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Supplementary Note A: Length-gauge Pauli Fierz Hamil-

tonian in terms of the emitter centered modes

Our starting point is the PZW gauge Hamiltonian describing an electronic system coupled

to the MQED field within the dipole approximation.1 Neglecting magnetic interactions, the

Hamiltonian reads,

H =
∑
α

p̂2
α

2mα

+
1

2ϵ0

∫
drP̂ (r)2

+
∑
λ

∫ ∞

0

dωh̄ω

∫
drf̂ †

λ(r, ω) · f̂λ(r, ω)− d̂ · Ê(r0). (1)

To connect this to the Hamiltonian used in the Octopus code QEDFT implementation,2

Ĥ0 =Ĥe +
1

2

N∑
α=1

(
p̂2α + ω2

α

[
q̂α +

λα

ωα

· R̂
]2)

, (2)

we follow Ref.3 in defining the cavity field strength, λi(ω) =
(

2
h̄ω

)1/2
eEi(r0, ω), and rewrite

the emitter-centered representation of the MQED field in Eq. 6 from the manuscript as,

Ê(r0) =
∑
i

∫ ∞

0

dω

(
h̄ω

2e2

)1/2

λi(ω)Ĉi(ω) + h.c.. (3)

Next we want to change from the ladder operators to the canonical operators, q̂i(ω) =(
h̄
2ω

)1/2
(Ĉi(ω) + Ĉ†

i (ω)) and p̂i(ω) =
(
h̄ω
2

)1/2
(Ĉi(ω) − Ĉ†

i (ω)), again to be consistent with

the Octopus implementation of QEDFT. This is possible as long as the orthogonalization

scheme used in the construction of Ĉi(ω) results in real valued V (ω) matrices. With this

change, the electric field operator becomes,

Ê(r0) =
∑
i

∫ ∞

0

dω
ω

e
λi(ω)q̂i(ω). (4)

The idea is then to use Eq. 4 to put Eq. 1 in a form similar to the Hamiltonian in Eq. 2.
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The intuitive generalization of the Hamiltonian to the continuous case suggests that,

H =HC
Mat+

1

2

∑
i

∫ ∞

0

dω

{
p̂i(ω)

2 + ω2

[
q̂i(ω) +

λi(ω)

ω
· R̂
]2}

. (5)

Here R̂ =
∑

i r̂i is the center of mass position of the charges making up the emitter which is

related to the dipole moment as d̂ = −eR̂. The question is then under what conditions this

holds. Inserting the field expansion into the emitter-field coupling term in the Hamiltonian

results in,

Ĥint = −d̂ · Ê(r0) =
∑
i

∫ ∞

0

dωω
[
λi(ω) · R̂

]
q̂i(ω). (6)

which is the straightforward generalization of the lossless case.

The other term in which the field parameters appear is the dipole self energy term. This

term should generally be derived in terms of the transverse projection of the full polarization

term,4

P̂⊥(r) =
2

3
P̂ (r) +

∫
dr′ T̂⊥(r, r

′) · P̂ (r′). (7)

However, the direct application of this projection is computationally cumbersome. In the

lossless case, the Helmholtz equation is Hermitian and its transverse solutions form a orthog-

onal and complete basis for the transverse space. Consequently, the transverse polarization

can be expanded in terms of these modes and the projection can be simplified significantly.

This procedure leads to the standard form of the dipole self-energy term,

1

2ϵ0

∫
dr
[
P̂⊥(r)

]2
=

1

2

∑
α

[
λα · R̂

]2
. (8)

The fact that the transverse modes can be used to span the transverse projector indicates that
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any truncation of the photon Hilbert space needs to be performed carefully as it indirectly

results in a truncation of the transverse basis and therefore also the transverse polarization.

