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Background: Child sexual abuse (CSA) has become a focal point for lawmakers,

law enforcement, and mental health professionals. With high prevalence rates

around the world and far-reaching, often chronic, individual, and societal

implications, CSA and its leading risk factor, pedophilia, have been well

investigated. This has led to a wide range of clinical tools and actuarial

instruments for diagnosis and risk assessment regarding CSA. However, the

neurobiological underpinnings of pedosexual behavior, specifically regarding

hands-on pedophilic offenders (PO), remain elusive. Such biomarkers for PO

individuals could potentially improve the early detection of high-risk PO

individuals and enhance efforts to prevent future CSA.

Aim: To use machine learning and MRI data to identify PO individuals.

Methods: From a single-center male cohort of 14 PO individuals and 15 matched

healthy control (HC) individuals, we acquired diffusion tensor imaging data

(anisotropy, diffusivity, and fiber tracking) in literature-based regions of interest

(prefrontal cortex, anterior cingulate cortex, amygdala, and corpus callosum).

We trained a linear support vector machine to discriminate between PO and HC

individuals using these WM microstructure data. Post hoc, we investigated the PO

model decision scores with respect to sociodemographic (age, education, and

IQ) and forensic characteristics (psychopathy, sexual deviance, and future risk of

sexual violence) in the PO subpopulation. We assessed model specificity in an

external cohort of 53 HC individuals.

Results: The classifier discriminated PO from HC individuals with a balanced

accuracy of 75.5% (sensitivity = 64.3%, specificity = 86.7%, P5000 = 0.018) and

an out-of-sample specificity to correctly identify HC individuals of 94.3%. The

predictive brain pattern contained bilateral fractional anisotropy in the anterior
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cingulate cortex, diffusivity in the left amygdala, and structural prefrontal cortex-

amygdala connectivity in both hemispheres. This brain pattern was associated

with the number of previous child victims, the current stance on sexuality, and

the professionally assessed risk of future sexual violent reoffending.

Conclusion: Aberrant white matter microstructure in the prefronto-temporo-

limbic circuit could be a potential neurobiological correlate for PO individuals

at high-risk of reoffending with CSA. Although preliminary and exploratory at

this point, our findings highlight the general potential of MRI-based biomarkers

and particularly WM microstructure patterns for future CSA risk assessment and

preventive efforts.

KEYWORDS

pedophilia, MRI, child sexual abuse (CSA), support vector machines, machine learning,
forensic psychiatry

Introduction

Child sexual abuse (CSA) is defined as any completed or
attempted sexual act or contact with a child, as well as any form
of sexual exploitation of a child (1). CSA is a universal problem
with global prevalence rates of 20% for girls and 8% for boys (2).
Along with its profound short- and long-term consequences, CSA
poses a major challenge to society (3). Personal consequences for
the victim range from physical effects (e.g., injury, chronic pain,
sexual dysfunction) and psychiatric disorders (e.g., depression,
post-traumatic stress disorder, substance abuse) to emotional
and interpersonal issues (4). CSA also amounts to a substantial
economic burden, as the annual cost of CSA is estimated at $ 9.34
billion in the US alone (5). Therefore, lawmakers and public health
officials are moving toward preventive measures as opposed to the
current reactive paradigm, which requires waiting until a child has
been victimized. Effective prevention initiatives reduce not only the
number of children sexually victimized, but also the costs associated
with CSA (3). While primary prevention of CSA involves wide-
scale initiatives aimed at the general public (e.g., general crime
deterrence, public education, adequate sex education in schools),
secondary and tertiary prevention focuses on decreasing the risk of
offending or preventing recidivism among those who are at risk of
engaging in or have already committed CSA (6).

