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a b s t r a c t 

The investigation of spontaneous fluctuations of the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord, 
where it has stimulated interest from a clinical perspective. A number of resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated 
robust functional connectivity between the time series of BOLD fluctuations in bilateral dorsal horns and between those in bilateral ventral horns, in line with the 
functional neuroanatomy of the spinal cord. A necessary step prior to extension to clinical studies is assessing the reliability of such resting-state signals, which 
we aimed to do here in a group of 45 healthy young adults at the clinically prevalent field strength of 3T. When investigating connectivity in the entire cervical 
spinal cord, we observed fair to good reliability for dorsal-dorsal and ventral-ventral connectivity, whereas reliability was poor for within- and between-hemicord 
dorsal-ventral connectivity. Considering how prone spinal cord fMRI is to noise, we extensively investigated the impact of distinct noise sources and made two crucial 
observations: removal of physiological noise led to a reduction in functional connectivity strength and reliability – due to the removal of stable and participant-specific 
noise patterns – whereas removal of thermal noise considerably increased the detectability of functional connectivity without a clear influence on reliability. Finally, 
we also assessed connectivity within spinal cord segments and observed that while the pattern of connectivity was similar to that of whole cervical cord, reliability 
at the level of single segments was consistently poor. Taken together, our results demonstrate the presence of reliable resting-state functional connectivity in the 
human spinal cord even after thoroughly accounting for physiological and thermal noise, but at the same time urge caution if focal changes in connectivity (e.g. due 
to segmental lesions) are to be studied, especially in a longitudinal manner. 
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. Introduction 

Over the last decades, the spatiotemporal organization of spon-
aneous fluctuations of BOLD signals in the brain has been widely
nvestigated and intrinsic resting-state networks have been considered
s building blocks of brain function that are relevant for cognition
nd behavior ( Deco et al., 2011 ; Fox and Raichle, 2007 ; Petersen and
porns, 2015 ; Raichle et al., 2001 ; Wig, 2017 ). With a delay of about 20
ears and on a much smaller scale, a similar perspective has opened up
or spinal cord function, with resting-state fMRI studies demonstrating
hat spontaneous BOLD fluctuations of the spinal cord are spatiotem-
orally organized as well ( Barry et al., 2014 , 2016 , 2018 ; Conrad et al.,
018 ; Eippert et al., 2017a ; Harita and Stroman, 2017 ; Harita et al.,
019 ; Hu et al., 2018 ; Ioachim et al., 2019 , 2020 ; Kinany et al.,
020 ; Kong et al., 2014 ; Liu et al., 2016a , 2016 b; Martucci et al.,
019 , 2021 ; San Emeterio Nateras et al., 2016 ; Vahdat et al., 2020 ;
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eber et al., 2018 ; Wei et al., 2009 ; for a review see Harrison et al.,
021 ). More specifically, region-of-interest (ROI) based functional con-
ectivity techniques have revealed statistically significant connectivity
etween the time series of bilateral ventral horns as well as between
ilateral dorsal horns in humans and similar functional connectivity
atterns have been identified in non-human primates and rodents as
ell ( Chen et al., 2015 ; Wu et al., 2018 , 2019 ). Since the dorsal horns

eceive somatosensory information from the body and the ventral
orns contain cell bodies of the motor neurons ( Hochman, 2007 ), the
bserved connectivity patterns appear to be well aligned with the spinal
ord’s functional organization. 

Resting-state fMRI metrics are often considered in the context of
iomarker development ( Hohenfeld et al., 2018 ; Parkes et al., 2018 ;
fannmöller and Lotze, 2019 ), i.e. for monitoring and prediction of dis-
ase progression or treatment response. This approach could obviously
e extended towards the spinal cord as well (e.g. in the context of re-
pert) . 
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overy after spinal cord injury) and first steps have already been taken
n this direction by assessing changes in spinal cord resting-state con-
ectivity in sensory and motor disorders with diffuse or localized spinal
athology ( Chen et al., 2015 ; Combes et al., 2022 ; Conrad et al., 2018 ;
artucci et al., 2019 ; Landelle et al., 2023 ). However, before the clin-

cal utility of resting-state metrics can be established, a necessary first
tep is to assess their reliability as well as the factors that influence it.
n this respect, it is important to note that only a very limited number of
tudies have investigated the test-retest reliability (i.e., the stability of a
easure under repeated measures; Shrout and Fleiss, 1979 ; Shrout and

ane, 2012 ) of resting-state networks in the human spinal cord: only one
tudy at 7T ( Barry et al., 2016 ) and five studies at the clinically-relevant
eld strength of 3T ( Barry et al., 2018 ; Hu et al., 2018 ; Kowalczyk et al.,
023 ; Liu et al., 2016 ; San Emeterio Nateras et al., 2016 ), though these
atter ones except Kowalczyk et al. (2023) had rather small sample sizes
 N = 1 and N = 10). 

These studies provided an initial assessment of test-retest reliabil-
ty, but did not investigate the factors that might shape reliability in-
epth. Given the susceptibility of spinal cord fMRI to the detrimen-
al influence of noise ( Cohen-Adad et al., 2010 ; for review, see Fratini
t al., 2014 ; Eippert et al., 2017b ), it is however essential to understand
ow distinct noise sources might impact spinal cord resting-state func-
ional connectivity and its reliability – a relationship that, even in the
rain, is not necessarily straightforward ( Birn et al., 2014 ; Noble et al.,
019 ; Shirer et al., 2015 ). A first noise source of relevance is physi-
logical noise of cardiac and respiratory origin, to which spinal cord
MRI is especially prone ( Harita and Stroman, 2017 ; Piché et al., 2009 ;
erma and Cohen-Adad, 2014 ). Physiological noise of structured na-

ure is particularly detrimental for resting-state fMRI studies as one
annot explicitly model the intrinsic activity of interest (unlike in task-
ased fMRI), which makes it more challenging to attribute the ob-
erved results to the underlying neuronal activity instead of non-neural
onfounds ( Birn, 2012 ; Birn et al., 2014 ; Murphy et al., 2013 ). An-
ther major source of noise that influences fMRI measurements is ther-
al noise ( Edelstein et al., 1986 ; Hoult and Richards, 1976 ), which
as not been investigated in the context of spinal cord fMRI to our
nowledge. While thermal noise – whose principal source is the ther-
al fluctuations within the subject that is imaged, followed by noise
ue to scanner electronics – is not structured, its removal may further
enefit the detectability of BOLD signals of interest ( Ades-Aron et al.,
021a ; Adhikari et al., 2019 ; Dowdle et al., 2023 ; Vizioli et al.,
021 ). 

Considering all the above, the aims of the current study are as fol-
ows. First, we aim to replicate previous resting-state fMRI functional
onnectivity results and assess their test-retest reliability in a large sam-
le ( N = 45) at the clinically-relevant field strength of 3T across the
ntire cervical spinal cord. Second, we aim to assess how structured
physiological) and unstructured (thermal) noise sources impact func-
ional connectivity and its reliability. Finally, we aim to investigate more
ocalized aspects of functional connectivity and its reliability, namely
ithin each spinal cord segment. 

. Methods 

.1. Participants 

This study is based on the participant sample of Kaptan et al. (2022) ,
hich contained data from 48 healthy participants. As our focus in the

urrent study was on assessing the influence of different noise sources
n the reliability of resting-state functional connectivity, data from three
articipants had to be discarded due to technical problems in the acqui-
ition of peripheral physiological data (i.e., corrupted ECG-recordings),
hus leading to a final sample size of 45 participants (20 females, age:
7 ± 3.8). All participants provided written informed consent and the
tudy was approved by the Ethics Committee at the Medical Faculty of
he University of Leipzig. 
2 
.2. Data acquisition 

All measurements were performed on a 3T whole-body Siemens
risma MRI System (Siemens, Erlangen, Germany) equipped with a
hole-body radio-frequency (RF) transmit coil, a 64-channel RF head-
nd-neck coil, and a 32-channel RF spine-array, using the head coil el-
ment groups 5–7, the neck coil element groups 1 and 2, and spine coil
lement group 1 (all receive-only). Before the start of data acquisition,
ypical instructions for spinal MRI studies were given to the participants
i.e., they were told not to move, to avoid excessive swallowing and to
reathe normally; see Cohen-Adad et al., 2021 ). The here-described data
re part of a larger methodological project: we thus only describe the
elevant parts – two functional acquisitions and one structural acquisi-
ion – and refer the interested reader to the methodological publication
or further details on this dataset ( Kaptan et al., 2022 ). 

Functional runs consisted of 250 single-shot 2D gradient-echo EPI
olumes (acquisition time: 578 s) that covered the spinal cord from the
nd cervical vertebra to the 1st thoracic vertebra and were acquired with
he following parameters: slice orientation: transverse oblique; number
f slices: 24; slice thickness: 5.0 mm; field of view: 128 × 128mm 

2 ,
n-plane resolution: 1.0 × 1.0mm 

2 ; TR: 2312 ms; TE: 40 ms; excita-
ion flip angle: 84°, GRAPPA acceleration factor: 2; partial Fourier fac-
or: 7/8; phase-encoding direction: anterior-to-posterior; echo spacing:
.93 ms; bandwidth per pixel: 1220 Hz/Pixel. Both functional runs em-
loyed slice-specific z-shimming ( Finsterbusch et al., 2012 ) in order to
vercome the signal-loss that occurs due to local magnetic field inhomo-
eneities. The two runs only differed according to the selection method
f slice-specific z-shims: this occurred either manually or automatically
 Kaptan et al., 2022 ). The two runs were separated from each other by
 maximum of ∼10 min, did not show a systematic order difference (the
un with manual selection of z-shims occurred before the run with au-
omatic selection of z-shims in 23 of the 45 participants) and exhibited
ighly similar gray matter tSNR (run with manual selection of z-shims:
5.7 ± 1.3; run with automatic selection of z-shims: 15.4 ± 1.3; mean
 standard deviation; see also Fig. S1 for voxel-wise gray matter tSNR
aps). During each of the runs, participants were presented with a white

ross-hair on a gray background, which they were asked to fixate on. 
Additionally, a high-resolution T2-weighted acquisition (3D sagittal

PACE sequence, Cohen-Adad et al., 2021 ; 64 sagittal slices; resolution:
.8 × 0.8 × 0.8mm 

3 ; field-of-view: 256 × 256mm 

2 ; TE: 120 ms; flip
ngle: 120°; TR: 1500 ms; GRAPPA acceleration factor: 3; acquisition
ime: 4.02 min) was obtained for registration purposes. 

