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ABSTRACT: The emerging field of strongly coupled light−matter
systems has drawn significant attention in recent years because of
the prospect of altering both the physical and chemical properties
of molecules and materials. Because this emerging field draws on
ideas from both condensed-matter physics and quantum optics, it
has attracted the attention of theoreticians from both fields. While
the former often employ accurate descriptions of the electronic
structure of the matter, the description of the electromagnetic
environment is often oversimplified. In contrast, the latter often
employs sophisticated descriptions of the electromagnetic environ-
ment while using oversimplified few-level approximations of the
electronic structure. Both approaches are problematic because the
oversimplified descriptions of the electronic system are incapable of
describing effects such as light-induced structural changes in the
electronic system, while the oversimplified descriptions of the
electromagnetic environments can lead to unphysical predictions
because the light−matter interactions strengths are misrepresented. In this work, we overcome these shortcomings and present the
first method which can quantitatively describe both the electronic system and general electromagnetic environments from first
principles. We realize this by combining macroscopic QED (MQED) with Quantum Electrodynamical Density-Functional Theory.
To exemplify this approach, we consider the example of an absorbing spherical cavity and study the impact of different parameters of
both the environment and the electronic system on the transition from weak-to-strong coupling for different aromatic molecules. As
part of this work, we also provide an easy-to-use tool to calculate the cavity coupling strengths for simple cavity setups. Our work is a
significant step toward parameter-free ab initio calculations for strongly coupled quantum light−matter systems and will help bridge
the gap between theoretical methods and experiments in the field.

1. INTRODUCTION
When quantum light and matter interact strongly, hybrid
light−matter polariton states emerge. These polaritonic states
inherit properties from both light and matter, and it is
therefore possible to alter the properties of either constituent
by manipulating the other.1 This flexibility opens the door to
engineering both chemical and physical properties of matter
with quantum light and this has attracted significant attention
in recent years.2−8

Polariton formation can be realized in resonant electro-
magnetic environments, of which a paradigmatic example is a
Fabry−Perot cavity. In some setups, it is possible to enhance
the vacuum fluctuations of the electromagnetic field sufficiently
to drive the formation of polaritons, even in the absence of
actual light in the cavity. To realize such large light−matter
coupling strengths, it is, however, necessary to go beyond the
paradigmatic cavity setup, consisting of two parallel mirrors,
and often requires intricate meta- and nano-optical setups.
Examples include plasmonic nanocavities,9 optical cavities
using four-wave mixing schemes,10 metasurface systems,11 self-

assembled Casimir microcavities,12 deep-strong coupling in
plasmonic nanoparticles,13 and many more.1,14 These cavity
setups will generally feature complicated mode structures,
especially with losses present, and therefore require descrip-
tions beyond simple single mode descriptions.
Because this emerging field lives at the interface between

condensed matter physics and quantum optics, a proper
theoretical treatment simultaneously requires a quantitative
description of both the electronic system and the quantum
electromagnetic environment. However, to date, no method
can properly account for both sides of the problem. Existing
methods apply either few-level approximations to the
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electronic system or oversimplified descriptions of the
electromagnetic environment essentially treating the light−
matter coupling strengths as free parameters. This is
problematic because the light−matter interaction is very
sensitive to both phase matching and energetic alignment of
field and matter as well as the spatial overlap of the electronic
wave functions and the modes of the electromagnetic field.15

Furthermore, simplified descriptions of the electronic system
are incapable of describing effects such as light-induced
structural changes in the electronic system and are generally
not applicable in the ultra- and deep strong coupling regimes.
Finally, the oversimplified descriptions of the electromagnetic
environments can lead to unphysical predictions because the
light−matter interaction strengths are misrepresented.15

In this paper we present the first method that accounts
quantitatively for both the electromagnetic environment and
the full electronic structure of matter by combining Macro-
scopic Quantum Electrodynamics (MQED)16 with Quantum
Electrodynamical Density-Functional Theory (QEDFT).17 We
have previously shown how standard DFT can be combined
with MQED to provide a quantitative, first-principles
description of the quantum light−matter interactions for real
cavity setups in the weak and intermediate coupling regimes
beyond the dipole approximation.15 However, the previous
work relied on a wave function ansatz which only considered a
subset of the electronic structure. This is expected to become
problematic in the ultra- and deep strong coupling regimes.
Furthermore, our previous method would also fail to capture
light-induced structural changes in the electronic system. In
this work, we overcome these limitations and present a general
method that is applicable to all regimes of light−matter
coupling. Our new methodology allows us to study the
interaction of the full electronic structure of electronic systems
with realistic electromagnetic environments. We exemplify our
approach on a spherical microcavity and highlight that the
intricate interplay between the cavity geometry and material
composition, and the electronic structure of the molecules, has
a profound impact on the light−matter coupling and the
transition from weak to strong coupling. These results
highlight the need for a quantitative description of both the
electromagnetic environment and the molecular system. This
work is a significant step toward parameter-free ab initio
calculations for strongly coupled quantum light−matter
systems and will help bridge the gap between theoretical
methods and experiments in the field.

