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Rapid experimental progress in realizing strongly coupled light-matter systems in complex elec-
tromagnetic environments necessitates the development of theoretical methods capable of treating
light and matter from first principles. A popular such method is quantum electrodynamical density
functional theory (QEDFT) which is a generalization of density functional theory to situations where
the electronic system is coupled to quantized light modes. While this method provides a powerful de-
scription of the electronic system and the quantized modes of light, it has so far been unable to deal
correctly with absorbing and dispersing electromagnetic media in practice. In addition, the cavity
field strength parameters have not been linked to the real electromagnetic environment in which the
matter is embedded meaning that these are effectively free parameters. In this paper, we discuss how
macroscopic QED (MQED) can be invoked to correctly parameterize QEDFT for realistic optical
cavity setups. To exemplify this approach, we consider the example of a absorbing spherical cavity
and study the impact of different parameters of both the environment and the electronic system on
the transition from weak-to-strong coupling. As a result of our work, the coupling parameters in
general, lossy environments can be now expressed in terms of the classical Dyadic Green’s Function.
Because the Dyadic Green’s Function is completely determined by the electromagnetic environment
and the boundary conditions, it thus removes the light-matter coupling strengths as free parame-
ters. As part of this work, we also provide an easy to use tool that can calculate the cavity coupling
strengths for simple cavity setups.

INTRODUCTION

Recent years have seen rapid developments in the ex-
perimental realization of novel setups, where light and
matter are strongly coupled. Examples include plasmonic
nanocavities [1], optical cavities using four-wave mix-
ing schemes [2], metasurface systems [3], self-assembled
Casimir microcavities [4], deep-strong coupling in plas-
monic nanoparticles [5], and many more [6, 7]. Due to
the inherent complexity of these general strongly coupled
light-matter systems, theoretical methods usually apply
various simplifications to keep simulations tractable. One
first-principles method which has gained popularity is the
recently introduced quantum-electrodynamical density-
functional theory(QEDFT) [8]. QEDFT is a generaliza-
tion of density-functional theory (DFT) [9] for electronic
systems interacting strongly with quantized modes of
the electromagnetic field. The method represents a good
compromise between accuracy and computational cost,
and it has been successfully applied to desribe both the
ground-state [10, 11], and excited-states [12, 13] of sin-
gle (few) molecules strongly coupled to quantized modes
of light, as well as for applications in polaritonic chem-
istry [14].

The existence of the QEDFT formulation can be
proven under very general conditions [8] and it in prin-

ciple allows for the treatment of coupled light-matter
systems with many electrons and many photonic modes
under very general conditions. However, currently, most
practical implementations of QEDFT are based on the
dipole approximation for the light-matter coupling, and
a discrete mode expansion of the electromagnetic field.
The latter implies that the material or molecular sys-
tem of interest is embedded in a lossless electromag-
netic medium. There have been previous studies at ap-
plying the QEDFT formulation to lossy optical cavi-
ties to describe e.g. photon losses through cavity mir-
rors [12, 15, 16]. Here, different models of the optical
cavity were used, but no general connection between the
cavity field parameters and the optical environment for
absorbing and dispersing magnetoelectric bodies has yet
been established. As a result, the electron-photon cou-
pling parameters, while in principle connected to the
physical quantity of the vacuum electric field at the cen-
ter of charge of the system, are then in practice often
treated as free parameters. This highlights the other cur-
rent practical limitation of QEDFT: Treating the cavity
coupling parameters as essentially free parameters makes
quantitative calculations and direct comparison with ex-
periments hard.

In the presence of absorbing and dispersing magneto-
electric bodies in the electromagnetic environments, it
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is not possible to correctly quantize the electromagnetic
field via discrete modes. Instead, the field quantization
can be realized as a continuous expansion using the clas-
sical dyadic Green’s function (DGF) in the framework
of macroscopic quantum electrodynamics (MQED) [17].
It has previously been shown how standard DFT can be
combined with MQED to provide a quantitative, first
principles description of the quantum light-matter in-
teractions for real cavity setups in the weak and inter-
mediate coupling regimes beyond the dipole approxima-
tion [18]. However, the previous work relied on a wave
function ansatz which only considered a subset of the
electronic structure. This is expected to become prob-
lematic in the ultra- and deep strong coupling regimes.

In this work, we overcome the shortcomings of the
existing methodologies by establishing a direct connec-
tion between the frameworks of MQED and QEDFT
that can be used to study the interaction of molec-
ular systems with arbitrary quantized electromagnetic
fields while correctly considering absorbing and dispers-
ing electromagnetic environments. Specifically, we inves-
tigate how QEDFT can be formulated in terms of the
field expansion from MQED within the dipole approxi-
mation for the light matter coupling. This in turn allows
us to express the cavity coupling parameters in terms of
the classical DGF, which can be related to a real cav-
ity setup. The result is that we arrive at a formulation
of QEDFT appropriate in lossy electromagnetic environ-
ments which simultaneously relates the coupling param-
eters to a real cavity. This removes the electron-photon
coupling strengths as free parameters. We will exemplify
this scheme on a lossy spherical microcavity setup and
study the impact of different parameters of both the en-
vironment and the electronic system on the transition
from weak-to-strong coupling.

EMITTER-CENTERED FORMULATION OF
MACROSCOPIC QUANTUM

ELECTRODYNAMICS

Macroscopic Quantum Electrodynamics (MQED) is a
framework for quantizing the electromagnetic field in the
presence of arbitrary absorbing or dispersing environ-
ments [17–19]. The central object in MQED is the classi-
cal Green’s function that solves the Helmholtz equation
for a point source, the so-called dyadic Green’s function
(DGF)[20],[
∇× κ(r, ω)∇×−ω

2

c2
ε(r, ω)

]
G(r, r′, ω) = δ(r − r′),

(1)

where κ(r, ω) = µ−1(r, ω) and ε(r, ω) are the spatially
dependent dielectric function and inverse magnetic per-
mability respectively. The DGF is of central importance
to the quantized theory of electromagnetic fields in lossy

environments because it simultaneously carries the infor-
mation about the electromagnetic boundary conditions,
and serves as a projector from the coupled light-matter
system onto the electromagnetic degrees of freedom [17].