During fMRI data acquisition, we also acquired peripheral physio-
ogical signals in order to perform physiological noise modeling: respi-
atory data were acquired via a breathing belt and cardiac data were
cquired via ECG electrodes (BrainAmp ExG system; Brain Products
mbH, Gilching, Germany). Data acquisition occurred with a sampling-

ate of 1 kHz and included scanner triggers to allow for synchronization
f data streams. 

.3. Data preprocessing 

Preprocessing steps were performed using MATLAB (version 2021a),
EGLAB (version 2019.0; Delorme and Makeig, 2004 ), FMRIB Software
ibrary (FSL; version 6.0.3; Jenkinson et al., 2012 ), and Spinal Cord
oolbox (SCT; version 4.2.2; De Leener et al., 2017 ). 

.3.1. Preprocessing of physiological data 

ECG data were processed within EEGLAB ( Delorme and
akeig, 2004 ) using the FMRIB plug-in ( https://fsl.fmrib.ox.

c.uk/eeglab/fmribplugin/ ). This algorithm allows for the correc-
ion of gradient artifacts in the ECG signal caused by the switching
f magnetic gradients during fMRI acquisitions ( Niazy et al., 2005 ).
-peaks were automatically detected after correction and where nec-
ssary manual corrections were carried out using in-house MATLAB
cripts. 

https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/


M. Kaptan, U. Horn, S.J. Vannesjo et al. NeuroImage 275 (2023) 120152 

 

t  

r  

i  

w
 

B  

i  

0  

i  

c  

s  

o  

a

2

2  

c  

i  

u  

i  

A  

o  

e  

v  

a  

r  

s  

s  

w  

e

2  

s  

e  

s  

s  

(
 

T  

a

2  

i  

s  

B  

s  

t  

m  

(
 

t  

(  

t  

t  

w  

t  

w  

t
 

m  

m  

w  

i  

f  

m  

w  

2

 

r  

f  

2  

t  

o  

b  

p  

s  

i  

c  

c  

s  

t  

s  

i  

a  

s  

m  

G  

g  

a
 

w  

i  

(  

t  

F  

(  

f  

c  

f  

2  

s  

t  

i  

a  

i  

s  

d  

a  

r  

s  

i
 

l  

a  

A  

t

 

 

 

i
i

v  
We calculated the heart-period (i.e., R-R interval) in milliseconds as
he average difference in time between each R peak for each functional
un. In addition to that, we assessed heart-period variability by calculat-
ng the standard deviation of R-R intervals ( Shaffer and Ginsberg, 2017 )
ithin each of the two functional runs. 

The respiratory period was calculated as described by
ach et al. (2016) . More specifically, the respiration traces were

) mean-centered, ii) filtered with a band pass filter (cut-off frequencies:
.01 Hz and 0.6 Hz), and iii) median filtered over 1 s. The start of
nspiration was defined as a negative zero-crossing. After each detected
ycle, a 1 s refractory period was imposed, to account for residual
ignal noise that may lead to the occurrence of several zero-crossings
n the same respiratory cycle ( Bach et al., 2016 ). We report the mean
nd standard deviation of the respiratory period in seconds. 

.3.2. Preprocessing of fMRI data 

.3.2.1. Motion-correction. For each functional run, a slice-wise motion
orrection procedure with regularization in z-direction (as implemented
n SCT, “sct_fmri_moco ”) was employed in two steps. First, the 250 vol-
mes of each run were averaged to create a mean image, and this mean
mage was used to automatically determine the centerline of the cord.
 cylindrical mask (with a diameter of 41 mm) was generated based
n this centerline and used during the motion-correction procedure to
nsure that regions moving independently from the cord would not ad-
ersely impact the motion-correction. The previously-created mean im-
ge was used as a target for the first iteration of slice-wise motion cor-
ection with a 2nd degree polynomial and spline interpolation. In the
econd step, the mean of motion-corrected time series from the first step
erved as a target image for the second iteration of motion-correction,
hich was applied to the raw images (with the same algorithm param-

ters). 

.3.2.2. Segmentation. For the functional runs, binary masks/
egmentations of the spinal cord were manually created based on
ach mean image after motion-correction. We employed a manual
egmentation instead of an automated segmentation to ensure that the
egmentation quality did not adversely affect the registration procedure
see below), which was dependent on the segmentation. 

Binary masks/segmentations of the spinal cord obtained from the
2-weighted images were created automatically using the ‘ sct_deepseg ’
pproach of SCT ( Gros et al., 2019 ). 

.3.2.3. Registration. Functional connectivity analyses were performed
n native space to make them comparable to those of a previous
tudy on resting-state functional connectivity and its reliability by
arry et al. (2016) . However, registration to the PAM50 template
pace ( De Leener et al., 2018 ) was still performed in order to obtain
he warping fields that allowed to bring region-specific probabilistic
asks from PAM50 template space to each individual’s native space

‘ sct_warp_template’ ). 
First, anatomical T2-weighted images were normalized to

he template space with the following three consecutive steps
 ’sct_register_to_template’ ): i) the spinal cord was straightened using
he binary cord segmentation, ii) the automatically labelled C2-C7 ver-
ebral levels (created via ‘ sct_label_vertebrae ’, with manual corrections
hen deemed necessary) were used for the vertebral alignment between

he template and the anatomical images, iii) the anatomical images
ere registered to the template using non-rigid segmentation-based

ransformations. 
Second, the T2-weighted PAM50 template was registered to the

ean of motion-corrected functional images using non-rigid transfor-
ations (‘ sct_register_multimodal ’; with the initial step using the inverse
arping field obtained from the registration of the T2-weighted anatom-

cal image to the template image). The resulting warping fields obtained
rom this registration were then applied to the PAM50 probabilistic gray
3 
atter and segmental level masks to bring them into the native space
here connectivity estimation and statistical analyses were carried out.

.3.3. Denoising 

As we aimed to investigate the effect of various noise sources on
esting-state functional connectivity and its reliability, we employed dif-
erent denoising pipelines to assess the impact of specific noise sources.

.3.3.1. Physiological noise. First, we employed a processing pipeline
hat does not explicitly account for any specific noise source – from now
n we refer to this pipeline as ‘ baseline ’ throughout the manuscript. The
aseline denoising pipeline consisted of i) motion-correction, ii) high-
ass filtering (with a 100 s cut-off), and iii) “motion-censoring ”. Cen-
oring was necessary to ensure that outlier volumes that were either
nadvertently introduced by the motion-correction algorithm or that oc-
urred due to a sudden large movement of participants did not artifi-
ially inflate the connectivity estimates (as outlier volumes can create
pikes in the signal time series of ROIs). The outlier volumes were de-
ermined using the dVARS (the root mean square difference between
uccessive volumes; Smyser et al., 2011 ) and refRMS (root mean square
ntensity difference of each volume to the reference volume) metrics
s implemented in the ‘ fsl_motion_outliers’ function of FSL. Volumes pre-
enting with dVARS or refRMS values two standard deviations above the
ean values of each run were selected as outliers. In the later occurring
LM estimation, these outlier volumes were modelled as individual re-
ressors (on average, 4.67 ± 3.15 volumes were identified as outliers
cross all participants and sessions, i.e. less than 2% of the volumes). 

Second, physiological noise modeling (PNM; Brooks et al., 2008 )
as used to obtain slice-specific regressors to account for physiolog-

cal confounds. PNM is a modification of the RETROICOR approach
 Glover et al., 2000 ) and creates slice-specific regressors via calculating
he cardiac and respiratory phase of each slice by modeling them via
ourier basis series with a combination of sine and cosine harmonics
 Brooks et al., 2008 ; Kong et al., 2012 ). We utilized regressors up to the
ourth harmonic – resulting in a total of 16 regressors – to account for
ardiac and respiratory processes, and another 16 regressors to account
or their interactions, resulting in a total of 32 regressors ( Brooks et al.,
008 ; Kong et al., 2012 ). In addition to that, a slice-specific CSF regres-
or was created (as implemented in PNM) by extracting the signal from
he voxels whose variance was in the top 10 percentile within a region
ncluding both the spinal cord and CSF space. In post-hoc analyses, we
lso created slice-specific white-matter (WM) regressors in the follow-
ng way: we i) registered the PAM50 WM template to native space, ii)
ubtracted the native space unthresholded gray matter template (in or-
er to prevent overlap with the gray matter mask) and ii) obtained the
verage time series from the resulting mask (in order to be used as WM
egressor). Note that all noise regressors were high-pass filtered with the
ame 100 s cut-off prior to noise regression to prevent spectral misspec-
fication ( Hallquist et al., 2013 ). 

Third, a specific set of regressors that account for different physio-
ogical noise sources was then added to the baseline denoising pipeline,
nd regressed out from the functional data using FEAT (FMRI Expert
nalysis Tool; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT ), resulting in

he seven different denoising pipelines listed below: 

i. Baseline (consisting of motion-correction, high-pass filtering and
censoring) 

ii. Baseline + slice-specific motion-correction estimates (x- and y- trans-
lation; automatically obtained from the slice-wise motion correction
procedure) 

ii. Baseline + CSF signal 
v. Baseline + eight respiratory regressors 
v. Baseline + eight cardiac regressors 
i. Baseline + thirty-two PNM regressors (including eight respiratory

regressors, eight cardiac regressors, and 16 interaction regressors) 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
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ii. Maximal (motion-correction, high-pass filtering, censoring, slice-
specific motion correction regressors, 32 PNM regressors and a CSF
regressor) 

The residuals obtained from each of the denoising pipelines were
hen used for further analysis. Please note that while we did not in-
lude a pre-whitening step in our above-mentioned denoising pipelines,
e assessed the impact of pre-whitening carried out using FILM (FM-
IB’s Improved Linear Model with local autocorrelation correction;
oolrich et al., 2001 ) by comparing maximal denoising with maximal

enoising + FILM pre-whitening (see Table S1). In post-hoc analyses, we
lso assessed the impact of WM regression by adding a WM regressor to
aseline processing, as well as to maximal processing (see Table S2). 

