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Biomedical research is driven by a 100-year-old dogma that 
phenotype results from the additive effects of genes and envi-
ronment1,2. Since the 1920s, a persistent and compelling body 

of evidence has argued for the existence of an additional dimension 
of phenotypic variation not explained by genetics or the environ-
ment3. Klaus Gärtner’s 30-year effort to standardize rodent models, 
for instance, aptly demonstrated that continuously inbred animals 
raised under stringent, standardized conditions continue to exhibit 
a remarkable degree of UPV4. Potential mediators of UPV include 
residual genetic variation5, mosaic genetic variation, gene–gene and 
gene–environment interactions (non-additive modifier effects), 
intergenerational and developmental programming and probabilis-
tic mechanisms such as those underpinning organismal polyphen-
isms and meta-stable epiallele control6,7. For precision medicine, 
our limited understanding of UPV represents a massive source 
of untapped potential: estimates from trait concordance analyses 
between co-twins8 suggest that UPV is responsible for ~50% of rel-
evant complex trait variation9–15.

Deep literature on epigenetics demonstrates the existence of 
highly conserved, molecular machinery that stabilize transiently 
plastic transcriptional units into highly stable ON or OFF tran-
scriptional (phenotypic) outputs between isogenic cells and organ-
isms16,17. Literature on position-effect variegation for instance, 
highlights the existence of hundreds of such genomic loci whose 

expression output is transiently probabilistic in early development 
and ultimately deterministic (ON or OFF) despite originating in the 
same tissue of the same individual in the same environment, with-
out change in the underlying DNA sequence. These studies indi-
cate that a fraction of UPV is likely not due to random biological 
‘noise’. The existence of alternate but distinct phenotypic sub-states, 
as opposed to random phenotypic noise, carries profound implica-
tions for precision medicine. While not typically interpreted in this 
fashion, the original work that pioneered the discovery of epigen-
etic silencing mechanisms in yeast and Drosophila, demonstrate a 
complex regulatory network exists sufficient to underpin organis-
mal UPV18–20, at least as they pertain to single reporter loci. While 
it is now clear that hormones and chromatin pathways can regu-
late UPV, we know very little about the molecular machinery that 
buffers against phenotypic variation and confine developmental/
phenotypic outcomes to a specific range for any given gene–envi-
ronment context. Notably, while conceptually related, the regula-
tion of robustness is thought to be distinct from that of phenotypic 
plasticity21–23. For instance, plasticity regulators inherently mediate 
gene–environment interaction; robustness factors prevent pheno-
typic variation upon environmental perturbations22,23.

One challenge when studying UPV (and phenotypic variability 
in general) is the large number of experimental animals required 
to statistically test and validate variance heterogeneity effects  
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(differences in distribution or variance)24,25. Experimental designs 
must factor in (and rule out) confounds such as paternal, mater-
nal and litter-size effects26–29. Most biomedical experiments are not 
designed or powered for such analyses. Using proper design and 
power, we recently demonstrated that Trim28 is a robustness factor 
in mice; Trim28 buffers against UPV30. This work suggested Nnat 
and imprinted gene network 1 (IGN1) as potential mediators of 
Trim28-dependent UPV control.

Nnat is a paternally expressed imprinted gene that encodes for 
a transmembrane proteolipid of the endoplasmic reticulum (ER). 
It was first described as a developmentally regulated gene of the 
embryonic brain31,32, but is also widely expressed and associated 
with energy homeostasis across tissues33. Nnat expression is neces-
sary for proper glucose-stimulated insulin secretion in differenti-
ated pancreatic β-cells34–36, for adipogenesis and glucose disposal 
in adipocytes37–39, appetite in the hypothalamus40 and for energy 
expenditure and food intake41,42. It remains unclear whether any of 
these functions play a causal role in the emergence of UPV or mam-
malian polyphenism.

Here, we find that: (1) Nnat insufficiency triggers an overgrowth 
polyphenism (increased fat and lean mass) distinct and indepen-
dent of Trim28-buffered UPV43; (2) Nnat- and Trim28-buffering 
mechanisms are distinct; (3) Nnat-buffered overgrowth is driven 
by cell-autonomous β-cell hyperplasia and can be abrogated by 
chemical intervention; and (4) that β-cell hyperplasia depends on 
HDAC-dependent transcriptional rewiring. Expanding our analysis 
to humans, we identify at least two different, recurrent patterns of 
human UPV among monozygotic (MZ) co-twins (Type A and Type B).  
Of note, Type-B UPV is associated with reduced NNAT gene expres-
sion and shares similar molecular and metabolic features with the 
mouse model. Critically, a Type-B UPV gene expression signature 
stratifies human populations into distinct molecular/metabolic 
sub-types and separates two types of obesity. The data reported here 
therefore identify NNAT as a critical regulator of mammalian UPV.

Results
Nnat buffers an overgrowth polyphenism. To unequivocally test 
Nnat’s role as a robustness factor and understand the physiologi-
cal mechanisms by which it buffers against UPV, we intercrossed 
highly inbred B6 congenic Nnat knockout males (B6.Nnat+/-p) 
with wild-type (WT) FVBN/J females, generating large cohorts 
of Nnat-deficient (Nnat+/-p) and WT littermate matched F1 con-
trols. This breeding scheme maximally restricted inter-individual 
genetic variation (through isogenicity) while maintaining substan-
tial genome-wide heterozygosity. To minimize litter-size effects 
(variation attributable to differences in in utero/early-life suffi-
ciency), we used offspring from litters of 9–12 pups and tightly con-
trolled husbandry, environment and housing density. Nnat+/-p mice 
emerged into adulthood in one of two non-overlapping (bi-stable) 
phenotypic forms: either unremarkable (Nnat+/-p-Light) or over-
grown relative to WT and Nnat+/-p-Light animals (Nnat+/-p-Heavy). 
Overgrowth was characterized by coordinated increases in fat and 
lean mass (Fig. 1a,b and Extended Data Fig. 1a), which is distinct 
from the previously reported Trim28-buffered polyphenism and 
from other reports of heterogeneity using the Nnat+/-p allele36,41–43. 
Nnat+/-p-Heavy animals were ~50% heavier than both their WT 
and Nnat+/-p-Light littermates and had increased white adipose 
tissue, spleen, pancreas, kidney, liver and heart mass (Fig. 1c). 
Notably, not all tissues were enlarged. Skeletal muscle, brown 
adipose tissue and brain masses were unchanged or minimally 
reduced in Nnat+/-p-Heavy animals (Fig. 1c, right). Skeletal mor-
phometry confirmed a larger skeletal frame in the Nnat+/-p-Heavy 
morphs (Fig. 1d). Given that the Nnat+/-p-Light and Nnat+/-p-Heavy 
animals are isogenic, raised in highly standardized environments 
and reproducibly observed within litters and across multiple 
independent breeding pairs, these data demonstrate that Nnat 

acts to buffer against bi-stable overgrowth potential. Thus, Nnat 
deficiency triggers a polyphenism, characterized by probabilistic 
overgrowth and obesity.

We validated these findings in several ways. First, deleting 
the imprinted maternal Nnat allele, which generates isogenic 
Nnat-deletion mutants albeit with normal Nnat expression, did 
not trigger overgrowth in the same line (Nnat-m/+; Extended Data 
Fig. 1b,c). Second, we tested and observed phenotypic bi-stability 
in two independent mouse houses and after surviving rederiva-
tions independently from cryopreserved embryos and sperm 
(MPI-IE, Germany; Fig. 1a and Extended Data Fig. 1a; and VAI, 
USA; Extended Data Fig. 1d,e). Third, we observed bi-stability 
over dozens of generations, despite exclusively using Nnat+/-p-Light 
animals as fathers and naive WT C57BL/6J females for continuous 
backcrossing. Nnat deletion is clear in both Light and Heavy morphs 
at the DNA and messenger RNA levels (Extended Data Fig. 1f).  
Thus, Nnat+/-p-triggered overgrowth is robust across distinct envi-
ronments and in vitro rederivation protocols. To the best of our 
knowledge, these data represent an unprecedented demonstration 
of mammalian polyphenism in a genetic context of substantial 
genome-wide heterozygosity (F1 hybrids as opposed to congenic 
lines). They rule out genome-wide homozygosity as a precondition 
for mammalian polyphenism.

One of the key challenges in deciphering mechanisms that regu-
late UPV is our limited understanding of the fidelity with which 
UPV effects are manifest across disparate experimental condi-
tions. We therefore used genetic epistasis to test whether Trim28 
and Nnat-buffered polyphenisms are simply context-specific forms 
of the same process. We crossed FVB.Trim28+/D9 (maternal) and 
B6.Nnat+/-p (paternal) lines to generate B6/FVB F1 hybrid offspring 
that were either WT at both loci, mutant only for Trim28+/D9, mutant 
only for Nnat+/-p or mutant for both alleles in the very same genetic 
background, parental and in utero contexts. Trim28+/D9 offspring 
(WT for Nnat) showed bi-stable growth trajectories culminating in 
a bi-stable obesity, whereas solely their Nnat+/-p siblings (WT for 
Trim28) showed distinct early bifurcating overgrowth trajectories 
(Fig. 1e). These data indicated the Trim28- and Nnat-induced poly-
phenisms are at least partially distinct. Notably and in the true test 
of independence, double-mutant (Nnat+/-p;Trim28+/D9) littermates 
showed tri-stable phenotypic trajectories (Fig. 1e and Extended 
Data Fig. 1g), where genetically and context-matched animals 
exhibited a light (WT-like), obese or overgrown phenotype. 
Trim28 expression was unchanged among WT, Nnat+/-p-Light and 
Nnat+/-p-Heavy animals (Extended Data Fig. 1h). The single-mutant 
analyses also indicate that Nnat-mediated buffering is agnostic to 
the loss of maternal Trim28; and that Trim28-dependent buffering 
is agnostic to the loss of paternal Nnat+/−. This data shows unprece-
dented genetic proof of tri-stable phenotypic potential in mammals 
and demonstration of independence and additivity of distinct poly-
phenisms. The data also indicate that the probabilistic ‘obese’ and 
‘heavy’ morphs triggered by loss of Trim28 and Nnat (respectively) 
are distinct and they demonstrate that the mammalian genome has 
the capacity to canalize three reproducible and discrete develop-
mental trajectories.

Nnat loss triggers bi-stable β-cell hyperplasia. Previous work 
suggested that Nnat deletion causes a stochastic obesity (B6 
background; several groups/vivaria42,43) and partially penetrant, 
early-life growth restriction that is alleviated in later life through 
increased food intake (129S2/Sv background; one group41). To cap-
ture early growth kinetics of the Nnat+/-p-Light and Nnat+/-p-Heavy 
animals, we tattooed animals at birth and tracked body composi-
tion. Nnat+/-p-Light and Nnat+/-p-Heavy animals exhibited compa-
rable birth weights (Extended Data Fig. 2a), but Nnat+/-p-Heavy 
morphs initiated the overgrowth developmental trajectory just 
after 4 weeks of age (Fig. 1e and Extended Data Fig. 2b; top and  
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middle). The phenotypic bifurcation is distinct from that observed 
in Trim28 mutant mice that bifurcate (toward lean or obese end 
states) in early adulthood (8–12 weeks; Fig. 1e). To better under-
stand the origins of phenotypic bifurcation, we measured food 
intake and body composition changes of the Nnat+/-p animals 
between 4 and 7 weeks of age. Of note, increases in lean and fat mass 
were measurable several weeks before any detectable hyperphagia, 

arguing against hyperphagia as a driver of Nnat+/-p-associated over-
growth and adiposity (Extended Data Fig. 2b,c).