For a spatially local magnetoelectric medium in the
nonrelativistic limit, the MQED expansion of the electric
field in the Power-Zienau-Woolley (PZW) frame [21, 22]
(multipolar gauge) can be written as [17, 19],

Ê(r) =

∫
dωÊ(r, ω) + h.c., (2)

Ê(r, ω) =
∑
λ=e,m

∫
d3r′Gλ(r, r′, ω) · f̂λ(r′, ω). (3)

Here f̂λ(r′, ω) are the spatially resolved polaritonic
field operators of MQED which fulfill the commuta-
tion relations of the quantum harmonic oscillator, and
Ge(r, r

′, ω) and Gm(r, r′, ω) are the electric and mag-
netic components of the DGF respectively,

Ge(r, r
′, ω) = i

ω2

c2

√
~
πε0

Imε(r, ω)G(r, r′, ω), (4)

Gm(r, r′, ω) = −iω
c

√
~
πε0

Imµ(r, ω)G(r, r′, ω)×∇′.

(5)

In the following we neglect magnetic interactions and
consider the coupling between light and matter within
the dipole approximation. Therefore, if we consider a
set of emitters i with positions (centers of charge) ri,
the interaction only samples the electromagnetic field at
these positions. In this sense, the full electric field Ê(r)
in Eq. 2 contains more information than strictly neces-
sary to describe the light-matter interaction completely.
As discussed in Refs [19, 23, 24], it is therefore possible
to arrive at a significantly more compact expression by
alternatively expanding the electric field in terms of a
set of N explicitly orthogonalized bright modes at each
frequency,

Ê(r) =

N∑
i=1

∫ ∞
0

dωEi(r, ω)Ĉi(ω) + H.c., (6)

Ei(r, ω) =
~ω2

πε0c2

N∑
j=1

V ∗ij(ω)
ImG(r, rj , ω) · n̂j

Gj(ω)
. (7)

Here Ĉ
(†)
i (ω) destroys (creates) a photon in the ith bright

mode. Ei(r, ω) describes the spatial mode function of the
electric field associated with mode i. The normalisation
factor Gj(ω) is the square root of the dipole spectral
density[25],

Gj(ω) =

(
~ω2

πε0c2
nj · ImG(rj , rj , ω) · nj

)1/2

. (8)
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FIG. 1. (a) Different radii of the spherical microcavity that host a resonance that aligns with the Π → Π∗ of the benzene molecule.
The total light-matter coupling strength of the modes is also shown in the legend, and it can be clearly observed that the cavity-
coupling strength grows with decreasing cavity radius. The mode structure is shown with a sampling density of 10 points/meV. (b)
The linear absorption spectrum of benzene as a function of cavity radius showing a clear radius dependent Purcell enhancement.

Finally, the matrix Vij(ω) is the transformation matrix
which obeys V (ω)S(ω)V †(ω) = I where

Sij(ω) =
~ω2

πε0c2
ni · ImG(ri, rj , ω) · nj

Gi(ω)Gj(ω)
, (9)

and it is a result of the mode-orthogonalization inher-
ent to the emitter-centered representation [19]. The num-
ber of emitter centered modes per frequency, N , is equal
to the number of emitter positions times the number of
dipole orientations considered. In this work, we consider
a single emitter position r0 and the full three-dimensional
space of dipole orientations. This results in three emitter-
centered modes per frequency.

We want to express the total Hamiltonian of the cou-
pled light-matter system in a similar form as used previ-
ously in Refs. [12, 15, 26]. Therefore we write (see Sup-
plementary note A),

H =HMat+

1

2

N∑
i=1

∫ ∞
0

dω

{
p̂i(ω)2 + ω2

[
q̂i(ω) +

λi(ω)

ω
· R̂
]2
}
.

(10)

The light-matter interaction now contains the dipole
moment operator for Ne electrons with position r̂i,
R̂ =

∑Ne
i=1 r̂i, which gives rise to an explicit electron-

photon interaction and the dipole-self energy term. HMat

is the standard matter Hamiltonian that describes the
electronic system. The cavity field strength λi(ω) is given

by λi(ω) = −e
(

2
~ω
)1/2

Ei(r0, ω), where r0 denotes the
center of charge. We have further introduced the pho-
ton field quantities p̂i and q̂i that are connected to the
magnetic- and electric field in their corresponding mode

and are given explicitly by q̂i(ω) =
( ~

2ω

)1/2
(Ĉi(ω) +

Ĉ†i (ω)) and p̂i(ω) =
(~ω

2

)1/2
(Ĉi(ω)− Ĉ†i (ω)). In terms of

these new quantities, the electric field expansion at the
center of charge r0 reads,

Ê(r0) = −
N∑
i=1

∫ ∞
0

ωλi(ω)q̂i(ω)dω. (11)

The interaction of the electronic system with the elec-
tric field within the dipole approximation can thus be
expressed as the interaction of the electronic system and
a continuous set of quantum harmonic oscillator modes
via the dipole moment of the electronic system. Note that
this formulation addresses both the problem of how to
formulate the length gauge Hamiltonian in the presence
of losses, and allows for the explicit calculation of the cav-
ity field strengths in terms of the boundary conditions set
by the cavity via the DGF of the electromagnetic field.
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QUANTUM ELECTRODYNAMIC DENSITY
FUNCTIONAL THEORY

To calculate the excited-state properties of the cou-
pled electron-photon problem defined by the Hamilto-
nian in Eq. 10, we employ the linear response formula-
tion of QEDFT, which has been described in detail in
Refs. [12, 13, 27]. Importantly, this method considers the
full electronic structure of the matter system and goes
beyond the rotating wave approximation. By combining
it with the MQED quantization of the electromagnetic
field we thus go beyond the method presented in Ref.
[18]. Specifically, we employ the generalized Casida for-
mulation of linear response QEDFT to calculate the oscil-
lator strengths of the many-body excitations of the cou-
pled light-matter (polaritonic) system. The generalized
Casida equation reads,[

U V
V T ωα

] [
F
P

]
= Ω2

S

[
F
P

]
. (12)

Here ωα is a diagonal matrix with the frequency of pho-
ton modes in the diagonal. U accounts for the cou-
pling between the electrons. Introducing the pair or-
bital index S = (ia), corresponding to the pair orbital
ΦS(r) = φi(r)φ∗a(r) with energy εS = εa − εi, U can be
expanded as,

USS′ = ε2SδSS′ + 2ε
1/2
S KSS′(ΩS)ε

1/2
S′ , (13)

KSS′(ΩS) =

∫ ∫
drdr′ΦS(r)fnMxc(r, r′,ΩS)ΦS′(r′).