.3.3.2. Thermal noise. Another major source of noise that contributes
o the variability of fMRI time series is zero-mean Gaussian ther-
al noise which arises from thermal fluctuations within the partici-
ant, as well as scanner electronics ( Edelstein et al., 1986 ; Hoult and
ichards, 1976 ). Here, we employed two different approaches to ad-
ress the influence of thermal noise: spatial smoothing and denois-
ng based on Marchenko-Pastur Principle Component Analysis (MP-
CA; Mar čenko and Pastur, 1967 ; Veraart et al., 2016a , 2016b ), ei-
her of which was employed before GLM-based physiological noise
orrection via the maximal denoising pipeline was carried out. Spa-
ial smoothing was implemented in FEAT with isotropic Gaussian ker-
els of either 2 mm or 4 mm FWHM. Non-local MP-PCA was imple-
ented using an openly available MATLAB algorithm ( http://github.

om/NYU-DiffusionMRI/mppca _ denoise ; Ades-Aron et al., 2021b ) and
as applied to the entire fMRI time series data (dimensions [x, y, z,

ime]: 128 × 128 × 24 × 250) before motion correction. In the context
f MRI, MP-PCA was originally evaluated for thermal noise reduction in
iffusion MRI data ( Veraart et al., 2016a , 2016b ), but has recently also
een applied to task-based ( Ades-Aron et al., 2021a ) and resting-state
 Adhikari et al., 2019 ) fMRI data of the brain, aiming to minimize the
ontributions of thermal noise to fMRI time series without altering the
patial resolution. 

Finally, in order to estimate the effect of thermal noise removal
via smoothing or MP-PCA – on the data’s spatial smoothness, we

stimated the spatial autocorrelation function of the residuals within
he spinal cord after each of four processing pipelines (maximal, max-
mal + MP-PCA, maximal + smoothing 2 mm, maximal + smoothing
 mm) using the 3dFWHMx function of AFNI ( Cox et al., 2017 ). The
moothness estimates were derived from AFNI’s mixed gaussian and
ono-exponential decay model and we report the effective (combined)

moothness value after each denoising approach (already incorporating
moothness changes introduced during motion correction). 

.4. Statistical analysis 

.4.1. Functional connectivity calculation 

Functional connectivity was assessed using an ROI-based approach.
he ROI masks were created using the probabilistic PAM50 gray mat-
er masks that were warped from template space to the native space of
ach participant (see section 2.3.2.3). In native space, the probabilistic
ray matter masks were thresholded at 70% for each slice separately to
nsure that there were no voxels shared between distinct ROIs. Within
 slice, the ROIs typically contained 1.6 and 1.5 voxels in the left and
ight dorsal horns, and 1.9 and 1.9 voxels in the left and right ventral
orns, respectively (average over slices and participants). Slice-specific

ime courses were then extracted via averaging the signal over the vox-
ls within each of the four ROIs (left dorsal horn, left ventral horn, right
orsal horn, and right ventral horn). 

Next, slice-wise correlations between ROIs were calculated using the
earson correlation coefficient (see Supplementary Material for an ex-
lanation as to why correlations were calculated slice-wise). In order
o address the effects of any remaining signal fluctuations that might
4 
e shared between the ROIs (e.g. residual movement or physiological
oise effects) we also calculated slice-wise partial correlation coeffi-
ients (Fig. S2): for instance, to calculate the partial correlation on a
iven slice between time series from left and right dorsal horn, the
ime series from left and right ventral horn of that slice were used as
ontrolling variables. The dorsal-ventral correlations within each hemi-
ord (left dorsal with left ventral and right dorsal with right ventral),
s well as between hemicords (left dorsal with right ventral and right
orsal with left ventral) were averaged, yielding one within-hemicord
nd one between-hemicord dorsal-ventral connectivity value for each
articipant (similar to Eippert et al., 2017a , who did not observe any
ignificant laterality differences). The slice-wise correlation coefficients
ere then averaged over all slices along the superior-inferior axis of the

ord, yielding four functional connectivity estimates for each partici-
ant: dorsal-dorsal, ventral-ventral, dorsal-ventral within-hemicord and
orsal-ventral between-hemicord. This averaging of correlation values
ight lead to a slight conservative bias in our results as we did not
erform Fischer’s z-transformation prior to averaging, however, this is
ssumed to be negligible ( Silver and Dunlap, 1987 ; Corey et al., 1998 ;
ippert et al., 2017a ). Note that only those slices that were assigned to
3-T1 probabilistic segmental levels were included, resulting in a vari-
ble number of slices across different participants due to the anatomy
f the participants (depending on the coverage of the EPI slice-stack
uring acquisition). At the group-level, we report the mean r value, i.e.
veraged across two sessions and averaged across participants. 

The significance of the functional connectivity estimates or the dif-
erence between them (depending on the aim of the analysis) were as-
essed using permutation-based tests implemented in the Permutation
nalysis of Linear Models software (PALM; Winkler et al., 2014 ). The
umber of permutations was set to 10,000 and we report two-tailed
amily-wise error (FWE) corrected p-values (adjusted according to the
umber of tests performed). 

.4.2. Within-segment functional connectivity. In order to provide in-
ights into the segment-wise organization of functional connectivity,
e also investigated the functional connectivity within each spinal seg-
ent covered by our imaging volume; those included all segments be-

ween the third cervical (C3) and first thoracic segment (T1). Therefore,
robabilistic segmental levels from PAM50 template space were first
arped to each participant’s native space (see Section 2.3.2.3 ). Then, to
uarantee that there was no overlap between neighboring segments, the
lice with the highest probability of belonging to a specific segmental
evel and the slice above and below were assigned to the corresponding
egment. This procedure ensured that there were a similar number of
lices for each segment and led to a 15 mm segment length, which is
n line with empirical measurements of cervical segment length based
n postmortem data ( Ko et al., 2004 ). Slice-wise functional connectivity
as calculated as described above and the correlation values for slices
ithin each segment were averaged. The connectivity strength for each

egment was tested against 0 via permutation tests as described above
see Section 2.4.1 ). Please note that for all within-segment analyses, we
sed data that had undergone the maximal denoising pipeline for phys-
ological noise correction and were also corrected for thermal noise via
P-PCA, as our whole-cord analyses had suggested that this was the

ptimal processing pipeline. 

.4.3. tSNR and explained variance 

In order to provide further insights into the effects of the removal
f various noise sources, we also calculated the gray matter temporal
ignal-to-noise ratio (tSNR) and the explained variance of the gray mat-
er time series for each denoising step (please note that motion correction,
igh-pass filtering and motion-censoring was always performed). Vox-
lwise gray matter tSNR values were calculated for each functional run
ia dividing each voxel’s temporal mean by its temporal standard de-
iation ( Parrish et al., 2000 ). The impact of various noise sources on
ray matter tSNR was assessed by comparing the tSNR values obtained

http://github.com/NYU-DiffusionMRI/mppca_denoise
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fter each denoising pipeline to the baseline denoising procedure – in
ddition to reporting descriptive values (% change) we also employed
ermutation-based tests as described above (see Section 2.4.1 ) and re-
ort FWE-corrected p-values. Following Birn et al. (2014) , the variance
f gray matter time series explained by each denoising pipeline (R 

2 )
as calculated by computing the fractional reduction in signal variance.

SNR and explained variance for each gray matter region were extracted
sing the native-space thresholded and binarized PAM50 gray matter
asks that were also used to calculate functional connectivity. 

.4.4. Estimation of reliability 

The central aspect of this manuscript concerns the reliability of
esting-state functional connectivity in the human spinal cord. While
ifferent fields have come to rely on different operationalizations of re-
iability (for an in-depth discussion, see Brandmaier et al., 2018 ), we
ere follow the tradition in resting-state functional connectivity research
nd employ the intra-class correlation coefficient (ICC) for assessing re-
iability (see also Noble et al., 2021 ). Considering that spinal cord fMRI
s severely impacted by different noise sources, our reliability investi-
ation was not only focused on the connectivity metrics, but also pos-
ibly contributing factors. Thus, we calculated the test-retest reliability
or each of the following aspects: i) functional connectivity, ii) tSNR,
ii) motion metrics (DVARS, refRMS), iv) cardiac metrics (mean heart
eriod, heart period variability), v) respiratory metrics (mean respira-
ory period, respiratory period variability), and vi) explained variance
f gray matter time series. 

For each of these metrics, we first created a 45 × 2 (i.e. partici-
ants × sessions) matrix and then assessed the reliability using the ‘Case
 ′ intraclass correlation coefficient (ICC(2,1); two-way random effects
odel; McGraw and Wong, 1996 ; Shrout and Fleiss, 1979 ); this is of-

en also referred to as ‘absolute agreement’ ( Molloy and Birn, 2014 ).
CC(2,1) is defined as the following: 

CC ( 2 , 1 ) = 

σ2 
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 

σ2 
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 

+ σ2 
𝑠𝑒𝑠𝑠𝑖𝑜𝑛 

+ σ2 
𝑒𝑟𝑟𝑜𝑟 

here σ2 
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 

corresponds to the variance between persons and
2 
𝑠𝑒𝑠𝑠𝑖𝑜𝑛 

corresponds to the variance between sessions. Given its formula,
ig. 1. Resting-state functional connectivity and its reliability. A. Functional 

eighted PAM50 template (at segmental level C6) is shown with the gray matter 
e display an exemplary slice from the PAM50 template here, all analyses were car
f ROI-to-ROI connectivity that we investigated: dorsal-dorsal in green, ventral-ven
orsal-ventral in pink. B. Gray matter tSNR. Bar graphs show the tSNR for each of t
he mean and the circles indicate participant-specific values. C. Resting-state functi

cross two sessions) between the time-courses of different ROIs are shown with box
he mean is denoted by the colored central line. The boxes represent the interquartile
ndividual participants are shown with circles. D. Test-retest reliability of resting-s

ith the vertical lines representing the 95% confidence intervals. The gray scale bac
allgren (2012) ): poor < 0.4, fair 0.4–0.59, good 0.6–0.74, excellent ≥ 0.75. 

