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Abstract11

The auditory system computes the position of a sound along each of the three spatial axes,12

azimuth, elevation and distance, from very different acoustical cues. The extraction of sound13

azimuth from binaural cues (differences in arrival time and intensity between the ears) is well14

understood, as is the representation of these binaural cues in the auditory cortex of different15

species. Sound elevation is computed from monaural spectral cues arising from16

direction-dependent filtering of the pinnae, head, and upper body. The cortical representation of17

these cues in humans is still debated. We have shown that the fMRI blood-oxigen18

level-dependent activity in small parts of auditory cortex relates monotonically to perceived19

sound elevation and tracks listeners internal adaptation to new spectral cues. Here we confirm20

the previously suggested cortical code with a different method that reflects neural activity rather21

than blood oxigenation (electroencephalography), show that elevation is represented relatively22

late in the cortex, with related activity peaking at about 400 ms after sound onset, and show that23

differences in sound elevation can be decoded from the electroencephalogram of listeners,24

particularely from those who can distinguish elevations well. We used an adaptation design to25

isolate elevation-specific brain responses from those to other features of the stimuli. These26

responses gradually increased with decreasing sound elevation, consistent with our previous27

fMRI findings and population rate code for sound elevation. The long latency as well as the28

topographical distribution of the elevation-specific brain response indicates the involvement of29

higher-level cognitive processes not present for binaural cue representation. The differences30

between brain responses to sounds at different elevations predicted the listeners sound31

localization accuracy, suggesting that these responses reflect perceived elevation. This is, to our32

knowledge, the first study that demonstrates the cortical encoding of sound elevation in humans33

with high-temporal resolution. Our results agree with previous findings from functional magnetic34

resonance imaging, providing strong support for the hypothesis that elevation is represented in a35

population-rate code. This represents a critical advance in our understanding of spatial auditory36

processing along a dimension that is still poorly understood.37

38
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Introduction39

The auditory system does not encode the position of a stimulus on the sensory epithelium in the40

cochlea. Instead, it must observe the movement of the eardrums, caused by the superpositioned41

sound waves impinging on the ear, and infer source locations from that movement. To this end,42

the auditory systemprocesses interaural and spectral localization cues andmaps them to locations43

in space. Interaural cues are differences in the sound’s intensity and timing between both ears44

(Rayleigh, 1907; Sandel et al., 1955). They are computed in the superior olivary complex of the45

auditory brainstem (McAlpine, Jiang, and Palmer, 2001; Yin, 2002) and determine our perception46

of a sound’s azimuth. Spectral cues are patterns of peaks and notches in the sound’s spectrum47

resulting from directional filtering trough head and pinnae (Batteau, 1967; Wightman and Kistler,48

1989a; Hofman, Van Riswick, and Van Opstal, 1998). The positions of peaks, notches and edges in49

the spectrum are computed in the dorsal and posterior ventral cochlear nucleus and indicate the50

sound’s elevation (Nelken and Young, 1994; Reiss and Young, 2005).51

Interaural and spectral cues are integrated in themidbrainwhere neurons responding to sounds52

in a narrow region form a topographic representation of auditory space (Middlebrooks and Knud-53

sen, 1984; King and Hutchings, 1987; Gaese and Johnen, 2000). However, most cortical neurons do54

not respond selectively, but rather modulate their response across a large section of space, prefer-55

entially within the contralateral hemifield (Imig, Irons, and Samson, 1990; Middlebrooks et al., 1994;56

Brugge, Reale, and Hind, 1996; McAlpine, Jiang, and Palmer, 2001). Thus, sound location could be57

represented in an opponent-channel code where two neural populations are broadly tuned to the58

contralateral hemifield, encoding location in their relative levels of activity (Salminen et al., 2010;59

Magezi and Krumbholz, 2010). This model predicts the greatest change in the neural response,60

and hence highest perceptual resolution, around the midline where tuning curves of both popula-61

tions intersect. While this may be a plausible mechanism for the perception of azimuth, which is62

most accurate around the midline, it does not explain the human perception of sound elevation63

which has a relatively constant accuracy troughout the frontal field (Wightman and Kistler, 1989b;64