2. THEORY AND METHODOLOGY
2.1. Macroscopic Quantum Electrodynamics. Macro-

scopic Quantum Electrodynamics (MQED) is a framework for
quantizing the electromagnetic field in the presence of arbitrary
absorbing or dispersing environments.15,16,18 The central
object in MQED is the classical Green’s function that solves
the Helmholtz equation for a point source, the so-called dyadic
Green’s function (DGF).19
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Here c is the speed of light, ω is the angular frequency, ϵ(r, ω)
and κ(r, ω) = μ−1(r, ω) are the spatially dependent dielectric
function and inverse magnetic permability, respectively, and I
is the unit dyad. The DGF is of central importance to the

quantized theory of electromagnetic fields in lossy environ-
ments because it simultaneously carries the information about
the electromagnetic boundary conditions and serves as a
projector from the coupled light−matter system onto the
electromagnetic degrees of freedom.16

For a spatially local magnetoelectric medium in the
nonrelativistic limit, the MQED expansion of the electric
field in the Power-Zienau-Woolley (PZW) frame20,21 (multi-
polar gauge) can be written as follows.16,18

= +E r E r( ) d ( , ) h. c. (2)

= ·
=

E r G r r f rr( , ) d ( , , ) ( , )
e m,

3

(3)

Here f r( , ) are the spatially resolved polaritonic field
operators of MQED which fulfill the commutation relations of
the quantum harmonic oscillator, and Ge(r, r′, ω) and Gm(r, r′,
ω) are the electric and magnetic components of the DGF,
respectively.
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= ×G r r r G r ri
c

( , , ) Im ( , ) ( , , )m
0

(5)

In the following, we neglect magnetic interactions and
consider the coupling between light and matter within the
dipole approximation. Therefore, if we consider a set of
emitters i with positions (centers of charge) ri, the interaction
only samples the electromagnetic field at these positions. In
this sense, the full electric field Ê(r) in eq 2 contains more
information than is strictly necessary to describe the light−
matter interaction completely. As discussed in refs 18, 22, and
23, it is therefore possible to arrive at a significantly more
compact expression by alternatively expanding the electric field
in terms of a set of explicitly orthogonalized bright modes at
each frequency.
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Here
†

C ( )i
( )

destroys (creates) a photon in the ith bright
mode. Ei(r, ω) describes the spatial mode function of the
electric field associated with mode i. The normalization factor
Gj(ω) is the square root of the dipole spectral density.24
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Finally, the matrix Vij(ω) is the transformation matrix which
obeys V(ω)S(ω)V†(ω) = I where
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and it is a result of the mode-orthogonalization inherent to the
emitter-centered representation.18 The number of emitter-
centered modes per frequency, , is equal to the number of
emitter positions times the number of dipole orientations
considered. In this work, we consider a single emitter position,
r0, and the full three-dimensional space of dipole orientations.
This results in three emitter-centered modes per frequency.
Importantly, while the bright mode representation of the
MQED field is able to account for the spatial dependence of
the interemitter interaction, the local coupling of each emitter
to the field is described within the dipole approximation. Even
though the electric field in eq 6 retains spatial dependence, it is
therefore not a fully beyond-dipole approximation representa-
tion of the MQED field. We note that the description of the
local coupling within the dipole approximation is, in principle,
problematic for the high-frequency modes, which are
inherently included in eq 6. Because no real electronic system
is truly point-like, and the field expansion in principle includes
modes of arbitrarily large frequencies, the coupling of the
emitters to some of these modes would inherently require a
beyond-dipole approximation. However, as discussed further
below, it is necessary in practice to truncate the mode
expansion at some upper frequency, and for the modes
included in the actual calculations the dipole approximation is
justified. For a discussion of how beyond-dipole approximation
light−matter coupling can be explored within the MQED
framework with reduced models of the electronic structure, we
refer to our previous work in ref 15.
We want to express the total Hamiltonian of the coupled

light−matter system in a similar form as used previously in refs
25−27. Therefore, we write (see Supporting Information Note
A)
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where Mat is the standard Coulomb gauge matter
Hamiltonian describing the electronic system, and λi(ω) is
the cavity field strength of the i’th bright mode at frequency ω
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where r0 denotes the electronic center of charge and Ei(r0, ω)
is defined in terms of the dyadic Green’s function in eq 7. The
cavity field strengths of an arbitrary electromagnetic environ-
ment are thus fully determined by the DGF. We have further
introduced the photon field quantities pi and qi that are
connected to the magnetic and electric field in their
corresponding mode and are given explicitly by =q ( )i