Clinically, overgrowth typically results from hyperactive growth 
hormone (GH)/insulin-like growth factor (IGF) signaling. We found 
no increase in GH, IGF1 or IGF2 (undetectable) in Nnat+/-p-Heavy 
mice, suggesting non-canonical overgrowth (Extended Data Fig. 2d). 
GH was slightly reduced in Nnat+/-p-Heavy mice at 4 weeks, but not 
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Fig. 1 | Paternal Nnat deletion triggers a bi-stable epigenetic overgrowth in mice. a, Body composition shown for 16-week-old F1 male progeny from 
Nnat+/-p × FVBN/J crosses. Contour plots highlighted main clusters identified by Gaussian finite mixture modeling. b, Representative picture presented for 
Nnat+/p isogenic morphs and WT littermates. c, Organ masses were measured from Nnat+/p colony. Each group had at least eight animals. *Adjusted P ≤ 0.05, 
as assessed by one-sided Tukey’s multiple comparisons test, comparing Nnat+/p-Heavy and Nnat+/p-Light littermates. Specifically, gonadal white adipose tissue 
(gWAT) P < 0.0001, subcutaneous white adipose tissue (sWAT) P < 0.0001, spleen P < 0.0001, pancreas P = 0.0019, kidney P = 0.0011, liver P < 0.0001 and 
heart P < 0.0297. Data are presented as mean ± s.e.m. BAT, brown adipose tissue. d, The lumbar spine (L1–L5) length was measured for the Nnat+/p colony. 
Each group had at least five animals. In all box-plots, the lower and upper hinges represent 25th and 75th percentiles. The upper/lower whiskers represent 
largest/smallest observation less/greater than upper/lower hinge+1.5 × interquartile range (IQR). Central median represents 50% quantile. *Adjusted 
P = 0.015) as assessed by one-sided Tukey’s multiple comparisons test. e, Body composition (fat and lean mass) was measured via EchoMRI for each F1 male 
progeny at 4, 6, 8, 12 and 16 weeks from B6.Nnat+/-p × FVB.Trim28D9/+ crosses. Developmental trajectories according to the phenotypic groups were plotted 
from 4 to 16 weeks. Each trajectory had at least four animals. Data are presented as mean ± s.e.m. *P ≤ 0.05 by Student’s t-test.
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significantly. Notably, plasma levels of insulin (a non-canonical acti-
vator of IGFR signaling) showed marked increases in Nnat+/-p-Heavy 
animals simultaneously with overgrowth bifurcation (Extended 
Data Fig. 2d), reaching an exceptional ~20-fold normal levels by 16 
weeks of age (Fig. 2a).

We then analyzed morphology, function and turnover of the 
pancreatic islet β-cell compartment, the primary source of insu-
lin in the body. Nnat+/-p-Heavy mice showed marked increases in 
β-cell mass (Fig. 2b and Extended Data Fig. 3a,b) relative to both 
WT and Nnat+/-p-Light groups. Nnat+/-p-Heavy animals also showed 
reduced insulin immunoreactivity (Fig. 2b), consistent with pre-
vious work showing that β-cell-specific loss of Nnat (in otherwise 
normal developmental contexts) impairs insulin secretion and 
storage36. Overall, Nnat+/-p-Heavy animals showed total pancreatic 
insulin content ~2.5-fold higher than WT and Nnat+/-p-Light groups 
(Extended Data Fig. 3c). Thus, Nnat deletion leads to distinct pro-
gramming of β-cell mass in Nnat+/-p-Light and Nnat+/-p-Heavy mice.

Nnat+/-p-Heavy animals showed increased numbers of 
Ki-67-positive β-cells in vivo relative to Nnat+/-p-Light animals  
(Fig. 2c). No differences were observed in islet organization and 
rates of cell death (TUNEL) (Extended Data Fig. 3d,e). We therefore 
measured proliferation in islets ex vivo to validate these findings 
and assess the stability and cell autonomy of the hyperproliferative 
program. Increased β-cell proliferation was readily measurable in 
Nnat+/-p-Heavy islets after 3 days of ex vivo equilibration culture and 
after 2 days of 5-ethynyl-2'-deoxyuridine (EdU) incubation (Fig. 2d).  
These findings indicated islet-autonomous hyperproliferative pro-
gramming in Nnat+/-p-Heavy animals. No measurable differences 
were observed in insulin release in both primary islets and reconsti-
tuted islet spheroids, under steady-state or glucose-stimulated con-
ditions (Extended Data Fig. 3f–h). In line with these data, glucose 
tolerance was largely normal in Nnat+/-p-Heavy animals despite the 
marked hyperinsulinemia (Extended Data Fig. 3i). These data sug-
gested that the overgrowth polyphenism is driven by an alternate 
β-cell hyperplasia program.

Nnat+/-p triggered overgrowth is insulin-dependent. To test whether 
probabilistic Nnat+/-p overgrowth is driven by β-cell hyperplasia and 
resulting hyperinsulinemia, we artificially ‘clamped’ in vivo insulin 
levels at equal levels across groups by injecting animals with a single 
high-dose injection of streptozocin (STZ) to deplete the endoge-
nous β-cell pool44 and implanting slow-release subcutaneous insulin 
pellets to restore insulin sufficiency equally across animals (Fig. 2e). 
Treatment was initiated at ~5 weeks of age in longitudinally tracked 
cohorts. Animals initiating their Nnat+/-p-Heavy trajectory (defined 
as a 3 g fat mass gain within 5 days) were randomly sorted into treat-
ment or control groups. Notably and where parallel control cohorts 
of Nnat+/-p-Heavy morphs gained ~15 g of fat and ~3 g of lean mass 
beyond that of their WT and Nnat+/-p-Light siblings (Fig. 2f,g top; 

arrow from WT/crosshair), combination therapy completely abro-
gated this alternate phenotype, yielding lean and fat mass accumu-
lations comparable to WT animals (Fig. 2f (bottom) and Extended 
Data Fig. 3j). All treated animals completed normal growth trajec-
tories, reaching healthy mature body mass levels of ~30 g (Fig. 2g). 
Thus, Nnat+/-p-Heavy overgrowth is insulin-dependent.

The alternate β-cell hyperplasia program is HDAC-dependent. 
To gain insight into the developmental switch driving β-cell hyper-
plasia in Nnat+/-p-Heavy morphs, we performed RNA-sequencing 
(RNA-seq) on Nnat+/-p islets before and after the onset of detect-
able overgrowth bifurcation (3 and 6 weeks). Transcriptomes from 
WT and Nnat+/-p-Light islets showed minimal differences (Extended 
Data Fig. 4a), consistent with the phenotypic similarities between 
the two genotypes. These data demonstrate that whole-body Nnat 
deletion, by itself, is not sufficient to drive β-cell dysregulation 
and imply that Nnat’s primary function is to buffer against pheno-
typic variation. In contrast, Nnat+/-p-Heavy samples showed major 
transcriptional rewiring (Fig. 3a,b and Extended Data Fig. 4a). 
Consistent with the observed hyperplasia, gene set enrichment anal-
ysis (GSEA) revealed upregulation of pathways and leading-edge 
signatures associated with cell cycle (Cdk6, Ccnl2, Myc and Tp53), 
proliferation (Wnt7a/b, Mapk13, Foxj1, Fos and Smad3) and growth 
factor signaling (Egr1, Fgfr2 and Epn3) (Fig. 3b,c). Downregulated 
factors included islet endocrine lineage hormone genes (Gcg and 
Sst), ER-processing (Pdia3/4, Lman1/2, Rpn1/2, Hsp90b1, Dnajb9 
and Ssr4) and protein export pathways (Spcs3, Srps and Sec61b/g) 
(Fig. 3b,c). Unexpectedly, Nnat+/-p-Heavy islets showed upregulation 
of a functionally disparate set of HDAC-responsive genes (Fig. 3c 
and Extended Data Fig. 4b). This result was particularly notewor-
thy because histone acetylation dynamics have been implicated in 
regulating insect polyphenisms45,46 and cell proliferation in cancer47.

To test whether HDAC regulation was causally linked to the over-
growth polyphenism, we first examined whether the HDAC tran-
scriptional signatures were already present before the phenotypic 
bifurcation. Notably, the 3-week RNA-seq data revealed that Nnat+/-p 
islet transcriptomes definitively separate into Nnat+/-p-Light-like 
or Nnat+/-p-Heavy-like clusters, before phenotypic distinctions are 
detectable (Fig. 3d). Fully 60% of the variation in the RNA-seq data-
set correlated with the same HDAC-responsive gene sets (Fig. 3e 
and Extended Data Fig. 4c,d), indicating that the HDAC-associated 
genes are fundamentally responsible for the phenotypic variation 
in that moment of early life. The data also suggested that dysregu-
lation of HDAC-responsive genes might cause the β-cell hyperp-
roliferation phenotype in Nnat+/-p-Heavy animals. In either case, 
HDAC-associated transcriptional rewiring precedes the phenotypic 
bifurcation toward overgrowth.

Second, we cultured islets from the three genotype-phenotype 
combinations with histone acetylase inhibitors (HATi) or histone 

Fig. 2 | Nnat+/-p-overgrowth exhibits autonomous β-cell hyperplasia and hyperinsulinemia. a, Plasma insulin was measured from 16-week-old male 
animals fasted for 6 h. Each group had at least 17 animals. ***Adjusted P ≤ 0.001, as assessed by one-sided Tukey’s multiple comparisons test. b, 
Insulin-positive β-cells (brown) in Nnat+/-p pancreata were detected by immunohistochemistry staining. Scale bar, 250 µm. β-cell area was quantified 
as percentage of the entire pancreas area. Each group had at least four animals. ***Adjusted P ≤ 0.001, as assessed by one-sided Tukey’s multiple 
comparisons test. c, In vivo immunofluorescence was performed for proliferating β-cells (white arrows) in primary islets from 16-week-old animals (red, 
insulin; blue, DAPI; green, Ki-67). Scale bar, 100 µm. Ki-67+ β-cells were quantified and each group had at least 11 islets. ***Adjusted P ≤ 0.001, as assessed 
by one-sided Tukey’s multiple comparisons test. DAPI, 4,6-diamidino-2-phenylindole. d, Ex vivo immunofluorescence was performed for proliferating 
β-cells by EdU-incorporation. Size-matched primary islets from 5–6-week-old mice were cultured for 3 days before the EdU-incorporation assay (red, 
insulin; blue, DAPI; green, EdU). Scale bar, 50 µm. EdU+ proliferating β-cells were quantified and each group had at least three islets. *Two-tailed P ≤ 0.05, 
**two-tailed P ≤ 0.01, by Welch’s t-test. e, STZ (300 mg kg−1) was administered at 5 weeks of age when the Nnat+/-p-Heavy morphs first show signs of 
accelerated weight gain. An equal number of subcutaneous (s.c.) insulin implants were administered after 5 days and 1 month after the STZ injection to all 
STZ groups such that relative euglycemia was maintained. i.p., intraperitoneal. f, Lean and fat mass gained between 4 and 12 weeks of age for untreated 
and STZ-treated Nnat+/-p littermates. Each group has at least three animals. INS, insulin. g, Body weight at termination highlights how Nnat+/-p-Heavy 
mice fail to exhibit the overgrowth phenotype on combined STZ/insulin treatment. ***Adjusted P = 0.0001, as assessed by one-sided Tukey’s multiple 
comparisons test. All data are presented as mean ± s.e.m.
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deacetylase inhibitors (HDACi) and tracked β-cell prolifera-
tion in vitro. Consistent with the data above, Nnat+/-p-Heavy islets 
showed islet-autonomous β-cell hyperplasia at baseline (Fig. 3f). 
Notably, HDACi treatment had no observable effect on WT and 
Nnat+/-p-Light islets, but the treatment was sufficient to abrogate 
Nnat+/-p-Heavy β-cell hyperplasia and return proliferation back to 
WT levels (Fig. 3g). These data demonstrate that HDAC-sensitive 
gene regulation is required for control of β-cell programming and 
that Nnat’s buffering effect on phenotypic variation is mediated 
through HDAC-responsive genes. HATi treatment, on the other 
hand, had no effect on Nnat+/-p-Heavy β-cells (Fig. 3h), indicating a 
necessary directionality to the regulatory process. Parallel treatment 

of Nnat+/-p-Light β-cells showed no substantial regulation by either 
inhibitor (Fig. 3f–h), further highlighting the specificity of the 
HDAC-dependence. Thus, Nnat buffers against probabilistic pheno-
typic variation by preventing the activation of an HDAC-dependent 
β-cell hyperplasia program.

Identification of phenotypic variation patterns in humans. The 
foregoing data identify a Nnat-buffered axis that regulates proba-
bilistic phenotypic variation. They demonstrate islet-autonomous 
underpinnings, reproducible epigenome dysregulation and revers-
ibility at in vitro and organismal scales, all of which are unprec-
edented findings for a mammalian polyphenism. Critically, 
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they demonstrate epistatic independence and additivity with 
Trim28-buffered phenotypic variation and thus identify two inde-
pendent pathways for buffering alternate but bi-stable developmen-
tal trajectories and phenotypic heterogeneity.