Middlebrooks and Green, 1991).65

Instead, elevation could be represented by the overall level of activity within a single neural66

population. Evidence from fMRI suggests that all elevation-sensitive voxels respond with a similar67

linear decrease in activity to increasing elevation and that this tuning co-varies with the effects of68

behavioral manipulations (Trapeau and Schönwiesner, 2018). However because fMRI measures69

the hemodynamic response which is delayed with respect to neural activity, the latency of cortical70

elevation processing remains unclear. Also, lying down during scanning might change the neural71

tuning which is, at least in part, allocentric (Schechtman, Shrem, and Deouell, 2012; Town, Brim-72

ijoin, and Bizley, 2017). Thus we used EEG for measuring neural responses with high temporal73

resolution in a more natural listening situation to test the hypothesis that the cortex represents74

sound elevation in a linear population rate code.75

Unfortunately, EEG, unlike fMRI, can not measure the elevation-sensitive populations in isola-76

tion but instead picks up a mixture of all instantaneous neural activity. Our previouse fMRI results77

suggest that only a fraction of auditory cortex encodes sound elevation (Trapeau and Schönwies-78

ner, 2018). Thus elevation-specific components might be obscured by responses to sound onsets.79

Indeed, a study that attempted to decode sound location from EEG found that the decoding accu-80

racy for elevation was barely above chance (Bednar, Boland, and Lalor, 2017). To overcome this81

limitation, we used neural adaptation which is the decay in neural activity following repeated or82

continuous stimulation due to a variety of physiological mechanisms (Benda, 2021). By playing83

a longer trail of noise (adapter) before each short stimulus (probe) we cause adaptation of the84

sound-responsive neurons. Since adapter and probe are cross-faded and identical except for their85

elevation, the response to the probe is driven by the change in elevation, rather than the over-all86

sound onset response. We used two different variations of this paradigm, one where the adapter87

is presented from a loudspeaker and one where it is presented from fully open "hovering"-style88
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headphones. The latter design has the advantage that the adapter is not affected by the directional89

ear filter and thus does not cause adaptation of elevation-sensitive neurons (Møller et al., 1995).90

Methods & Materials91

Subjects92

Twenty-three subjects (15 female) participated in the first and thirty subjects (15 female) in the93

second experiment. They were between 20 and 33 years old and had no history of neurological94

or hearing disorders. All subjects gave informed consent and were monetarily compensated at an95

hourly rate. All procedures were approved by the ethics committee of the medical faculty at the96

University of Leipzig (reference number 248/17-ek).97

Apparatus98

Subjects sat in the center of a custom-built spherical array of loudspeakers (model Mod1, Sherman99

Oaks, CA, USA) inside a 40m2 hemi-anechoic chamber (Industrial Acoustics Company, Niederkrüchten,100

Germany). Two additional speakers were mounted hovering next to the subject’s ears, pointed at101

the ear canal, and used as fully open headphones in the second experiment. Because of their102

proximity and orientation, sounds from those loudspeakers were unaffected by the listeners di-103

rectional transfer function (Møller et al., 1995). This allowed us to simultaneously present sounds104

from loudspeakers at different elevations in the array as well as non-spatial headphone sounds.105

We equalized the transfer functions of each loudspeaker by applying an inverse filter to the stim-106

uli upon presentation. Two digital signal processors and six 8-channel amplifiers (models RX8.1107

and SA8, Tucker-Davis Technologies, Alachua, FL, USA) drove the loudspeakers at 50 kHz sampling108

rate. The processors’ digital ports controlled the LEDs attached to each loudspeaker, obtained re-109

sponses from a custom-built button box, and sent event triggers to the EEG. We used a 64-channel110

system (model BrainAmpMR, Brain Products, Gilching Germany) to record EEG at a sampling rate111

of 500Hz. The active silver/silver chloride electrodes were fixed on the subject’s head with an112

elastic cap (Easycap, Germany) according to the international 10/20 system with FCz as reference113

electrode. Electrode impedance was kept below 2 kΩ. Two cameras (model Firefly S, Teledyne FLIR,114

OR, USA), positioned between loudspeakers, were used to monitor the subjects’ head pose.115

Software116

Weprogrammed thedigital signal processors using Real-timeProcessor Visual Design Studio (Tucker-117

Davis-Technologies, Alachua, FL, USA) and controlled the cameras using the Spinnaker SDK (Tele-118

dyne FLIR, OR, USA). The software of both devices provides an API that we integrated in a custom119

Python module that controlled the experimental apparatus (Bialas, 2022). We estimated subjects’120

head pose by capturing an image of their head, localizing facial landmarks with a deep neural121

network, implemented in Pytorch (Paszke et al., 2017), and mapping these points to a generic122

3D model using functions from the OpenCV library (Bradski, 2000). Stimuli and trial-sequences123

were generated using the slab Pythonmodule for psychoacoustics (Schönwiesner andBialas, 2021).124