( )2

1/2
+ †

C C( ( ) ( ))i i a n d =p ( )i ( )2

1/2

†
C C( ( ) ( ))i i . In terms of these new quantities, the
electric field expansion at the center of charge r0 reads as
follows.

=
=

E r
e

q( ) ( ) ( ) d
i
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The light−matter interaction further contains the dipole
moment operator for Ne electrons with position ri,

= =R ri
N

i1
e , which gives rise to an explicit electron−photon

interaction and the dipole-self-energy term ·R( ( ( ) ) )i
2 .

While the dipole self-energy term is often neglected or
absorbed into the matter Hamiltonian in the context of
MQED,16,18,28 recent works have shown that its inclusion is
critical to ensure gauge invariance and the stability of the
coupled light−matter system in the strong- and ultra strong
coupling regimes.29,30 When included explicitly, the dipole self-
energy term is most commonly expanded in terms of the
modes of the electromagnetic field.17,25 As discussed in
Supporting Information Note A, we follow the same procedure
in this work to arrive at the dipole self-energy term in eq 10. In
practice, most numerical implementations apply some
truncation of the photonic Hilbert space. This is also true
for our framework, as discussed in the following sections. It has
been shown that any truncation of the photonic Hilbert space
must be accompanied by a consistent truncation of the dipole
self-energy term to avoid unphysical predictions of both
ground- and excited-state properties.31 In this work, we
therefore include the same modes in the expansion of the
light−matter interaction term and the dipole self-energy term.
The interaction of the electronic system with the electric

field within the dipole approximation can thus be expressed as
the interaction of the electronic system and a continuous set of
quantum harmonic oscillator modes via the dipole moment of
the electronic system. We thus arrive at a Hamiltonian that is
able to describe the full electronic structure of matter in the
presence of a realistic electromagnetic environment. While the
electronic system is described fully ab initio, it is important to
note that within MQED, the environment is described via its
spatially dependent dielectric properties. These can, for
example, be calculated themselves using ab initio methodology
for the materials making up the cavity structure32−35 or be
described using simpler models of dielectric response such as,
e.g., the Drude model or the Lorentz Oscillator model.24,36

Note that our formulation addresses both the problem of how
to formulate the length gauge Hamiltonian in the presence of
optical losses and allows for the explicit calculation of the
cavity field strengths in terms of the boundary conditions set
by the cavity via the DGF of the electromagnetic field.
2.2. Quantum Electrodynamical Density Functional

Theory. QEDFT is a generalization of density functional
theory (DFT) for electronic systems interacting strongly with
quantized modes of the electromagnetic field.17 The method of
QEDFT can describe the full electronic structure of the matter
as well as the interaction of electrons with photons and
represents a good compromise between accuracy and
computational cost. QEDFT has been successfully applied to
describe both the ground state37,38 and excited states26,39 of
single (few) molecules strongly coupled to quantized modes of
light, as well as for applications in polaritonic chemistry.40 The
existence of the QEDFT formulation can be proven under very
general conditions,17 and it in principle allows for the
treatment of coupled light−matter systems with many
electrons and many photonic modes under very general
conditions. However, currently, most practical implementa-
tions of QEDFT are based on the dipole approximation for
light−matter coupling and a discrete mode expansion of the
electromagnetic field. The latter implies that the material or
molecular system of interest is embedded in a lossless
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electromagnetic medium. There have been previous studies
applying the QEDFT formulation to lossy optical cavities to
describe, e.g., photon losses through cavity mirrors.26,27,41

