% and 15% in the temporal and frontal areas.  

The spatial distribution of the maxima of amplitude shows a strong across-trial regularity, 
especially in the occipital (“Occ.”) and central region (“Cz”), within the first 500ms which is 
coherent with the GFP patterns. It also indicates that cortical activity follows a clearly 
synchronized oscillatory pattern across trials. The noticeable delay between scalp regions also 
suggests a progressive propagation of cortical activity. Figure 5.A.B.C clearly reveal the alternating 
activity between the occipital and the frontal regions during the first 500ms post stimulus. This is 
consistent with the results from Salmelin et al., 1994 reporting a bilateral progression of cortical 
activity post-stimulus from the occipital region to the temporal and frontal regions. As in Salmelin 
et al., 1994, cortical dynamics during the overt speech preparation phases seemed much more 
variable across-subjects, and no clear pattern was observed during these phases.  

All control subjects showed a weak contribution of the prefrontal area (e.g., Figure 5.A and D; 
“Front.”), while for all patients but A03, the presence of activity in the prefrontal area was 
observed (e.g., Figure 5 B, C, E, F). For all patients but A03 we can observe an oscillatory pattern 
of the activity between the prefrontal area and the occipital area, indicating a strong across-trial 
synchrony (e.g., Figure 5 B, C, E, and F). This observation was particularly obvious at a frequency 
of 3Hz (i.e., delta range) and could persist for the entire epoch duration. It may therefore explain 
the atypical pattern of GFP in the delta range for most patients mentioned in Section 3.3 as a 
potential signature of pathological activity. Similar analysis at higher frequencies also shows such 
oscillatory patterns but with a smaller amplitude. This results from the fact that trajectories at 
higher frequencies propagate faster which makes this measure more sensitive at high frequency. 
Moreover, a similar oscillatory pattern can be observed in control subject and A03 between 
central area and occipital area. Finally, the onset of the oscillating pattern could be observed 
during the 100ms prior to visual stimulus which may reflect an anticipation process.  
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Figure 5. Spatial distribution of the maxima of amplitude. Frequency of detection of a peak of 
amplitude in different scalp regions as a function of time. Front= prefrontal area, LFront/RFront 
= Left/Right frontal areas, LTemp/RTemp=Left/Right Temporal area, Cz=Central area, 
LPar/RPar = Left/Right parietal areas, Occ.=Occipital area. Data from subject C01 (A), A01 (B), 
A02 (C), C05 (D), A04 (E) and A05 (F), at a frequency of 3Hz and for all epochs, n=100. 

 

Figure 6 displays six examples of unrolled trajectories to assess the presence of repeated patterns 
at the single-trial scale. Despite an important variability across subjects and across trials, several 
observations can be made from this representation.  
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First, the trajectories cover and connect different regions of the scalp. These connections may be 
sudden and at a large scale (e.g., frontal-occipital) or progressive and at a smaller scale (e.g., 
successive samples in a restricted regions). Second, trajectories form specific patterns of activity 
which are periodically repeated with a strong regularity. Each of these patterns seems to connect 
a limited number of brain regions. This periodic organization is consistent with the presence of 
an oscillatory activity, for the duration of each pattern (referred to as a cycle in the following) 
equals Tcycle = 1/f. Each pattern consists of the maximum of amplitude traveling along a particular 
pathway. The repetition of a specific pattern for several cycles is referred to as a segment. The 
durations of these segments was highly variable and ranged from tens of milliseconds to several 
hundreds of milliseconds. Longer segments could thus correspond to relatively demanding 
cognitive tasks being executed while shorter ones are more likely to reflect switches in the global 
cortical processing. Third, the fact that most patterns form approximately closed polygons over 
one cycle relate to the relationship between frequency and wave velocity, in a particular manner 
that the oscillation period covaries with the spatial period. In other words, an oscillatory activity 
may propagate along a specific pathway whose length is dependent on the oscillation frequency. 
This observation is in agreement with Ermentrout & Kleinfeld, 2001b and seems also verified in 
the data shown in the literature (Alexander et al., 2013; Zhang et al., 2018; Alamia et al., 2019). 