We recorded EEG signals using Brain Vision Recorder (Brain Products, Gliching Germany), and im-125

ported them into MNE-Python for analysis (Gramfort et al., 2013). A full list of the software envi-126

ronment can be found in the accompanying online repository.127

Preprocessing128

A de-noising algorithm, combining filtering and source separation, removed power line artifacts129

while minimizing temporal distortions due to filtering (Cheveigné, 2020). We then applied a causal,130

minimum- phase, high-pass filter with a hamming window and a 1Hz cutoff frequency. After131

epoching (without applying a baseline), channels in which the correlation between the actual signal132

and the signal predicted by the neighboring channels was less than 0.75 for more than 40 percent133

of the time (Bigdely-Shamlo et al., 2015)were replacedwith interpolated data from the surrounding134
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channels using spherical splines. We then subtracted the average signal across all channels from135

each channel ("average reference"). Next, independent component analysis unmixed the signal,136

and an algorithm removed components corresponding to eye-blinks based on their topographical137

correlation with a previously determined template (Viola et al., 2009; Plöchl, Ossandón, and König,138

2012). Finally, an algorithm determined channel-specific rejection thresholds and repaired or re-139

moved epochs where the thresholds were exceeded (Jas et al., 2017). Except for the initial selection140

of a reference for blink removal, the entire preprocessing pipeline was automated. Afterwards, the141

data were inspected by eye to assess the effect of preprocessing.142

Experiment I143

Subjects sat comfortably on a height-adjustable chair in an anechoic chamber. Target loudspeak-144

ers stood at a distance of 3.2m at elevations of 37.5°, 12.5°, −12.5° and −37.5° with respect to145

the subject’s interaural plane. Because perception of sound source elevation is slightly more ac-146

curate for lateral targets (Makous and Middlebrooks, 1990), all target speakers were positioned147

at an azimuth of 10° to the subject’s right. Initially, we tested subjects’ ability to localize sounds148

and familiarized them with the setup. To avoid that subjects explicitly learn the target speakers’149

directional transfer functions during training, we used a different set of loudspeakers located at150

elevations of 50°, 25°, 0°, −25° and −50°. In each of the 200 test trials, subjects heard a 150ms151

burst of noise with a 5ms on- and offset ramp from one speaker. Subjects localized each sound152

by pressing one of four buttons on a custom-built box. There was no time limit for responding,153

and the subsequent trial started automatically after the subject had responded to the previous154

stimulus. The order of speakers was randomized without direct repetition of the same speaker.155

Subjects were instructed to keep their head and gaze aligned with the fixation cross at 0° azimuth156

and elevation. After completion of the test, we prepared the EEG electrodes. During recordings,157

each trial started with 600ms of noise (adapter) played from the speakers at either 37.5° or −37.5°.158

Then, a 150ms burst of noise played from one of the other speakers, resulting in six different159

adapter-probe pairs. Adapter and probe had overlapping 5ms on- and offset ramps so that the160

sound intensity remained constant during the transition. The adapter’s initial position was chosen161

randomly and changed every 30 trials. The probe’s location was chosen randomly without direct162

repetitions of the same speaker. Every probe was followed by a 350ms silent inter-stimulus inter-163

val. In five percent of all trials, the probe did not come from one of the target positions but from a164

random speaker within the frontal field. Subjects had to respond to these deviant trials by pressing165

a random button as fast as possible. If they managed to respond within one second after sound166

onset, the trial was considered a success. After one second, the trial was considered failed, and167

stimulation resumed. The experiment was divided into four blocks, each of which consisted of 504168

trials and lasted 35min in total. We instructed subjects to keep their head and gaze aligned with169

the fixation cross throughout the recording but we did not check whether they complied.170

Experiment II171

Again, subjects completed an initial test in which they had to localize sounds coming from loud-172

speakers at 50°, 25°, 0°, −25° and −50°. In each of the 30 trials, subjects heard a 100ms from one173

of the speakers which they localized by pointing their head in the direction of the speaker and174

pressing a button. This triggered the cameras to acquire images from which the head-pose was175

estimated. After localizing the sound, subjects had to return to the central fixation cross and press176

the button again to start the next trial. If their head pose was not aligned with the fixation cross177

a warning tone prompted them to adjust their position. The first 15 stimuli were accompanied178

by a visual cue (i.e. a flashing LED at the loudspeakers’ location) and familiarized subjects with179

the procedure. The stimulus protocol during recording was similar to the experiment I except for180

the duration of adapter (1000ms), probe (100ms) and inter-stimulus interval (900ms). Also, the181

adapter was played from headphones instead of one of the target speakers. In five percent of182

trials, subjects heard a tone after the inter-stimulus interval which prompted them to localize the183

Ole Bialas et al. 2023 | Cortical Encoding of Sound Elevation bioR𝜒 iv | 4 of 14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2023. ; https://doi.org/10.1101/2023.05.03.539222doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.03.539222
http://creativecommons.org/licenses/by/4.0/


probe they had just heard. Thus, they had to pay attention to each probe’s location since they did184

not know whether they would be asked to localize any given sound. The experiment was divided185

into six blocks, each consisting of 240 trials, roughly lasting 55min in total.186