The two should therefore generally always be truncated consistently.5

The expansion of the transverse polarization field in the presence of losses is more com-

plicated. If the cavity losses are not true absorptive losses, but simply a result of e.g. finite

reflectivity of the cavity mirrors, the modes will globally obey,

∫
drEi(r, ω1) ·Ej(r, ω2) = δijδ(ω1 − ω2), (9)

and thus remain orthogonal and complete. In this case the transverse polarization can be

straightforwardly generalized,

1

2ϵ0

∫
dr
[
P̂⊥(r)

]2
=

1

2

∑
i

∫ ∞

0

dω [λi(ω) ·R]2 . (10)

In the presence of true absorption losses it is not possible to define the transverse projector

in terms of the field modes because these no longer form a complete, orthonormal set. We

speculate that the transverse projection should instead by defined in terms of a biorthonormal

construction as discussed in Ref.6 From the point of the emitter it should not be possible

to distinguish these two cases because it only samples the field at its position. We thus

speculate that, at least for a single emitter position, the true form of the dipole self energy

term in the presence of losses will functionally be no different than Eq. 10. For multiple

emitter positions it is unlikely that the dipole self-energy term can be expanded directly in

terms of the mode functions, and we will explore this further in future research.
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Supplementary Note B: Dyadic Green’s Function of the

spherical microcavity

We consider the spherically layered microcavity from Ref.7 To use the emitter-centered

framework, the DGF must be derived. In general, the source and field points (r and r′

respectively) can be in either the same layer or different layers. Consequently, the DGF for

the reflected field is a 9-component object, where each component is a 3D dyad. Labeling

the possible combinations of source and field points by two extra indices m,n = 1, 2, 3 and

invoking the superposition principle stating that the total field will be the superposition of

the free dipole field and the reflected field,8,9 the full DGF of the system can be written as,

Gmn(r, r
′, ω) = Gvac(r, r′, ω)δnm +Gref

mn(r, r
′, ω). (11)

Here Gvac is the free dipole field contribution and Gref is the reflected field contribution to

the DGF.

Due to the spherical symmetry of the problem, the DGF of the system is most efficiently

expanded onto vector spherical harmonics. The nine different components of the reflection

contribution can be worked out by invoking the electromagnetic boundary conditions at the

material interfaces. In this work, we consider the situation where the emitter is placed in

the inner region of the cavity, and it is therefore only necessary to consider the n = m = 3

component of the DGF. We can expand the reflection part of the DGF inside the cavity in

terms of vector spherical harmonics,8,10

Gref
33 (r, r

′, ω) =
ik3
4π

∑
e,o

∞∑
n=1

n∑
m=0

(2n+ 1)(n−m)!

n(n+ 1)(n+m)!
(2− δ0,m)×

[
rTE
n (ω)M e

o,nm(r, k3)⊗M e
o,nm(r

′, k3) + rTM
n (ω)N e

o,nm(r, k3)⊗N e
o,nm(r

′, k3)
]
.

(12)

k3 = ω/c because we assume that the inner region is vacuum. M e
o,nm(r) and N e

o,nm(r) are
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vector spherical harmonics corresponding the transverse electric- and transverse magnetic

type modes respectively, and the coefficients rTE
n (ω), rTM

n (ω) are the reflection coefficients

associated with those modes at the interface between the inner cavity region and the cav-

ity shell. The exact expressions for M e
o,nm(r), N

e
o,nm(r), r

TE
n (ω), and rTM

n (ω) have been

discussed extensively in the literature and can be found in e.g. Ref.10

For a general emitter position inside the cavity, it is necessary to carefully converge the

number of vector spherical harmonics used in the calculation of the DGF. In this work, we

consider the case where the emitter is placed in the center of the spherical cavity. Dung et.

al. made the important general observation about the vector spherical harmonics that,7

M e
o,nm(r, k)|kr→0 → (kr)n, (13)

N e
o,nm(r, k)|kr→0 → (kr)n−1. (14)