To effectively allocate preventive resources, it is crucial to
identify and stratify individuals who belong to pedophilic offending
risk groups. Pedophilic offending includes hands-on crimes, that
is, actual sexual contact with a child, as well as hands-off crimes,
namely the use of media depicting CSA (7–9). In the context
of this study, the term “pedophilic offenders” (PO) is used
exclusively to refer to hands-on offenders who commit CSA.
Although CSA is a multifactorial process, pedophilia, the primary,
or exclusive sexual attraction to prepubescent children, is one
of the main risk factors for CSA (10). Pedophilia is present
in approximately 50% of convicted child sexual offenders, but
not all pedophilic individuals commit CSA (11–13). Therefore,
several clinical and actuarial tools have been developed to assess
the potential risk of sexual reoffending (14). However, validated
tools specifically designed for child sexual reoffending are not

yet available. Furthermore, these risk assessment tools are mostly
applicable to individuals who have already been convicted of
a violent and/or sexual crime. For individuals without a prior
conviction, there are no validated measures of this type, specifically
not for CSA (15). This becomes particularly troubling since up
to 95% of the individuals prosecuted for CSA are first-time
offenders (3). Another sign that current instruments could still be
improved is the fact that only 10–50% of CSA cases are prosecuted,
while that likelihood decreases even further when the victim is
a preschooler (16). Furthermore, a meta-analysis of the most
established actuarial and structured professional judgment (SPJ)
tools (SORAG, Static-99, SVR-20) reported a balanced accuracy
of only 61%, defined as the mean of sensitivity and specificity, in
a pooled sample of 20 study cohorts, containing approximately
10,000 individuals from multiple countries (17). A key limitation
of these tools could be that they are based solely on clinical and/or
sociodemographic data (14, 17, 18). Like other fields of psychiatry,
discovering predictive neurobiological signatures and therefore
possibly generating biomarkers for PO individuals could tap into
a new level of information on these individuals and therefore, in
connection with already established tools, help to better identify
those pedophilic individuals who are at risk of committing CSA
(10, 14, 17). So far, structural neuroimaging studies were unable
to robustly identify gray matter volume (GMV) patterns associated
with the diagnosis of pedophilia (19). The GMV patterns found in
previous neuroimaging studies, specifically in orbitofrontal, limbic,
and basal ganglia structures, turned out to be much more closely
associated with PO individuals than with pedophilia alone (19–23).
Consequently, diffusion-tensor imaging (DTI) studies reported an
increase in fractional anisotropy (FA) in the white matter of the
left hemisphere (24) and FA reductions in the corpus callosum (23)
in PO individuals compared to healthy control subjects and non-
offending pedophilic individuals. Therefore, it has been suggested
that PO individuals could have the most distinct neurobiological
footprint of all these groups (10). Due to their commission of
pedosexual crimes, the PO subpopulation is also forensically the
most relevant subpopulation (10, 20, 21).

For that reason, we decided to explore brain structural
correlates of PO individuals using advanced machine learning

Frontiers in Psychiatry 02 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1001085
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-14-1001085 April 17, 2023 Time: 17:43 # 3

Popovic et al. 10.3389/fpsyt.2023.1001085

techniques, which have proven to be highly valuable in tackling
the biological elusiveness of complex disorders and phenotypes
(25). We present an exploratory proof-of-principle study that uses
supervised machine learning and structural magnetic resonance
imaging to derive a neuroanatomical model for PO individuals
and evaluate its clinical utility in diagnosis and risk assessment.
In a sample of 14 PO and 15 healthy control (HC) individuals,
we analyzed DTI data from a literature-based selection of brain
regions (prefrontal cortex, anterior cingulate cortex, amygdala, and
corpus callosum) (20, 21), trained a support vector machine on
these MRI features to distinguish between PO and HC individuals
and applied the final PO model to an external sample of 53 HC
individuals for further evaluation of model specificity. In addition,
we used stepwise linear regression to investigate the clinical and
forensic implications of the PO model with respect to measures of
psychopathy, delinquency, sexual deviance, and sociodemographic
characteristics. In this pilot study, our aim was to demonstrate that
the combination of neuroimaging and machine learning provides
the opportunity to discover a predictive brain signature for PO
individuals. This approach could serve as a template for future
MRI biomarker studies in the context of secondary and tertiary
prevention of CSA.