Elevation Gain187

To quantify the accuracy of the subjects’ perception of elevation, we used the elevation gain (EG)188

which is the slope of the regression between the target and response elevation. Thus, the EG189

measures how strongly subjects modulate their response with changes in the target’s elevation190

which 1 indicating perfect localization and 0 indicating random responses. We chose EG because it191

robust to outliers and has been shown to capture changes in behavior and neural tuning following192

manipulation(Hofman, Van Riswick, and Van Opstal, 1998; Trapeau and Schönwiesner, 2018). We193

computed the EG for the localization tests in both experiments as well the task in experiment II.194

In the latter, the EG for two subjects, which was slightly negative, was set to zero for subsequent195

analyses.196

Permutation Testing197

When investigating a phenomenon with unknown latency and locus it is desirable to test for dif-198

ferences between conditions across all points in time and space while controlling the false alarm199

rate. This is achieved by a permutation-based cluster test which operates under the null hypothesis200

that all conditions are exchangeable and finds spatio-temporal clusters that violate this assump-201

tion (Maris and Oostenveld, 2007). Unsing this algorithm, we calculated F-scores, selected samples202

where the F-score exceeded a threshold corresponding to an uncorrected p-value of 0.05 and clus-203

tered them for temporal and spatial adjacency. The size of an observed cluster is defined by the204

sum of all F-scores. By repeating this procedure on randomly permuted data, we obtain a distri-205

bution of cluster sizes that occur by chance. The p-value of the actually observed effects is given206

by the probability of observing a similar or larger effect under the permutation distribution. Thus,207

the cluster test is sensitive while avoiding the multiple comparisons problem because statistical208

inference is constrained to the distribution of cluster sizes. This however means that the spatial209

and temporal extent of the clusters is purely descriptive and not statistically controlled (Sassen-210

hagen and Draschkow, 2019). We used the cluster test implemented in MNE-Python with 10000211

permutations. We conducted one test per subject, comparing all conditions simultaneously. If the212

test returned more than one significant cluster for a subject we ignored all but the largest.213

Decoding214

While significant clusters indicate differences between conditions, they do not indicate which con-215

ditions differ in what way. Thus, to complement permutation testing, we used multivariate logistic216

regression to decode sound elevation from brain responses. We chose logistic regression because217

it is simple, well-understood, and robust to overfitting (Dreiseitl and Ohno-Machado, 2002). The218

multivariate logistic function was fit to the data sample-by-sample using ridge-regression, and de-219

notes the probability of a given observation (i.e. the instantaneous distribution of voltage across220

channels) belonging to either one of two classes (i.e. elevations). To avoid picking an arbitrary deci-221

sion threshold, we used the receiver operating characteristic (ROC) curve, which denotes the ratio222

between true and false positives across all possible thresholds. Thus, the area under the ROC curve223

is an unbiased measure of accuracy with 1 indicating perfect and 0.5 indicating random classifica-224

tion. To avoid overfitting we used 100-fold leave-one-out cross-validation, splitting the data into225

100 segments, fitting the logistic function to 99 of them and testing it on the left out segment. Each226

segment was used for testing once, and the accuracy was averaged across all segments. Finally,227

we used the bootstrap method to resample the subject-specific decoding accuracies 10000 times228

(Efron, 1992). The resampled data’s mean is an estimate of the group’s average decoding accuracy229

across time, and its standard deviation indicates the uncertainty of the mean estimate. We used230
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the logistic regression implementation from the scikit-learn package (Pedregosa et al., 2011) and231

the sliding estimator function from MNE-Python, which applied the classifier sample-by-sample.232

Elevation Tuning233

Our main objective was to estimate how brain responses to sounds change with elevation. To234

this end, we selected the channels where the difference between conditions (i.e. the F-score) was235

largest in the time interval after subjects heard the probe. Then, we estimated the relationship236

between average ERP amplitude and sound elevation for all subjects using ordinary least squares237

linear regression. To quantify the uncertainty in the estimated relationship we resampled the data238

10000 times using the bootstrap method, applied linear regression to each resampled set, and239

computed the standard deviation. Since the bootstrapped sampling distribution is normal, over240