We performed the automatic segmentation of the unrolled trajectories presented in Section 2.4.3 
which can be seen as a single-trial cortical microstate as opposed to the microstates identified 
from ERP analysis (Hassan et al., 2015; Mheich et al., 2015; Laganaro, 2017). Dotted lines along 
the times axis in Figure 6 represent these boundaries and different colors illustrate the different 
segments.  

Figure 6. Unrolled trajectories for subject A01 (A, B, C) and C01 (D, E, F), for the same word 
“chien” (i.e., dog), at 12, 22, and 40 Hz from top to bottom. In each frame, the dashed line at 
t=0ms represents the image presentation, the red line represents the voice onset, and dotted 
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lines represent the abrupt changes in trajectory detected using the Hausdorff distance measure. 
Different colors of the trajectory curve represent the corresponding segments. Cartoon head is 
shown for visualization clarity. 

 

As a matter of comparison, we performed the segmentation method across the entire experiment 
(100 trials), for each subject and frequency. We then counted the number of segments from the 
image presentation to the voice onset. It results that the median of the distribution of number of 
segments for each subject varied from 4 to 7, which is also coherent with the observation of 
Mheich et al., 2021 using a different paradigm (phase locking value) and considering a different 
frequency range (30-45Hz). 

Figure 7 represents the distribution of the number of segments boundaries for all subjects and all 
trials (n=10*100), considering 50ms bins. Overall, this distribution could be described as a 
combination of a baseline trend and a periodic component. The periodic component can be 
explained by the fact that the duration of segments is dependent only on the oscillation frequency, 
and by the relatively strong inter-subject and inter-epoch synchrony of the cortical activity. It is 
also worth noting that this segmentation method revealed several frequency-dependent features. 
First, the segmentation was more obvious for high frequencies (22, 30, 40Hz) than for lower 
frequencies. More precisely, the estimated duration of each segment decreased with the 
oscillation frequency and could be fitted with a quadratic law (tsegments = 0.5292*f2 - 38.78*f + 830.5, 
r²=0.998). Second, we can observe different properties of distributions of segment boundaries for 
different frequencies (Figure 7). At 3Hz, the distribution peaked around 500ms and 1500ms 
which might relate to the end of the initial recognition processing and to the speech production 
respectively. At 9Hz, the periodicity of the distribution was much less consistent around the 
median naming latency (i.e., between 1100ms and 1550ms). This might reflect inter-trial and 
inter-subjects’ variability in the voice onset time. For frequencies of 9, 12, 16 and 22Hz the 
baseline trend gradually increased from the image presentation (first vertical line, t=0ms) and 
plateaued around the median latency (second vertical line, t=1456ms). This behavior was 
particularly obvious at 16Hz and 22Hz and indicates a strong relationship between the cortical 
dynamics and the task. In contrast, at 30Hz and 40Hz, an obvious increase in boundaries detection 
was seen within the first 100ms post-stimulus likely due to an early neural response to the visual 
stimulus while from 200ms onwards, the baseline remained constant. This suggest that the 
cortical activity at higher frequencies (30 and 40Hz) is less dependent on the task being executed.  
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Figure 7. Histograms of the number of segment boundaries calculated for all ten subjects, all 100 
epochs and for all nine frequencies (3, 5, 7, 9, 12, 16, 22, 30, and 40Hz). Bin width is equal to 50ms. 
Vertical lines indicate the image presentation (t=0ms) and the median latency (t=1456ms) 
respectively. For 30 and 40Hz, the histogram at t=0 exceeded 800 but the same scale was used for 
clarity.  

3.5. Detection of traveling waves (TW) 

In the following, we present the results from the analysis methods of the cortical dynamics used 
to detect and characterize TW based on the amplitude and the instantaneous phase of the EEG 
signals. Figure 8.A displays one example of an amplitude wave captured using the method 
described in section 2.4. As a matter of validation, we compared this amplitude-based method 
with a phase-based approach. 

 

Figure 8. (A) Topographic representation of one amplitude wave (blue arrow). Grey circles 
indicate the position of EEG electrodes. (B) EEG signals from channels T7, P7, CP5, P3 and Pz 
during the same time window. (C) Instantaneous phase of channels T7, P7, CP5, P3 and Pz (circles) 
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and results from the circular-linear regression (line). Data recorded with subject C01 and filtered 
at 22Hz. 