In our previous work43, we found bimodal body mass distribu-
tions in large epidemiological cohorts, which raised the possibility 
that bi-stable UPV might also exist in human populations. That 
Nnat also buffers against bi-stable UPV again raised the question 

about regulatory control and polyphenism potential in humans. 
We therefore analyzed monozygotic (MZ) and dizygotic (DZ) twin 
data8,48–52 for potential signatures of human UPV. While twin analy-
ses do not rule out genetic and environmental trait variation5,53,54, 
they substantially reduce these contributions. We performed 
a high-dimensional analysis of 35 anthropometric traits mea-
sured across 153 MZ co-twin pairs from the TwinsUK’s Multiple 
Tissue Human Expression Resource (MuTHER) cohort55–57. The 

a b c

d

–2

–1

0

1

2

Node
P value < 0.01Proliferation

cell cycle
cancer

Growth
factors

HDAC

Islet-related TFs
(GLIS3, CREB1, HNF1A)

Stage

Early (3 weeks)

Late (6 weeks)

N
orm

alized expression
(z score)

WT
Nnat+/–p

Light
Nnat+/–p

Heavy

Nnat+/–p-Heavy depleted

Nnat+/–p-Heavy
depleted

Nnat+/–p-Heavy
enriched 

Nnat+/–p-Heavy enriched 

N
na

t+
/–

p -H
ea

vy
up

re
gu

al
te

d
N

na
t+

/–
p -H

ea
vy

do
w

nr
eg

ua
lte

d

Gcg
Ssr4

Sst

Pdia6

Pdia3

0

10

20

–5.0 –2.5 0 2.5 5.0

Nnat+/–p -Lean versus Nnat+/–p -Giant
(log2 fold change)

–l
og

10
 (

P
 v

al
ue

)

Not significant 

Fgfr2

Egr1
Epn3

Spcs3Hsp90b1

Lman1

Mapk13

Fos Myc

Wnt7b
Wnt7a

Smad3

Foxj1

Gadd45a

Cdk6

Dnajb9

Igfbp3

Igfbp5
Rpn2

Srpr

Igfals

Trp53

e
Early (3 weeks) Late (6 weeks)

–2

–1

0

1

2

H
D

A
C

 le
ad

in
g-

ed
ge

 g
en

es

N
orm

alized expression (z score)

WT
Nnat+/–p-Light
Nnat+/–p-Heavy

Nnat+/–p-Heavy
Nnat+/–p-Light

Nnat+/–p-Light

Nnat+/–p-Heavy

Nnat+/–p-Light-like
Nnat+/–p-Heavy-like

Nnat+/–p-Light -like

Nnat+/–p-Heavy -like

–20

0

20

–20 –10 0 10 20

PC1 (23.8%)

P
C

2 
(1

6.
6%

)

f

0

5

10

15

hg

Control HDACi HATi

E
dU

+
 β

-c
el

ls
(r

el
at

iv
e 

to
 W

T
)

Ranked replicates
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high-dimensional approach served two purposes. First, the analysis 
makes no assumptions about how UPV should manifest, but instead 
hypothesizes that if regulated UPV systems exist in humans, their  
consequences should be reproducible. Second, searching for  
patterns of variation (twin discordance), as opposed to single-trait 
discordances, reduces the impact of measurement errors in any 
given trait.

We calculated co-twin trait discordance for each trait, which 
included weight, height and fat and lean masses of the head, trunk 
and limbs. Discordance between each trait was calculated for each 
co-twin pair, setting the co-twin with the lower body mass index 
(BMI) as the reference. Discordances for all traits were uniformly 
lower in MZ co-twins than DZ co-twins, as expected (Extended 
Data Fig. 5a). We then focused on MZ twin pairs and performed 
a Uniform Manifold and Projection (UMAP) dimensional reduc-
tion58 on the 35 trait discordance × 153 co-twin pair matrix (Fig. 4a). 
Notably, the analysis revealed four clusters or ‘patterns’ of pheno-
typic variation in the cohort: two were distinctly discordant clusters 
(Type-A (green) and Type-B (red); Fig. 4a,b) and one was a central 
concordant cluster (gray). An ‘Intermediate’ UPV cluster (orange) 
was also identified tending toward Type-B UPV. Thus, we identified 
four candidate patterns of human UPV.

The concordant cluster was characterized by minimal co-twin 
trait discordance across all traits, which is what we would normally 
expect from stereotypical ‘identical twins’ (Fig. 4b and Extended 
Data Fig. 5b). Type-A UPV was characterized by increased fat masses 
and a modest reduction of lean masses in heavier co-twins (dashed 
green box; Fig. 4b and Extended Data Fig. 5b,c). By contrast, Type-B 
UPV was characterized by increases in both fat and lean masses 
across body parts in the heavier co-twin (Fig. 4b, dashed red box 
and Extended Data Fig. 5b,c). These two patterns were distinct and 
identified an inherently reproducible substructure in ‘non-genetic’ 
human variation. The findings provided a refined view of twin 
variation relative to arbitrary BMI and obesity cutoffs59,60 (Fig. 4b; 
for example ‘BMI’ and ‘obesity’ discordance top annotations). No 
differences were observed in mean height or height discordance 
across clusters (Extended Data Fig. 5b,d) and repeat analysis using 
height-adjusted trait discordances captured the same fundamental 
UPV patterns (Extended Data Fig. 5e). Notably, we also analyzed 
genotyping data across the individuals of our four identified UPV 
groups of MuTHER UK twins57. We found no evidence of consistent 
genotypic differences between MZ co-twins that extended beyond 
expected data missingness and that could conceivably underlie the 
observed patterns (Extended Data Fig. 6a–e). Thus, we identified 
two ‘non-genetic’ patterns of human phenotypic variation, Type-A 
UPV, characterized by reciprocal fat and lean mass differences (a 
relative adiposity) and Type-B UPV, characterized by coordinated 
fat and lean mass dysregulation (a relative overgrowth).

Type-B human UPV parallels Nnat+/-p-Heavy overgrowth. We next 
explored adipose tissue transcriptomic data from the same co-twin 
pairs and asked whether NNAT expression was associated with 
any of the human UPV clusters. Correlative analysis revealed sub-
stantial correlations between expression of several IGN1 genes and 
trait discordances, including NNAT, NDN, CDKN1C and PLAGL1 
(Fig. 4c). Of note, NNAT was the only gene whose expression dis-
cordance consistently correlated with both fat and lean mass dis-
cordances, features that were also specific to Type-B UPV (Fig. 4c; 
dashed box). Indeed, when data were stratified by UPV sub-type, 
NNAT expression associated strongly with trait discordance specifi-
cally in Type-B UPV (Fig. 4d) with expression decreased in heavier 
Type-B UPV co-twins (Fig. 4e). These results suggest that NNAT 
discordance (and downregulation) is a hallmark signature of Type-B 
human UPV. TRIM28 expression showed no correlation with trait 
discordances at either the cohort or UPV sub-type levels (Fig. 4c,d). 
Thus, NNAT gene expression associates with Type-B human UPV.

Given this clear and specific association between NNAT expres-
sion and Type-B UPV, we tested whether other key features of 
the murine overgrowth polyphenism were also altered in human 
Type-B UPV. For insulinemia, we found that plasma insulin discor-
dances were highest in Type-B co-twin pairs (Fig. 4f and Extended 
Data Fig. 7a). Indeed, the Type-B UPV group exhibited the clear-
est correlation between insulinemia and BMI levels (R2 = 0.51; 
P = 2.4 × 10−13), an association that extended across the BMI spec-
trum (Extended Data Fig. 7b) and was well above the concordant 
and Type-A UPV groups (R2 = 0.1 and R2 = 011, respectively). These 
data indicate that Type-B UPV represents a unique metabolic state 
where insulinemia and BMI are tightly coupled. Similarly, we found 
a substantially more robust HDAC-target gene regulation associ-
ated with BMI specifically in Type-B UPV (R2 = 0.57; P = 4 × 10−16; 
Extended Data Fig. 7c). Consistent with the directionality of the 
Nnat+/-p mouse system, GSEA analysis showed that HDAC-target 
genes were upregulated in heavier Type-B co-twins (Fig. 4g and 
Extended Data Fig. 7d). Thus, hyperinsulinemia, HDAC-target gene 
upregulation and lean and fat mass excesses are species-conserved 
features of NNAT-associated UPV. From the clinical perspective, 
these data suggest a model where NNAT buffers against emergence 
of a distinct phenotypic state (polyphenism) where BMI is excep-
tionally coupled to insulinemia, lean and fat mass excess.

To validate these findings, we examined adipose NNAT gene 
expression levels and available anthropomorphic traits in a small, 
independent Danish twin cohort. The cohort consisted of 20 MZ 
same-sex co-twin pairs61. As the cohort size and available traits 
precluded the same clustering analysis (as in Fig. 4), we strati-
fied the cohort into upper and lower quantiles of NNAT expres-
sion. Notably, we validated the key findings from the MuTHER 
cohort: we observed increased insulinemia discordance (Extended 
Data Fig. 7e) and increases in BMI discordance specifically in MZ 
co-twin pairs with low NNAT expression (Extended Data Fig. 7f).  
Thus, reduced NNAT expression is associated with increased  
phenotypic variation in BMI and insulinemia in an independent 
twin cohort.

Human UPV sub-types are epigenetically distinct. Altered epi-
genetic control is believed to be a key mediator of developmental 
programming effects62,63. We tested whether any of our human UPV 
types showed evidence of unexpected epigenetic alteration. We ana-
lyzed Infinium HumanMethylation450 DNA methylation profiles 
from the same MuTHER cohort adipose samples and called differ-
entially methylated sites between heavy versus light co-twins within 
each of the four UPV groups (Extended Data Fig. 8a). Concordant 
co-twins had the fewest differentially methylated sites (Extended 
Data Fig. 8a,b). Type-A and Type-B discordant co-twins exhibited 
hundreds of differential sites, with Type-B UPV showing the most 
differently methylated sites (Extended Data Fig. 8a,b). Whereas 
Type-A and Type-B UPVs are both characterized by relative 
increases in fat mass (they are both relative adiposities), their adi-
pose tissue DNA methylation profiles were clearly distinct. On aver-
age, Type-A UPV was characterized by DNA hypermethylation in 
the heavier co-twin, as opposed to DNA hypomethylation in Type-B 
UPV (Extended Data Fig. 8a). Further, the differentially methylated 
sites of Type-A and Type-B discordant co-twins showed almost no 
overlap, indicating that the two types of human phenotypic varia-
tion are truly and fundamentally distinct in their nature (Extended 
Data Fig. 8b). Consistent with this idea, a search for differentially 
methylated regions (DMRs), as opposed to differentially methyl-
ated sites, identified only DMRs between co-twins of the Type-B 
UPV group (Extended Data Fig. 8c). Seven DMRs were identified 
that reproducibly distinguish the heavy and light Type-B co-twins. 
Four of the seven Type-B DMRs were hypomethylated in the heavy 
co-twin. Notably, these DMRs were enriched for proximity to sig-
nificant genome-wide association study (GWAS) variants for BMI, 
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height, body fat percentage, insulin sensitivity, insulinogenic index, 
diabetes and diabetes-associated cardiovascular disease (Fig. 4h). 
These findings directly link NNAT and Type-B UPV to epigen-
etic changes near causal, metabolic disease loci. Of the 15 genes 
neighboring the DMRs, a substantial fraction is involved in energy 
metabolism (PARP6 and AGPAT3), transcriptional and epigenetic 
regulation (TCF3 and BCOR) and associated either directly or indi-
rectly to inherited syndromes causing lipodystrophy, hypotonia and 
intellectual and heart disorders (C5orf58, AGPAT3, DNAJC19 and 
HCN4). Thus, human Type-B UPV is characterized by epigenetic 
regulation near human metabolic disease loci.