In the center of the spherical cavity, only the n = 1 transverse magnetic mode is therefore

of importance. The reflection DGF can consequently be written as,

Gref
33 (r, r

′, ω)|r,r′→0 =
iω

6πc
rTM
n=1(ω)1, (15)

where rTM
n=1(ω) is the reflection coefficient for the lowest order transverse magnetic mode. If

we assume that region 2 is very thick we can write,7

rTM
n=1(ω) =

[
i+ ρ(n(ω) + 1)− iρ2n(ω)− ρ3n(ω)2

n(ω)+1

]
eiρ

sinρ− ρ(cosρ+ in(ω)sinρ) + iρ2n(ω)cosρ− ρ3(cosρ− in(ω)sinρ) n(ω)2

n(ω)2−1

, (16)

where ρ = Rω/c is the standard size parameter from Mie theory.9

The contribution from the vacuum DGF is ImGvac(r, r, ω) = ω
6πc
1. The imaginary part
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of the full DGF, evaluated in the center of the cavity, thus becomes,

ImG(0,0, ω) =
ω

6πc

[
1 + RerTM

n=1(ω)
]
1. (17)

Denoting the unit vector in the i’th direction ni it can be noticed that, ni ·ImG(0,0, ω)·nj ∝

δij which means that the mode orthogonalization needed in the emitter centered formulation

is trivial in this case. The cavity field parameters can therefore be derived directly,

λi(ω) = e

(
ω2

3π2ϵ0c3
[
1 + RerTM

n=1(ω)
])1/2

ni. (18)

Notice that the spherical symmetry of the cavity means that at each frequency there are three

orthogonal modes with identical field strengths, differing only by their spatial orientation

i. Any dipole orientation therefore couples identically to the cavity modes if the emitter is

placed in the center of the cavity.

Supplementary Note C: Discretization of the cavity cou-

pling parameters

In practice, we need to discretize the continuous expressions for the cavity field strengths,

λi(ω). The idea is then to sample densely enough to mimic a true continuum of modes. This

means that the sampling density should be converged in the simulations. If we assume that

we have uniformly spaced modes we can perform simple discretization,

∫ ∞

0

dω →
∑
k

∆ω. (19)

In the continuous formulation, the operators Ĉi(ω) have units of s1/2 and the field, E(r, ω)

has units of Vs1/2/m. It therefore makes sense to define a new discretized field and creat-

7



ing/annihilation operators as,

Ei,k(ωk) ≡
√
∆ωEi(0, ωk), (20)

â
(†)
i,k ≡

√
∆ωĈ

(†)
i (ωk). (21)

This also means that we should write,

λi,k = e

(
∆ωω2

k

3π2ϵ0c3
[
1 + Re rTM

n=1(ωk)
])1/2

n̂i. (22)

In the discretized version, the number of photon modes will therefore be Nmodes = N · Nk,

where N is the number of bright modes and Nk is the number of frequency points used in

the discretization. As mentioned in the main text, in our case this number is 3 and the

sums in the discretized version therefore includes Nmodes = 3Nk photon modes. We will use

the composite index α = (i, k) to refer to this set of discrete modes and this is thus the α

which appears in the generalized Casida formulation discussed in Section 2.2 of the main

manuscript.

Supplementary Note D: Computational details for the

QEDFT calculations

We use the publicly available real space psuedo-potential DFT code OCTOPUS.11 Molecular

geometries are optimized with the LDA exchange-correlation functional, on a real space grid

consisting of spheres of radius 6Å around each atom with a grid spacing of 0.16Å.

We also calculate the ground state using the LDA exchange-correlation functional on a

real space grid consisting of spheres of radius 6 Å around each atom with a grid spacing

of 0.08 Å. We perform a fixed-density calculation on top of the ground state calculation to

determine the excited states needed for the Casida calculation for which we use 500 excited
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states. These parameters ensure that the relevant transitions are converged to within 1

meV/atom.

We employ uniform sampling of the electromagnetic environment and converge each

calculation separately. In general, we find good convergence when sampling each cavity

peak with around 1000 photon modes.

Supplementary Note E: Connection to the standard light-

matter coupling strengths used in quantum optics

In quantum optics, the description of the electronic system is commonly restricted to a few

electronic states. It is therefore standard to represent the light-matter interaction Hamilto-

nian in terms of the light-matter coupling strength g instead of cavity field strengths λ. For

a transition between two electronic states |e1⟩ and |e2⟩, the light-matter coupling strength

is g = h̄−1d · E(r0) where d = −e⟨e1|R̂|e2⟩ is the transition dipole matrix element of the

transition of interest and E(r0) is the electric field matrix element. Importantly, unlike

the cavity field strength parameters which only relates to the cavity geometry, g is a direct

measure of the light-matter coupling strength for a given electronic transition. It is thus a

property of both light and matter specific to the situation under consideration.