(14)

If Npair pair-orbitals are included in the calculation, U
is therefore an Npair × Npair matrix. VαS is the matrix
accounting for the coupling between the electrons and
the photon modes,

VαS = 2
√
εSMαS(ΩS)NαSωα, (15)

Mα,S(ΩS) =

∫
drΦS(r)fqαMxc(r,ΩS), (16)

Nα,S =
1

2ω2
α

∫
drΦS(r)gqαM (r). (17)

The size of these matrices will be Nphoton × Npair. The
F part of the eigenvector in Eq. 12 can be interpreted
as the matter part and the P can be interpreted as
the photon part. The square norm of the two gives the
electronic- and photonic fraction of the excitation respec-
tively. As discussed in Ref. [12] it is possible to calculate
the oscillator strengths of the coupled system in terms
of these eigenvectors. Finally, note that when neglect-
ing the quantized light, only the top left block in Eq. 12
survives and one recovers the standard Casida formula-
tion of linear response TDDFT for finite systems [28].
We note that these equations include the exchange cor-
relation kernels fnMxc, f

q
Mxc and gqαM which have to be

approximated in practice. So far the available exchange-
correlation functionals for QEDFT in the time-domain
are still limited [10, 11], but recent developments based
on the photon-free formulation of QEDFT [29] or the
QEDFT fluctuation-dissipation theorem [30] are promis-
ing. In this work, we neglect any exchange-correlation
contribution in the kernels and apply the mean-field pho-
tonic random phase approximation. We refer to Ref. [12]
for a thorough discussion of this approximation.

The excitation spectrum is then characterized by the
strength function [12],

S(ω) =
∑
I

fIδ(ω − ωI), (18)

where fI is the oscillator strengths, and I runs over
the many-body excitations of the coupled light-matter
(polaritonic) system. We emphasize that in this work
we do not apply any broadening to the spectra and
that the width of the peaks is determined completely
by the electromagnetic environment. This highlights a
further advantage of using the QEDFT-MQED combina-
tion, namely that this provides a natural description of
the transition linewidths as they relate to decay induced
by the electromagnetic environment. This is relevant be-
yond cavity QED settings and paves the way towards
TDDFT without artificial linewidths.

SPHERICAL MICROCAVITY

To exemplify the developed approach, we consider the
spherically layered microcavity also considered in Ref.
[31]. As shown in the inset of Fig. 1a, the spherical cavity
consists of three concentric spherical layers, each char-
acterized by a frequency dependent dielectric function,
εn(ω). In general, the source and field points (r and r′,
respectively) can be in either the same layer or different
layers. Consequently, the DGF for the reflected field is
a nine-component object, where each of the components
is a three-dimensional dyad. Labelling the possible com-
binations of source and field points by two extra indices
m,n = 1, 2, 3, the full DGF of the system therefore takes
the following form,

Gmn(r, r′, ω) = Gvac(r, r′, ω)δnm +Gref
mn(r, r′, ω),

(19)

where Gvac and Gref are the components of the DGF
describing the free dipole field and the reflections of the
dipole field in the surroundings, respectively. In combi-
nation, the two fully describe the electromagnetic envi-
ronment of the cavity. Due to the spherical symmetry of
the problem, the DGF of the system is most efficiently
expanded onto vector spherical harmonics [20]. The nine
different components of the reflection contribution can
be calculated by explicitly invoking the electromagnetic
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(a) (b)

FIG. 2. (a) The linear absorption spectrum of benzene in the gold cavity from Fig. 1a with an inner radius R = 16nm as a function
of the Drude dampening in the metallic mirror region. (b) The linear absorption spectrum in a cavity with with an inner radius
R = 16nm and Drude dampening γ = γgold/4 as a function of the number of benzene molecules.

boundary conditions at the material interfaces as appro-
priate. In this work we consider the situation where the
emitter is placed in the inner region of the cavity, and
it is therefore only necessary to consider the n = m = 3
component of the DGF.

For a general emitter position inside the cavity, it is
necessary to carefully converge the number of vector
spherical harmonics used in the calculation of the DGF.
However, if the emitter is placed exactly in the center
of the cavity, the situation simplifies significantly. In this
case, only the lowest order magnetic mode contributes
and the reflection DGF can be written as [31],

Gref
33 (r, r′, ω)|r,r′→0 =

iω

6πc
rNn=1(ω)1. (20)

The imaginary part of the spatial trace of the vacuum
DGF is given by ImGvac(r, r, ω) = ω

6πc1. The imaginary
part of the full DGF, evaluated in the center of the cavity
0, thus becomes,

ImG(0,0, ω) =
ω

6πc

[
1 + Re

(
rNn=1(ω)

)]
1. (21)

Notice that ni · ImG(0,0, ω) ·nj ∝ δij which means that
the mode orthogonalization is trivial in this case, and the
cavity field strengths can be derived directly,

λi(ω) = e

(
ω2

3π2ε0c3
[
1 + Re

(
rNn=1(ω)

)])1/2

n̂i. (22)

In practice, to use the QEDFT Casida formalism, it
is necessary to employ a dense, discretized sampling of
the continuous frequency expressions for the coupling
strengths. This procedure is discussed in Supplementary
note C. Furthermore, the details of the QEDFT calcula-
tions with these modes are given in Supplementary note
D.

Drude metal shell

We now consider the case where the inner and outer
regions consist of vacuum. For the middle region we con-
sider a simple, but realistic model of a metallic mirror,
namely a Drude metal with dielectric function,

ε2(ω) = 1−
ω2
p

ω2 + iγω
, (23)

where ωp is the metal plasma frequency and γ is the
Drude dampening rate. As a concrete example of a
metal, we use the Drude parameters for gold taken from
Ref. [32]. Within the Drude mode, the plasma frequency
of gold is around 8.5 eV [33]. This results in the dielec-
tric function shown in Supplementary Figure. 1b. Below
the plasma frequency, the real part of the dielectric func-
tion will be negative and the material surface will conse-
quently be highly reflective. Above the plasma frequency,
the real part of the dielectric function becomes positive
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and the material will loose its metallic characteristics re-
sulting in a significant loss of surface reflectivity.