Type-B UPV stratifies human into distinct metabolic subgroups. 
The analysis above showed that at least 30% of twin pairs in the 
MuTHER cohort exhibited Type-B UPV. If Type-B UPV is truly so 
common, then Type-B signatures should be readily detectable in 
the general population. We tested this idea in the greater MuTHER 
cohort, which includes hundreds of other individuals56,57 (Fig. 5a). 
First, we generated a Type-B UPV gene expression signature by 
identifying the 127 genes differentially regulated between heavy and 
light co-twins in the Type-B phenotypic variation cluster, but not 
differentially regulated between co-twins of the three other pheno-
typic variation clusters (Extended Data Fig. 9a and Methods). We 
then used hierarchical clustering to stratify the cohort according to 
expression of these 127, Type-B UPV genes. This analysis revealed 
four reproducible clusters of individuals in the general population 
(clusters 1–4 top, Fig. 5a). Individuals in clusters 2 and 3 showed 
little if any coordinated regulation of Type-B UPV genes (Fig. 5a).  
Clusters 1 and 4, however, showed strong coordinated regula-
tion of Type-B UPV genes (Fig. 5a; heat map and rank analysis 
(UPV-B rank)). Cluster 4 individuals were specifically enriched 
in ‘heavy-like’ UPV-B transcriptome signatures, whereas cluster 1 
individuals had ‘light-like’ gene expression profiles (Fig. 5a, UPV-B 
rank). Notably, clusters 1 and 4 also exhibited anti-correlated expres-
sion of NNAT (Extended Data Fig. 9b) and the non-overlapping 
HDAC-responsive genes. The latter indicated that the Type-B UVP 
gene signature (127 genes) captures the NNAT-buffered axis of 
phenotypic variation observed in the mouse and Type-B co-twins  
(Fig. 5a, HDAC-signature and Extended Data Fig. 9b). Thus, we 
find molecular evidence for Type-B human phenotypic variation 
(or plasticity) in the general population.

Consistent with their ‘light-like’ gene expression signature, clus-
ter 1 individuals were all not affected by obesity (Fig. 5a, obesity 
annotation (top) and Extended Data Fig. 9c). In contrast, cluster 4 
was enriched for individuals with obesity (Fig. 5a, obesity annota-
tion (top) and Extended Data Fig. 9c). What is even more notable, 
is that cluster 4 still included many individuals without obesity 

(~50% of the cluster) despite strong Type-B UPV and NNAT/
HDAC gene expression signatures (Fig. 5a and Extended Data 
Fig. 9c). These data are consistent with the fact that approximately 
62% of Type-B ‘heavy’ co-twins were also not affected by obesity 
(BMI < 30). Along similar lines, there was no correlation between 
Type-B gene expression and BMI within population clusters 
(Fig. 5a; data within clusters are ordered from low to high BMI). 
Examination of Type-B differentially methylated sites and DMRs 
showed a clear enrichment of heavy-like methylation patterns in 
cluster 4 individuals (Extended Data Fig. 9d). Thus, Type-B UPV 
captures a dimension of population-level variation that is distinct 
from obesity per se (Fig. 4b).

Type-B UPV shows an inflammatory transcriptional program. 
Principal-component analysis (PCA) revealed that approxi-
mately one-third of all variation in the transcriptional dataset 
correlates tightly with the Type-B UPV gene expression signature 
(Extended Data Fig. 9e). This indicates that a major dimension 
of population-level phenotypic variation can be attributed to the 
Type-B ‘state’. To better understand the potential health implica-
tions of this finding, we analyzed the 1,000 most variable genes in 
the same transcriptional dataset. Of note, these 1,000 genes were 
distinct from the 127-gene Type-B UPV signature itself (Fig. 5a; 
Venn diagram). Consistent with the cumulative PCA analysis, two 
of the five major groups of the 1,000 most variable genes corre-
lated strongly with the Type-B UPV gene signature (Fig. 5a′; gene 
sets 2 and 5). Cluster 4 (UPV-B heavy-like) individuals expressed 
high levels of inflammatory, immune and reactive oxygen species 
(ROS)-associated genes (Fig. 5a′, gene set 2, and Extended Data  
Fig. 9f,g). Conversely, the same individuals showed downregula-
tion of genes involved in adipogenesis, lipid and glucose homeo-
stasis (Fig. 5a′, gene set 5, and Extended Data Fig. 9f,g). Of note 
and as with the Type-B UVP gene signature itself, gene sets 2 and 
5 were not correlated with obesity within clusters. These data again 
argue that the phenotypic outcomes of NNAT downregulation and 
Type-B UPV are not obesity per se. Rather, Type-B UPV consists of 
an altered metabolic state characterized by enhanced adipose tissue 
inflammatory signatures and reduced adipogenesis, nutrient uptake 
and metabolism pathway expression. Notably, cluster 4 included 
both individuals with and without obesity. Type-B UPV therefore 
also captures what seems to be a clear group of ‘normal weight 
obesity’ (individuals with normal BMI but with hyperinsulinemia 
and a highly consistent inflammatory gene expression pattern in  
adipose tissue).

Type-B UPV is present in childhood. Guided by the fact that we 
identified Type-B UVP in controlled genetic contexts (isogenic 

Fig. 4 | Characterization of human UPV. a, UMAP projection of MZ co-twin couples, according to 35 morphometric discordances. b, Heat map of 
hierarchical clustering of morphometric discordances among MZ co-twin couples. Obesity-discordant co-twins indicate that only one co-twin is affected 
by obesity (BMI > 30). BMI discordant co-twins, BMI difference >5 BMI points. Dashed colored boxes highlight distinct lean mass discordances between 
Type-A and Type-B UPV. c, Heat map showing the hierarchical clustering of Trim28/IGN1 genes based on the correlation of their expression discordance 
and indicated phenotypic discordances. A dashed black box highlights NNAT expression discordance correlation with phenotypic discordances of those 
traits that distinguish Type-A and Type-B UPV. d, Heat map showing the hierarchical clustering of Trim28/IGN1 genes based on the average correlation 
of their expression discordance and all phenotypic discordances, stratified by four co-twin pairs’ clusters. e, Box-plots representing discordance of NNAT 
expression, among MZ co-twins, belonging to the indicated clusters. **P = 0.0082, as assessed by one-tailed t-tests. f, Box-plots representing serum 
insulin discordance, among MZ co-twins, belonging to the indicated groups. ***P = 0.0003 as assessed by one-sided Tukey’s multiple comparisons 
test, following one-way analysis of variance (ANOVA). In all box-plots, lower and upper hinges indicate 25th and 75th percentiles. The upper/lower 
whiskers indicate largest/smallest observation less/greater than upper/lower hinge + 1.5 ×IQR. Central median indicates 50% quantile. g, GSEA results of 
HDAC-responsive gene sets between the ‘light’ and ‘heavy’ co-twins, belonging to the indicated MZ co-twins groups. Solid and transparent colored dots, 
highlight either statistically significant or not significant enrichments, respectively (adjusted P value cutoff <0.01). h, Heat map showing association of 
single-nucleotide polymorphisms (SNPs) and indicated phenotypic traits, within the DMRs identified between ‘light’ and ‘heavy’ Type-B UPV co-twins. 
White boxes indicate no significant associations (P > 1 × 10−3), dark-red boxes indicate genome-wide significant associations (P < 1 × 10−8). Nearest are 
reported. Gray and black boxes indicate the enrichment of DMR in either the ‘light’ or ‘heavy’ co-twin. BMIadjSMK, BMI adjusted by smoking; T2D, type 2 
diabetes; HR, heart rate; PDR, proliferative diabetic retinopathy; PDRvNoDR, PDR versus no PDR.
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Nnat+/-p mice and MZ twins) and that the Type-B gene signature 
exhibited the most striking and distinct epigenetic characteristics 
(HDAC-signatures and DNA methylation signatures), we reasoned 
that Type-B phenotypic variation represents a state of altered epi-
genetic programming initiated in early life64. We therefore repeated 
our analysis using the Leipzig Childhood Adipose Tissue (LCAT) 
cohort65, a childhood cohort that had equivalent (and relevant) phe-
notypic and adipose tissue transcriptomic data (Fig. 5b). Notably, 
this analysis recapitulated all key findings above. The Type-B UPV 
gene expression signature stratified the childhood cohort into four 
corresponding clusters: cluster 4 children showed the strongest 

Type-B, heavy-like gene expression patterns (Fig. 5b) and cluster 
1 showed the least. Cluster 4 children showed the strongest enrich-
ment of HDAC-responsive genes (Fig. 5b (top) and Extended Data 
Fig. 9h) and reduced NNAT expression (Extended Data Fig. 9h). As 
with the adult cohort, all clusters included lean individuals; clusters 
3 and 4 were enriched for individuals with obesity (Extended Data 
Fig. 9i); and while cluster 4 was the mostly enriched for obesity, it 
again included a substantial number of lean individuals. Also, in line 
with the adult analysis, cluster 4 children showed increased expres-
sion of inflammatory genes (Fig. 5b′, gene set 2, and Extended 
Data Fig. 9j) and downregulation of the lipid metabolism and 
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Fig. 5 | Type-B UPV signature separates adults and children into distinct phenotypic and metabolic sub-types. a, Heat map of k-means clustering of 
TwinsUK individuals. Four clusters were generated according to expression of the UPV-B signature. The UPV-B ranks annotation show the median rank 
of everyone according to their level of expression of UPV-B signature genes, discriminating Type-B ‘heavy-like’ and ‘light-like’ individuals. The obesity 
annotation is based on arbitrary cutoffs of BMI (obesity, >30 BMI; severe obesity, >35 BMI). The average expression of HDAC-signature (HDAC-sig) 
genes (leading-edge genes from Extended Data Fig. 6d) is reported. a′, Heat map (bottom), the expression profile of the most variable genes (top 1,000) 
across all samples is reported, after k-means clustering into five gene sets. Venn plot (left) shows the overlap between the most variable genes and the 
UPV-B. b–b′, Same as in a–a′, but on the LCAT cohort. The obesity annotation is based on standardized BMI arbitrary cutoffs (BMI standard score (SDS), 
obesity >1.88). On the right, representative results from Gene Ontology (GO) and pathway enrichment analysis for the five gene sets from the heat map 
of the TwinsUK individuals (a′). GO, KEGG and Molecular Signatures Database (MSigDB) databases were assessed. Related to the extended analysis 
in Extended Data Fig. 8g. c–f, Box-plots showing the distributions of indicated gene expression profiles (c), normalized DNA methylation on UPV-B 
DMRs (d), metabolic traits (e) and morphometric measurements (f), between Type-A and Type-B obesities (TwinsUK individuals affected by obesity 
and belonging to clusters 3 and 4 (cl.3 and 4) from the heat map in a). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, NS, not significant, as assessed by two-tailed 
Student’s t-tests. NNAT P = 0.00036; IGN1 P value = 0.0067; HDAC P = 2.2 × 10–16; UPV-B DMRs ‘heavy’ P = 0.028; UPV-B DMRs ‘light’ P = 0.00026; insulin 
P = 0.001; height P = 0.4; BMI P = 0.21; FatMI P = 0.46; LeanMI P = 0.047. In all box-plots, the lower and upper hinges indicate 25th and 75th percentiles. 
The upper/lower whiskers indicate largest/smallest observation less/greater than upper/lower hinge + 1.5 × IQR. Central median indicates 50% quantile. 
GSH, glutathione; MHC, major histocompatibility; IFN, interferon; T1D, type 1 diabetes.
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adipocyte-specific genes (Fig. 5b′, gene set 5, and Extended Data 
Fig. 9j). Thus, Type-B UPV is readily observed in childhood and 
stratifies children into comparable metabolic ‘states’.

Type-B UVP gene expression identifies two major obesity types. 
One of the most relevant implications of these data is that they 
suggest the existence of fundamentally distinct metabolic disease 
sub-types and in particular, two major sub-types of obesity. To 
test this idea, we performed a focused comparison of the individu-
als with obesity in clusters 3 and 4 (Type-B UPV gene signature 
stratified) (Fig. 5c–f). Relative to cluster 3 obesity, cluster 4 indi-
viduals with obesity showed enrichment of the Type-B UPV gene 
expression signature (Fig. 5a, heat map and rank analysis (UPV-B 
rank)); reduced NNAT/IGN1 expression (Fig. 5c); increased 
HDAC-responsive gene expression (Fig. 5c); increased inflamma-
tory and decreased adipogenesis gene expression (Fig. 5a′, gene 
set 2 and 5); and marked dysregulation of Type-B-specific DMRs  
(Fig. 5d). Phenotypically, cluster 4 individuals with obesity also 
exhibited consistently higher serum insulin levels (Fig. 5e); and 
while not different in height, BMI or relative fat mass (fat mass 
index; FatMI), cluster 4 individuals with obesity showed increased 
relative lean mass (lean mass index; LeanMI) (Fig. 5f). The distinc-
tions between cluster 3 and cluster 4 obesities were validated in the 
LCAT childhood cohort for all available parameters (Fig. 5b,b′, gene 
sets and Extended Data Fig. 9k). Notably, this finding suggests that 
the pathophysiological consequences of Type-B UPV can already 
arise in early life. The data show that cluster 3 and cluster 4 obesities 
are distinct from phenotypic, transcriptional and epigenetic points 
of view. Given the parallels to co-twin-based Type-B UPV, we refer 
to these as Type-A obesity (cluster 3) and Type-B obesity (cluster 4).