 

Overall, for all frequencies used in the present study 58% of the amplitude waves yielded a 
regression coefficient higher than 0.8. Figure 8.B displays the EEG signals measured at electrodes 
T7, P7, CP5, P3 and Pz (i.e., along the trajectory of the amplitude wave). Figure 8.C displays the 
instantaneous phase on these same channels and the result from the circular-linear regression 
model. The present method enables to quantify the number of TW, approximate their length and 
their velocity. The length and velocity were estimated by considering the scalp linear distance (Iz-
Fpz) equal to 30cm. The propagation velocity as a function of frequency could be fitted with a 
linear curve which is consistent with several previous results (equation 1). 

V(frequency) = a*frequency+b , where a= 0.22 m  and b=3.96 m/s   (1) 

Equation (1) is consistent with several previous results (Figure 9.A, Patten et al., 2012; Muller et 
al., 2018b; Zhang et al., 2018). Quantitatively the estimated velocity ranged from 1 to 15 m/s with 
an average value of 5.97m/s for a frequency of 9Hz which is also coherent with the results from 
Patten et al., 2012 (6.5m/s for alpha waves), Massimini et al., 2004 (1.2–7.0 m/s for slow waves), 
Botella-Soler et al., 2012 (1m/s for delta waves, note that the authors argued that the wave 
velocity was probably underestimated) and consistent with the observation of macroscopic waves 
(Muller et al., 2018a). The length of the amplitude waves (Figure 9.B) was also frequency-
dependent with faster waves propagating over longer distances.  

Figure 9.C displays the number of TW as a function of frequency for all subjects. It is worth noting 
that this number did not peak at a frequency corresponding or close to the alpha peak frequency, 
meaning that high cortical activity is not necessarily associated with a larger number of TWs. All 
subjects exhibited a maximum of waves between 12 and 30Hz. Interestingly, six subjects showed 
a typical profile exhibiting a peak around 22 Hz while the other four subjects (A01, A02, A04, and 
C02) showed either a plateau or a roughly gaussian distribution centered between 12 and 22 Hz. 
Note that a very similar velocity profile was found from the analysis of resting state data (eyes-
open). It was also found that the number of detected waves, normalized by the duration of 
considered dataset (i.e., expressed in number of TWs per sec) did not change between the resting 
state and the naming task conditions.  

Figure 9. (A) Approximate velocity (in m/s) of the TW as a function of frequency. (B) 
Approximate length (in cm) of the TW as a function of frequency. (C) Normalized number of TW 
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as a function of frequency (in /s). Different symbols indicate different subjects. Data from subjects 
with aphasia are represented with dashed lines. n=100 for each condition. 

3.6. Mapping cortical activity 

Our results indicate that cortical TW can be detected from EEG signals. Finally, we aimed at 
clarifying the role of TW within the cortical network. To investigate cortical connectivity, we 
performed the detection of TW using the algorithm described above for each subject, at each 
frequency and for both the naming task and the resting state condition (eyes-open). Then, 
detected TW were plotted as a 2D scalp map. Figures 10.A and B display the TWs identified in 10 
occurrences of the control word “chien” (i.e., “dog”) from t=0 to t=2500ms at a frequency of 22Hz 
for subjects A01 and C01 respectively. The color scale illustrates the timing of the different waves, 
relative to the end of the TW. Figure 10.C, D represent the same analysis for three minutes of 
resting-state data. Both resting state (figure 10.C, D ) and naming task data (Figure 10.A, B) 
showed that TW could be detected across the entire scalp as well as an important inter-subject 
variability of the cortical dynamics (Massimini et al., 2004; Murphy et al., 2009; Botella-Soler et 
al., 2012; Alexander et al., 2013; Salmelin et al., 1994). It is worth noting that for lower frequencies, 
(5, 7 and 9Hz) TW were more spread across the entire scalp, while at higher frequencies (22 and 
30 Hz) more obvious and redundant connections could be seen.  

In contrast, the distribution of TW showed a remarkable within-subject consistency. Our analysis 
also revealed the presence of regions where many TWs can be detected (black circles in figure 
10.A). Circles in figure 10 result from the hubs detection procedure described in Section 2.4 and 
the circles radii are proportional to the sample size in this bin. If TWs play a role in the 
communication and synchronization between key areas, such crossroads may thus represent 
relevant hubs. The locations of main hubs were very consistent across frequencies up to 22Hz. 
The largest deviation in the hub locations was found for a frequency of 30Hz. In addition, the 
distribution of these hubs was much more homogeneous for healthy subjects than for subjects 
with aphasia (see examples at 22Hz for all subjects in Figure S5).  