Here, different models of the optical cavity were used, but no
general connection between the cavity field parameters and the
optical environment for absorbing and dispersing magneto-
electric bodies has yet been established. As a result, the
electron−photon coupling parameters, while in principle
connected to the physical quantity of the vacuum electric
field at the center of charge of the system, are then, in practice,
often treated as free parameters. This highlights another
current practical limitation of QEDFT: Treating the cavity
coupling parameters as essentially free parameters makes
quantitative calculations and direct comparison with experi-
ments hard. Here we overcome these practical limitations by
representing the electromagnetic environment in terms of the
MQED field expansion, which allows us to accurately account
for both optical losses and the quantitative magnitude of the
cavity field strengths. The result is a parameter-free description
of arbitrary electronic systems coupled to general, lossy
electromagnetic environments.
To calculate the excited-state properties of the coupled

electron−photon problem defined by the Hamiltonian in eq
10, we employ the linear-response formulation of QEDFT,
which has been described in detail in refs 26, 39, and 42.
Importantly, this method considers the full electronic structure
of the matter system and goes beyond the rotating wave
approximation. We specifically employ the generalized Casida
formulation of linear response QEDFT to calculate the
oscillator strengths of the many-body excitations of the
coupled light−matter (polaritonic) system. The generalized
Casida equation reads as follows.

=
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Here ωα is a diagonal matrix with the frequency of photon
modes in the diagonal, U accounts for the coupling between
the electrons and V the coupling between electrons and
photons. The eigenvalues ΩS

2 of the Casida equation are the
square of electron-photon excitation energies ωI. F and P
describe the Casida eigenvectors of the matter and photon
block, respectively. The square norm of the two gives the
electronic and photonic fraction of the excitation, respectively.
Introducing the pair orbital index S = (ia), corresponding to
the pair orbital ΦS(r) = ϕi(r)ϕa*(r) with energy ϵS = ϵa − ϵi, U
can be expanded as follows.

= +U K( ) 2 ( )SS s S SS S SS S
2 1/2

S
1/2 (14)

= r r r r r rK f( ) d d ( ) ( , , ) ( )SS S S
n

S SMxc (15)

If Npair pair-orbitals are included in the calculation, U is
therefore an Npair × Npair matrix. VαS is the matrix accounting
for the coupling between the electrons and the photon modes.

=V M N( ) 2 ( )S S S S S S (16)

= r r rM f( ) d ( ) ( , )S S S
q

S, Mxc (17)

= r r rN g1
2

d ( ) ( )S S
n

, 2 M (18)

The size of these matrices will be Nmodes × Npair. We note that
these equations include the exchange correlation kernels f Mxcn ,
f Mxcq , and g n

M which have to be approximated in practice. So far,
the available exchange-correlation functionals for QEDFT in
the time-domain are still limited,37,38 but recent developments
for efficient density functionals based on the photon-free
formulation of QEDFT43 or the QEDFT fluctuation−
dissipation theorem44 are promising. Finally, note that when
neglecting the quantized light, only the top left block in eq 13
survives and one recovers the standard Casida formulation of
linear response time-dependent density functional theory
(TDDFT) for finite systems.45

In general, eq 13 requires a self-consistent solution as U and
V depend on the eigenvalues ΩS. In this work, we neglect any
exchange-correlation contribution in the photonic exchange-
correlation kernels and apply the mean-field photonic random
phase approximation. We refer to ref 26 for a thorough
discussion of this approximation. In this case, the connection
between the photonic exchange-correlation kernels and the
cavity field strengths in mode α is =f q

Mxc · re and =g n
M

·er2 . We emphasize here the connection of the linear-
response exchange-correlation kernels of QEDFT with the
dyadic Green’s function of the MQED framework via the
cavity field strength λα defined in eqs 7 and 11. Importantly,
the Casida formulation works for a discrete set of cavity field
strengths. In practice, it is, therefore, necessary to employ a
dense, discretized sampling of the continuous frequency
expressions for the coupling strengths. As discussed in
Supporting Information Note C, we employ uniform sampling
in this work. It is worth noting that recently more efficient
sampling methods that result in a lower number of modes have
been put forth in the literature for master equation-based
approaches.46−48 While it is not immediately clear that these
approaches can be integrated with the framework presented
here because the quasi-normal modes interact in these
schemes, it would be an interesting avenue of future research
to investigate whether such sampling methods can be used in
our formalism.
As discussed in ref 26 it is possible to calculate the oscillator

strengths of the coupled system in terms of the eigenvectors
and eigenvalues of eq 13, and these fully describe the linear
response of the coupled light−matter system. In this work, we
characterize the response of the system using the oscillator
strengths of the electronic polarizability, f I. For the transition
between the many body ground state Ψ0 and the excited state
ΨI the oscillator strength is formally given in terms of the
t r ans i t i on d ipo l e mat r i x e l ement a s =fI ×I

2
3

| | | |= eri i I1
3

0
2. Importantly, we note that even in the

presence of quantum light−matter interaction, these oscillator
strengths still fulfill the f-sum rule ∑I f I = Ne,