5 
he ICC shows what proportion of the total variance can be attributed
o between-persons differences ( Brandmaier et al., 2018 ; Noble et al.,
019 ). 

We also aimed to provide an estimate of uncertainty, and thus calcu-
ated the 95% confidence interval (CI) of ICC values via non-parametric
ootstrapping performed in MATLAB. Throughout the manuscript, ICC
alues are interpreted according to standard procedures: poor < 0.4, fair
.4–0.59, good 0.6–0.74, excellent ≥ 0.75 ( Cicchetti and Sparrow, 1981 ;
allgren, 2012 ). 

. Results 

.1. Replication and extension of previous resting-state functional 

onnectivity results 

Our first aim was to i) replicate previous ROI-based resting-state
unctional connectivity fMRI findings and ii) quantify the test-retest
eliability of resting-state functional connectivity at 3T in the human
pinal cord. To this end, we assessed connectivity between the dorsal
orns, between the ventral horns and between the within-hemicord dor-
al and ventral horns as well as between-hemicord dorsal and ventral
orns ( Fig. 1 A). All connectivity estimations were carried out on data
hat were subjected to extensive correction for physiological noise (i.e.
he ‘maximal’ denoising pipeline), as is typical in spinal fMRI. To con-
rol for non-specific factors, we explored tSNR differences between the
ifferent horns, but observed rather similar group-averaged gray matter
SNR (even though the tSNR of ventral horns were slightly higher (6.8%)
ompared to the dorsal horns), with the range of variation across par-
icipants also being similar ( Fig. 1 B). 

We observed highly significant positive connectivity between the
orsal horns ( r = 0.03; t = 9.5; p < 0.001) as well as between the ven-
ral horns ( r = 0.05; t = 11.6; p < 0.001) and were thus able to replicate
revious findings. Additionally, we observed significant negative dorsal-
entral connectivity within hemicords ( r = − 0.02; t = − 10.7; p < 0.001)
nd positive dorsal-ventral connectivity between hemicords ( r = 0.01;
 = 6.7; p < 0.001), but these were weaker than the dorsal and ventral
onnectivity ( Fig. 1 C). With regards to the robustness of these results at
connectivity calculation. An exemplary transverse slice taken from the T2 ∗ - 
masks overlaid as contours; please note that while for visualization purposes 
ried out in native space. The coloured arrows indicate the four different types 
tral in orange, within-hemicord dorsal-ventral in blue, and between-hemicord 
he gray matter ROIs. The vertical lines on the bars depict the standard error of 
onal connectivity of the cervical cord. Pearson correlation values (averaged 
 plots. For the box plots, the median is denoted by the black central line and 
 range and the whiskers encompass ∼99% of the data. Correlation values from 

tate connectivity. ICC values for each connection are indicated via the circles, 
kground reflects the ICC ranges (as defined by Cicchetti & Sparrow (1981) and 
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Table 1 

Functional connectivity and reliability after physiological noise correction. 

Dorsal Dorsal Ventral Ventral Within Hemicord Between Hemicord 

Baseline r = 0.07 
t = 12.9 
p < 0.001 
ICC (95% CI) = 0.71 
(0.53 - 0.85) 

r = 0.10 
t = 18.7 
p < 0.001 
ICC (95% CI) = 0.65 
(0.49 – 0.81) 

r = − 0.01 
t = − 4.7 
p < 0.001 
ICC (95% CI) = 0.38 
(0.22 – 0.54) 

r = 0.02 
t = 7.1 
p < 0.001 
ICC (95% CI) = 0.28 
(0.11 – 0.47) 

Baseline + Motion 
parameters 

r = 0.06 
t = 12.4 
p < 0.001 
ICC (95% CI) = 0.68 
(0.52- 0.82) 

r = 0.09 
t = 17.4 
p < 0.001 
ICC (95% CI) = 0.69 
(0.54 – 0.84) 

r = − 0.02 
t = − 4.7 
p < 0.001 
ICC (95% CI) = 0.36 
(0.19 – 0.51) 

r = 0.01 
t = 7.7 
p < 0.001 
ICC (95% CI) = 0.23 
(0.02 – 0.44) 

Baseline + CSF r = 0.06 
t = 12.9 
p < 0.001 
ICC (95% CI) = 0.69 
(0.52 – 0.84) 

r = 0.09 
t = 16.9 
p < 0.001 
ICC (95% CI) = 0.67 
(0.46 – 0.82) 

r = − 0.01 
t = − 7.7 
p < 0.001 
ICC (95% CI) = 0.39 
(0.23 – 0.54) 

r = 0.02 
t = 6.0 
p < 0.001 
ICC (95% CI) = 0.32 
(0.16 – 0.48) 

Baseline + Respiratory r = 0.06 
t = 12.8 
p < 0.001 
ICC (95% CI) = 0.65 
(0.44 – 0.81) 

r = 0.09 
t = 16.6 
p < 0.001 
ICC (95% CI) = 0.68 
(0.52 – 0.83) 

r = − 0.02 
t = − 8.1 
p < 0.001 
ICC (95% CI) = 0.37 
(0.18 – 0.54) 

r = 0.01 
t = 5.7 
p < 0.001 
ICC (95% CI) = 0.29 
(0.09 – 0.47) 

Baseline + Cardiac r = 0.05 
t = 10.8 
p < 0.001 
ICC (95% CI) = 0.66 
(0.45 – 0.84) 

r = 0.08 
t = 15.0 
p < 0.001 
ICC (95% CI) = 0.63 
(0.44 – 0.78) 

r = − 0.01 
t = − 5.5 
p < 0.001 
ICC (95% CI) = 0.35 
(0.12 – 0.55) 

r = 0.02 
t = 8.4 
p < 0.001 
ICC (95% CI) = 0.29 
(0.10 – 0.47) 

Baseline + PNM r = 0.04 
t = 9.8 
p < 0.001 
ICC (95% CI) = 0.64 
(0.48 – 0.79) 

r = 0.06 
t = 12.4 
p < 0.001 
ICC (95% CI) = 0.62 
(0.41 – 0. 79) 

r = − 0.02 
t = − 9.4 
p < 0.001 
ICC (95% CI) = 0.31 
(0.06 – 0.56) 

r = 0.01 
t = 6.7 
p < 0.001 
ICC (95% CI) = 0.25 
(0.02 – 0.44) 

Maximal r = 0.03 
t = 9.5 
p < 0.001 
ICC (95% CI) = 0.59 
(0.46 – 0.74) 

r = 0.05 
t = 11.6 
p < 0.001 
ICC (95% CI) = 0.63 
(0.44 – 0.79) 

r = − 0.02 
t = − 10.7 
p < 0.001 
ICC (95% CI) = 0.30 
(0.06 – 0.53) 

r = 0.01 
t = 6.7 
p < 0.001 
ICC (95% CI) = 0.18 
( − 0.03 – 0.38) 

This table depicts functional connectivity and reliability results of each connection across seven denoising pipelines. r represents 
the mean Pearson correlation across participants, and t and p represent the t-value and two-tailed FWE-corrected (for seven tests) 
p-value from a permutation test (against 0), respectively. ICC(95% CI) represents ICC(2,1) values and 95% bootstrapped confidence 
intervals. 
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he individual level, 100% of the participants exhibited positive dorsal-
orsal and ventral-ventral connectivity, while 98% of participants ex-
ibited negative dorsal-ventral within-hemicord connectivity and 84%
f participants demonstrated positive dorsal-ventral between-hemicord
onnectivity. 

In terms of the reliability of these connectivity patterns, the ICC of
orsal-dorsal connectivity (0.59, CI: 0.46 – 0.74) and of ventral-ventral
onnectivity (0.63, CI: 0.44 – 0.79) was in the upper part of the fair and
he lower part of the good range, respectively, whereas the reliability of
ithin- and between-hemicord dorsal-ventral connectivity was clearly

n the poor range (within-hemicord: 0.30, CI: 0.06 – 0.53 ; between-
emicord: 0.18, CI : − 0.03 – 0.38; Fig. 1 D). Both connectivity amplitude
nd reliability were also assessed by i) replacing Pearson correlation
ith partial correlation (in order to account for the effects of any possi-
ly remaining global signal fluctuations) and ii) adding a pre-whitening
tep during the GLM estimation (in order to account for the temporal
utocorrelation of the BOLD data), but neither of these approaches led
o a relevant change in the here-reported results (see Fig. S2 and Table
1, respectively). 

.2. Impact of noise sources on resting-state functional connectivity and its 

eliability 

Considering that spinal cord fMRI is severely signal-to-noise limited
ue to the impact of various noise sources, we next investigated the rel-
vance of each of these noise sources for the estimation of functional
onnectivity and its reliability. While the above-reported results were
btained after typical physiological noise correction procedures, we now
6 
eparately assess physiological noise sources as well as thermal noise,
hich has hitherto been neglected in spinal cord fMRI. The effects of

ach noise source were evaluated by assessing the change in connectiv-
ty amplitude and reliability after it was removed. 

.2.1. Physiological noise and amplitude of functional connectivity 

There are several general observations regarding the effects of phys-
ological noise sources on functional connectivity ( Fig. 2 ; Tables 1 & 2 ).
irst, no matter which noise source was corrected for, the sign of the
orrelation stayed the same for all four connections and all four con-
ections remained significant, indicating their robustness. Second, the
relatively weaker) within-hemicord and between-hemicord connectiv-
ty strength was not systematically impacted by physiological noise cor-
ection. Third, and most importantly, dorsal-dorsal and ventral-ventral
onnections showed a consistent reduction in connectivity strength with
ncreasingly stringent denoising. This latter point was also evident sta-
istically, where a significant reduction in connectivity strength was ob-
erved for all noise sources, which became even more pronounced when
ombining the different noise regressors into combined sets (e.g. PNM

ipeline and maximal pipeline; see Table 1 ). Interestingly, despite the
trong reduction in correlation amplitude for dorsal-dorsal and ventral-
entral connections (of at least 50%) from the baseline to the maximal

ipeline, the results remained clearly significant in the latter, which was
ikely due to the reduction in the inter-individual spread of amplitudes
i.e. higher precision). Supporting this overall pattern, highly similar re-
ults were obtained when Pearson correlation was replaced by partial
orrelation (Fig. S2); post-hoc analyses including white-matter regres-
ion did not lead to meaningful changes (Table S2). 
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Table 2 

Comparison of functional connectivity strength for different denoising pipelines. 