95percent of all estimated linear models lie within two standard deviations of the mean. However,241

since EEG-sensors measure Voltage relative to the reference, an observed change at any channel242

could also reflect a change in the reference (i.e. the average of all channels) of opposite sign. To243

overcome this limitation we computed the current source density (CSD) using the implementation244

from MNE-Python, which is based on spherical spline surface Laplacians. The CSD is a reference-245

free estimate of radial current flow at the scalp where positive values represent outward (i.e. from246

the brain to the scalp) and negative values inward current flow (Kayser and Tenke, 2015). Addi-247

tionally, it acts as a spatial high-pass filter suppressing the effects of volume conductance and248

improving the spatial resolution (Cohen, 2014). This effectively simplifies the variance structure249

of the data making CSD a useful preprocessing step for principle component analysis (Kayser and250

Tenke, 2006). PCA transforms the data to a n-dimensional orthogonal space so that each dimen-251

sion accounts for the largest possible share of variance. Thus, the principle components are pat-252

terns of covariance reflective of underlying neural generators that generated the observed data253

(Cohen, 2014). This follows the rational that channels co-vary because they area affected by the254

same generator which might be a localized source or a distributed network. PCA is a simple and255

well-understood method for data-driven detection of relevant components and has been shown256

to produce meaningful summaries of average evoked responses (Donchin, 1966; Chapman and257

McCrary, 1995; Kayser and Tenke, 2006).258

Lowest sounds cause the largest responses259

Participantswere able to localize sounds accurately as shownby an average EGof 0.74(𝑆𝐷 = 0.19) in260

the initial localization tests, which is similar to what was reported in previous studies (Hofman, Van261

Riswick, and Van Opstal, 1998; Trapeau and Schönwiesner, 2018). During the continuous sound262

presentation in experiment 2, uncertainty about target trials and added memory load reduced263

the average elevation gain significantly compared to the performance in the localization test just264

before (0.78 and 0.45, (𝑡(29) = 6.05, 𝑝 < 0.001).265

Neural responses generally increased with decreasing sound elevation in both experiments266

although the effects differed in size and latency. In the first experiment, elevation-specific event-267

related potentials (ERPs) differed mostly in the time interval from 100ms to 300ms after probe268

onset (colored bar in 1A). This was confirmed by a permutation-based cluster test, which compared269

the responses to all six adapter-probe combinations (adapter at 37.5° and probes at 12.5°, −12.5°,270

−37.5° and adapter at −37.5° and probes at −12.5°, 12.5°, 37.5°). The test found significant clusters,271

comprising most of the electrodes, for 9 of the 23 subjects. Examination of the F-scores, averaged272

across time between 100ms and 300ms (Fig.1B) revealed that the difference between elevation-273

specific ERPs was largest at the central electrode Cz. Thus, we selected this electrode to investigate274

how the ERP changed with elevation more closely.275

The average ERP at Cz showed two deflections, of opposite polarity, which increased in ampli-276

tude with the separation of adapter and probe (Fig.1A). To quantify this trend, we computed the277

average absolute ERP amplitude in the time interval between 100ms and 300ms after probe onset278

for each adapter-probe combination and regressed it against the distance between adapter and279
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Figure 1. A: Grand average evoked response from the first experiment. Gray lines show the voltage at eachchannel averaged across sound sources and colored lines show the response to each probe at the channel Czwhere the difference between conditions was largest (white dot in B), when the adapter was played from37.5°. The gray dashed line marks the onset of the adapter and the black dashed line the transition to theprobe. The horizontal color bar indicates the number of subjects for whom the cluster-test showed asignificant differences between conditions at any point in time. B: topographical distribution of F-scores.Color represents the average F-score at each channel in the time interval marked by the horizontal black linein A. The white dot indicates the channel with the largest score (Cz). C: relationship between adapter-probeseparation and average absolute ERP amplitude. The solid gray line shows the change in average absoluteampltidue across all sound sources and the dotted and dahes lines show the change across all sources whenthe adapter located at −37.5° and 37.5° respectively. The shaded interval shows ±2𝑆𝐷, estimated viabootstrapping.

probe (Fig.2. The average absolute amplitude significantly increasedwith separation of the adapter280

and probe (𝑅 = 0.18, 𝑝 = 0.033). This increase was steeper when the adapter was located at 37.5°281

(𝛽 = 29.8 ∗ 10−4) compared to when the adapter was located at −37.5° (𝛽 = 17.7 ∗ 10−4). Even though282

the trend was not significant when considering only those trials where the adapter was played at283

37.5° or −37.5° (𝑅 = 0.22, 𝑝 = 0.06 and𝑅 = 0.14, 𝑝 = 0.26), this observation is compatiblewith amono-284

tonic population-rate code which predicts that elevation-sensitive neurons respond maximally to285

the lowest sound (i.e. the adapter at −37.5°), rendering them insensitive to subsequent sounds286

from higher elevations.287

The second experiment addressed the confound between adapter and probe position by using288

a non-spatial adapter. Consequently, the results offered clearer support for the population-rate289

code hypothesis. The permutation test which compared responses to the different probes at 37.5°,290