To directly establish the connection between the light-matter coupling strength and the

cavity field parameters, we note that for a single electronic transition as described above,

the light-matter interaction Hamiltonian in terms of the bright modes can be written as,

Ĥint = −d̂ · Ê(r0) =
∑
i

∫ ∞

0

h̄gi(ω)
(
Ĉi(ω) + Ĉ†

i (ω)
) (

σ̂+ + σ̂−) (23)

where σ̂+ = |e2⟩⟨e1|, σ̂− = |e1⟩⟨e2| are the transition operators for the electronic transition

and Ĉ
(†)
i (ω) are the creation(annihilation) operators of the bright modes of the electromag-

netic field. Finally, gi(ω) ≡ h̄−1d ·Ei(r0, ω) is the light-matter coupling strength. Recalling
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that λi(ω) =
(

2
h̄ω

)1/2
eEi(r0, ω) we can state that the light-matter coupling strength corre-

sponding to a given cavity field strength and electronic dipole moment is,

h̄gi(ω) =

(
h̄ω

2e2

)1/2

d · λi(ω). (24)

Light-matter coupling strengths for benzene in the spherical cavity:

For the spherical cavity the modes are uniformly polarized and we may therefore write,

gi(ω) =

(
h̄ω

2e2

)1/2

|d||λi(ω)| (25)

The total coupling strength of a given cavity mode peak is thus,

geff ≡
∫
p

dω

(
h̄ω

2e2

)1/2

|d||λi(ω)| ≈
(
h̄ωc

2e2

)1/2

|d|λc (26)

where ωc is the center frequency of the cavity peak, and the p subscript denotes an integration

across one peak in the spectral density of the spherical cavity as in Eq. 23 of the main

manuscript. From the Casida calculation we can extract the in-plane dipole moment of the

Π → Π∗ transition in benzene which comes out to 0.096 e · nm. Using the λc from Fig. 2 in

the manuscript we find h̄geff = 3.81 meV, h̄geff = 0.62 meV and h̄geff = 0.20 meV for R = 16

nm, R = 149nm and R = 1704 nm respectively. Again we emphasize that these coupling

strengths are a property of both the electromagnetic environment and the specific transition

in the benzene molecule. One should therefore be careful with general conclusions based on

this number.

Supplementary Note F: The Fabry Perot cavity

In this supplementary note we briefly discuss the widely used Fabry Perot cavity (FPC).

As shown in Supplementary Figure 1a, the stereotypical FPC is a stratified system. Con-
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sequently, its DGF can be conveniently represented in the angular spectrum representation.

Considering just the cavity region, the DGF can be written as,8

G(r, r′, ω) =
i

8π2

∫
dq

kzq2
[M (q, r, r′) +N (q, r, r′)] . (27)

Here q is the in-plane wave vector, kz =
√

k2 − q2 is the out of plane wave vector where k

is the wave number in the medium and q = |q|. M and N are the tensorial contributions

from the TE and TM polarized modes respectively. These tensors can be found by solving

the scattering from a point source in a layered medium as discussed in detail in e.g. Refs.8,9

Importantly, if we consider a single emitter position in the FPC, we only need information

about the r = r′ part of the DGF to describe the coupling to the electromagnetic environ-

ment. Conveniently, at r = r′ both M and N are diagonal matrices when expressed in

cylindrical coordinates with the z-axis perpendicular to the mirrors,

kx = q cosϕ, ky = q sinϕ, kz = kz. (28)

This is also the natural choice because the in-plane wave number q =
√

k2
x + k2

y is the natural

variable in the stratified FPC. The integration over ϕ can be performed analytically which

results in,

GTE(r, r, ω) =

∫
dqq

∫ 2π

0

dϕM (q, r, r) =
i

8π

∫
dq

q

kz


1 0 0

0 1 0

0 0 0

RTE
∥ (z), (29)
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and,

GTM(r, r, ω) =

∫
dqq

∫ 2π

0

dϕN (q, r, r) =
i

8πk2

∫
dq


qkzR

TM
∥ (z) 0 0

0 qkzR
TM
∥ (z) 0

0 0 2q3/kzR
TM
⊥ (z).