In Supplementary Figure 1c the mode structure of
the cavity setup is shown for two different cavity radii,
R = 140nm and R = 450nm. It is clearly observed that
the number of modes, as well as their spectral position,
is directly linked to the radius of the microcavity. Fur-
thermore, we clearly observe that above the gold plasma
frequency, the mirrors lose their reflectivity which results
in the loss of the sharp mode structure which is replaced
by a continuum. This highlights that the formalism we
present is able to directly link the cavity field strengths
to the real cavity setup made of real materials. Supple-
mentary Figure 1d zooms in on the mode around 7.1 eV
in the cavity with R = 140nm and shows the effect of
changing the Drude dampening parameter. We clearly
observe that the width of the cavity mode increases with
increasing dampening in the metal which highlights the
connection between the width of the cavity modes and
the losses in the gold.

This example highlights how the use of the emitter
centered representation of MQED allows us to directly
and uniquely relate the light-matter coupling strength
to a real electromagnetic environment and connect it to
the QEDFT formalism. While this is a relatively simple
example, the approach is general and works analogously
for an arbitrary electromagnetic environment provided
that the DGF can be determined.

Adding an emitter to the cavity

We next add a benzene molecule to the cavity. Ben-
zene is chosen mainly because of it prevalence as a test
system in the existing TDDFT and QEDFT literature
on strong coupling [11, 12, 15, 34], but we emphasize
that the method can treat arbitrary finite electronic
systems. We focus on finding a cavity configurations
with a mode resonant with the Π → Π∗ transition of
the benzene molecule. This transition is spectrally well
isolated from other transitions. It thus represents an
effective two level system for coupling strengths in the
weak coupling and strong coupling regime, while care
has to be taken in the ultrastrong coupling regime. The
first step is to determine the spectral position of this
transition. Using the Casida linear response QEDFT
framework without photons, we find that the transitions
occurs at 6.808 eV (182 nm) in free space, consistent
with previous TDDFT calculations for benzene [12, 15].

As shown in Fig. 1a, it is possible to find different radii
of the gold microcavity for which there is a cavity mode
resonant with the benzene Π→ Π∗ electronic transition.
As expected, the cavity field strength increases as the
cavity is made smaller. All but the smallest cavity
are optical cavities in the sense that the characteristic

dimension of the cavity, the radius, is larger than half
the wavelength of the transition. For the smallest cavity
of radius 16 nm, a significant increase in the coupling
strength relative to the other sizes is observed. This
happens exactly because this cavity is sub-wavelength
sized and therefore significant near-field coupling to the
surface plasmon mode of the gold starts to occur.
Fig. 1b shows the linear absorption spectra of the cou-
pled emitter-cavity system calculated for the different
cavity radii using the linear response QEDFT method.
We emphasize that all linewidths in the figure are true
linewidths in the sense that they are not related to
any broadening parameters in the QEDFT calculation
and only reflect the density of states in the optical
environment. A radius-dependent Purcell enhancement
with decreasing radius is clearly observed, reflecting the
reduction in radiative lifetime resulting from the altered
optical environment. However, it is not possible to
achieve strong coupling with a single benzene molecule
using the gold-shell cavity. We attribute this to the fact
that as the coupling strength gets larger with decreasing
radius, the optical losses also increase, resulting in
a broader cavity resonance. We note in passing that
the Purcell enhancement for the smallest R = 16 nm
cavity is around 3500 which means that the local field
enhancement at the center of the spherical microcavity
is comparable to what is found in experiments with
plasmonic microcavities [35].

The reason that it was impossible to reach strong cou-
pling with benzene in the gold cavity was the losses of
the cavity mode. In an attempt to reach the SC regime,
we therefore next seek to reduce the losses in the cavity.
As already discussed above, the width of the cavity res-
onance is reduced for smaller Drude dampening param-
eters, γ. For this reason, Fig. 2a shows the absorption
spectrum for the case with the true gold dampening, as
well as 25%, 10% and 5% of the dampening respectively.
We mention in passing that in practice one could imag-
ine realizing these lower losses for example using metals
specifically engineered to show weaker losses [36]. Fur-
thermore, one could also imagine exploring different cav-
ity setups potentially leveraging the lower losses in di-
electric nano-optical setups [37]. Considering the wide
range of available materials this design space becomes
enormous [38, 39]. As shown in the inset of Fig. 2a, we
find that reducing the losses results in a narrower cav-
ity mode without a significant reduction in the overall
cavity field strength. At around 25% of the true damp-
ening, we begin to observe clear indications of the two
polariton peaks in the linear absorption spectrum. Fur-
ther reducing the dampening we see clear strong coupling
with a Rabi splitting of around 2g ∼ 10 eV. This empha-
sizes the importance of the optical losses in reaching the
strong coupling regime, and further highlights the signifi-
cant strength of our method that we are able to study the
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effect of different cavity parameters from first principles
via our combination of QEDFT and MQED.

Another way to engineer the coupling strength is by
changing the emitter. There are two ways to do this, ei-
ther by changing the number of emitters or by changing
the emitter itself. To investigate the first option, we take
the cavity with 25% of the true gold losses, and compute
the absorption spectrum for one, two and three benzene
molecules, all of which we place in the center of the cav-
ity. As shown in Fig. 2b, we see a clear evolution of the
Rabi splitting with the number of benzene molecules in-
dicating the onset of collective strong coupling [40–43].
To perform this analysis, one needs to solve a coupled
many electron, many photon problem and it again high-
lights the strength of the method.