For all participants with aphasia, an asymmetrical or inhomogeneous distribution of TW and their 
associated hubs could be noted (e.g., subject A01 in Fig.10). We assessed the correlation of this 
observation with the position of the stroke lesions by analyzing Magnetic Resonance Imaging 
(MRI) images and clinical reports. Overall, this analysis showed a sparser density of TW (missing 
hubs) in the lesion area sometimes associated with a higher activity in the perilesional areas 
(displaced hubs). More specifically, A03 and A05 mainly showed a sparser density of TW in the 
vicinity of their stroke lesions (i.e., left temporal and parietal areas for A03, left-temporofrontal 
area for A05). A01, A02 and A04 showed an important lack of TW both in the lesion area as well 
as in the homologue region. This seemed to be compensated by a higher activity in either the 
perilesional area or the central area. This reorganization of cortical activity also echoes with the 
observation made in Section 3.4 stating that for most patients with aphasia the amplitude 
trajectories covered the anterofrontal region which is rarely seen in our group of control subjects 
(see also Salmelin et al., 1994). Figure 10.E.F shows the distribution of detected TW for subject 
A03 and the MRI images showing the location of the stroke lesions.  

The present methods and results are reminiscent of the study by Salmelin et al., 1994 using 
magnetoencephalography. We also compared the locations of these hubs with maps of the human 
connectome reported by Kabbara et al., 2017 and van den Heuvel & Sporns, 2011. This 
comparison exhibits a striking overlap between the hubs identified by TW and either the resting 
state network, the default mode network, or the rich-club network (see Figure 7.B in Kabbara et 
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al., 2017). However, it is known that these distinct networks may partially overlap and change 
over time. Hence it remains complex to determine to which network our dynamic network 
belongs to.  

 
Figure 10. (A), (B) TW detected in 10 repetitions of the word “chien” (i.e., dog) for subject A01 
and C01 respectively, at a frequency of 22Hz. Colormap indicates the timing of the end of the wave 
relative to the visual stimulus. Black circles illustrate main hubs identified from density maps 
analysis. (C), (D) TW detected during two minutes of resting state recording with eyes open for 
subject A01 and C01 respectively, at a frequency of 22Hz. (E) TW detected in 10 repetitions of the 
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word “chien” (i.e., dog) for subject A03. (F) MRI images from subject A03 showing the location of 
the stroke lesions in left temporo-parietal region.  

4. Discussion 

In this study, we were interested in investigating the spatiotemporal dynamics of cortical activity 
during language production in the healthy and lesioned brain. Healthy volunteers and people with 
post-stroke aphasia performed a self-paced picture naming task during EEG. Our main findings 
were as follows: First, we observed strong synchronization of cortical oscillations in the first 
600ms post-stimulus, with a time shift between both groups. ERPs and corresponding brain 
microstates indicate coordinated brain activity alternating mainly between frontal and occipital 
zones resulting in standing waves. Second, TW were identified from both phase and amplitude 
analyses at the single trial level. The spatial distribution of TW was altered for participants with 
aphasia. Third, the presence of TW in different cortical areas showed a remarkable time 
coordination, essentially between frontal and occipital zones, and in relation with GFP oscillations. 
The spatial dynamics differed between participants with aphasia and control subjects, with 
prefrontal TW being selectively present in participants with aphasia. Collectively, our results 
show that TW contribute to the synchronization and communication between different brain 
regions by interconnecting cortical hubs. Moreover, our findings imply that such dynamics are 
affected by brain lesions.  