 (30)

Taking the emitter to be placed at z = 0 and denoting the distance between the emitter and

the top and bottom mirrors as t and b respectively, the reflection functions can be written

as,

RTM
⊥ (z, q) =

(1 + rTM
cb e2ikzb)(1 + rTM

ct e2ikzt)

1− rTM
cb rTM

ct e2ikzd
(31)

RTE
∥ (z, q) =

(1 + rTE
cb e2ikzb)(1 + rTE

ct e2ikzt)

1− rTE
cb rTE

ct e2ikzd
(32)

RTM
∥ (z, q) =

(1− rTM
cb e2ikzb)(1− rTM

ct e2ikzt)

1− rTM
cb rTM

ct e2ikzd
(33)

The subscripts cb and ct refers to the interfaces between the cavity region and the bottom-

and top mirror respectively. We use the following definition of the Fresnel coefficients for

light incident on the interface between two regions a and b from region a,

rTE
ab =

ka
z − kb

z

ka
z + kb

z

, (34)

rTM
ab =

ϵbk
a
z − ϵak

b
z

ϵbka
z + ϵakb

z

. (35)

Note that these Fresnel coefficients could be replaced with the generalized Fresnel coefficients

if more complicated mirrors such as e.g. distributed Bragg reflectors were considered.
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Cavity region (c)x
𝑦

z

b

t

a)

Supplementary Figure 1: The Fabry Perot cavity: a) Paradigmatic sketch of a Fabry
Perot Cavity. b) Purcell enhancement as a function of d/λ0 for both vertical and horizontal
dipole orientations when considering idealized mirrors with a frequency independent reflec-
tivity R = 0.95. c) Purcell enhancement as a function of d/λ0 for both vertical and horizontal
dipole orientations when considering gold mirrors with dielectric functions described by the
Drude model in Eq. 23 of the main manuscript.

Light-matter interaction in the Fabry-Perot cavity

Because the DGF is diagonal at r = r′, there is no coupling between the horizontal and ver-

tical dipole orientations by feedback from the electromagnetic environment. Consequently,

the local density of states (LDOS),

ρ(r, ω) =
6ω

πc2
n̂D · Im [G(r, r, ω)] · n̂D. (36)

for either of these two dipole orientations, denoted by n̂D, becomes a direct proxy for the

light-matter coupling strength. It can therefore be used evaluate the potential of FPCs for

realizing single/few emitter strong coupling. One concrete measure of the FPCs alterations

of the electromagnetic environment is its modifications of the free space density of states.

This is measured directly by the Purcell enhancement,

PF (r, ω) =
ρ(r, ω)

ρ0(ω)
, (37)
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which is given as a rescaling of the LDOS by the free space density of states of the elec-

tromagnetic field, ρ0(ω). To explore this, we consider two different FPCs, both of which

consist of a central cavity region made of vacuum, surrounded by mirrors. In one instance,

we consider idealized mirrors with a constant reflectivity of 0.95, and in the other we consider

mirrors made of a Drude metal. In the latter case, we use the Drude parameters for gold12

as also done in the main manuscript and consider frequencies below the plasma frequency

such that the mirrors retain their reflectivity. Figure 1(b,c) shows the Purcell enhancement

as a function of mirror distance, d, for a fixed emitter wavelength, λ0, for idealized mirrors

(b) and for Drude mirrors (c). In both cases, the horizontal and vertical dipole orientations

are considered separately because, as mentioned above, the cavity does not couple the two.