To investigate the latter option, we consider longer
aromatic compounds with N aromatic rings; naphtha-
lene (N = 2), anthracene (N = 3), tetracene (N = 4)
and pentacene (N = 5). We first use the Casida method
without photons (standard TDDFT) to characterize the
spectral properties of the aromatic molecules. Fig. 3(a,b)
shows respectively the spectrum and transition dipole
moment of the Π→ Π∗-transition (HOMO-LUMO) as a
function of the number of aromatic rings N . Note that in
Fig. 3(a) the spectra are shown with the Octopus default
artificial broadening of 0.1361 eV. This artificial broad-
ening is necessary because unlike the combined MQED-
QEDFT method, the standard photon-free TDDFT for-
mulation fails to describe the linewidth of the transi-
tions. We observe that with increasing number of aro-
matic rings N , the transition energy redshifts and the
transition dipole moment increases linearly (Fig. 3(b)).
The linearly increasing transition dipole moment would
suggest that the light-matter coupling strength can be
monotonically increased by simply using a larger aro-
matic molecule. However, because the transition energy
also redshifts with increasing molecule length, the cavity
has to be re-optimized to be resonant with the transi-
tion for each molecule, as shown in Fig. 3 (c). Specifi-
cally, focusing on modifications of the R = 16 nm cav-
ity, we find that this re-optimization of the cavity means
that the cavity radius needs to be increased. This in-
crease in radius leads to a reduced field concentration
via an increased effective mode volume. This behavior
highlights the important point that the light-matter cou-
pling strength is a joint property of both the electronic
system and the electromagnetic environment. A proper
treatment of both is therefore essential for quantitative
predictions.

We can characterize the intricate interplay between the
electromagnetic environment and the electronic structure
by looking at an effective coupling strength for the cavity
modes which we define as [15],

geff ∝
√
ωcλc|d|. (24)

Here the total cavity field strength parameter is defined

as the coupling strength averaged across the cavity peak

p, λc =
√∫

p
dω|λd(ω)|2, and ωc is the center frequency of

the cavity mode. The d subscript indicates that we take
the field strength parameter for dipole orientation d/|d|.
geff would thus be the true light-matter coupling if the
total spectral weight was concentrated in a single mode.
As shown in Fig. 3d, we observe that the increase in
transition dipole moment is counteracted by the reduced
field concentration for the larger molecules, effectively
resulting in a weaker light-matter coupling strength. This
is in stark contrast to the intuitive argument based solely
on the increased dipole moment of the longer molecules.
It should be noted that geff is not a perfect measure of the
light-matter coupling strength and it only gives a rough
idea of the cavity re-optimization’s effect. This is because
the widths of the modes are not taken into account which,
as we have seen in Fig. 2a, is very important for the
nature of the light-matter coupling.

We mention in passing that with the presented frame-
work it would be possible to perform further engineer-
ing of the electromagnetic environment to increase the
coupling for the larger aromatic compounds. The appli-
cation of the framework to general electromagnetic envi-
ronments is discussed further below.

COMMENT ON FABRY PEROT CAVITIES

A common example of a cavity in the literature for
both theory and experiments is the layered Fabry Perot
cavity (FPC). As discussed in Supplementary note E,
the FPC is a layered system and consequently its DGF
is expanded in terms of in-plane plane waves, augmented
by a function accounting for the reflection at the inter-
faces between the layers [20]. Because the FPC only con-
strains the electromagnetic modes in one direction, it re-
tains significant dispersion of the modes in plane. Conse-
quently, the concentration of electromagnetic density of
states is significantly less efficient than in the case of e.g.
the spherical microcavity. As discussed in Supplementary
note E, this means that the resulting coupling strength
is weaker and the FPC will therefore generally not be
suited for single- or few emitter strong coupling [44]. For
this reason, we do not perform explicit QEDFT calcula-
tions for this cavity setup. However, the FPC can still
be suited for collective strong coupling [45] and coupling
to extended systems [46] where the extended modes of
the electromagnetic environment can be sampled more
effectively.

TOOL FOR CAVITY FIELD PARAMETERS IN
SIMPLE CAVITIES

As a part of this work, we are making the code to gen-
erate the cavity field strengths available for everyone to
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(a) (b)

(c) (d)

FIG. 3. (a) The Casida spectrum without photon modes for different aromatic compounds. The spectra here are shown with an
artificial broadening of 0.1361 eV because the photon-free calculations fail to naturally describe the linewidth of the transitions. (b)
Transition dipole moment of the Π → Π∗-transition as a number of aromatic rings. (c) Mode structure of the smallest cavities which
host resonances aligned with the Π → Π∗-transition of the different molecules. The mode structure is shown with a sampling density
of 10 points/meV. (d) Effective light-matter coupling strength as a function of the number of benzene rings in the aromatic molecule.

use as part of the new PhotonPilot tool. This tool cur-
rently allows the user to calculate cavity field strengths
for the spherical and layered cavity setups, and we plan
to expand its capabilities in the future.

GENERAL ELECTROMAGNETIC
ENVIRONMENTS

We emphasize that the method we have presented here
is general and applicable to any electromagnetic envi-
ronment as long as the DGF can be determined. How-
ever, in general electromagnetic environments with lower
symmetry it is not possible to write down an analytical
expression for the DGF. In such cases, the DGF must
be constructed numerically from e.g. a mode expansion
based on finite element simulations [20, 25]. We note in
passing that in the general setting the Helmholtz equa-
tion is not a Hermitian operator. Special care is therefore
needed when constructing the spectral representation of
the DGF from the modes. One solution is to use the

biorthonormal construction discussed in Ref. [47]. We en-
vision that the method presented in this paper will even-
tually be integrated with the existing Maxwell solver in
the Octopus code[48, 49]. Such an integration would al-
low for the treatment of general electromagnetic environ-
ments completely within Octopus.

CONCLUSION

In this paper, we have presented a methodol-
ogy combining macroscopic quantum electrodynamics
with quantum-electrodynamical density-functional the-
ory which provides a fully ab-initio description of cou-
pled quantum light-matter systems. To exemplify this
approach, we have consided a benzene molecule strongly
coupled to a metallic spherical cavity and investigated the
impact of the both cavity radius and cavity loss on the na-
ture of the light-matter coupling. We have further inves-
tigated the effect of adding more molecules and exchang-
ing benzene with larger aromatic molecules. Together,

https://github.com/flickgroup/photonpilot
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these results highlight the intricate interplay between the
electronic structure of the emitter and the environment
in determining the nature of the light-matter coupling.
Our work therefore illustrates the importance of having
a proper description of both the electronic system and the
electromagnetic environment for a proper description of
quantum light-matter interactions. This work sets out the
direction for more quantitative calculations in the future
and also opens the possibility for the proper treatment
of real experimental setups. We emphasize that the con-
nection between the optical environment and the DGF
is not limited to setups similar to cavities, but instead
provides a general way to determine the electromagnetic
spectral density of an arbitrary environment. In addition
to the QED setup, our method therefore also provides
a way to perform time-dependent density-functional the-
ory in a lossy optical environment and removes the need
for artificial spectral broadening.