4.1. Behavioral correlates of language production 

Behavioral results indicate that participants with aphasia could perform well despite showing 
signs of effortful processing. Most naming errors could be categorized as semantic or phonemic 
paraphasia. A significant difference in naming latency was observed between healthy participants 
and participants with aphasia for all trials as well as for successful trials only. Note that the naming 
latencies measured in the present experiment are longer than those reported in the literature 
(approximately 800ms across five different studies reviewed by Laganaro, 2017, and 883ms on 
average for Alario & Ferrand, 1999). The main reason that could explain this difference is that 
subjects in both studies were younger than in the present study (25 years old on average across 
the five studies reviewed in Laganaro 2017, 46 university students in Alario et al., and 55 years 
old on average in the present study). An alternative explanation for the observed longer latencies 
in our study may come from task design which allowed self-paced production without 
emphasizing the speed of the response, indeed the participants were not asked to answer as fast 
as possible. To account for longer latencies Roelofs et al., 2017 proposed the possibility to scale 
the model of Indefrey and Levelt. However, such transposition is complex since the origin of this 
delay is unclear. Besides, ERP analysis suggests that the timing of the initial cortical processing 
was relatively consistent with previous studies. 

4.2. Electrophysiological correlates of language production 

EEG data were analyzed using a static and a dynamic approach to improve our understanding of 
cortical dynamics during language production. While the functional role of alpha oscillations (8-
12 Hz) is still unclear (Klimesch et al., 2007; Klimesch, 2018; Alamia et al., 2019), the dominant 
alpha peak frequency is often used as a reference in EEG studies since it is consistently present in 
most human subjects. Petrovic et al., 2017 reported that post-stroke subjects, in the sub-acute 
phase show lower peak-frequencies than healthy subjects. Although our analysis of peak 
frequency allowed detecting a lower group mean of peak frequencies for the chronic-stage 
participants with aphasia, our small sample size did not yield any significant group effect.  
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ERP analysis enabled the replication of several results from the literature despite a limited cohort 
of participants and a relatively low-resolution EEG system (i.e., 32 electrodes). Cortical 
microstates can be identified during the cortical processing of picture naming. In the low-
frequency bands (delta, theta), the main peaks of the GFP were associated with a marked 
alternating pattern between the occipital cortex and either the anterior frontal or the dorsolateral 
frontal cortex. From 600ms onward the intersubject variability was much larger thus limiting the 
possibility to draw global conclusions (Salmelin et al., 1994; Alexander et al., 2013, Saravani et al., 
2019). 

The present results demonstrate the strong within and between-subjects consistency in the 
latency of the GFP patterns within the first 600ms post-stimulus. They also show some 
consistency with previous studies confirming the important regularity in post-stimulus cortical 
activity. A recent meta-analysis on five different picture naming studies by Laganaro, 2017 
reported that, at the group level (n=118), the average (broadband) GFP pattern exhibited a very 
consistent peak at approximately 110ms post stimulus and less salient peaks centered at 
approximately 225ms and 340ms post stimulus respectively. In Mheich et al., 2021 (23 
participants naming 148 objects) the GFP exhibited a dominant peak at 180ms as well as multiple 
peaks centered around 110ms, 130ms, 210ms and 230ms post stimulus. Due to a high level of 
consistency between subjects with aphasia and control subjects, the GFP latency itself is unlikely 
to predict difficulty or failure in the picture naming cortical processing. 

According to Indefrey and Levelt 2004 and Laganaro, 2017, the first stage of the picture naming 
process relates to the image and concept recognition, the second peak of GFP occurring around 
200ms may correspond to the lexical selection process while the following segments (third, fourth 
peak) may relate to the phonological and phonetic encoding and monitoring (Indefrey, 2011). The 
potential need of rescaling this model to account for longer naming latencies could be considered 
here. 

The analysis of ERP and GFP in limited frequency ranges provided additional information. We 
found that trials with a shorter naming latency were associated with a higher amplitude of the 
second and third peaks of the GFP pattern in the delta range (between 290ms and 424ms post 
stimulus). Despite some discrepancies in naming latency, these time windows may relate to 
semantic (“Lexical phonological code retrieval”) and phonological (“syllabification”) processes 
(Indefrey et al., 2004; Llorens et al., 2011; Indefrey, 2011; Croce et al., 2020). This observation is 
consistent with the fact that in the present experiment, most naming errors resulted from 
semantic paraphasia (i.e., correct semantic context but inaccurate target selection) and/or 
phonemic paraphasia (substitution or rearrangement of phonemes). This increase in amplitude 
was even larger for participants with aphasia which might be the signature of a pathological slow 
activity. This observation was corroborated by the fact that, overall, the GFP patterns for 
participants with aphasia showed a larger and/or delayed contribution in the delta range.  