12.5°, −12.5° and −37.5° elevation found significant clusters for most subjects between 200ms and291

800ms with a peak around 500ms after probe onset (colored bar in Fig.2A). The scalp-distribution292

of F-scores averaged between 150ms and 900ms after probe onset (Fig.2B) revealed that the dif-293

ference between elevation-specific ERPs was largest at fronto-temporal electrodes with a peak at294

FT10. Again, we chose this electrode for a closer inspection of elevation-specific changes in the295

ERP.296

The average ERP at FT10 exhibited a sustained deflection that was strongly modulated in ampli-297

tude by the probe’s elevation (colored lines in Fig.2A). The amplitude was largest when the probe298

was located at −37.5° and smallest when it was located at 37.5 Linear regression found that the re-299

lationship between the probe’s elevation and the average response amplitude in the time interval300

from 150ms to 900ms after onset was highly significant (𝑅 = −0.66, 𝑝 < 0.001).301
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Figure 2. A: Grand average evoked response from the second experiment. Gray lines show the voltage ateach channel averaged across conditions and colored lines show the response to each probe at the channelFT10 where the difference between conditions was largest (white dot in B). The gray dashed line marks theonset of the adapter and the black dashed line the transition to the probe. The horizontal color bar indicatesthe number of subjects for whom the cluster-test showed a significant differences between conditions at anypoint in time. B: topographical distribution of F-scores. Color represents the average F-score at each channelin the time interval marked by the horizontal black line in A. The white dot indicates the channel with thelargest score (FT10). C: relationship between probe elevation and average ERP amplitude. The shaded intervalshows ±2𝑆𝐷, estimated via bootstrapping.

Elevation decoding accuracy predicts task performance302

Sounds at different elevations evoked visibly different ERPs. Thus, a logistic regression classifier303

which decoded sound elevation from EEG performed above chance for all sound source pairs304

(Fig.3A). Decoding accuracy increased with distance between adapter and probe and was not de-305

pendent on the sounds’ absolute elevation (e.g. the curves for 37.5° vs 12.5° and −37.5° vs. −12.5°306

were virtually identical). Decoding accuracy followed a similar time course in all conditions: it re-307

mained at chance level while the adapter was presented, started to increase around 200ms and308

peaked around 400ms after probe onset. Participants who were better at distinguishing sounds at309

different elevations also had more distinctive ERPs in response to sounds from these different ele-310

vations, allowing better decoding accuracy. Subjects’ average decoding accuracy between 150ms311

and 900ms after probe onset correlated with their elevation gain during the experimental task312

(𝑅 = 0.51, 𝑝 = 0.004). Notably, this relationship is mostly due to the upper right quadrant in Fig-313

ure3B being empty, meaning there were no subjects who’s brain responses were decodable but314

who failed at the task. There were, however, several subjects for whom decoding failed but who315

still performed the task accurately.316

We also regressed the average decoding accuracy against the EG during the initial localization317

test to investigate whether the relationship between decoding and performance was specific to318

the experimental task or applied to sound localization in general. While linear regression revealed319

a positive relationship between decoding accuracy and localization test EG, this trend was not sig-320

nificant (𝑅 = 0.23, 𝑝 = 0.23), likely due to the small number of trials and lack of variance across321

subjects in the localization test.322

Auditory component activates with decreasing elevation323

Because ERP morphology depends on the chosen reference it is unclear whether the observed324

changes in ERP amplitude with elevation reflect a decrease or a change in polarity with respect to325

the underlying current flow. To resolve this ambiguity we computed the current source density326
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Figure 3. A: accuracy across time for decoding the ERPs to all possible pairs of probes. The displayed data areaverages across all cross-validation splits. B: relationship between decoding accuracy and localizationbehavior. The lines show the average relationship between decoding accuracy and EG during the localizationtest (blue) and experimental task (green). Shaded intervals show ±2𝑆𝐷 estimated via bootstrapping. Bar plotson the right show the marginal distributions of EG during the test (blue), EG during the task (green) andaverage decoding accuracy (gray).