Dorsal Dorsal Ventral Ventral Within Hemicord Between Hemicord 

Baseline + Motion 
parameters 

t(44) = − 8.0 
p < 0.001 

t(44) = − 9.9 
p < 0.001 

t(44) = − 6.1 
p < 0.001 

t(44) = − 5.1 
p < 0.001 

Baseline + CSF t(44) = − 6.6 
p < 0.001 

t(44) = − 8.1 
p < 0.001 

t(44) = 0.4 
p = 0.98 

t(44) = − 0.6 
p = 0.93 

Baseline + Respiratory t(44) = − 8.8 
p < 0.001 

t(44) = − 11.3 
p < 0.001 

t(44) = − 7.0 
p < 0.001 

t(44) = − 6.1 
p < 0.001 

Baseline + Cardiac t(44) = − 10.5 
p < 0.001 

t(44) = − 11.1 
p < 0.001 

t(44) = − 1.0 
p = 0.68 

t(44) = 1.1 
p = 0.64 

Baseline + PNM t(44) = − 11.4 
p < 0.001 

t(44) = − 16.3 
p < 0.001 

t(44) = − 5.6 
p < 0.001 

t(44) = − 2.6 
p = 0.04 

Maximal t(44) = − 11.6 
p < 0.001 

t(44) = − 17.8 
p < 0.001 

t(44) = − 5.9 
p < 0.001 

t(44) = − 3.0 
p = 0.01 

This table depicts statistical comparisons of the functional connectivity strength (for each of the four connections) 
for six different denoising pipelines against the baseline pipeline. t and p represent the t-value and two-tailed FWE- 
corrected (for six tests) p-value from a permutation test against 0 (as values for each connection were subtracted from 

the baseline functional connectivity values). Note that for within hemicord connectivity (where connectivity values 
are negative), smaller t-values mean that the negative connectivity gets stronger. 
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.2.2. Physiological noise and reliability of functional connectivity 

Similar to the strength of functional connectivity, reliability also de-
reased with more stringent denoising ( Fig. 2 ; Table 1 ), though now
or all four connections: the reliability of dorsal-dorsal connectivity de-
reased from good to fair (by 17.5%), the reliability of ventral-ventral
unctional connectivity stayed in the good range with a slight decline (by
.19%), and the ICC values for within- and between-hemicord connec-
ig. 2. Effects of physiological noise. The top panel depicts Pearson correlation 
ourses of different ROIs via box plots for the seven denoising pipelines (Base: base
 CSF: baseline + CSF signal; + Respiratory: baseline + eight respiratory regressors; +

egressors; Max: baseline processing, slice-specific motion correction estimates, 32 P
re denoted by black and colored central lines, respectively. The boxes represent the 
ircles representing individual participants. The bottom panel depicts ICC values for 
he 95% confidence intervals. The gray scale background reflects the ICC ranges (as
.4–0.59, good 0.6–0.74, excellent ≥ 0.75. 

7 
ivity were consistently in the poor range, though with a clear decline
f reliability being noticeable (22.5% and 36.7%, respectively). When
ooking at the influence of single noise sources, it becomes apparent that
he strongest drop in reliability is observed due to removal of respira-
ory noise for dorsal-dorsal connectivity, whereas the removal of cardiac
oise leads to the strongest decline of reliability in ventral-ventral con-
ectivity. 
values (averaged within a participant across the two runs) between the time- 
line processing; + Moco: baseline + slice-specific motion-correction estimates; 
 cardiac: baseline + eight cardiac regressors; + PNM: baseline + thirty-two PNM 

NM regressors and a CSF regressor). For the box plots, the median and mean 
interquartile range, with the whiskers encompassing ∼99% of the data and the 
each the different pipelines via the circles, with the vertical lines representing 
 defined by Cicchetti & Sparrow (1981) and Hallgren (2012) ): poor < 0.4, fair 
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Fig. 3. Reliability of physiological measurements and effects on tSNR and explained variance in the gray matter. A. Scatter plots show the metrics derived 
from physiological measurements recorded in each session, plotted against each other (session 1 on x-axis, session 2 on y axis) for every participant. On the very right, 
associated ICC values are depicted with the filled circles (lines depict 95% confidence intervals). B. Bar graphs show the gray matter tSNR after various physiological 
noise correction techniques have been applied. C. On the left, the bar graphs show the gray matter time series variance accounted for by various physiological noise 
correction techniques. In all bar plots, the vertical lines on the bars depict the standard error of the mean and the circles indicate participant-specific values. On the 
right, ICC values for explained variance are shown with the filled circles and the lines depicting 95% confidence intervals. The gray scale background reflects the 
ICC ranges (as defined by Cicchetti & Sparrow (1981) and Hallgren (2012) ): poor < 0.4, fair 0.4–0.59, good 0.6–0.74, excellent ≥ 0.75. 
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The observed decrease in reliability may seem counterintuitive at
rst glance, as the removal of physiological noise could be expected to

ncrease reliability. However, such a pattern could arise if i) the noise
s spatially structured (which is known to be the case for physiologi-
al noise) and ii) the processes that generate noise present with high
eliability, which we set out to probe here. We noticed that metrics of
otion (DVARS and refRMS), cardiac activity (mean heart period and
eart period variability) and respiratory activity (mean respiratory pe-
iod and respiratory period variability) not only strongly covaried across
uns ( Fig. 3 A left panel), but also consistently exhibited excellent relia-
ility, with ICCs between 0.75 and 0.94 ( Fig. 3 A right panel). Whether
uch a reliable noise-generating process also translates into a reliable
nfluence on the measure of interest (i.e. gray matter time series data)
as investigated next. 

Therefore, we assessed the effects of noise sources on tSNR (an often-
sed metric of fMRI time series) and explained variance. With respect to
ray matter tSNR changes ( Fig. 3 B), the addition of the noise regressors
ed to the following increases: motion regressors 1.4%, CSF regressor
.5%, respiratory regressors 2.9%, cardiac regressors 4.7%, PNM regres-
ors 11.9%, and the combination of all regressors 13.4% (compared to
he tSNR after the baseline pipeline), with all increases being significant
a

8 
t p < 0.001. Looking at this from the perspective of the fraction of gray
atter time series variance explained by each of the noise regressors, we

bserved the following ( Fig. 3 C right panel): motion regressors and the
SF regressor both 2.9%, respiratory and cardiac regressors 5.7% and
.6%, PNM regressors 20.1% and combining all regressors 22.0%. Most
mportantly though, the variance explained by each of the noise compo-
ents was highly reliable between runs ( Fig. 3 C left panel): ICC values
ere mostly in the excellent range, varying between 0.73 to 0.89. Such
 pattern of results is consistent with the above-mentioned reduction in
mplitude and reliability of functional connectivity after denoising and
rovides evidence for the presence of structured and reliable non-neural
ignals being present in the gray matter time series. 

.2.3. Thermal noise 

After having assessed the impact of physiological noise, we now turn
ur focus to the influence of thermal noise. We aimed to remove ther-
al noise either via MP-PCA or via spatial smoothing – both of these

pproaches were added to the maximal denoising pipeline for physio-
ogical noise (more specifically, they occurred before GLM-based phys-
ological denoising), which now also served as the baseline to compare
gainst. 
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Table 3 

Functional connectivity and its reliability after thermal noise correction procedures. 

Dorsal Dorsal Ventral Ventral Within Hemicord Between Hemicord 

Maximal r = 0.03 
t = 9.5 
p < 0.001 
ICC (95% CI) = 0.59 
(0.46 – 0.74) 

r = 0.05 
t = 11.6 
p < 0.001 
ICC (95% CI) = 0.63 
(0.44 – 0.79) 

r = − 0.02 
t = − 10.7 
p < 0.001 
ICC (95% CI) = 0.30 
(0.06 – 0.53) 

r = 0.01 
t = 6.7 
p < 0.001 
ICC (95% CI) = 0.18 
( − 0.03 – 0.38) 

Maximal + MP-PCA r = 0.12 
t = 16.7 
p < 0.001 
ICC (95% CI) = 0.49 
(0.31 – 0.69) 

r = 0.20 
t = 22.9 
p < 0.001 
ICC (95% CI) = 0.55 
(0.34 – 0.73) 

r = 0.07 
t = 15.6 
p < 0.001 
ICC (95% CI) = 0.30 
(0.02 – 0.56) 

r = 0.05 
t = 10.6 
p < 0.001 
ICC (95% CI) = 0.39 
(0.20 – 0.58) 

Maximal + 2 mm 

smoothing 
r = 0.09 
t = 14.3 
p < 0.001 
ICC (95% CI) = 0.62 
(0.46 – 0.77) 

r = 0.12 
t = 13.9 
p < 0.001 
ICC (95% CI) = 0.79 
(0.65 – 0.89) 

r = 0.17 
t = 29.1 
p < 0.001 
ICC (95% CI) = 0.63 
(0.30 – 0.79) 

r = 0.05 
t = 13.4 
p < 0.001 
ICC (95% CI) = 0.37 
(0.12 – 0.56) 

Maximal + 4 mm 

smoothing 
r = 0.29 
t = 28.3 
p < 0.001 
ICC (95% CI) = 0.73 
(0.55 – 0.84) 

r = 0.46 
t = 33.6 
p < 0.001 
ICC (95% CI) = 0.81 
(0.67 – 0.89) 

r = 0.49 
t = 64.4 
p < 0.001 
ICC (95% CI) = 0.63 
(0.41 – 0.77) 

r = 0.18 
t = 19.8 
p < 0.001 
ICC (95% CI) = 0.73 
(0.58 – 0.84) 