Finally, we have provided an easy to use tool that ev-
eryone can use to generate cavity parameters for simple
cavities such as the spherical microcavity or a layered
cavity.
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SUPPLEMENTARY INFORMATION

Supplementary note A: Length-gauge Pauli Fierz Hamiltonian in terms of the emitter centered modes

Our starting point is the PZW gauge Hamiltonian describing an electronic system coupled to the MQED field
within the dipole approximation [17]. Neglecting magnetic interactions, the Hamiltonian reads,

H =
∑
α

p̂2
α

2mα
+

1

2ε0

∫
drP̂ (r)2

+
∑
λ

∫ ∞
0

dω~ω
∫
drf̂ †λ(r, ω) · f̂λ(r, ω)− d̂ · Ê(r0). (A1)

To connect this to the Hamiltonian used in the Octopus code QEDFT implementation[12],

Ĥ0 =Ĥe +
1

2

N∑
α=1

(
p̂2
α + ω2

α

[
q̂α +

λα
ωα
· R̂
]2
)
, (A2)

we follow Ref. [15] in defining the cavity field strength, λi(ω) = −
(

2
~ω
)1/2

eEi(r0, ω), and rewrite the emitter-centered
representation of the MQED field in Eq. 6 from the manuscript as,

Ê(r0) = −
∑
i

∫ ∞
0

dω

(
~ω
2e2

)1/2

λi(ω)Ĉi(ω) + h.c.. (A3)

Next we want to change from the ladder operators to the canonical operators, q̂i(ω) =
( ~

2ω

)1/2
(Ĉi(ω) + Ĉ†i (ω)) and

p̂i(ω) =
(~ω

2

)1/2
(Ĉi(ω)− Ĉ†i (ω)), again to be consistent with the Octopus implementation of QEDFT. This is possible

as long as the orthogonalization scheme used in the construction of Ĉi(ω) results in real valued V (ω) matrices. With
this change, the electric field operator becomes,

Ê(r0) = −
∑
i

∫ ∞
0

dω
ω

e
λi(ω)q̂i(ω). (A4)

The idea is then to use Eq. A4 to put Eq. A1 in a form similar to the Hamiltonian in Eq. A2. The intuitive
generalization of the Hamiltonian to the continuous case suggests that,

H =HC
Mat+

1

2

∑
i

∫ ∞
0

dω

{
p̂i(ω)2 + ω2

[
q̂i(ω) +

λi(ω)

ω
· R̂
]2
}
. (A5)

Here R̂ =
∑
i r̂i is the center of mass position of the charges making up the emitter which is related to the dipole

moment as d̂ = −eR̂. The question is then under what conditions this holds. Inserting the field expansion into the
emitter-field coupling term in the Hamiltonian results in,

Ĥint = −d̂ · Ê(r0) =
∑
i

∫ ∞
0

dωω
[
λi(ω) · R̂

]
q̂i(ω). (A6)
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which is the straightforward generalization of the lossless case.
The other term in which the field parameters appear is the dipole self energy term. This term should generally be

derived in terms of the transverse projection of the full polarization term[52],

P̂⊥(r) =
2

3
P̂ (r) +

∫
dr′ T̂⊥(r, r′) · P̂ (r′). (A7)

However, the direct application of this projection is computationally cumbersome. In the lossless case, the Helmholtz
equation is Hermitian and its transverse solutions form a orthogonal and complete basis for the transverse space.
Consequently, the transverse polarization can be expanded in terms of these modes and the projection can be simplified
significantly. This procedure leads to the standard form of the dipole self-energy term,

1

2ε0

∫
dr
[
P̂⊥(r)

]2
=

1

2

∑
α

[
λα · R̂

]2
. (A8)

The fact that the transverse modes can be used to span the transverse projector indicates that any truncation of the
photon Hilbert space needs to be performed carefully as it indirectly results in a truncation of the transverse basis and
therefore also the transverse polarization. The two should therefore generally always be truncated consistently[53].

The expansion of the transverse polarization field in the presence of losses is more complicated. If the cavity losses
are not true absorptive losses, but simply a result of e.g. finite reflectivity of the cavity mirrors, the modes will globally
obey, ∫

drEi(r, ω1) ·Ej(r, ω2) = δijδ(ω1 − ω2), (A9)

and thus remain orthogonal and complete. In this case the transverse polarization can be straightforwardly generalized,

1

2ε0

∫
dr
[
P̂⊥(r)

]2
=

1

2

∑
i

∫ ∞
0

dω [λi(ω) ·R]
2
. (A10)

In the presence of true absorption losses it is not possible to define the transverse projector in terms of the field
modes because these no longer form a complete, orthonormal set. We speculate that the transverse projection should
instead by defined in terms of a biorthonormal construction as discussed in Ref. [47]. From the point of the emitter it
should not be possible to distinguish these two cases because it only samples the field at is position. We thus speculate
that, at least for a single emitter position, the true form of the dipole self energy term in the presence of losses will
functionally be no different than Eq. A10. For multiple emitter positions it is unlikely that the dipole self-energy term
can be expanded directly in terms of the mode functions, and we will explore this further in future research.

Supplementary note B: Dyadic Green’s Function of the spherical microcavity

We consider the spherically layered microcavity from Ref. [31]. To use the emitter centered framework, the DGF
must be derived. In general, the source and field points (r and r′ respectively) can be in either the same layer or
different layers. Consequently, the DGF for the reflected field is a 9 component object, where each component is a 3D
dyad. Labelling the possible combinations of source and field points by two extra indices m,n = 1, 2, 3, the full DGF
of the system can be written as,

Gmn(r, r′, ω) = Gvac(r, r′, ω)δnm +Gref
mn(r, r′, ω). (B1)

Due to the spherical symmetry of the problem, the DGF of the system is most efficiently expanded onto vector
spherical harmonics. The 9 different components of the reflection contribution can be worked out by invoking the
electromagnetic boundary conditions at the material interfaces. In this work we consider the situation where the
emitter is placed in the inner region of the cavity, and it is therefore only necessary to consider the n = m = 3
component of the DGF.