4.3. Amplitude trajectories allow spatiotemporal tracking of language 
production 

The amplitude tracking method used here enabled to further investigate the distribution of 
cortical activity and its across-trial consistency with more accuracy than the ERP approach.  

Figure 5 reveals a very consistent oscillatory pattern between the occipital and both central and 
frontal area for control subjects. This might indicate the early involvement of premotor areas 
(Llorens et al., 2011). In contrast, participants with aphasia (except A03) showed enhanced delta 
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activity in the prefrontal cortex. As an important caveat, this observation does not mean that the 
prefrontal cortex is not active in control subjects but rather that the cortical activity was 
consistently larger in amplitude in the central and frontal regions.  

The illustration of amplitude trajectories (Fig. 6) indicates the presence of stable spatiotemporal 
segments of the cortical process lasting up to several hundreds of milliseconds. These patterns 
are consistent with an oscillatory activity propagating through a spatiotemporally coherent 
pathway. Overall, the distribution of the segment boundaries in time (Fig. 7) provided frequency-
specific markers which could be related to the various steps of the picture naming task, even 
though further investigation is required to strengthen our findings. 

4.4. Traveling waves allow the identification of hub regions 

Applying restrictive criteria on the amplitude trajectories enables to identify propagating TW in 
two dimensions. The estimated velocity, length and number of TW are consistent with previous 
results from the literature (Zhang et al., 2018). We also combined amplitude tracking and phase 
regression methods to strengthen our observation. Results show that in around 60% of cases, the 
detection of an amplitude wave was also coherent with the detection of a phase wave. The residual 
40% of amplitude waves which could not by associated with a phase wave can be explained by 
the fact that the two methods are intrinsically different. Indeed, amplitude waves are defined by 
concatenating successive samples. On the contrary, phase waves are identified when the 
instantaneous phase of several successive electrodes forms a regression. For example, if the 
maximum is not moving, there is no amplitude wave, but there may be a phase wave. Conversely, 
the phases of the successive electrodes may be the same (no phase wave), but the maximum 
amplitude may shift. Besides, it is likely that other dynamic patterns or propagating waves occur 
at lower amplitudes. These patterns would therefore not be captured by the present technique.  

The distribution of TW demonstrates a strong activity on the entire scalp surface. We also noted 
the existence of limited regions with a higher density of TW. The location of these hubs 
demonstrated a strong within-subjects consistency for different frequencies both at rest and 
during the picture naming task. Their number and position is also consistent with either connector 
hubs of the default-mode network, resting-state network and/or rich-club network (van den 
Heuvel et al., 2011; Sporns, 2013; Kabbara et al., 2017). 

The present results provide evidence suggesting that TW detected from amplitude tracking 
ensure the connection between at least main connector hubs of these resting state networks. In 
particular, the frequency dependence of TW length and their spatial distribution could indicate 
that provincial hubs are linked by slow TW while connector-hubs are connected by faster (higher-
frequency) waves. 

Data in participants with aphasia showed specific changes in the distribution of TW in the lesional 
and perilesional area. This supports the fact that the properties of damaged neural tissues may be 
modified by the stroke and further neural degeneration (Bessonov et al., 2019). The presence or 
absence of TW in the lesional area may reflect different degrees of initial tissue damage and 
potentially different degrees of neural self-regeneration (Lindvall et al., 2015). Again, the absence 
of TW detected with the present method may also indicate that the cortical activity in these 
regions is lower in amplitude and thus not captured by our technique.  

Our data further suggest that, in response to this relative lack of TW in the vicinity of the lesioned 
tissue, local increase of traveling waves are observed in homologous regions of perilesional 
regions.  
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This may also indicate that stroke lesions can affect cortical hubs and may thus induce the 
displacement of one or several main hubs, or even their suppression. This obviously questions the 
consequences of such drastic changes in the cortical organization.  

However, one must bear in mind that while the approximate location of stroke lesions could 
reliably be associated with a sparser distribution of TW, some “blank” regions could also be seen 
in other regions and/or in healthy subjects. This observation thus suggests that the distribution 
of TW highlights the presence of main pathways across the scalp resulting from years of cortical 
plasticity which is even more pronounced in the presence of stroke lesions. Reproducing this 
analysis of cortical dynamics longitudinally from the acute to the chronic phase could provide 
valuable insights for our understanding of the cortical post-stroke reorganization.  