This table depicts functional connectivity and reliability results of each connection for different thermal noise correction 
processing pipelines. r represents the mean Pearson correlation across participants, t and p represent the t-value and two- 
tailed FWE-corrected (for four tests) p-value from a permutation test (against 0), respectively. ICC(95% CI) represents ICC(2,1) 
values and 95% bootstrapped confidence intervals. 
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Since thermal noise removal has to our knowledge not been ad-
ressed in the spinal fMRI literature yet, we first assessed its impact on
SNR and observed a highly significant (all p < 0.001) increase in gray
atter tSNR after adding either MP-PCA (140.2%) or spatial smooth-

ng with a 2 mm (120.2%, p < 0.001) or 4 mm kernel (260.4%, p <
.001). This increase in tSNR was thus similar to what was observed
hen adding physiological noise correction regressors, though now of
uch stronger amplitude. In sharp contrast to physiological noise cor-

ection however, both MP-PCA and spatial smoothing led to an increase
n functional connectivity amplitudes ( Table 3 and Fig. 4 ): dorsal-dorsal,
entral-ventral and between-hemicord dorsal-ventral connectivity all
ad significantly higher amplitudes when compared to the maximal
enoising pipeline; the absolute strength of within-hemicord dorsal-
entral connectivity also increased, though with a sign-change, which
urned from negative to positive after MP-PCA and smoothing. For all
onnections, the reliability of functional connectivity increased when
patial smoothing was added to maximal denoising pipeline, whereas a
ore mixed picture appeared for MP-PCA (with either a slight decrease

dorsal-dorsal and ventral-ventral], increase [between-hemicord] or no
hange [within-hemicord]; Table 3 and Fig. 4 ). 

One aspect of these results deserves further interrogation, namely
hether the increased connectivity amplitudes might simply come
bout via time-course mixing between the ROIs due to an increased
patial smoothness of the data after the thermal noise correction proce-
ures. We therefore assessed the spatial autocorrelation function of the
PI data and observed that – across the group – the effective smoothness
ncreased from 1.2 ± 0.03 by 116% for 2 mm (2.7 ± 0.12) and 313%
or 4 mm (5.2 ± 0.26) smoothing. Importantly, despite the more than
wo-fold increase in tSNR and connectivity amplitudes observed after
P-PCA, this procedure only led to a 7% increase in spatial smoothness

1.3 ± 0.08). It is thus unlikely that the increased connectivity observed
fter MP-PCA is driven via time-course mixing between the different
OI – an assumption underscored even further by the fact the MP-PCA

ncreased the connectivity of all connections in a way that is unrelated
o the ROIs’ spatial distance (Fig. S3). Conversely, the effects of spa-
ial smoothing on connectivity amplitudes are likely driven by time-
ourse mixing, since i) the largest increase e.g. for 2 mm smoothing
as observed for the ROIs being closest together (dorsal-ventral within-
emicord connection; Fig. S3) and ii) the increase in connectivity paral-
els the increase in spatial smoothness (cf. Fig. 4 B and 4 C). This suggests
 t  

9 
hat even modest smoothing kernels such as 2 mm should only be em-
loyed with great caution in the spinal cord. 

.3. Within-segment functional connectivity 

Finally, we aimed to assess whether resting-state functional connec-
ivity could also be reliably observed at the level of single spinal seg-
ents (C3, C4, C5, C6, C7, C8 and T1; Fig. 5 A). For these analyses we
sed data that were denoised with MP-PCA in addition to the maximal
hysiological noise correction pipeline, as the above analyses showed
his method to be beneficial for both tSNR and connectivity estimates. 

First of all, we observed that – despite the use of z-shimming –
he gray matter tSNR was lower for the lowermost segments (C7, C8
nd T1). Functional connectivity, however, was highly significant in ev-
ry segment for all connections (dorsal-dorsal, ventral-ventral, within-
emicord, between-hemicord; see Fig. 5 and Table 4 ). Reliability of
unctional connectivity at the single-segment level, on the other hand,
as mostly poor (see Fig. 5 and Table 4 ). For dorsal-dorsal connectivity,

he reliability values were largely in the poor range except at level C6
in the fair range), and for ventral-ventral connectivity, the ICC values
uctuated between the poor and fair range (poor for C3, C6 and C8; fair

or C4, C5, C7 and T1). Within- and between-hemicord dorsal-ventral re-
iability values were in the poor range for every single segment. These
esults highlight that even though it is possible to detect single-segment
onnectivity patterns, these are highly variable across scan-sessions and
hus lack robustness with the currently employed approaches for data
cquisition and analysis. 

. Discussion 

In the last decade, evidence has accumulated that the human spinal
ord exhibits spatially distinct patterns of spontaneous activity at rest,
s functional connectivity was observed to exist between the two dor-
al horns and between the two ventral horns, mirroring the functional
ivision of the gray matter into sensory and motor parts, respectively.
hile this has generated interest in the use of such connectivity met-

ics in the clinical context as possible biomarkers for sensory and motor
isorders (such as chronic pain and multiple sclerosis), a first essen-
ial step is to quantify their reliability, which we set out to do here at
he clinically-relevant field strength of 3T. We first replicated and ex-
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Fig. 4. Impact of thermal noise removal. A. Impact of thermal noise removal on tSNR. Bar graph shows the tSNR in the gray matter after employing different 
processing pipelines (Max: maximal processing – which served as baseline for this comparison, + MP-PCA: maximal + thermal noise removal via MP-PCA; + Smooth2: 
maximal + smoothing with a 2 mm kernel; + Smooth4: maximal + smoothing with a 4 mm kernel). The vertical lines on the bars depict the standard error of the 
mean and the filled dots lines indicate participant-specific values. B. Impact of thermal noise removal on spatial smoothness. On the left side, one exemplary 
EPI slice of a participant in native space (where analyses were carried out) and gray matter ROIs overlaid in green are shown after different processing steps. Scale 
bars represent 2 mm and 4 mm, respectively. On the right side, effective spatial smoothness values estimated using AFNI’s 3dFWHMx function are depicted via 
box-plots for which the median is denoted by the central mark and the bottom and top edges of the boxes represent the 25th and 75th percentiles, respectively, with 
the whiskers encompassing ∼99% of the data. The circles represent individual participants. C. Impact of thermal noise removal on functional connectivity and 

reliability. The top panel depicts Pearson correlation values (averaged across two sessions) between the time-courses of different ROIs with the box plots for four 
different pipelines (box plots are identical to those in B – except here the mean is denoted by the colored central mark). On the bottom panel, ICC values for each 
connection (and each pipeline) are shown with the filled circles and the lines show 95% confidence intervals. The gray scale background reflects the ICC ranges (as 
defined by Cicchetti & Sparrow (1981) and Hallgren (2012) ): poor < 0.4, fair 0.4–0.59, good 0.6–0.74, excellent ≥ 0.75. 
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ended previous resting-state fMRI findings by investigating the spinal
ord’s functional connectivity and assessing its test-retest reliability in
 large sample ( N > 40). Considering that spinal cord BOLD signals
re strongly affected by noise, we characterized the impact of various
oise sources (i.e., physiological noise and thermal noise) on connectiv-
ty strength and reliability. Finally, we considered local aspects of func-
ional connectivity and their reliability by investigating this at a macro-
cale unit of spinal cord organization, namely at the level of single spinal
egments. 

.1. Replication and extension of previous resting-state functional 

onnectivity results 

In order to replicate previously observed functional connectivity re-
ults, we used a commonly employed processing pipeline for removal
10 
f physiological noise (i.e. addressing noise arising from participant
otion, cardiac, respiratory and CSF effects). With an ROI-based ap-
roach, we demonstrated statistically significant functional connectiv-
ty between the dorsal horns (housing somatosensory function) and be-
ween the ventral horns (housing somatomotor function), thus replicat-
ng a pattern of results observed in previous spinal cord fMRI studies
n rats ( Wu et al., 2018 ), monkeys ( Chen et al., 2015 ; Wu et al., 2019 )
nd humans (3T: Barry et al., 2018 ; Eippert et al., 2017b ; Hu et al.,
018 ; Liu et al., 2016 ; Weber et al., 2018 ; 7T: Barry et al., 2014 , 2016 ;
onrad et al., 2018 ). The fact that such a functional connectivity profile

s observed across different acquisition protocols, field strengths as well
s species provides further support for the hypothesis that intrinsic fluc-
uations of the spinal cord are not of random nature. It does however nei-
her confirm the neuronal origin of resting-state functional connectivity
or provide answers regarding the exact neurobiological underpinnings
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Fig. 5. Segment-specific functional connectivity. A. The midsagittal cross-section on the left (from the T2-weighted PAM50 template image) shows the thresholded 
probabilistic segments overlaid as outlines. Segment-wise tSNR values are depicted via box-plots for which the median is denoted by the central mark and the bottom 

and top edges of the boxes represent the 25th and 75th percentiles, respectively, with the whiskers encompassing ∼99% of the data. The circles represent individual 
participants and half-violin plots show the distribution across participants. B. The top panel depicts Pearson correlation values (averaged across two sessions) between 
different ROIs with one box plot per segmental level. For the box plots, the median and mean are denoted by the central black mark and the colored mark, respectively. 
The bottom and top edges of the boxes represent the 25th and 75th percentiles, respectively, with the whiskers encompassing ∼99% of the data. The circles represent 
individual participants. The bottom panel depicts ICC values for each connection with the dot and the lines denote 95% confidence intervals; please note that the 
ICC for within hemicord connectivity for level C6 is far below zero, resulting in it not being visible here (see Table 4 for all ICC values). The gray scale background 
reflects the ICC ranges (as defined by Cicchetti & Sparrow (1981) and Hallgren (2012) ): poor < 0.4, fair 0.4–0.59, good 0.6–0.74, excellent ≥ 0.75. 
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 Eippert and Tracey, 2014 ) and towards this end, combining fMRI with
lectrophysiological recordings ( Brookes et al., 2011 ; Schölvinck et al.,
010 ) would be beneficial, with important first steps in this direction
lready being taken ( Wu et al., 2019 ). 