For a general emitter position inside the cavity, it is necessary to carefully converge the number of vector spherical
harmonics used in the calculation of the DGF. However, if the emitter is placed exactly in the center of the cavity
things simplify significantly. In this case, only the lowest order transverse magnetic mode contributes and the reflection
DGF can be written as[31],

Gref
33 (r, r′, ω)|r,r′→0 =

iω

6πc
rNn=1(ω)1. (B2)
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Supplementary Figure 1. Spherical microcavity setup: (a) Illustration of the three layer spherical microcavity setup. (b) The Drude
model dielectric function of gold. (c) The modes of the spherical microcavity plotted for two different radii, R = 140nm in blue and
R = 450nm in orange. The mode structure is shown with a sampling density of 10 points/meV. (d) The impact from the Drude
dampening parameter on the cavity resonances, illustrated by focusing on the mode around 7.1 eV in the cavity with R = 140nm.

where rNn=1(ω)1 is the reflection coefficient for the lowest order transverse magnetic mode. If we assume that region
2 is very thick we can write[31],

rNn=1(ω) =

[
i+ ρ(n(ω) + 1)− iρ2n(ω)− ρ3n(ω)2

n(ω)+1

]
eiρ

sinρ− ρ(cosρ+ in(ω)sinρ) + iρ2n(ω)cosρ− ρ3(cosρ− in(ω)sinρ) n(ω)2

n(ω)2−1

, (B3)

where ρ = Rω/c is the standard size parameter from Mie theory[25].
The contribution from the vacuum DGF is ImGvac(r, r, ω) = ω

6πc1. The imaginary part of the full DGF, evaluated
in the center of the cavity, thus becomes,

ImG(0,0, ω) =
ω

6πc

[
1 + RerNn=1(ω)

]
1. (B4)

Denoting the unit vector in the i’th direction ni it can be noticed that, ni · ImG(0,0, ω) · nj ∝ δij which means
that the mode orthogonalization needed in the emitter centered formulation is trivial in this case. The cavity field
parameters can therefore be derived directly,

λi(ω) = −e
(

ω2

3π2ε0c3
[
1 + RerNn=1(ω)

])1/2

ni. (B5)

Notice that the spherical symmetry of the cavity means that at each frequency there are three orthogonal modes
with identical field strengths, differing only by their spatial orientation i. Any dipole orientation therefore couples
identically to the cavity modes if the emitter is placed in the center of the cavity.
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Supplementary note C: Discretization of the cavity coupling parameters

In practice, we need to discretize the continuous expressions for the cavity field strengths, λ(ω). The idea is then to
sample densely enough to mimic a true continuum of modes. This means that the sampling density should be converged
in the simulations. If we assume that we have uniformly spaced modes we can perform the simple discretization,∫ ∞

0

dω →
∑
k

∆ω. (C1)

In the continuous formulation, the operators Ĉi(ω) have units of s1/2 and the field, E(r, ω) has units of Vs1/2/m. It
therefore makes sense to define the a new discretized field and creating/annihilation operators as,

Ek(ωk) ≡
√

∆ωEi(0, ωk), (C2)

â
(†)
k ≡

√
∆ωĈ

(†)
i (ω). (C3)

This also means that we should write,

λk = −e
(

∆ωω2
k

3π2ε0c3
[
1 + Re rNm=1(ωk)

])1/2

n̂i. (C4)

Supplementary note D: Computational details for the QEDFT calculations

We use the publicly available real space psuedo-potential DFT code OCTOPUS[48]. Molecular geometries are
optimized with the LDA exchange-correlation functional, on a real space grid consisting of spheres of radius 6Å
around each atom with a grid spacing of 0.16Å.

We also calculate the ground state using the LDA exchange-correlation functional on a real space grid consisting
of spheres of radius 6 Å around each atom with a grid spacing of 0.08 Å. We perform a fixed-density calculation on
top of the ground state calculation to determine the excited states needed for the Casida calculation for which we use
500 excited states. These parameters ensure that the relevant transitions are converged to within 1 meV/atom.

We employ uniform sampling of the electromagnetic environment and converge each calculation separately. In
general, we find good convergence when sampling each cavity peak with around 1000 photon modes. While the current
work employs uniform sampling, we note that more efficient methods for sampling the electromagnetic environment
has recently been introduced in the context of master equation approaches [54, 55]. In the future, it would therefore be
interesting to investigate whether similar approaches can be applied to photon mode sampling within the framework
presented in the current work.

Supplementary note E: The Fabry Perot cavity

In this supplementary note we briefly discuss the widely used Fabry Perot cavity (FPC). As shown in Supplementary
Figure 2, the stereotypical FPC is a stratified system. Consequently, its DGF can be conveniently represented in the
angular spectrum representation. Considering just the cavity region, the DGF can be written as[20],

G(r, r′, ω) =
i

8π2

∫
dq

kzq2
[M(q, r, r′) +N(q, r, r′)] . (E1)

Here q is the in-plane wave vector, kz =
√
k2 − q2 is the out of plane wave vector where k is the wave number in the

medium and q = |q|. M and N are the tensorial contributions from the TE and TM polarized modes respectively.
These tensors can be found by solving the scattering from a point source in a layered medium as discussed in detail in
e.g. Refs. [20, 25]. Importantly, if we consider a single emitter position in the FPC, we only need information about
the r = r′ part of the DGF to describe the coupling to the electromagnetic environment. Conveniently, at r = r′

both M and N are diagonal matrices when expressed in cylindrical coordinates with the z-axis perpendicular to the
mirrors,

kx = q cosφ, ky = q sinφ, kz = kz. (E2)
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Supplementary Figure 2. The Fabry Perot cavity: a) Paradigmatic sketch of a Fabry Perot Cavity. b) Purcell enhancement as a
function of d/λ0 for both vertical and horizontal dipole orientations when considering idealized mirrors with a frequency independent
reflectivity R = 0.95. b) Purcell enhancement as a function of d/λ0 for both vertical and horizontal dipole orientations when
considering metal mirrors with dielectric functions described by the Drude model in Eq. 23.