Our observations suggest that dynamic hubs identified throughout this study act as major 
oscillatory sources of cortical activity. Therefore, they seem to initiate and receive most of the 
(high-amplitude) TW. This finding strengthens the hypothesis that cortical TW contribute to the 
synchronization of brain areas and suggests that part of their role consists in connecting hubs of 
the default mode network.  

However, at this stage the specific role of these hubs and neighboring regions is difficult to 
determine. It is still unclear whether the sequential order of activation of these hubs is important 
for efficient cortical processing. Likewise, our results do not allow to differentiate between serial 
and interactive theories of picture naming. We note that our study was not designed to provide 
evidence for or against a specific model. Rather, we aimed to probe the cortical dynamics of 
distributed processing in healthy and lesioned brains during a prototypical language production 
task. A hierarchal activation of hubs could not be established, nor to clearly demonstrate how TW 
relate to picture naming processing for multiple reasons. First, as reported by numerous previous 
studies cortical dynamics show an important inter- and intra-subject variability (e.g., Alexander 
et al., 2013; Croce et al., 2020; Saha et al., 2020; Salmelin et al., 1994). Second, the present 
approach does not account for frequency coupling or phase-amplitude coupling mechanisms 
which may play an important role. The movie presented in supplementary materials (Movie S6) 
illustrates how TW at different frequencies may merge in a given hub or how a TW at a given 
frequency can pursue its propagation at a slightly different frequency. Such complex mechanisms 
should be taken into account, and further studies are needed to deepen our understanding of 
cortical dynamics. 

4.5. Limitations 

Our results are limited by the small sample size and the relatively large number of outcome 
variables. Consequently, our findings should be interpreted with caution. We further note that, in 
the present study, EEG was recorded with a relatively low spatial resolution (30 active contacts, 
while HD-EEG can use as much as 256 contacts). EEG data were thus interpolated from the 30 
contacts. Besides, the projection of the EEG data on the scalp is not accurate enough to enable 
identifying the corresponding anatomical regions. In particular, the topographic maps, 
trajectories, and TW at the edges of the interpolation grid must be carefully interpreted since the 
accuracy of the interpolated data cannot be predicted. It is therefore possible that using a higher 
density of electrodes could provide finer details and facilitate the interpretation of such results. 

4.6. Conclusions 

Overall, the present observations support the fact that the initial steps of the picture naming 
cortical processing are operated with a strong time regularity. Our results further indicate that 
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cortical activity follows periodic patterns of activation (referred to as segments) during periods 
of time which may last from 700ms to 100ms as the frequency increases from 3 to 40Hz. While 
some similarities could be found between trials, these segments are highly variable.  

The cortical dynamics within each segment could be described as a combination of relatively 
stable brain sources (recurrent hotspots in the TW topographic maps) potentially resulting from 
the synchronous and periodic firing of a local neural population inducing standing waves 
(Bhattacharya et al., 2022). In parallel, continuous connections could be observed across the scalp 
which may indicate the existence of cortical TW. As a result, the peaks of ERP and GFP patterns 
mainly picture the influence of such sources.  

Additionally, we found that the distribution of changes in amplitude trajectories (i.e., segments 
boundaries) followed a periodic pattern related to the segments’ length. Such a behavior suggests 
that each processing step is synchronized and limited in time. It therefore seems that the role of 
TW is to ensure the synchronization and involvement of relevant cortical areas (hubs). Each 
segment of the unfolded trajectories seems to correspond to multiple iterations of a specific 
operation. Once a response threshold is reached, a new segment appears. Then multiple iterations 
of a new operation begins. The production of a correct or false response will then depend on the 
efficacy of the processing (memory retrieval, inhibition of incorrect objects). Collectively, the 
present results improve our understanding of cortical dynamics as well as the influence of stroke 
lesions on oscillatory activity. Our results and methods provide some useful hints for further 
investigation. Replicating such analyses for a semantic or phonological task, and over a larger 
cohort of participants, could highly improve our understanding of the task-specific cortical 
processing. 

Our results may also have direct implications for future modeling studies on the cortical dynamics 
and the role of TW. Finally, we hope that the insights from this work will contribute to the 
development of more effective rehabilitation techniques.  
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