We also observed significant functional connectivity within (left
orsal-ventral and right dorsal-ventral) and between (left dorsal - right
entral and right dorsal - left ventral) hemicords, though these were
learly weaker in terms of correlation magnitude than the dorsal-dorsal
nd ventral-ventral connections (and were actually negative for within-
emicord connectivity). This weaker result observed here fits well into
he literature, with some studies observing similar sensory-motor cord
onnectivity ( Chen et al., 2015 ; Weber et al., 2018 ; Wu et al., 2019 ), and
thers not ( Barry et al., 2014 ; Eippert et al., 2017a ; see Harrison et al.,
021 for a review). Of note in this case are recent electrophysiologi-
al data providing evidence for such dorsal-ventral connectivity at the
evel of local field potentials and spike trains in anaesthetized ani-
als ( McPherson and Bandres, 2021 ; Wu et al., 2019 ). While the rea-

on for this variability of functional connectivity findings across ex-
11 
erimental models and measurement-levels is currently unclear, exis-
ence for structural dorsal-ventral connectivity is unequivocal, as it is
he anatomical substrate for polysynaptic spinal reflexes in humans
 Pierrot-Deseilligny and Burke, 2012 ; Sandrini et al., 2005 ) and has also
een delineated in detail with modern tracing approaches in mice (e.g.
onzano et al., 2022 ; Stepien et al., 2010 ). Interestingly, in the context
f fMRI, the likelihood to observe dorsal-ventral resting-state connectiv-
ty might also depend on data processing choices, as this type of result
s not robust against variations in the processing pipeline ( Eippert et al.,
017a ; similar to what we observed here after removal of thermal noise).

One further way to judge the robustness of results is via their re-
iability, which we assessed here via test-retest reliability ( Shrout and
leiss, 1979 ). Using ICC as a measure of reliability, we observed fair-to-
ood reliability for dorsal-dorsal and ventral-ventral connectivity and
oor reliability for within hemicord and between hemicord connectiv-
ty (the robustness of this finding received further support from analyses
n which we employed partial correlation instead of Pearson correlation
nd observed highly similar results). This is in line with a previous in-
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Table 4 

Functional connectivity and its reliability for different spinal segments. 

Dorsal Dorsal Ventral Ventral Within Hemicord Between Hemicord 

C3 r = 0.12 
t = 9.2 
p < 0.001 
ICC (95% CI) = 0.16 
( − 0.24 – 0.48) 

r = 0.20 
t = 8.9 
p < 0.001 
ICC (95% CI) = 0.35 
(0.06 – 0.66) 

r = 0.07 
t = 5.0 
p < 0.001 
ICC (95% CI) = 0.30 
(0.03 – 0.55) 

r = 0.04 
t = 4.6 
p < 0.001 
ICC (95% CI) = 0.04 
( − 0.23 – 0.37) 

C4 r = 0.17 
t = 13.6 
p < 0.001 
ICC (95% CI) = 0.31 
(0.09 – 0.48) 

r = 0.25 
t = 13.3 
p < 0.001 
ICC (95% CI) = 0.48 
(0.27 – 0.69) 

r = 0.06 
t = 5.5 
p < 0.001 
ICC (95% CI) = 0.34 
(0.08 – 0.61) 

r = 0.04 
t = 4.2 
p < 0.001 
ICC (95% CI) = 0.21 
( − 0.07 – 0.58) 

C5 r = 0.15 
t = 10.9 
p < 0.001 
ICC (95% CI) = 0.25 
(0.04 – 0.50) 

r = 0.25 
t = 12.5 
p < 0.001 
ICC (95% CI) = 0.53 
(0.29 – 0.79) 

r = 0.06 
t = 5.7 
p < 0.001 
ICC (95% CI) = 0.35 
(0.09 – 0.59) 

r = 0.03 
t = 2.6 
p = 0.07 
ICC (95% CI) = 0.36 
(0.11 – 0.58) 

C6 r = 0.11 
t = 7.5 
p < 0.001 
ICC (95% CI) = 0.47 
(0.23 – 0.68) 

r = 0.19 
t = 16.3 
p < 0.001 
ICC (95% CI) = 0.38 
(0.17 – 0.60) 

r = 0.09 
t = 12.4 
p < 0.001 
ICC (95% CI) = − 0.24 
( − 0.52 – 0.0) 

r = 0.05 
t = 7.5 
p < 0.001 
ICC (95% CI) = 0.03 
( − 0.45 – 0.37) 

C7 r = 0.09 
t = 11.5 
p < 0.001 
ICC (95% CI) = 0.09 
( − 0.29 – 0.45) 

r = 0.16 
t = 18.2 
p < 0.001 
ICC (95% CI) = 0.49 
(0.14 – 0.69) 

r = 0.07 
t = 8.1 
p < 0.001 
ICC (95% CI) = 0.26 (0.0 
– 0.49) 

r = 0.04 
t = 7.2 
p < 0.001 
ICC (95% CI) = 0.03 
( − 0.23 – 0.28) 

C8 r = 0.049 
t = 9.5 
p < 0.001 
ICC (95% CI) = 0.23 
( − 0.20 – 0.55) 

r = 0.18 
t = 16.6 
p < 0.001 
ICC (95% CI) = 0.30 
( − 0.13 – 0.57) 

r = 0.09 
t = 9.9 
p < 0.001 
ICC (95% CI) = 0.28 
(0.01 – 0.52) 

r = 0.07 
t = 14.0 
p < 0.001 
ICC (95% 

CI) = − 0.23 ( − 0.46 –
0.04) 

T1 r = 0.09 
t = 7.0 
p < 0.001 
ICC (95% CI) = 0.01 
( − 0.22 – 0.28) 

r = 0.15 
t = 12.2 
p < 0.001 
ICC (95% CI) = 0.44 
(0.19 – 0.66) 

r = 0.07 
t = 6.9 
p < 0.001 
ICC (95% CI) = 0.20 
( − 0.09 – 0.45) 

r = 0.05 
t = 4.8 
p < 0.001 
ICC (95% CI) = 0.15 
( − 0.09 – 0.41) 

This table depicts functional connectivity and reliability results of each connection at different spinal segments. r 
represents the mean Pearson correlation across participants, t and p represent the t-value and two-tailed family- 
wise-error corrected p-value from a permutation test (against 0), respectively. ICC (95% CI) represents ICC(2,1) 
values and 95% bootstrapped confidence intervals. 
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(  
estigation by Barry et al. (2016) at the ultra-high field strength of 7T
nd demonstrates that a similar level of reliability can be obtained at
he clinically-relevant field strength of 3T. Previous important investi-
ations into the test-retest reliability of functional connectivity at 3T
ere limited in terms of the employed sample size ( N = 10 for Liu et al.,
016 , Hu et al., 2018 , Barry et al., 2018 ), which we overcame here using
 more than 4-fold larger sample size. Other studies have assessed the
plit-half reliability of ICA-derived spinal cord resting-state networks
n humans at 3T ( Kong et al., 2014 ) and the test-retest reliability of
OI-based functional connectivity in rats at 9.4T ( Wu et al., 2018 ) and
enerally observed fair to good reliability as well. It is important to
oint out that despite these differences in data acquisition and analy-
es – which have been demonstrated to substantially influence reliabil-
ty estimates of resting-state connectivity in the brain (for review, see
oble et al., 2019 ) – all of these findings seem to point towards repro-
ucible results, i.e. show the presence of reliable spinal cord resting-state
etworks. 

.2. Impact of noise sources on resting-state functional connectivity and its 

eliability 

Considering that noise has an immense impact on the spinal cord
MRI signal – i.e. its influence is much more prominent than in the brain
 Piche et al., 2009 ; Cohen-Adad et al., 2010 ) – we next assessed to what
egree functional connectivity and its reliability are affected by various
oise sources and procedures for their correction. 
12 
We first investigated the impact of physiological noise regression on
unctional connectivity and observed that, in general, extensive denois-
ng (i.e. the addition of various physiological noise regressors to the
aseline) led to a clear decrease in the amplitude of functional connec-
ivity estimates and also decreased the reliability of functional connec-
ivity, while – not surprisingly – tSNR was increased. This reduction
n amplitude and reliability may seem counterintuitive at first glance,
s one might expect that removal of physiological noise should improve
he detectability and reliability of functional connectivity. However, this
esult is indeed consistent with observations in many resting-state fMRI
tudies in the brain ( Birn et al., 2014 ; Guo et al., 2012 ; Noble et al.,
019 ; Parkes et al., 2018 ; Shirer et al., 2015 ; Zou et al., 2015 ),
here a decrease in reliability was observed after various denoising
pproaches. 

Further investigations undertaken to elucidate why reliability de-
reased after physiological noise removal revealed that the sources of
hysiological noise – e.g. mean and standard deviation of heart pe-
iod and breathing period – were highly reliable, i.e. showed stable re-
ponses within participants across runs, but large variation across par-
icipants (in this sense, we are removing ‘true’ biological variability
ere, though of a confounding nature). The same held for the amount
ray matter time series variance explained by physiological noise re-
ressors: these mostly exhibited reliability in the excellent range, in
ine with observations in previous studies that also looked at the re-
roducibility of respiratory and cardiac effects in spinal cord MRI data
 Piché et al., 2009 ; Verma and Cohen-Adad, 2014 ). If one now con-
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(  
iders that our reliability metric of choice – the ICC – can be roughly
efined as a ratio of the variance of interest (in our case: between-
articipant) to the total variance ( Liljequist et al., 2019 ), a possible
ath via which physiological noise removal decreases reliability be-
omes apparent: it removes spatiotemporally structured ‘reliable arte-
acts’ (i.e. differing strongly between participants, but not necessarily
etween runs within participants), that would otherwise contribute to
he reliability estimation via their confounding effects on connectiv-
ty. A similar argument has already been made for the reliability of
esting-state connectivity in the brain, substantiated by a detailed in-
estigation of the changes in the different variance components con-
ributing to the ICC ( Birn et al., 2014 ). In other words: once the im-
act of these reliable non-neural sources that influence ROI time-courses
imilarly – and thus also increase the correlation strength – within
ach participant is removed, correlation amplitude as well as reliability
ecreases. 