26 where Ne
denotes the number of electrons. The excitation spectrum is
then characterized by the strength function26

=S f( ) ( )
I

I I
(19)

where the sum index I runs over the many-body excitations of
the coupled light−matter (polaritonic) system. We further
emphasize that in this work we do not apply any broadening to
the spectra and that the width of the peaks is determined
completely by the electromagnetic environment. This high-
lights a further advantage of using the QEDFT-MQED
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combination, namely, that this provides a natural description of
the transition line widths as they relate to decay induced by the
electromagnetic environment. This is relevant beyond cavity
QED settings and paves the way toward TDDFT without
artificial line widths.

3. RESULTS AND DISCUSSION
3.1. Spherical Microcavity. To exemplify the developed

approach, we consider the spherically layered microcavity also
considered in refs 49 and 50. As shown in Figure 1a, the
spherical cavity consists of three concentric spherical layers,
each characterized by a frequency-dependent dielectric
function, ϵn(ω).
Due to spherical symmetry of the cavity setup, the DGF is

most efficiently expanded onto a set of vector spherical
harmonics.19 For a general emitter position inside the cavity, it
is necessary to carefully converge the number of vector
spherical harmonics used in the calculation of the DGF.
However, as we discuss in Supporting Information Note B, if
the emitter is placed in the center of the cavity, the situation
simplifies significantly. In this case only the lowest-order
transverse magnetic mode of the cavity contributes and we can
write50

= [ + ]=c
rG 0,0 IIm ( , )

6
1 Re( ( ))n 1

TM
(20)

where rn = 1
TM (ω) is the reflection coefficient for the lowest-order

transverse magnetic (TM) mode at the interface between the
cavity region and the metal shell. rn = 1

TM (ω) can be calculated by
invoking the standard electromagnetic boundary conditions at

the interfaces between the different regions of the cavity
geometry. Notice that ni ·ImG(0, 0, ω) ·nj ∝ δij, which means
that the mode orthogonalization is trivial in this case, and the
cavity field strengths can be derived directly using eq 11.

= [ + ]=
i
k
jjjjj

y
{
zzzzz ne

c
r( )

3
1 Re( ( ))i n j

2

2
0

3 1
TM

1/2

(21)

3.1.1. Drude Metal Shell. We now consider the case where
the inner and outer regions consist of vacuum. For the middle
region we consider a simple but realistic model of a metallic
mirror, namely, a Drude metal with dielectric function

=
+ i

( ) 12
p
2

2 (22)

where ωp is the metal plasma frequency and γ is the Drude
dampening rate. As a concrete example of a metal, we use the
Drude parameters for gold taken from ref 51. Within the
Drude mode, the plasma frequency of gold is around 8.5 eV.1

This results in the dielectric function shown in Figure 1b.
Below the plasma frequency, the real part of the dielectric
function will be negative, and the material surface will
consequently be highly reflective. Above the plasma frequency,
the real part of the dielectric function becomes positive, and
the material will lose its metallic characteristics resulting in a
significant loss of surface reflectivity. We note that because the
V matrices in eq 13 grow with the number of photon modes, it
is necessary in practice to truncate the electromagnetic
environment at some frequency. For the spherical cavity, ωp
provides a natural cutoff, and we therefore include photon

Figure 1. Spherical microcavity setup. (a) Illustration of the spherical microcavity setup. (b) The Drude model dielectric function of gold. (c) The
modes of the spherical microcavity plotted for two different radii, R = 140 nm in blue and R = 450 nm in orange. The mode structure is shown with
a sampling density of 10 points/meV. (d) The impact from the Drude dampening parameter on the cavity resonances, illustrated by focusing on
the mode around 7.1 eV in the cavity with R = 140 nm.
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modes up to ωp in the calculations. Further details of the
QEDFT calculations are given in Supporting Information Note
D.
In Figure 1c the mode structure of the cavity setup is shown

for two different cavity radii, R = 140 nm and R = 450 nm. It is
clearly observed that the number of modes as well as their
spectral position are directly linked to the radius of the
microcavity. Furthermore, we clearly observe that above the
gold plasma frequency, the mirrors lose their reflectivity, which
results in the loss of the sharp mode structure which is replaced
by a continuum. This highlights that the formalism we present
is able to directly link the cavity field strengths to the real
cavity setup made of real materials. Figure 1d zooms in on the
mode around 7.1 eV in the cavity with R = 140 nm and shows
the effect of changing the Drude dampening parameter. We
clearly observe that the width of the cavity mode increases with
increasing dampening in the metal, which highlights the
connection between the width of the cavity modes and the
losses in the gold.
This example highlights how the use of the emitter-centered