(CSD), a reference-free estimate of current flow, and performed a principle component analysis.327

The principle component accounting for most variance had a topography suggesting an auditory328

origin and showed a deflection which gradually increased in amplitude for decreasing elevation329

(Fig.4A. The second and third componentsmight reflect activity of themotor and prefrontal cortices330

respectively (Fig.4B&C). These additional components were unaffected by elevation. Together, the331

three components accounted for 88% of the variance in the average evoked response.332

Discussion333

Evoked responses encode sound elevation334

Both experiments demonstrate that the cortical processing of sound elevation can be assessed335

with EEG. Using fMRI, we previously identified voxels in auditory cortex tuned to sound elevation336

(Trapeau and Schönwiesner, 2018), but the lower spatial resolution of EEG would not have allowed337

us to isolate the responses from these small patches of auditory cortex. Indeed, a previous EEG338

study attempted to decode sound elevation from EEG responses and found that decoding accu-339

racy exceeded chance level just barely for only some of the listeners (Bednar, Boland, and Lalor,340

2017). The adaptation design helped to circumvent this issue by separating neural activity related341

to sound onset and elevation in time. In the second experiment, we showed that changes in sound342

elevation evoke distinct cortical responses that can be decoded accurately, and that decoding ac-343

curacy predicts individual localization performance. Decoding accuracy for all pair-wise elevation344

comparisons followed the same time course with a single peak at around 400ms after the eleva-345

tion information became available. The time course and the fact that accuracy was predictive of346

task performance suggests that we decoded a physiological process distinctly related to elevation347

rather than processes associated with acoustical features that co-vary but are not causally related348

with sound elevation. Elevation-specific activity was well captured by a single principle component,349

suggesting that the observed encoding of elevation reflects a distinct physiological process.350

A monotonic population-rate code for elevation351

Wehypothesized that the auditory cortex represents sound elevation in a population response that352

decreases monotonically with increasing elevation. Both experiments presented here offer sup-353

Ole Bialas et al. 2023 | Cortical Encoding of Sound Elevation bioR𝜒 iv | 9 of 14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2023. ; https://doi.org/10.1101/2023.05.03.539222doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.03.539222
http://creativecommons.org/licenses/by/4.0/


Figure 4. Principle components of the average current source density. A: the percentage of varianceaccounted for by each component. B-D:Channel weights of the components as topographical distribution onthe scalp. The percentage indicates the total variance accounted for by the respective component. E-FComponent loading across time for each sound elevation.

port for this hypothesis. In experiment 1, ERP amplitude increased with separation of the adapter354

and probe when the adapter was played from the highest position. Under the assumption of a rate355

code with minimal response at high elevations, this adapter would evoke small responses and en-356

able increasingly larger responses for probes at lower elevations, with corresponds to the observed357

pattern. Consequently, the adapter played from the lowest elevation would lead to strong adap-358

tation independent of probe elevation. Thus, as expected, differences between elevation-specific359

ERPs were larger when the adapter was located at a high elevation. Unexpectedly however, probes360

tended to evoke larger responses when the adapter was located at a low elevation. This may be361

explained by co-varying acoustic factors contributing to the probe response and it does not con-362

tradict the representation we propose since absolute amplitude does not carry information in a363

rate code. To summarize, while experiment 1 showed that elevation is reflected in the ERP, its in-364

terpretation is limited by the fact that responses are affected by both the adapter and the probe’s365

position.366

The purpose of experiment 2 was to remove the interaction of adapter and probe position by367

using a non-spatial adapter (seeMethods). Consequently, elevation-specificmodulation of ERP am-368

plitude was about an order ofmagnitude larger compared to the first experiment, and thismethod369

allowed direct measurement of monotonic elevation tuning functions. Sounds from the lowest el-370

evations evoked the largest response, and response amplitude gradually declined with increasing371

elevation in a way that was well described by a linear model. The sign of the elevation-specific re-372

sponse amplitude changed around the listener’s eye level. Because EEG-electrodes measure volt-373

age relative to a common reference, it is unclear whether this reflects a gradual decrease or change374

in polarity of the underlying neural current. We were able to decide between these alternatives by375

computing a reference-free estimates of neural current flow (current source density), which bene-376

fits topographical localization (Kayser and Tenke, 2015). One principle component accounted for377

more than half of the ERP variance and showed a topography that suggested it originated in the au-378

ditory cortex. This component showed a gradual increase in response amplitude with decreasing379

elevation, supporting the idea of a monotonic population rate code. Two additional components,380

which together with the first accounted for almost 90% of the variance, showed topographies sug-381

gesting they originated in motor and frontal cortices. Involvement of those regions plausible given382
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that the experimental task required the participants to translate their auditory perception into383

goal-directed head movements.384

Thus, our results bear striking similarity to changes in the BOLD-response to elevated sounds385

(Trapeau and Schönwiesner, 2018). This is remarkable given the fact that many neural phenom-386

ena are not similarly reflected in EEG and fMRI. For example, increases in BOLD-activity may not387

be picked up by EEG if the sources are not synchronized or their geometric orientation prevents388

a summation of their local field potentials (Buzsáki, Anastassiou, and Koch, 2012), and increases389

in EEG power can reflect an overall decrease of the underlying neural activity (Musall et al., 2014).390