Thus, and as already pointed out by others ( Birn et al., 2014 ;
hirer et al., 2015 ; Noble et al., 2019 ), the reduction in reliability after
hysiological noise removal might actually increase the validity of the
esults. Validity can be defined as how close or accurate one is measuring
hat one intends to measure ( Carmines & Zeller, 1979 ) and in our case –
sing resting-state fMRI – we intend to measure neuronally driven BOLD
uctuations, which only represent a small percentage of the variance in
he noisy fMRI signal ( Bijsterbosch and Beckmann, 2017 ; Birn, 2012 ).
ne might anticipate that an improved validity after removal of physio-

ogical noise may also lead to a better distinction at the group level – e.g.
etween patients’ and healthy controls’ functional connectivity patterns
or improve the relationship between functional connectivity estimates
nd ‘trait’ characteristics ( Shirer et al., 2015 ; Noble et al., 2017a , 2019 );
nterventional studies could also shed light on this. 

In addition to the effects of removing physiological noise, we also
ssessed the impact of thermal noise ( Edelstein et al., 1986 ; Hoult and
ichards, 1976 ; Krüger and Glover, 2001 ) and methods for its correc-

ion. While we did not formally assess the physiological noise to thermal
oise ratio in our data – as this depends on many factors ( Brooks et al.,
013 ; Triantafyllou et al., 2005 , 2011 ) and is complicated by the fact
hat part of what is traditionally considered physiological ‘noise’ is our
ignal of interest here – we observed marked effects of thermal noise re-
oval: the application of MP-PCA ( Veraart et al., 2016a , 2016b ) led to i)
 substantial increase in tSNR (more than two-fold), ii) a concurrent and
onsistent increase in correlation strength (more than three-fold) and iii)
o consistent changes in reliability (as we observed either decreases, no
hange or an increase in reliability, possibly warranting future investi-
ations). One immediately notices the clear difference to physiological
oise removal, which also increased the tSNR, but decreased connec-
ivity strength and reliability, likely due to physiological noise being
tructured and reliable. Despite being a major source of noise in fMRI
cquisitions, only a few brain fMRI studies ( Ades-Aron et al., 2021a ;
dhikari et al., 2019 ) utilized thermal noise removal via MP-PCA and

o our knowledge its benefits for spinal cord fMRI had not yet been
emonstrated (see Grussu et al., 2020 for an application of MP-PCA in
uantitative MRI of the cord and Vizioli et al., 2021 for an even more re-
ent thermal noise correction technique applied to brain fMRI data). We
urthermore compared MP-PCA to spatial smoothing which also serves
o suppress thermal noise: compared to spatial smoothing (which also
nhanced tSNR and connectivity strength), MP-PCA achieved this with-
ut incurring a substantial penalty in terms of increased spatial smooth-
ess. This is an important consideration, since ROIs in the spinal cord lie
o close to each other that even with a modest Gaussian smoothing ker-
el of 2 mm FWHM, artificial connectivity (via time-course mixing) can
e induced, which we were able to demonstrate here, since the increase
n connectivity strength induced via smoothing depended on the spatial
roximity of the ROIs. We thus believe that thermal noise removal via
P-PCA might be an attractive option for enhancing the sensitivity of

pinal cord fMRI, but would like to note that its detailed validation in
he context of resting-state fMRI is still outstanding (as are comparisons
13 
ith other methods, e.g. Vizioli et al., 2021 ; Fernandes et al., 2023 ;
owdle et al., 2023 ). 

.3. Within segment functional connectivity 

Finally, we assessed the amplitude and reliability of more localized
spects of connectivity, i.e. within a spinal cord segment, which is tra-
itionally considered to be the basic organizational unit of the spinal
ord along the rostrocaudal axis (though see Watson and Sidhu, 2009 ;
engul et al., 2013 ). This was made possible by the availability of
robabilistic maps for spinal cord segments ( Cadotte et al., 2015 ) and
heir integration into a common template space ( De Leener et al., 2017 ).
eassuringly, for all of the segmental levels that we investigated (C3-
1), we were able to demonstrate robust functional connectivity pat-
erns, i.e. significantly positive correlations between bilateral dorsal and
etween bilateral ventral horns, despite an apparent decrease in tSNR
or segments C7-T1 compared to the more rostral cervical segments.

hile minor variations in connectivity strength were observed, the over-
ll pattern stayed consistent across segments and mirrored the above-
eported connectivity results that spanned the superior-inferior axis of
he imaging volume (similar to Eippert et al. (2017a) ). We also observed
ignificant within and between hemicord dorsal-ventral connectivity at
ach segment (except C5 where between hemicord connectivity was
ot significant), though this was again much weaker than dorsal-dorsal
nd ventral-ventral connectivity. Importantly though, the reliability of
unctional connectivity at the level of individual segments was consis-
ently in the poor range: this held entirely for dorsal-ventral connectiv-
ty, mostly for dorsal-dorsal connectivity (apart from segment C6) and
artially for ventral-ventral connectivity (where approximately half of
he ICCs were in the fair range); in addition, this was consistently evident
cross segments and thus not driven by the lower tSNR present in the
ore caudal segments. Given our 5 mm slice thickness, there were only

pproximately three EPI slices in each segment, probably rendering cor-
elation estimates susceptible to remaining noise across voxels (e.g. com-
ared to the analyses across the imaging volume) and recent investiga-
ions have suggested that other 3T acquisition approaches might be help-
ul in this regard ( Kinany et al., 2022 ), as could be the use of higher field
trength ( Barry et al., 2018 ) or using slightly dilated regions of inter-
st. Considering that many disorders present with localized spinal cord
athology (e.g. cervical myelopathy; Nouri et al., 2015) and that spinal
ord resting-state fMRI is now being applied in such contexts – e.g. spinal
ord injury ( Chen et al., 2015 ; Sengupta et al., 2021 ) or multiple sclero-
is ( Conrad et al., 2018 ; Combes et al., 2022 ) – it will be of utmost im-
ortance to improve the reliability of segment-wise connectivity via op-
imization of data acquisition and analysis approaches, since only with
 reliable estimate of connectivity can longitudinal studies that monitor
isease progression or treatment effects be carried out successfully. 

.4. Limitations and outlook 

There are several limitations of the current study that are worth
entioning. First of all, in terms of assessing functional connectiv-

ty, we have only used ROI-based static functional connectivity ap-
roaches here, whereas data-driven approaches like ICA ( Kong et al.,
014 ) or time-varying functional connectivity approaches ( Kinany et al.,
020 ) might yield different insights into the reliability of spinal
ord networks; of note, these could be applied on our openly-
vailable data-set, allowing for a direct comparison between methods.
econd , we assessed the impact of physiological noise solely within the
NM framework ( Brooks et al., 2008 ; Kong et al., 2012 ). Although PNM
s well established for spinal cord fMRI and has compared favorably
gainst other methods in this context ( Kong et al., 2012 ), there are many
ther approaches to address physiological noise that we did not con-
ider here and that again might perform differently, such as CompCor
 Behzadi et al., 2007 ), DRIFTER ( Särkkä et al., 2012 ) or ICA-AROMA
 Pruim et al., 2015 ). A comparison of various denoising approaches was
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eyond the scope of current work (similar to evaluating the effects of dif-
erent preprocessing steps), but could also be carried out on this openly-
vailable data-set and might offer additional insights, as there might
e unmodeled noise components still present in the data. Third , con-
idering the various different approaches for data acquisition that are
urrently employed in spinal cord fMRI at 3T (e.g. Barry et al., 2021 ;
inany et al., 2022 ), we refrain from extrapolating our results beyond

he specific acquisition scheme employed here. Fourth , one needs to be
areful regarding the interpretation of the observed reliability, since on
he one hand, our results may represent an ‘upper’ end of reliability esti-
ates, as we assessed the test-retest reliability of functional runs which
ere separated by at most ∼10 min (see Kowalczyk et al., 2023 for an
ssessment of reliability between sessions). On the other hand, the two
unctional runs had slightly different z-shim settings which might bias
owards ‚lower’ reliability (although there were no significant tSNR dif-
erences between the two acquisitions). Given these factors, it would be
nteresting to assess the reliability of resting-state spinal networks over
ifferent time spans in the future, ranging from hours to days to months,
s reliability may decrease over time ( Shehzad et al., 2009 ) – here one
ould also envision to assess sessions that were acquired in different
canners ( Noble et al., 2017 b) in order to probe different components
f reliability ( Brandmaier et al., 2018 ). Fifth , all connectivity results re-
orted here are based on within-slice correlations, i.e. we did not address
ostro-caudal time series correlations and an assessment of the full cor-
elation matrix (including between-segment connectivity) remains for
uture studies. Finally , it is important to keep in mind that the ICC is
alculated as a ratio of between person variance to total variance and
CC values are thus dependent on the characteristics of given sample.
or instance, ICC values for patient groups (such as multiple sclerosis
r chronic pain) might be higher due to the larger variability between
ndividual patients as compared to our very homogenous sample con-
isting of young healthy adults in a very restricted age-range (see also
enger et al., 2022 ). Consideration of these aspects might be helpful for

nderstanding the limitations and benefits of spinal cord resting-state
MRI in the clinical context where longitudinal as well as multi-site and
ulti-cohort studies are common. 

. Conclusion 

Taken together, this study adds to a growing body of evidence that
he spinal cord exhibits structured resting-state functional connectivity.
onnectivity within sensory and within motor regions of the spinal cord
eems to be of robust nature, as it presents with fair-to-good reliabil-
ty. Our results furthermore underscore the critical need for addressing
hysiological noise, though now from the perspective of reliability and
lso demonstrate that thermal noise removal can have beneficial effects
n the detection of functional connectivity. Finally, our assessments of
egment-level connectivity (presenting with low reliability) provide a
ore cautionary note and suggest that further improvements in data

cquisition and analysis would be important before employing resting-
tate spinal cord fMRI longitudinally in the context of assessing disease
rogression or treatment response. 
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