representation of MQED allows us to directly and uniquely
relate the light−matter coupling strength to a real electro-
magnetic environment and connect it to the QEDFT
formalism. While this is a relatively simple example, the
approach is general and works analogously for an arbitrary
electromagnetic environment, provided that the DGF can be
determined.
3.1.2. Adding an Emitter to the Cavity. We next add a

benzene molecule to the cavity. Benzene is chosen mainly
because of it prevalence as a test system in the existing
TDDFT and QEDFT literature on strong coupling,26,27,38,54

but we emphasize that the method can treat arbitrary finite
electronic systems. We focus on finding cavity configurations
with a mode resonant with the Π → Π* transition of the
benzene molecule. The first step is to determine the spectral
position of this transition. Using the Casida linear response
QEDFT framework without photons, we find that the
transition occurs at 6.808 eV (182 nm) in free space and
that the transition dipole moment in-plane is |d| = 0.096 e nm.
This is consistent with previous TDDFT calculations for
benzene.26,27

As shown in Figure 2a, it is possible to find different radii of
the gold microcavity for which there is a cavity mode resonant
with the benzene Π → Π* electronic transition. As expected,
the cavity field strength increases as the cavity is made smaller.
All but the smallest cavities are optical cavities in the sense that
the characteristic dimension of the cavity, the radius, is larger
than half the wavelength of the transition. For the smallest
cavity with a radius of 16 nm, a significant increase in the
coupling strength relative to the other sizes is observed. This
happens exactly because this cavity is sub-wavelength-sized,
and therefore significant near-field coupling to the surface
plasmon mode of the gold starts to occur. We mention in
passing that while we solve the coupled system using QEDFT,
the approach presented here for the calculation of cavity field
strengths is applicable regardless of the method used to solve
the coupled system. For completeness, we therefore note that
in terms of the light−matter coupling strengths, g, more
commonly used in quantum optics, the three cavities shown in
Figure 2a respectively correspond to ℏg = 3.81 eV, ℏg = 0.62
eV, and ℏg = 0.21 eV for the Π → Π* transition of the benzene
molecule. Importantly, these light−matter coupling strengths
are a property of the coupled system, and they are therefore
specific to both the cavity and molecular transition under
consideration. One should be careful with general conclusions
on the magnitude of light−matter interactions based on these
numbers. We provide more discussion in Supporting
Information Note E.
Figure 2b shows the linear absorption spectra of the coupled

emitter-cavity system calculated for the different cavity radii
using the linear response QEDFT method. We emphasize that
all linewidths in the figure are true linewidths in the sense that
they are not related to any broadening parameters in the
QEDFT calculation and only reflect the density of states in the
optical environment. A radius-dependent Purcell enhancement
with a decreasing radius is clearly observed, reflecting the
reduction in radiative lifetime resulting from the altered optical
environment. However, it is not possible to achieve strong
coupling with a single benzene molecule by using the gold-
shell cavity. We attribute this to the fact that as the coupling
strength gets larger with decreasing radius, the optical losses
also increase, resulting in a broader cavity resonance. We note
in passing that the Purcell enhancement for the smallest R = 16

Figure 2. (a) Different radii of the spherical microcavity that host a resonance that aligns with the Π → Π* of the benzene molecule. The total
light−matter coupling strength of the modes is also shown in the legend, and it can be clearly observed that the cavity-coupling strength grows with
decreasing cavity radius. The mode structure is shown with a sampling density of 10 points/meV. (b) The linear absorption spectrum of benzene as
a function of cavity radius showing a clear radius dependent Purcell enhancement.
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nm cavity is around 3500, which means that the local field
enhancement at the center of the spherical microcavity is
comparable to what is found in experiments with plasmonic
microcavities.55

The reason that it was impossible to reach strong coupling
with benzene in the gold cavity was the losses of the cavity
mode. In an attempt to reach the SC regime, we therefore next
seek to reduce the losses in the cavity. As already discussed
above, the width of the cavity resonance is reduced for smaller
Drude dampening parameters, γ. For this reason, Figure 3a
shows the absorption spectrum for the case with the true gold
dampening, as well as 25%, 10%, and 5% of the dampening,
respectively. We mention in passing that, in practice, one could
imagine realizing these lower losses using, for example, metals
specifically engineered to show weaker losses.56 Furthermore,
one could also imagine exploring different cavity setups

potentially leveraging the lower losses in dielectric nano-
optical setups.57 Considering the wide range of available
materials this design space becomes enormous.35,58 As shown
in the inset of Figure 3a, we find that reducing the losses results
in a narrower cavity mode without a significant reduction in
the overall cavity field strength. At around 25% of the true
dampening, we begin to observe clear indications of the two
polariton peaks in the linear absorption spectrum. Further
reducing the dampening, we see clear strong coupling with a
Rabi splitting of around 8 meV. This emphasizes the
importance of the optical losses in reaching the strong
coupling regime and further highlights the significant strength
of our method that we are able to study the effect of different
cavity parameters from first-principles via our combination of
QEDFT and MQED.