This is also the natural choice because the in-plane wave number q =
√
k2
x + k2

y is the natural variable in the stratified

FPC. The integration over φ can be performed analytically which results in,

GTE(r, r, ω) =

∫
dqq

∫ 2π

0

dφM(q, r, r) =
i

8π

∫
dq

q

kz

1 0 0
0 1 0
0 0 0

RTE
‖ (z), (E3)

and,

GTM(r, r, ω) =

∫
dqq

∫ 2π

0

dφN(q, r, r) =
i

8πk2

∫
dq

qkzRTM
‖ (z) 0 0

0 qkzR
TM
‖ (z) 0

0 0 2q3/kzR
TM
⊥ (z).

 (E4)

Taking the emitter to be placed at z = 0 and denoting the distance between the emitter and the top and bottom
mirrors as t and b respectively, the reflection functions can be written as,

RTM
⊥ (z, q) =

(1 + rTM
cb e2ikzb)(1 + rTM

ct e2ikzt)

1− rTM
cb rTM

ct e2ikzd
(E5)

RTE
‖ (z, q) =

(1 + rTE
cb e

2ikzb)(1 + rTE
ct e

2ikzt)

1− rTE
cb r

TE
ct e

2ikzd
(E6)

RTM
‖ (z, q) =

(1− rTM
cb e2ikzb)(1− rTM

ct e2ikzt)

1− rTM
cb rTM

ct e2ikzd
(E7)

The subscripts cb and ct refers to the interfaces between the cavity region and the bottom- and top mirror respectively.
We use the following definition of the Fresnel coefficients for light incident on the interface between two regions a and
b from region a,

rTE
ab =

kaz − kbz
kaz + kbz

, (E8)

rTM
ab =

εbk
a
z − εakbz

εbkaz + εakbz
. (E9)

Note that these Fresnel coefficients could be replaced with the generalized Fresnel coefficients if more complicated
mirrors such as e.g. distributed Bragg reflectors were considered.
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1. Light-matter interaction in the Fabry-Perot cavity

Because the DGF is diagonal at r = r′, there is no coupling between the horizontal and vertical dipole orientations
by feedback from the electromagnetic environment. Consequently, the local density of states (LDOS) for the two
dipole orientations,

ρ(r, ω) =
6ω

πc2
n̂D · Im [G(r, r, ω)] · n̂D. (E10)

for a given dipole orientation n̂D becomes a direct proxy for the light-matter coupling strength. It can therefore be
used evaluate the potential of FPCs for realizing single/few emitter strong coupling. One concrete measure of the
FPCs alterations of the electromagnetic environment is its modifications of the free space density of states. This is
measured directly by the Purcell enhancement,

PF (r, ω) =
ρ(r, ω)

ρ0(ω)
, (E11)

which is given as a rescaling of the LDOS by the free space density of states of the electromagnetic field, ρ0(ω).
To explore this, we consider two different FPCs, both of which consist of a central cavity region made of vacuum,
surrounded by mirrors. In one instance, we consider idealized mirrors with a constant reflectivity of 0.95, and in
the other we consider mirrors made of a Drude metal. In the latter case, we consider frequencies below the plasma
frequency such that the mirrors retain their reflectivity. Supplementary Figure 2 shows the Purcell enhancement as a
function of mirror distance, d, for a fixed emitter wavelength, λ0, for idealized mirrors (b) and for Drude mirrors (c).
In both cases, the horizontal and vertical dipole orientations are considered separately because, as mentioned above,
the cavity does not couple the two.

Starting with Supplementary Figure 2 b) for the horizontal dipole orientation, we observe only relatively broad
cavity resonances with modest Purcell enhancements of maximum ∼ 2.5. This reflects the relatively weak concen-
tration of the electromagnetic field in the FPC and emphasizes that the case with idealized mirrors is ill-suited for
single point emitter strong coupling. We emphasize that the widths of these resonances are only weakly linked to
the finite mirror reflectivity, and instead reflect the fact that the cavity features dispersion in plane. As such, these
peaks would retain a finite width even in the limit of perfect mirror reflectivity [44]. For d < λ0/2 we observe a near
complete suppression of the coupling of the horizontal dipole orientation to the electromagnetic environment. This
happens because the horizontal dipole will always couple to the q = 0 mode. This mode will not exist for d < λ0/2
with perfect mirrors and be strongly suppresses for near-perfect mirrors. This suppression can also be understood as
a result of the mirror charge effect which will result in emission suppression for emitters with horizontal transition
dipole moments when these are placed close to idealized reflective surfaces [17]. For the vertical dipole orientation,
we generally observe relatively weak, near unity Purcell enhancement, except when d becomes smaller than ∼ λ0/2.
From this point, the Purcell enhancement diverges as d → 0. This divergence can be understood as a result of
concentration of energy into the mode propagating parallel to the mirrors when the mirror distance is decreased [44].
Alternatively, it can also be more intuitively understood as a result of the mirror charge effect which enhances
emission for vertical dipole orientations. For a single reflective interface, this enhancement would be a simple factor
of 2 [17]. However, in the double mirror case, the image charge dipole in one mirror is enhanced by its mirror charge
dipole in the second mirror and vice versa to infinity. Therefore, the Purcell enhancement diverges as d → 0 instead
of approaching a simple factor of 2. When we consider the more realistic situation with mirrors described by the
Drude model in Figure 2 c) we observe more or less the same as was the case with idealized mirrors. The only
major difference is that we observe a divergence for the horizontal dipole orientation at small mirror distances. This
happens due to near field coupling to the metal primarily representing quenching. We note that this also happens
to the vertical dipole orientation but that this is less visible because of the mirror charge effect already causing a
divergence like behaviour for d→ 0 as was also the case with idealized mirrors.

The above discussion shows that the FPC provides only modest modification of the electromagnetic environment
relative to the free space case with broad resonances whose width arise from the in-place dispersion of the cavity.
The exception to this statement is for very small mirror spacing. However, in this latter regime the electromagnetic
environment does not show resonant behaviour. For these reasons, we conclude that the FPC is ill-suited for single-
and few emitter vacuum strong coupling. However, the FPC can still be suited for collective strong coupling [45] and
coupling to extended systems [46] where the extended modes of the electromagnetic environment can be sampled
more effectively.
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