Finally, to gain deeper insight into the transcriptional signatures 
themselves and their clinically relevance, we performed cell-type 
deconvolution using CibersortX66 and a recently published human 
adipose tissue single-cell atlas67. The analysis, which derives esti-
mates of relative cell-type content in the MuTHER and LCAT cohort 
adipose biopsies, revealed high consistency across groups and 
cohorts (Extended Data Fig. 9l). Cluster 4, notably, showed a rela-
tive increase in pre-adipocyte-to-adipocyte ratio relative to cluster 
3 and increased estimates for macrophage and monocyte content. 
These data are in line with the observed transcriptional signatures 
and indicated that Type-B (obesity and ‘normal weight obesity’) are 
characterized by increased adipose tissue inflammation and an adi-
pocyte compartment skew toward adipose tissue progenitors.

Thus, we identify two major forms of obesity over and above the 
distinct classes of human phenotypic variation.

Discussion
UPV is pervasive in complex traits and disease, even among highly 
inbred animals and MZ twins. Yet we have very limited understand-
ing of the regulatory mechanisms underpinning UPV. In precision 
medicine and according to canonical models, UPV is typically 
attributed to uncharacterized early (developmental programing) 
or later-life environmental effects or dismissed as random bio-
logical ‘noise’. Here, we demonstrate the existence of a conserved, 
NNAT-regulated axis that buffers against phenotypic variation (as 
a trait) and control an overgrowth polyphenism. We show that the 
same axis stratifies human populations into unique metabolic classes 
and two common obesity sub-types that are distinct in their clini-
cal presentation, transcriptional signatures and epigenetic control. 
The data provide support for probabilistic, multi-stable phenotypic 
canalization events being a major driver of metabolic outcomes.

One key translational question raised by these data is whether 
NNAT-associated phenotypic variation and bi-stable effects are 
influenced by genetic or environmental interactions. Since our 
original description43, several groups41,42 generated anecdotal evi-
dence for the existence of genetic and environmental modifiers of 

NNAT-dependent buffering of UPV. We have directly tested and 
validated the idea. We observe bi-stable adiposity and bi-stable over-
growth in parallel crosses to C57BL/6J and FVB/N dams, respec-
tively42,43. The finding indicates a substantial background genetic 
interaction with the NNAT-buffered UPV axis. These data highlight 
the challenge of examining and dissecting UPV effects even in mice 
where genetics and environment can be controlled. So how might 
plasticity axes be investigated in very large human cohorts? Aside 
from building dedicated cohorts whose design accounts for both 
documented and undocumented genetic, environmental and paren-
tal modifier effects, possibilities include stratification by, or GWAS 
of, meta-traits (for example, all tangential Type-A versus Type-B 
covarying phenotypes); and evaluation of phenotypic associations 
using ‘surrogate’ polygenic risk scores, for instance composed of 
variants at or near UPV-type-specific differentially expressed genes.

Based on knockout mouse data, we hypothesize that the cluster 
4 metabolic state and the Type-B obesities therein, are developmen-
tally programmed states. Incorporating probabilistic developmental 
effects into models of phenotypic variation and clinical practice is 
still very challenging, because we have very little understanding of 
the regulatory axes or mechanisms that control phenotypic varia-
tion (as a trait), how these axes interact to generate complex traits, or 
how the probabilistic regulatory mechanisms ‘switch’ and canalize 
development toward altered phenotypic states and/or disease. The 
finding that Nnat+/-p and Trim28+/D9 triggered effects are indepen-
dent within the same in utero context is profound. It demonstrates 
that multiple and distinct regulatory axes exist that act in parallel to 
canalize UPV outcomes. The observation also provides proof for the 
existence of multiple independent variation-buffering mechanisms 
and represents an example of a tri-stable mammalian polyphenism. 
They set the precedent that mammals have the genomic architec-
ture and physiological networks to canalize at least three distinct 
and reproducible developmental trajectories within the same gene–
environment context. The findings indicate that without assays such 
as epigenome profiling, major precision medicine efforts will be 
blind to an entire dimension of phenotypic regulation.

Identifying factors that buffer against phenotypic variation is 
challenging enough; it is equally difficult to determine how proba-
bilistic (molecular) effects mechanistically alter organism-level 
physiology (such as obesity). Here, we demonstrate that the 
Nnat+/-p-buffered overgrowth UPV is hyperinsulinemia dependent, 
associated with islet-autonomous β-cell hyperproliferation and that 
alterations in food intake only occur after overgrowth and obesity 
(C57BL/6J–FVB F1s) (Fig. 2 and Extended Data Fig. 2). Notably, 
this type of phenotypic variation was phenocopied in human 
Type-B UPV. Together, these findings indicate that Type-B UPV 
may constitute an insulin-dependent form of adiposity. While this 
conclusion differs from the dogmatic view of obesity-driven hyper-
insulinemia, it is consistent with reports that hyperinsulinemia may 
also cause or exacerbate obesity and the suggestion that its early 
treatment may prevent complications42. In support of this notion, 
‘heavy’ Type-B discordant twins and Type-B individuals with obe-
sity show downregulation of CDKN1C (Extended Data Fig. 9m,n), 
a molecular effect possibly linked to congenital hyperinsulinism68.

Our data do not rule out additional physiological mechanisms 
as contributors to the bimodal UPV phenotype in Nnat+/-p animals. 
In association with the Coll group, we previously showed that 
Nnat+/-p-triggered obesity (on C57BL/6J) is correlated with food 
intake42, suggesting a potential role of the hypothalamus; however, 
causality was not tested in those instances, nor was the require-
ment for hyperinsulinemia. Deep physiological phenotyping in 
these probabilistic models is warranted though choice of assay 
should not be decided lightly. Assays such as indirect calorim-
etry, feeding behavior and activity monitoring, in are experience 
are very challenging due to both the unpredictability of each indi-
vidual’s end point and therefore very high numbers required, as 
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well as to notable stress sensitivity that leads to numerous dropout 
animals such that the experimenter can no longer rule out a bio-
logically biased sub-sampling. Based on experience, we would cau-
tion against descriptive or correlative experiments that do establish 
causality. Nnat+/-p animals for instance have proven challenging 
even for descriptive indirect calorimetry. A considerable number 
of animals lose weight even under home-cage and acclimatized 
conditions.

Our work shows that the islet-autonomous hyperproliferative 
program (in Nnat+/-p animals) is HDAC-dependent. This result 
demonstrates that HDAC modulation has a direct impact on pan-
creatic β-cell proliferation, which was not previously described. 
HDAC activity has been previously implicated in the regulation of 
adipogenesis, pancreas development, β-cell functionality and liver 
metabolism69–71 and HDAC modulation has been proposed as a 
potential treatment target for metabolic disease72–74. From the preci-
sion medicine perspective, our data indicate that HDAC modula-
tion may constitute a preventative therapeutic paradigm for patients 
stratified by Type-B UPV gene expression.

Altogether, this work demonstrates that in addition to genetic 
and environmental factors, phenotypic outcomes in mammals are 
defined by probabilistic factors with the potential to canalize mul-
tiple distinct, stable and reproducible outcomes. The data indicate 
that a substantial fraction of human metabolic disease variation 
(and potentially associated processes such as cancer and inflamma-
tion) are defined by such processes.

Methods
All animal experiments were approved by Institutional Animal Care and Use 
Committee protocol no. 18-10-028 at VAI, USA and protocol no. MPI-ZH 
2016-2019 at MPI, Germany. TwinsUK received ethical approval associated with 
TwinsUK Biobank (19/NW/0187), TwinsUK (EC04/015) or Healthy Ageing Twin 
Study (HATS) (07/H0802/84) studies from NHS Research Ethics Committees at the 
Department of Twin Research and Genetic Epidemiology, King’s College London. 
All samples and information were collected with written and signed informed 
consent. The Danish Twins study was approved by the Central Scientific-Ethical 
Committee of Denmark and was conducted according to the principles of the 
Helsinki Declaration. Furthermore, approval was obtained from the Danish Data 
Protection Agency. Informed consent was obtained from all participants. The 
LCAT study was approved by the University of Leipzig Ethics Committee (265–08, 
265–08-ff) and registered in the National Clinical Trials database (NCT02208141). 
Written informed consent was obtained from all parents.

Trim28 and Nnat heterozygous mice. The generation of Trim28+/D9 and Nnat 
heterozygous mice are described elsewhere30,43,75. All mice were maintained with 
four to five siblings under controlled temperature (22 ± 1 °C) and humidity 
(50 ± 10%) and a 12 h light, 12 h dark schedule. Food and water were available ad 
libitum unless otherwise stated. All mice were weaned at 3 weeks of age onto a 
standard chow (V1185-300 MZ-Ereich, ssniff; autoclavable mouse breeder diet 
5021, cat. no. 0006540, LabDiet,). Body composition was determined using an 
EchoMRI 4-in-1 (SYS-ID EF-036).

Genotyping. Ear biopsies were collected, boiled in 180 μl digestion buffer (50 mM 
NaOH and 0.1 mM EDTA) at 60 °C overnight. Twenty microliters of neutralization 
buffer (1 M Tris-HCl, pH 8.0) were added to stop the digestion. Two pairs of 
primers, one for WT and one for mutant, were mixed separately in two reactions 
with 1 μl biopsy lysate in 20 μl total volume including DreamTaq DNA polymerase 
(EP0701, Thermo Fisher) and amplified by PCR for 94 °C for 1.5 min (94 °C for 
30 s, 55 °C for 30 s and 68 °C for 1 min) × 31 and 68 °C for 5 min. The primers are 
listed in Supplementary Table 1. The amplification products of WT (573 bp) and 
mutant Nnat (545 bp) bands, were confirmed on 2% agarose gels. Methods for 
genotyping the Trim28+/D9 mouse line are described elsewhere30,43.

Skeleton staining. Mice were killed, the skin and internal organs removed and 
the eviscerated mice fixed in 95% ethanol overnight and stained with Alcian blue 
(0.3% in 70% ethanol) for 48 h. The skeletons were incubated with 2% KOH for 
48 h and stained with Alizarin red S (0.1% in 95% ethanol) overnight. The stained 
skeletons were cleared in 1% KOH/20% glycerol solution for up to 1 week and 
stored in ethanol/glycerol solution (1:1) before imaging.

Plasma growth factors measurement. Plasma insulin, IGF1/IGF2 and GH were 
determined by ELISA according to manufacturers’ instructions (10-1247-01, 
Mercodia; EMIGF1 and EMIGF2, Thermo Fisher; EZRMGH-45K, Millipore Sigma).

Glucose tolerance test and glucose-stimulated insulin secretion. Following a 6-h 
fast, mice were administered glucose (1 g kg−1) by oral gavage and blood samples 
for glucose measurement were collected from the tail vein at the indicated times. 
Glucose levels were measured using a OneTouch Vita glucometer. Blood samples 
were collected from the cheek at the indicated times into EDTA-coated tubes to 
prevent coagulation. Blood samples were centrifuged at 850g for 20 min at 4 °C to 
collect plasma. Plasma insulin was measured by ELISA (10-1247-01 or 10-1249-01, 
Mercodia).

Mouse islet isolation and spheroid formation. Mice were killed with CO2 and 
dissected according to standard procedures. The common bile duct was tied off 
with a thread, so perfusion buffer would flow to the pancreas rather than the liver. 
The pancreas was perfused with 5 ml collagenase digestion buffer (HBSS, 10 mM 
HEPES and 2 mg ml−1 collagenase 4 from Worthington, cat. no. LS004189) through 
the sphincter of Oddi. The perfused pancreas was placed in 2 ml collagenase 
digestion buffer and incubated for 30 min at 37 °C. After incubation, the tube was 
mixed by inversion 30 times. Then, 40 ml of quenching buffer (HBSS, 24 mM 
HEPES and 5 mg ml−1 BSA) was added to stop the collagenase activity. The tube 
was centrifuged at 200g for 3 min at 4 °C to form a cell/tissue pellet. The pellet was 
resuspended with 25 ml quenching buffer and run through a 420-µm strainer to 
remove undigested material. The clarified supernatant was then passed through 
a 70-µm strainer to collect the islets from the bulk solution. The islets were 
transferred into a cell culture dish containing RPMI medium (Gibco, 11875093) 
by inverting the strainer and dipping it in medium. The dish was placed in a 5% 
CO2 incubator at 37 °C overnight. The following day, islets were removed from the 
culture dish with a P10 pipet and transferred into a fresh RPMI dish. Recovered 
islets were incubated in a 5% CO2 incubator at 37 °C for another 2 days to allow 
islet metabolism to normalize. Then, 100 µl of islet suspension were mixed with 
500 µl warm accutase (A6964-100ML, Sigma) and incubated for 2 min at 37 °C 
to dissociate islets into single cells. Cells were stained with DAPI and sorted by 
FACS to recover (DAPI-negative) live cells. Approximately 2,000 live cells were 
seeded per well in a 96-well spheroid plate (Corning, CLS4520-10EA) and the plate 
incubated in a 5% CO2 incubator for 3 days at 37 °C until spheroids formed.