Thus, our combined findings constrain the cortical encoding of sound elevation to sources that af-391

fect EEG and fMRI signals in the sameway. They also suggest that the cortical encoding of elevation392

is egocentric, because fMRI recordings in supine and EEG recordings in upright position revealed393

a similar trend.394

Latency of cortical elevation processing395

In the first experiment, we found the largest elevation-specific response between 200ms and396

250ms after probe onset. This latency is similar to other reports on the cortical processing of397

elevation. Using MEG, Fujiki and colleagues found that unexpected sounds, deviating in eleva-398

tion, caused mismatch responses between 150ms and 250ms (Fujiki et al., 2002). Bednar and col-399

leagues found that some participants’ brain responses to two differently elevated sound sources400

could be decoded above chance between 200ms and 400ms after sound onset (Bednar, Boland,401

and Lalor, 2017). Notably both those studies also reported correlates of sound azimuth which oc-402

curred earlier in time reflecting the fact that binaural cues depend on precise temporal information403

while spectral cues result from a detailed analysis of spectral patterns.404

In the second experiment, the elevation-specific component started at a similar time but lasted405

much longer, so that most subjects showed significant differences across ERPs between 200ms406

and 800ms. This is reflected in the time-course of decoding accuracy, which peaked around 400ms407

after probe onset. Remarkably, elevation-specific ERPs could still be distinguished 1 s after probe408

onset, which means that the brain could access the relevant perceptual representation at the end409

of a trial when participants were informed whether they had to indicate the sound location in this410

trial. Thus, the increased duration of elevation-specific responses might be a result of the experi-411

mental taskwheremaintaining the probe’s perception facilitated performance. Interestingly, visual412

research identified late ERP components that scale with task-difficulty in latency and magnitude in413

a way that is predictive of individual performance (Philiastides and Sajda, 2006; Philiastides and414

Sajda, 2007). Such perceptual persistence could be implemented by feedback loops which rever-415

berate the neural representation after stimulus offset (VanRullen and Koch, 2003; Large, Aldcroft,416

and Vilis, 2005). The perceptual persistence of a visual stimulus is inversely related to its dura-417

tion and intensity (Coltheart, 1980). Thus, perceptual persistence could provide a mechanism of418

evidence accumulation for perceptual decision making under difficult conditions. However, the419

present study was not designed to investigate the effects of task-difficulty and further research is420

required to answer those questions.421

The cortical representation of sound direction422

It is thought that the auditory cortex represents sound azimuth as the difference between the423

rates of activity in two opponent neural channels, each tuned to the contralateral hemifield so that424

most azimuth sensitive neurons respondmaximally to cues outside the range created by the head425

(McAlpine, Jiang, and Palmer, 2001). This may sound counter-intuitive but, in a rate code, accuracy426

is not related to the absolute magnitude but rather the change in neural response. Thus, placing427

the tuning curve’s peak outside the physiological range places the slope in the center, where az-428

imuthal localization ismost accurate (Harper andMcAlpine, 2004). Similarly, the fact that sounds at429

low elevations cause larger responses than sounds at high elevations does not mean that they are430
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localizedmore accurately. Instead, the steady slope of the population response suggests that accu-431

racy remains constant across elevations, which lines up well with localization behavior (Wightman432

and Kistler, 1989b; Middlebrooks and Green, 1991). There is no cardinal reason why themaximum433

of the tuning is at low rather than high elevations. While it is tempting to argue that this may be434

due to a tendency for deeper spectral notches at low elevations, this explanation was disproved435

by our previous finding that the tuning function depends on perception rather than the acoustic436

nature of the cues: the tuning curve flattens when listeners are presented with spectral cues from437

other ears, and they re-emerge as the listener adapts to the new cues (Trapeau and Schönwiesner,438

2018).439

If both elevation and azimuth were represented in a rate code, integration could be fast and re-440

quire little computational effort. In the simplest case, the normalized rates of both codes could be441

summed to obtain a joint representation of angular separation, in which the difference in activity442

elicited by a pair of sound sources is proportional to their angular separation. This unidimensional443

activity gradient would be insufficient to encode the joint two-dimensional direction of a sound444

source, but the uncertainty could be resolved by the difference in latency between azimuth and445

elevation processing (Fujiki et al., 2002; Bednar, Boland, and Lalor, 2017). Howver, it remains to446

be seen to which degree spectral cues and binaural cues are integrated in the auditory cortex, es-447

pecially in more naturalistic listening situations. The adapter-probe paradigm may help to resolve448

this question, because it allows attenuation of populations of auditory neurons without directly449

affecting spatial processing.450
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