Figure 3. (a) The linear absorption spectrum of benzene in the gold cavity from Figure 2a with an inner radius R = 16 nm as a function of the
Drude dampening in the metallic mirror region. (b) The linear absorption spectrum in a cavity with an inner radius R = 16 nm and Drude
dampening γ = γgold/4 as a function of the number of benzene molecules.

Figure 4. (a) Casida spectrum without photon modes for different aromatic compounds. The spectra here are shown with an artificial broadening
of 0.1361 eV because the photon-free calculations fail to naturally describe the line width of the transitions. (b) Transition dipole moment of the Π
→ Π* transition as a number of aromatic rings. (c) Mode structure of the smallest cavities which host resonances aligned with the Π → Π*
transition of the different molecules. The mode structure is shown with a sampling density of 10 points/meV. (d) Effective light−matter coupling
strength as a function of the number of benzene rings in the aromatic molecule.
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Another way to engineer the coupling strength is to change
the emitter. There are two ways to do this, either by changing
the number of emitters or by changing the emitter itself. To
investigate the first option, we take the cavity with 25% of the
true gold losses and compute the absorption spectrum for one,
two, and three benzene molecules, all of which we place in the
center of the cavity. As shown in Figure 3b, we see a clear
evolution of the Rabi splitting with the number of benzene
molecules indicating the onset of collective strong cou-
pling.59−62 To perform this analysis, one needs to solve a
coupled many electrons, many photon problem, and it again
highlights the strength of the method.
To investigate the latter option, we consider longer aromatic

compounds with N aromatic rings; naphthalene (N = 2),
anthracene (N = 3), tetracene (N = 4), and pentacene (N = 5).
We first used the Casida method without photons (standard
TDDFT) to characterize the spectral properties of the
aromatic molecules. Figure 4(a,b) shows, respectively, the
spectrum and transition dipole moment of the Π → Π*
transition (highest occupied molecular orbital (HOMO)−
lowest unoccupied molecular orbital (LUMO)) as a function
of the number of aromatic rings N. Note that in Figure 4a the
spectra are shown with the Octopus default artificial broad-
ening of 0.1361 eV. This artificial broadening is necessary
because unlike the combined MQED-QEDFT method, the
standard photon-free TDDFT formulation fails to describe the
line width of the transitions. We observe that with increasing
number of aromatic rings N, the transition energy redshifts and
the transition dipole moment increases linearly (Figure 4b).
The linearly increasing transition dipole moment would
suggest that the light−matter coupling strength can be
monotonically increased simply by using a larger aromatic
molecule. However, because the transition energy also redshifts
with increasing molecule length, the cavity has to be
reoptimized to be resonant with the transition for each
molecule, as shown in Figure 4c. Specifically, focusing on
modifications of the R = 16 nm cavity, we find that this
reoptimization of the cavity means that the cavity radius needs
to be increased. This increase in radius leads to a reduced field
concentration via an increased effective mode volume. This
behavior highlights the important point that the light−matter
coupling strength is a joint property of both the electronic
system and the electromagnetic environment. A proper
treatment of both is therefore essential for quantitative
predictions.
We can characterize the intricate interplay between the

electromagnetic environment and the electronic structure by
looking at an effective coupling strength for the cavity modes
which we define as follows.27

| |dgeff c c (23)