Glucose-stimulated insulin secretion ex vivo. Krebs Ringer buffer (140 mM NaCl, 
3.6 mM KCl, 0.5 mM NaH2PO4, 0.2 mM MgSO4, 1.5 mM CaCl2, 10 mM HEPES 
and 2 mM NaHCO3) and BSA (0.5 %) was prepared freshly on the treatment day 
and pH adjusted to 7.4. The 2.8 mM glucose and 16.7 mM glucose solutions were 
prepared with fresh Krebs Ringer buffer. Isolated islets or formed spheroids were 
transferred into 100 µl of the 2.8 mM glucose solution and incubated at 37 °C for 
30 min. Then, the islets or spheroids were transferred into another well with 100 µl 
2.8 mM glucose solution and incubated at 37 °C for 1 h for the basal release. Finally, 
the islets or spheroids were transferred into another well with 100 µl 16.7 mM 
glucose solution and incubated at 37 °C for 1 h for the glucose-stimulated release.

Total insulin content. Intact pancreata were weighed, cut into small pieces and 
incubated with 0.18 M HCl in 70% ethanol overnight at 4 °C. The resulting mixture 
was transferred to 1.5-ml microfuge tubes and centrifuged at 850g for 5 min at 
room temperature. The clarified supernatant was transferred to a new tube and 
stored at −20 °C until use. Insulin content was determined via ELISA according to 
the manufacturer’s instructions (10-1247-01, Mercodia).

Streptozocin administration and insulin pellet restoration. Five-week-old mice 
received a one-time i.p. injection of STZ (300 mg kg−1, Sigma, S0130-1G). Four days 
and again 1 month after STZ treatment, insulin pellets (Linplant, Linshin) were s.c. 
implanted on the back of the animals (one pellet per 20 g body weight) as per the 
manufacturer’s instructions.

EdU proliferation. Primary islets in RPMI medium (10% FBS, 50 IU ml−1 
penicillin, 50 μg ml−1 streptomycin, 0.25 μg ml−1 amphotericin B and 50 mg ml−1 
gentamicin) were stained with 10 μM EdU using a fluorescence microscopy 
protocol kit following the manufacturer’s instructions (iFluor 488, ab219801, 
Abcam). We used an A1 Plus-RSi laser scanning confocal microscope (Nikon) 
and z-stack function to capture sequential images of the islets and reconstruct 
their three-dimensional volume. The total volume of EdU-incorporated cells 
was then calculated with an ImageJ macro (https://visikol.com/wp-content/
uploads/2019/02/Visikol-Measure-Volume-Macro.ijm).

Islet RNA extraction, library preparation and sequencing. Total RNA was 
extracted from isolated islets using the QIAGEN RNeasy Micro kit (cat. no. 
74004). Libraries were prepared from 10 ng of total RNA. Total RNA material 
was converted to dsDNA using the SMART-Seq v.4 Ultra Low Input RNA kit for 
sequencing, v.091817 (Takara Bio). Illumina Nextera DNA Flex kit (Illumina) was 
used to convert the complementary DNA into Illumina-compatible sequencing 
libraries. The quality and quantity of the finished libraries were assessed using 
a combination of Agilent DNA High Sensitivity chip (Agilent Technologies), 
QuantiFluor dsDNA System (Promega) and Kapa Illumina Library Quantification 
qPCR assays (Kapa Biosystems). Individually indexed libraries were pooled 
and 50-bp, paired-end sequencing was performed on an Illumina NovaSeq6000 
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sequencer using an S1, 100 cycle sequencing kit (Illumina). Each library was 
sequenced to an average raw depth of 30 M reads. Base calling was conducted by 
Illumina RTA3 and the output of NextSeq Control Software was demultiplexed and 
converted to FastQ format with Illumina Bcl2fastq v.1.9.0.

Mouse transcriptomic analysis. We performed bulk messenger RNA-seq on 
primary islets and adipocytes taken from Nnat+/-p-Light, Nnat+/-p-Heavy mice and 
WT littermates. Raw sequences were aligned to mouse reference genome GRCm38.
p6 with the snakePipes2 RNA-seq pipeline76. Differential expression of the raw 
counts was performed using DESeq2 (ref. 77). GSEA of DEG results was performed 
with fgsea78. Enrichment maps were generated in Cytoscape79 from results of 
6-week-old Nnat+/-p-Light versus Nnat+/-p-Heavy MSigDB C2 CGP GSEA. We 
also performed bulk mRNA-seq on primary islets from early-stage (3-week-old) 
Nnat+/-p-Light and Nnat+/-p-Heavy-like mice and WT littermates. Differential 
gene expression analysis was performed as described above. Samples were batch 
corrected using ComBat and normalized count matrices were inspected using 
PCA. Nnat+/-p-Heavy enriched leading-edge genes from HDAC-related gene sets 
were assessed at early and late-stage expression profiles to be represented on the 
heat map. The contribution of the HDAC-signature to the overall gene expression 
variation was evaluated based on the PCA. The principal components (PCs) from 
the PCA were ordered for their association to the HDAC-signature (mean of 
contributions to PCs for the genes belonging to the signature) and the top four 
correlated were subset (the inflection point of the ordered PCs). The cumulative 
contribution of these PCs to gene expression variation in the dataset was visualized 
and compared to the overall contribution from all PCs.

HDACi and HATi treatment. Islets were isolated from 7–8-week-old animals 
and cultured ex vivo in RPMI medium (added 10% FBS, 50 IU ml−1 penicillin, 
50 μg ml−1 streptomycin, 0.25 μg ml−1 amphotericin B and 50 mg ml−1 gentamicin) 
for 2 days to reach steady state. Islets were then treated with 500 nM HDACi (TSA) 
or 500 mM HATi (C646) for 1 day, followed by a 2-d EdU incubation (iFluor 488, 
Abcam) to track DNA replication.

Immunochemistry and H&E staining. Insulin (A0564, DAKO, 1× ready to use) 
and H&E staining were performed on sequential, 5-μm paraffin thin sections 
fixed in 4% phosphate-buffered formalin. Insulin immunohistochemistry was 
performed on an Agilent Autostainer Link 48 instrument as per the manufacturer’s 
instructions. Stained thin sections were digitized with an Aperio ScanScope slide 
scanner fitted with a ×20 objective (Leica). For each animal, we imaged three 
insulin and three H&E thin sections. Positively stained β-cells in each thin section 
were quantified with Genie (Leica) software. Reported β-cell-positive areas are the 
average from four animals per group and three thin sections per animal (n = 12 
thin sections). We quantified apoptosis events by using the TUNEL assay kit, 
HRP-DAB (ab206386, Abcam) on pancreatic sections from 16-week-old animals.

Immunofluorescence. Paraffinized sections were heated, deparaffinized with 
xylene and rinsed in water. Antigen retrieval was performed by heating the 
slides at 95 °C for 20 min in Tris-EDTA, pH 9.0. Specimens were blocked in 
5% goat serum PBST (0.05% Tween 20) and incubated overnight with insulin 
primary antibody (A0564, DAKO; 1:50 dilution) and Ki-67 primary antibody 
(ab15580, Abcam; 1:200 dilution); glucagon primary antibody (G2654, Sigma; 
1:500 dilution); and somatostatin primary antibody (ab30788, Abcam; 1:200 
dilution). Fluorochrome-conjugated secondary antibodies (Alexa Fluor 488, 
anti-rabbit; Alexa Fluor 555, anti-guinea pig; Alexa Fluor 647, anti-rat; Alexa Fluor 
488, anti-mouse; 1:500 dilution, Invitrogen) were then added to each slide and 
incubated for 2 h at room temperature. Slides were rinsed three times for 10 min 
each in PBST buffer and air dried. A drop of VectaShield mounting medium 
(containing DAPI; H-1200, Vector Laboratories) and coverslip were applied to each 
slide and slides cured overnight at 4 °C in the dark before image acquisition. Images 
were acquired using an A1 Plus-RSi laser scanning confocal microscope (Nikon).

qRT–PCR. Total RNA was extracted using TRI Reagent (Sigma) and reverse 
transcribed into cDNA using a commercially available kit (43-688-14, Applied 
Biosystems). Nnat and Hprt transcripts were quantified using TaqMan gene 
expression assays with validated probes (Life Technologies). All probes are listed 
in Supplementary Table 1. All qPCR reactions were performed on a 7900HT Fast 
Real-Time PCR System (Applied Biosystems). Thermal cycling conditions for 
all genes included 2 min at 50 °C, 20 s at 95 °C and 40 cycles of 95 °C for 1 s, 60 °C 
for 20 s. Post-amplification melting curve analysis was performed to check for 
nonspecific products and probe-only controls were included as negative controls. 
Threshold cycles (Ct values) were normalized to Hprt within each sample to obtain 
sample-specific ΔCt values (Ct gene of interest − Ct housekeeping gene). The 
2-ΔΔCt values were calculated to obtain fold expression levels, where ΔΔCt = (ΔCt 
treatment − ΔCt control).

Human population studies and analyses. MuTHER TwinsUK cohort. The 
MuTHER cohort consists of 855 female white twins and 193 MZ co-twin pairs, 
aged between 40 and 87 years56,57 and is a subset of the larger TwinsUK study55 
(referred to as TwinsUK in the figures and text). Subcutaneous adipose tissue 

samples were obtained from skin punch biopsies. Gene expression profiles were 
generated using Illumina’s whole genome expression array (HumanHT-12 v.3)  
and are available from the ArrayExpress archive under the repository no. 
E-MTAB-1140. For expression arrays, the original authors57 used multiple technical 
replicates for each sample, which were all randomized before hybridization 
and replicates run on different BeadChips. Expression signals were normalized 
separately per tissue, with quantile normalization of the replicates of an 
individual followed by quantile normalization across all individuals. The authors 
acknowledged that their approach does not adjust for shared covariance due to 
technical factors that may influence subsequent analysis, but previous efforts 
indicate that the impact on the result seemed to be minor80. Expression data were 
corrected for technical batch effect using ComBat81 and distributions of identified 
UPVs and individuals’ clusters among batches did not show specific enrichment. 
Differential expression analysis and GSEA were performed using limma82 and 
fgsea78, respectively. The differential expression analysis was performed using 
age as a covariate in the model. Cell-type deconvolution was performed using 
CibersortX66 and a recently published single-cell atlas of human white adipose 
tissue67 was used as a signatures reference.

Monozygotic co-twin analysis. To maximize the number of co-twin couples in the 
analyses (n = 153), we excluded the waist, hip and waist-to-hip ratio measurements, 
which were not available for ~one-third of the cohort. Discordance indices were 
calculated as the difference of the log-transformed values between co-twins for 
each measurement, after ordering the co-twins according to their BMI. Likewise, 
we calculated gene expression discordance from normalized expression array 
counts. We used a graph-based clustering approach from Seurat58 for unbiased 
clustering of co-twin pairs according to their morphometric discordances. Heat 
maps of morphometric discordances were generated with ‘pheatmap’ (https://
cran.r-project.org/web/packages/pheatmap/index.html) by clustering discordances 
based on Euclidean distances, a complete agglomeration method and rows 
scaling. Correlations between gene expression and phenotypic discordances 
were determined by Spearman correlation and reported as the −log10(P). When 
performing the same analysis on the identified co-twin clusters, the average of  
P values from all Spearman correlations for a single gene was reported.

Danish Twins cohort. The Danish Twins cohort used in this study consists of 160 
elderly individuals (88 females and 72 males), aged between 63 and 83 years. 
The cohort includes 20 MZ and 21 DZ same-sex co-twin pairs and is part of a 
larger study61. RNA samples were obtained from subcutaneous adipose tissue 
biopsies and NNAT expression was measured by qRT–PCR analysis, as previously 
reported43. The MZ co-twin pairs were divided into halves according to their 
average NNAT expression level. Like the TwinsUK cohort, we calculated serum 
insulin and BMI discordance among MZ co-twins (as log2(fold change) and 
difference, respectively). Gaussian finite mixture modeling from the Mclust tool83 
was used to separate insulin-concordant and -discordant co-twin pairs. The 
proportions of insulin-concordant and -discordant co-twins among NNAT-low- 
and NNAT-high-expressing couples were visualized. The distributions of BMI 
discordances among NNAT-low- and NNAT-high-expressing couples were 
compared for homogeneity of variances using the Bartlett’s test.