Starting with Figure 1b for the horizontal dipole orientation, we observe only relatively

broad cavity resonances with modest Purcell enhancements of maximum ∼ 2.5. This reflects

the relatively weak concentration of the electromagnetic field in the FPC and emphasizes

that the case with idealized mirrors is ill-suited for single point emitter strong coupling. We

emphasize that the widths of these resonances are only weakly linked to the finite mirror

reflectivity, and instead reflect the fact that the cavity features dispersion in plane. As such,

these peaks would retain a finite width even in the limit of perfect mirror reflectivity.13 For

d < λ0/2 we observe a near complete suppression of the coupling of the horizontal dipole

orientation to the electromagnetic environment. This happens because the horizontal dipole

always couples to the q = 0 mode. This mode will not exist for d < λ0/2 with perfect mirrors

and be strongly suppresses for near-perfect mirrors. This suppression can also be understood

as a result of the mirror charge effect which will result in emission suppression for emitters

with horizontal transition dipole moments when these are placed close to idealized reflective

surfaces.1 For the vertical dipole orientation, we generally observe relatively weak, near unity

Purcell enhancement, except when d becomes smaller than ∼ λ0/2. From this point, the

Purcell enhancement diverges as d → 0. This divergence can be understood as a result of

concentration of energy into the mode propagating parallel to the mirrors when the mirror
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distance is decreased.13 Alternatively, it can also be more intuitively understood as a result

of the mirror charge effect which enhances emission for vertical dipole orientations. For a

single reflective interface, this enhancement would be a simple factor of 2.1 However, in the

double mirror case, the image charge dipole in one mirror is enhanced by its mirror charge

dipole in the second mirror and vice versa to infinity. Therefore, the Purcell enhancement

diverges as d → 0 instead of approaching a simple factor of 2. When we consider the more

realistic situation with mirrors described by the Drude model in Figure 1 c we observe more

or less the same as was the case with idealized mirrors. The only major difference is that

we observe a divergence for the horizontal dipole orientation at small mirror distances. This

happens due to near field coupling to the metal primarily representing quenching. We note

that this also happens to the vertical dipole orientation but that this is less visible because

of the mirror charge effect already causing a divergent behaviour for d → 0 as was also the

case with idealized mirrors.

The above discussion shows that the FPC provides only modest modification of the

electromagnetic environment relative to the free space case with broad resonances whose

width arise from the in-place dispersion of the cavity. The exception to this statement is for

very small mirror spacing. However, in this latter regime the electromagnetic environment

does not show resonant behaviour. This is also manifested in the cavity field strengths. In

Supplementary Figure 2(a,b), we present the cavity field strengths for two different FPC

setups: (a) idealized mirrors with a top mirror reflectivity of 0.95 and unity bottom mirror

reflectivity and (b) Drude metal mirrors with a dielectric function described by Eq. 23 in

the main manuscript. In both cases, we consider a mirror spacing of 700 nm. As shown

in Supplementary Figure 2a, the cavity field strengths are only weakly modified relative to

their free space equivalent (depicted by the dashed line) for both horizontal and vertical

dipole orientations in the FPC with idealized mirrors, except for very small mirror spacing,

as discussed above. For the more realistic Drude mirrors (Supplementary Figure 2b), the
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Supplementary Figure 2: Cavity field parameters in a Fabry Perot cavity with idealized
mirrors with a reflectivity of 0.95 (a) and one with mirrors made with gold mirrors with
dielectric functions described by the Drude model in Eq. 23 of the main manuscript. In
both cases, we consider a mirror separation of 700 nm. The sampling density employed in
this figure is 10 points/eV.

results are similar. The plasma frequency of the metallic mirror is marked by the dotted line.

Similar to the spherical cavity in the main text, we observe that above the plasma frequency,

the mirror loses its reflectivity, leading to the loss of structure in the cavity field strengths.

This again emphasizes the direct connection of geometry and material composition with the

mode structure of the electromagnetic environment.

For these reasons, we conclude that the FPC is ill-suited for single- and few emitter vac-

uum strong coupling. However, the FPC can still be suited for collective strong coupling14

and coupling to extended systems15 where the extended modes of the electromagnetic en-

vironment can be sampled more effectively and in-plane momentum conservation can result

in mode selectivity in the light-matter coupling.
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