Here the total cavity field strength parameter is defined as the
coupling strength averaged across the cavity peak p, =c

| |d ( )
p d

2 , and ωc is the center frequency of the cavity

mode. The d subscript indicates that we take the field strength
parameter for dipole orientation d/|d|. geff would thus be the
true light−matter coupling if the total spectral weight was
concentrated in a single mode. As shown in Figure 4d, we
observe that the increase in the transition dipole moment is
counteracted by the reduced field concentration for the larger
molecules, effectively resulting in a weaker light−matter

coupling strength. This is in stark contrast to the intuitive
argument based solely on the increased dipole moment of the
longer molecules. It should be noted that geff is not a perfect
measure of the light−matter coupling strength and it only gives
a rough idea of the cavity reoptimization’s effect. This is
because the widths of the modes are not taken into account,
which, as we have seen in Figure 3a, is very important for the
nature of the light−matter coupling.
Importantly, the coupling strength does not reach a

significant fraction of the transition frequencies for any of
the cases considered above. This highlights that reaching the
ultra- and deep strong coupling with single or few molecules is,
in general, hard. For the coupling strengths we find in this
paper, the results from the combined QEDFT-MQED method
would therefore agree with those found using the method
presented in ref 15. With the presented framework, it would be
possible to perform further engineering of the electromagnetic
environment to increase the coupling. The application of the
framework to general electromagnetic environments is
discussed further below.
3.2. Comment on Fabry−Perot Cavities. A common

example of a cavity in the literature for both theory and
experiments is the layered Fabry Perot cavity (FPC). As
discussed in Supporting Information Note F, the FPC is a
layered system, and consequently its DGF is expanded in terms
of in-plane plane waves, augmented by a function accounting
for the reflection at the interfaces between the layers.19

Because the FPC only constrains the electromagnetic modes in
one direction, it retains significant dispersion of the modes in
plane. Consequently, the concentration of electromagnetic
density of states is significantly less efficient than in the case of,
e.g., the spherical microcavity. This means that the resulting
coupling strength is weaker and the FPC will therefore
generally not be suited for single- or few-emitter strong
coupling.63 For this reason, we do not perform explicit
QEDFT calculations for this cavity setup. However, the FPC
can still be suited for collective strong coupling64 and coupling
to extended systems65 where the extended modes of the
electromagnetic environment can be sampled more effectively.
3.3. Tool for Cavity Field Parameters in Simple

Cavities. As a part of this work, we are making the code to
generate the cavity field strengths available for everyone to use
as part of the new PhotonPilot tool. This tool currently allows
the user to calculate cavity field strengths for spherical and
layered cavity setups, and we plan to expand its capabilities in
the future.
3.4. General Electromagnetic Environments. We

emphasize that the method we have presented here is general
and applicable to any electromagnetic environment, as long as
the DGF can be determined. However, in general electro-
magnetic environments with lower symmetry it is not possible
to write down an analytical expression for the DGF. In such
cases, the DGF must be constructed numerically from, e.g., a
mode expansion based on finite element simulations.19,24 We
note in passing that in the general setting the Helmholtz
equation is not a Hermitian operator. Special care is therefore
needed when the spectral representation of the DGF is
constructed from the modes. One solution is to use the bi-
orthonormal construction discussed in ref 66. We envision that
the method presented in this paper will eventually be
integrated with the existing Maxwell solver in the Octopus
code.67,68 Such an integration would allow for the treatment of
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general electromagnetic environments completely within
Octopus.

4. CONCLUSION
In this paper, we have presented a methodology combining
macroscopic quantum electrodynamics with quantum-electro-
dynamical density-functional theory, which provides a fully ab
initio description of coupled quantum light−matter systems.
Importantly, while we describe the electronic system at the
DFT level, it is also possible to employ our approach to
quantitatively describe the electromagnetic environment within
standard few-level models of strongly coupled light−matter
systems such as, e.g., the Jaynes-Cummings model, the Rabi
model, or the Travis-Cummings model.
To exemplify this approach, we have considered a benzene

molecule strongly coupled to a metallic spherical cavity and
investigated the impact of both the cavity radius and cavity loss
on the nature of the light−matter coupling. We further
investigated the effect of adding more molecules and
exchanging benzene with larger aromatic molecules. Together,
these results highlight the intricate interplay between the
electronic structure of the emitter and the environment in
determining the nature of light−matter coupling. Our work
illustrates the importance of having a proper description of
both the electronic system and the electromagnetic environ-
ment for a proper description of quantum light−matter
interactions. This work sets out the direction for more
quantitative calculations in the future and also opens up the
possibility for the proper treatment of real experimental setups.
We emphasize that the connection between the optical
environment and the DGF is not limited to setups similar to
cavities but instead provides a general way to determine the
electromagnetic spectral density of an arbitrary environment.
In addition to the QED setup, our method therefore also
provides a way to perform time-dependent density-functional
theory in a lossy optical environment without the need for
artificial spectral broadening.
Finally, we have provided an easy-to-use tool that everyone

can use to generate cavity parameters for simple cavities, such
as the spherical microcavity or a layered cavity.
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