DNA methylation analysis in the MuTHER TwinsUK cohort. The MuTHER cohort 
contains Infinium HumanMethylation450 BeadChips array (Illumina WG-314-
1002) data from the subcutaneous fat derived of 648 TwinsUK participants. For 
DNA methylation arrays, the original authors reported84 that tissue samples were 
randomized before DNA extraction. Signal intensities were quantile normalized. 
Beadchip, bisulfite-sequencing (BS) conversion efficiency (assessed with the 
built-in BS conversion efficiency controls) and BS-treated DNA inputs were 
shown to contribute significantly to the variation in β levels and were included 
as covariates in subsequent analysis. The processed and normalized β values 
were previously published57,84,85 and are available from the ArrayExpress archive 
under the repository no. E-MTAB-1866. We analyzed the data using the ‘SeSAMe’ 
pipeline86,87. Normalized β values were analyzed by linear modeling to identify 
DMRs between ‘light’ and ‘heavy’ MZ co-twins, controlling for age as a covariate 
in the model. The cutoff used to define differential methylation was FP < 0.05 
and effect size threshold >0.05 (DNA methylation differences under 5% were 
not considered biologically meaningful). The heat map of the differentially 
methylated CpGs between co-twin pairs belonging to the four different phenotypic 
variation clusters was generated with ‘ComplexHeatmap’88. The genomic regions 
of DMRs from the Type-B UPV co-twins were used to search for genome-wide 
relevant associations between SNPs and phenotypes in the T2D Knowledge Portal 
(https://t2d.hugeamp.org). When DMRs were defined by just a single nucleotide, 
we searched in ±50-kb regions. All genome-wide significant associations were 
reported (P = 10−8). We also visualized all the GWAS associations within our DMRs 
with a P < 10−3.

Genotyping data analysis in the MuTHER TwinsUK cohort. The MuTHER  
cohort contains genotyping data generated by Illumina 317 K, 610 k and  
1 M chip arrays, from the subcutaneous fat derived of 807 TwinsUK  
participants. These data are available upon request at the TwinsUK consortium  
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(https://twinsuk.ac.uk/resources-for-researchers/our-data/). The genotype 
annotation files were generated using IMUTE2 with 1000 Genomes Project phase 
1 (interim) as a reference panel. This dataset is based on a sequence data freeze 
from 23 Nov 2010; the phased haplotypes were released Jun 2011. GWAS data were 
‘pre-phased’ using IMPUTE2 without a reference panel. The resulting haplotypes 
were used to perform fast imputation from the 1000 Genomes Project phase 1 
dataset. The imputation of TwinsUK1 (317 K chip) and TwinsUK23 (610 k and 1 M 
chips) were conducted separately and merged with GTOOL. Genotyping data were 
analyzed using PLINK software (v.1.9). Samples with a missing call rate exceeding 
0.02 (–mind 0.02) were excluded from genetic analysis. One-way ANOVA was 
conducted to determine whether overall missingness was significantly different 
across UPV groups at the genome-wide level, without finding statistical relevant 
differences. After removal of overly missing samples, each co-twin pair was 
screened for discrepancies in genotypes to assess the extent of co-twin genetic 
similarity, which accounted for >99.9% of the data. These analyses were conducted 
in R (v.4.1.1) using the ‘stats’ package.

Whole MuTHER TwinsUK cohort analysis. To generalize the findings from MZ 
co-twins, we included all individuals from the MuTHER cohort and analyzed 
824 gene expression profiles from s.c. adipose tissues. The Type-B UPV gene 
expression signature was identified by performing differential gene expression 
analysis between ‘heavy’ and ‘light’ co-twins from the four concordant/discordant 
clusters. We selected all the genes with a P value <0.001 and clustered them by 
k-means clustering to identify the Type-B specific signature (127 total genes). We 
then used the signature to stratify the TwinsUK individuals. The number of clusters 
for this analysis was determined by visualizing the dispersion within each cluster 
for k = 1–10 and selecting the number of clusters that represented the ‘saturation 
point’ of dispersion. Cluster stability was assessed by the Jaccard’s similarity score. 
These analyses were performed using the RaceID package89. The heat map of the 
four k-means individuals’ clusters was generated with ‘ComplexHeatmap’88. Gene 
clustering was based on Euclidean distances and Ward’s agglomeration method 
of log-transformed and scaled, normalized data. The individuals were further 
ordered by BMI within each group. We then ranked Type-B-specific signatures 
(127 genes) for each individual. High ranks were associated with a ‘heavy-like’ 
Type-B transcriptional profile. The median of ranks from all UPV-B genes was 
plotted for each individual. The contribution of the Type-B-specific gene signature 
to overall gene expression variation in the cohort was evaluated as follows. PCA 
was performed on the gene expression profiles of all individuals. The 824 PCs 
were ordered for their association to the Type-B gene expression signature (mean 
of contributions to PCs of the genes belonging to the 127-gene signature) and 
the top 25 correlated components were subset (inflection point of the ordered 
PCs). The cumulative contribution of the top 25 PCs to gene expression variation 
in the cohort was visualized and compared to the overall contribution from all 
824 PCs. The HDAC-signature annotation reported in the heat map was derived 
as follows: first, we performed GSEA of HDAC-related gene sets between the 
‘heavy’ and ‘light’ co-twins belonging to the Type-B phenotypic cluster. Next, 
we retrieved the leading-edge genes (genes driving the gene sets’ enrichment), 
from the ‘heavy’-enriched HDAC-related gene sets, which then defined the 
HDAC-signature. Annotations in the heat map show the average expression of the 
HDAC-signature genes for each individual. The unbiased transcriptional analysis 
among the four individuals’ clusters was based on the top 1,000 most variable genes 
among all the samples (heat map shows only the genes for which we can detect 
expression in the LCAT cohort). GO and pathway analysis were performed with 
‘clusterProfiler’90 against the GO, KEGG and MSigDB databases. For the metabolic/
morphologic characterization of the individuals’ and obesity clusters, the serum 
insulin levels were adjusted on BMI and the fat and lean mass normalized on the 
squared height, generating FatMI and LeanMI, respectively.

The LCAT cohort. The LCAT cohort consists of female and male white children 
aged 0–18 years who underwent elective orthopedic surgery, herniotomy/
orchidopexy or other surgeries65. Exclusion criteria were severe diseases 
and medication that might affect adipose tissue biology, such as diabetes, 
generalized inflammation, malignant diseases, genetic syndromes or permanent 
immobilization. BMI data were standardized to age- and sex-specific centiles by 
applying German reference data and are represented as BMI SDS91. Overweight 
and obesity are defined by a cutoff of 1.28 and 1.88 SDS (90th or 97th centile), 
respectively. Subcutaneous adipose tissue samples were excised during surgery, 
washed three times in PBS and immediately frozen in liquid nitrogen for RNA 
isolation. For RNA-seq, gene expression profiles were generated as previously 
described43. Differential expression and GSEA were performed using DESeq2  
(ref. 77) and fgsea78, respectively. Normalized counts were corrected for both 
age and sex confounders with ComBat81. For global gene expression analysis on 
individuals, 61 profiles from s.c. adipose tissues were analyzed (34 males and 27 
females). The number of clusters selection and the heat map generation were 
performed as in the adult cohort. The heat map in Fig. 5 shows the Type-B specific 
gene clustering (top) and the same variable genes as in the TwinsUK cohort 
(bottom). For the metabolic/morphometric characterization of the individuals’ and 
obesity clusters, standardized (SDS) measurements and fasting serum insulin levels 
normalized on BMI SDS were visualized.

Statistics. In both human and mice analyses, equality of variances and means 
were assessed by Levene’s test and Student’s t-tests, respectively (unless otherwise 
specified). We used one-way ANOVA followed by Tukey’s honestly significant 
difference test (where appropriate and as indicated) for multiple comparison 
testing. In the mice body composition data analysis, the separation into discrete 
clusters was tested by Gaussian finite mixture modeling using the Mclust tool83. 
A supervised analysis was performed to identify the best model describing the 
WT as a single reference cluster. Next, the same model was applied on data 
from other genotypes. All data are expressed as mean ± s.e.m., unless otherwise 
specified. Correlations were tested by linear regression, unless otherwise specified. 
All reported P values are two-tailed, unless stated otherwise, where P ≤ 0.05 was 
considered to indicate statistical significance. Calculations to evaluate the power 
to detect an effect given the sample size in mouse studies, were performed with 
bifurcatoR (https://github.com/VanAndelInstitute/bifurcatoR). Mouse studies were 
designed to reach 95% power to detect effect size.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq data from both mouse primary islets and subcutaneous adipose tissue 
of the LCAT cohort, have been deposited to Gene Expression Omnibus and 
are publicly available under the accession codes GSE205740 and GSE205668, 
respectively. They are collected under the GSE205741 super-series. Gene expression 
and DNA methylation profiles by whole genome arrays from subcutaneous adipose 
tissue of the MuTHER TwinsUK cohort have been deposited to Array Express and 
are publicly available under the accession codes E-TABM-1140 and E-TABM-1866, 
respectively. Morphometric and genotypic data of the MuTHER TwinsUK cohort 
are available upon request at https://twinsuk.ac.uk/resources-for-researchers/
access-our-data/. The MSigDB is available at http://www.gsea-msigdb.org/gsea/
msigdb. Source data are provided with this paper.

Code availability
No custom code or mathematical algorithm were generated in this report. All 
publicly available codes and tools used to analyze the data are reported and 
referenced in the Methods and the Reporting Summary.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Paternal but not maternal Nnat deletion causes bi-stable overgrowth. a, The body composition was shown for 16 weeks old of F1 
female wild-type and Nnat+/-p animals from Nnat+/-p x FVBN/J crosses. b-c, The body composition was shown for 16 weeks old F1 male (b) and female (c) 
wild-type and Nnatm/+ animals from Nnat-m/+ x FVBN/J crosses. d-e, The Nnat+/-p male (d) and female (e) body composition was plotted for the Nnat+/-p 
colony in the vivarium, VAI, U.S.A. f, Genotyping (DNA) was confirmed in the indicated Nnat+/-p morphs and WT littermate. Nnat mRNA expression was 
confirmed in metabolic tissues (adipocytes, islet, pituitary gland and hypothalamus) from male Nnat+/-p mice. Nnat mRNA expression was measured from 
two independent sets of littermate matched animals. The experiments were repeated independently 3 times with similar results. g, Body composition was 
measured by EchoMRI on 16-week-old wild-type (WT), Trim28D9/+, Nnat+/p and Nnat+/p Trim28D9/+ male progeny from F1 of B6.Nnat+/-p x FVB.Trim28D9/+ 
crosses. Contour plots highlight main clusters identified by Gaussian finite mixture modeling. h, Trim28 and Nnat (as control) gene expression were shown 
from islet (left) and adipocyte (right) transcriptomes from Nnat+/-p colony. Each group had at least 3 animals. All data were plotted as mean ± SEM, ns (not 
significant), **** (adjusted p < 0.0001) by one-sided Tukey’s multiple comparisons test.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Nnat+/-p-Heavy morphs exhibit accelerated post-weaning growth kinetics associated with hyperinsulinemia. a, Birth weight 
was measured for Nnat+/-p male newborns. Each group had at least 22 animals. Data are presented as mean ± SEM. b, Fat (top) and lean (middle) mass 
deposition between 4 to 7 weeks were plotted for male Nnat+/-p colony. Daily food intake (button) was measured and the average daily food intake were 
calculated per week between 4 to 7 weeks for male Nnat+/-p colony. All data were plotted as mean ± SEM. Adjusted p-values by one-sided Tukey’s multiple 
comparisons test. Top panel *** p < 0.0001; middle panel * p = 0.016, *** p < 0.0001; lower panel * p = 0.0019. c, Daily food intake normalized to body 
weight (top) and body weight deposition normalized to average daily food intake per week (button) between 4 to 7 weeks were plotted for male Nnat+/-p 
colony. All data were plotted as mean ± SEM. Adjusted p-values by one-sided Tukey’s multiple comparisons test. Lower panel * p = 0.0104, ** p = 0.002, 
*** p < 0.0001. d, Circulating growth factors (insulin-like growth factor 1, IGF1; growth hormone, GH; and insulin, INS) were detected in plasma of Nnat+/p 
males and WT littermates at 4 and 6 weeks of age. Each group had at least 3 animals. All data were plotted as mean ± SEM. Adjusted p-values by one-
sided Tukey’s multiple comparisons test. ** p = 0.0001, *** p < 0.0001.
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Extended Data Fig. 3 | Nnat+/-p-Heavy morphs exhibit normal glucose tolerance and islet functionality. a, H&E staining was performed to locate islets 
(light pink areas, arrows) in Nnat+/-p pancreata. Scale bar, 500 µm. The experiment was repeated independently 3 times with similar results. b, Islet area 
was quantified as percent of the entire pancreas area. Each group had 3 thin sections from at least 6 animals. All data were plotted as mean ± SEM, 
*** (adjusted p < 0.0001) by one-sided Tukey’s multiple comparisons test. c, Total insulin content was extracted from whole pancreata, normalized to 
total insulin in WT littermates. Each group had at least 5 animals. All data were plotted as mean ± SEM, *** (adjusted p = 0.0008) by one-sided Tukey’s 
multiple comparisons test. d, Glucagon and somatostatin staining was performed on Nnat+/-p pancreata. Scale bar, 100 µm. The experiment was repeated 
independently 3 times with similar results. e, Cell death (apoptosis) event was examined via TUNEL assay in the pancreatic section from Nnat+/-p and 
WT littermates at 16 weeks old. DNase treated sample as positive control from the same animals. The black circle heights the islet area. Each group had 
at least 3 animals. Scale bar, 100 μm f, Basal insulin secretion was measured from size-matched β-cell spheroids. Each group had 8 spheroids. All data 
were plotted as mean ± SEM. g, h Glucose-stimulated insulin secretion assays were performed on primary islets (g) and spheroids (h) from 16 weeks 
old Nnat+/-p and WT littermates. 2.8 mM glu.: 2.8 mM glucose and 16.7 mM glu.: 16.7 mM glucose. At least 6 primary islets and 4 spheroids were in each 
group. All data were plotted as mean ± SEM. i, Oral glucose tolerance test (OGTT) was performed in 16 weeks old Nnat+/-p and WT mice (n = 4-5) fasted 
for 6 hours and showed relatively normal glucose tolerance in Nnat+/-p-Heavy morphs. All data were plotted as mean ± SEM. j, Growth trajectories for 
untreated and STZ-treated Nnat+/-p animals and WT littermates between 4 and 12 weeks of age. All data were plotted as mean ± SEM.
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Extended Data Fig. 4 | Dysregulated HDAC-related transcriptome precedes the Nnat+/-p-overgrowth. a, Venn diagram of differential gene expression 
analyses of islets transcriptome of 6 weeks old mice comparing between Nnat+/-p-Heavy, Nnat+/-p-Light morphs and WT littermates. b, GSEA results of 
HDAC-responsive gene sets between the Nnat+/-p-Light and Nnat+/-p-Heavy morphs, showing a specific enrichment in the latter. Solid and transparent 
colored dots, highlight either statistically significant or not significant enrichments, respectively (adjusted p-value cutoff < 0.05). c, Gene expression 
(Z-score) comparison was performed for HDAC gene set leading-edge genes between Nnat+/-p-Heavy-like and Nnat+/-p-Light-like morphs (early stage) 
and Nnat+/-p-Heavy and Nnat+/-p-Light morphs (late stage). **** (p ≤ 0.001) as assessed by two-tails t-tests. In all box-plots, the lower and upper hinges 
= 25th and 75th percentiles. The upper/lower whiskers = largest/smallest observation less/greater than upper/lower hinge + 1.5 * IQR. Central median 
= 50% quantile. d, Estimate of the contribution of the HDAC-responsive genes, to the overall transcriptional variability between WT, Nnat+/-p-Heavy and 
Nnat+/-p-Light mice. Following PCA, the dotplot shows either the cumulative contribution of all principal components (PCs) to gene expression variation 
(black dots/line), or the contribution of the top four PCs (red dots/line), mostly associated with the HDAC-leading-edge genes from (b). The cumulative 
contribution of these four PCs is describing 58.7% of total gene expression variation.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Characterization of the concordant/discordant MZ co-twin groups. a, Boxplot showing the inter-quartile ranges (IQR) of co-twin 
discordance indices for all the available features in either MZ or dizygotic (DZ) co-twins. b, Boxplot showing the MZ co-twin discordance indices for the 
indicated morphometric features, in the concordant/discordant groups identified. A horizontal dashed line highlights zero values of the discordance index 
(that is, concordance). Vertical dashed lines separate fat/lean/total mass and percentage of fat from the indicated body parts. c, UMAP projection of MZ 
co-twin couples from TwinsUK (n = 153), according to 35 morphometric discordances. Each observation represents a twin pair, colored by the whole-body 
fat (above) or lean (below) mass discordance (calculated as the difference between log-transformed measurements). The different shapes of the co-twin 
pairs represent the identified groups, as indicated. Dotted red/green lines highlight the Type-A and Type-B UPV and show their differences with respect 
to lean mass discordance. d, Box-plots representing the average height, between the ‘light’ and ‘heavy’ MZ co-twins, belonging to the indicated groups. 
Solid horizontal lines represent medians. The p-value is calculated by ANOVA. e, Boxplot showing the MZ co-twin discordance indexes for the indicated 
morphometric features, after height-normalization, in the concordant/discordant groups identified. A horizontal dashed line highlights the zero value of 
the discordance index (that is, concordance). Box plots in (b,d,e) show the lower and upper hinges = 25th and 75th percentiles. The upper/lower whiskers 
= largest/smallest observation less/greater than upper/lower hinge + 1.5 * IQR. Central median = 50% quantile.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | UPV groups are not determined by genetic differences between MZ cotwins. a, Violin-plots showing the distribution of missing 
data (as percentage of the total) among individuals’ genotypes, stratified by UPV groups. This data show that the degree of genome wide missingness 
is not correlated to UPV groups. b, Table summarizing the amount of genetically identical loci among MZ cotwins and genetic differences, only due to 
missing data. c, Barplot summarizing the data in table b. MZ cotwins were identical on > 99.9% of the analyzed loci and differences due to missing data 
account on average for ~ 0.06% of the total data, among all UPV groups. d, Heatmaps showing the distribution of SNPs that resulted different between MZ 
cotwins, only due to missing data. On the left, the cotwin pairs are ordered by the UPV sub-types. On the right, they are ordered according to hierarchical 
clustering. These data show that neither the degree of missingness, nor the specific genomic positions of missing data showed any correlation to UPV 
sub-types. e, Same as in a, on the indicated genesets. These data show no specific enrichment of missingness in any UPV group, nor any genesets, arguing 
against evidence for genotypic differences underlying the detected transcriptional signatures. All p-values as assessed by ANOVA.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Type-A and Type-B UPV show specific metabolic and molecular profiles. a, UMAP projection of MZ cotwin couples form the 
TwinsUK (n = 153), according to 35 morphometric discordances. Each dot represents a cotwin pair, colored by their serum insulin level discordance 
(calculated as the difference between log-transformed measurements). The different shapes of the cotwin pairs represented the identified groups. Dotted 
red/green lines highlight the Type-A and Type-B UPV and show the increase insulin levels (that is, relative hyperinsulinemia) in Type-B ‘heavy’ cotwins. 
b,c, Scatterplots showing the correlation between BMI and insulin level (b) or the HDAC-signature expression (c), in the indicated cotwin groups. Both 
showing stronger correlation in the Type-B UPV cotwins (BMI/insulin: R2 = 0.51, p-value=2.4-13, BMI/insulin: R2 = 0.57, p-value=4-16). R2 and p-values as 
calculated by fitted linear regression models. d, Gene set enrichment analysis (GSEA) results of HDAC-related gene sets between the ‘light’ and ‘heavy’ 
cotwins, belonging to the Type-B UPV group. Gene sets specifically enriched in ‘heavy’ cotwins of the Type-B UPV cluster are shown. NES = normalized 
enrichment score; padj = adjusted p-value. e, Pie-charts, showing the distribution of insulin-concordant/discordant MZ cotwin pairs, from the Danish twin 
cohort, in either low- (blue chart), or high-NNAT expressing couples (yellow chart). The definition of insulin-concordant/discordant couples was obtained 
by Gaussian finite mixture modeling (see Methods section). f, Box- and violin-plots of BMI discordance distributions, represented as inter co-twin 
differences in the Danish twin cohort. Solid horizontal lines and black points represent means and medians in the box-plots, respectively. * p-value = 0.03, 
as assessed by the Bartlett’s test of homogeneity of variances. Blue and yellow triangles represent co-twin pairs expressing averaged low and high NNAT 
levels, respectively. In box-plots, the lower and upper hinges = 25th and 75th percentiles. The upper/lower whiskers = largest/smallest observation less/
greater than upper/lower hinge + 1.5 * IQR. Central median = 50% quantile.
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Extended Data Fig. 8 | Type-A and Type-B UPV are associated to distinct DNA methylation patterns. a, heat map showing the differentially DNA 
methylated sites among ‘heavy’ and ‘light’ cotwins belonging to the indicated groups identified in the TwinsUK cohort. SeSAMe cutoffs: adjusted 
p-value < 0.05; effect size > 0.05. Dark-gray and black boxes highlight DNA methylation enrichment in either the ‘light’ or ‘heavy’ cotwin, respectively. 
b, Venn diagram showing the overlap between differentially DNA methylated sites from the indicated cotwin groups and highlighting the specificity of 
these epigenetic profiles. c, Barplots showing the amount of differentially methylated regions (DMRs) among ‘heavy’ and ‘light’ cotwins belonging to 
the indicated groups identified in the TwinsUK cohort. Only in Type-B UPV, DMRs were detected. Dark-gray and black bars highlight DNA methylation 
enrichment in either the ‘light’ or ‘heavy’ cotwin, respectively.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Characterization of adults’ and childrens’ clusters. a, Heat map of hierarchical clustering of DEGs between cotwins belonging 
to indicated groups. b, Boxplot showing the mean expression of HDAC-signature (above) or NNAT (below), among indicated clusters. p-values (2.2e-
16; 1e-10) from ANOVA. c, Barplot showing obesity distribution among clusters. d, Boxplot showing normalized beta values for differentially methylated 
sites (above, p = 2.2e-16 and 2.2e-16) or regions (below, p = 0.0005 and 2.6e-8), among cotwins. ‘Heavy’- and ‘light’ enriched DNA methylated sites 
are reported. *** (p ≤ 0.001) from two-tails t-tests. e, UPV-B genes estimate of contribution to overall transcriptional variability in the TwinsUK cohort. 
Cumulative contribution of all principal components (black dots/line) and contribution of the most UPV-B-associated PCs (red dots/line) are reported. 
f, Boxplot showing mean expression of genes belonging to five genesets form Fig. 5b, among clusters. *** (p = 2.2e-16) from one-sided Tukey’s multiple 
comparisons test, following significant ANOVA. g, Complete gene ontology and pathway enrichment analysis for the 5 genesets from the heat map of 
TwinsUK individuals. h, Boxplot showing mean expression of HDAC-signature (above) or NNAT (below), among the clusters of the LCAT cohort. p-values 
from ANOVA. i, Barplot showing obesity distribution, among cluster in the LCAT cohort. j, Boxplot showing mean expression of genes belonging to the 
five genesets form Fig. 5b, among clusters in the LCAT cohort. * (p = 0.004), *** (p = 2.2e-16) from one-sided Tukey’s multiple comparisons test, following 
significant ANOVA. k, Box-plots showing distributions of serum insulin levels normalized on BMI-SDS, among children with obesity belonging to indicated 
clusters. ** (p = 0.0016) from two-tails t-tests. l, Barplots showing average cell-type compositions among transcriptional profiles of individuals belonging 
to indicated clusters. ASPC = adipose stem and progenitor cells, LEC = lymphatic endothelial cells, SMC = smooth muscle cells. m-n, Box-plots showing 
CDKN1C expression between ‘light’ and ‘heavy’ Type-B UPV cotwins (m) and Type-A/-B obesities (n). In all box-plots, lower and upper hinges = 25th 
and 75th percentiles. The upper/lower whiskers = largest/smallest observation less/greater than upper/lower hinge + 1.5 * IQR. Central median = 50% 
quantile. p-values from one-tail (m) or two-tails (n) t-tests.
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