Materials and methods

Study participants

The main study sample was used for the generation of
the PO model and an external HC sample to evaluate out-of-
sample specificity. The main study sample, which was previously
reported by Schiltz et al. (26), contained 14 male PO individuals
(unmedicated forensic inpatients, in part under supportive
psychotherapy), who had committed sexual offenses involving
children younger than 10 years of age and met the diagnostic
criteria for pedophilia according to the DSM-IV-R following the
Structured Clinical Interview for DSM-IV (SCID-IV) (27). At the
time of the study, they were inpatients at the Forensic Psychiatric
State Hospital in Uchtspringe, Saxony-Anhalt, Germany. The main
study sample also contained 15 age and education-matched HC
individuals who did not meet the criteria for any psychiatric
disorder according to SCID-IV. The external HC sample consisted
of 53 non-medicated HC individuals (age, µ = 23.77, SD = 3.02),
which were scanned in the same MRI unit as part of a different
study cohort (28). The HC individuals in the main study sample
and in the external HC sample did not receive further forensic
evaluation. Exclusion criteria for both samples were presence of
other psychiatric or neurological disorders, alcohol or drug abuse,
head trauma, antiandrogen medication, and general MRI study
exclusion criteria (i.e., claustrophobia, metal implants). The authors
assert that all procedures contributing to this work comply with
the ethical standards of the relevant national and institutional
committees on human experimentation and with the Declaration of
Helsinki of 1975, as revised in 2008 (29). All procedures involving
human subjects/patients were approved by the local ethics advisory
board of the medical school of Otto-von-Guericke University,
Magdeburg. Written informed consent was obtained from all
study participants.

Sociodemographic and forensic
assessment

All study participants were rated by experienced forensic
psychiatrists. Verbal premorbid intelligence was measured using
the German Vocabulary Test (“Wortschatz–Intelligenztest”)
(30). A specific forensic evaluation was performed for all
PO individuals. The Sexual Violence Risk-20 checklist (SVR-
20) is a structured professional judgment tool (SPJ), which
operationalizes the risk of reoffending with a sexual violent
crime in three domains (“psychosocial adjustment,” “history
of sexual offenses,” and “future plans”). It also contains a
final three-level assessment of risk for future sexual violent
reoffences ranging from “low” (0) and “moderate” (1) to “high”
(2), which yielded high predictive validity in previous studies
(31). The Psychopathy Checklist-Revised by Hare (PCL-R) is
another SPJ tool, which covers two factors (“interpersonal” and
“social deviance”) and four facets (“interpersonal,” “affective,”
“lifestyle,”and “antisocial”) of the concept of psychopathy (32).
SVR-20 and PCL-R are known to reliably reflect features relevant
to criminological characterization and risk assessment (33).
The Multiphasic Sex Inventory (MSI) is a self-report measure
that assesses psychosexual characteristics in adult male sexual
abusers and rapists in four domains: “course and behavior
patterns of sexual deviance” (subdivided into “child sexual
abuse,” “rape,” and “exhibitionism”), “paraphilias,” “sexual
dysfunctions,” and “sexual knowledge and beliefs” [(34), see
Supplementary Table 1].

MRI data acquisition and pre-processing

MRI data from the main study sample and the external
HC sample were acquired on a General Electric Signa LX 1.5-T
scanner located at the University of Magdeburg, Germany. Data for
diffusion tensor calculations were collected with 12 non-collinear
gradient orientations, each additionally measured with the opposite
diffusion gradient polarity (35). The orientations were chosen
according to the DTI acquisition scheme proposed by Papadakis
et al. (36). The total of 24 diffusion-weighted measurements, each
an average of four measurements, was divided into four blocks,
each preceded by a non-diffusion-weighted acquisition. The DTI
images were eddy-current corrected according to the correction
scheme of Bodammer et al. (35) followed by a correction of head
movement based on the non-diffusion-weighted images using the
AIR software package (37). The diffusion tensors were calculated
for each voxel and further decomposed into eigenvalues and
eigenvectors. Based on the eigenvalues, the mean diffusivity (MD)
and fractional anisotropy (FA) as well as the axial diffusivity (AD)
and radial diffusivity (RD) coefficients were determined. FA, MD,
AD, and RD values of HC and PO individuals were read from a
pre-defined set of regions of interest (ROIs), which have previously
been implicated in sexual arousal and/or pedophilia (20, 38–41).
The Matlab-based MarsBaR ROI toolbox (version 0.44) was used to
create spherical ROIs of either 5 mm (ACC) or 7 mm (amygdala)
radius with a 1 mm resolved MNI template as the underlying image.
DTI values were taken from 10 different ACC regions (5 each on
the right and left) as suggested by Kelly et al. (42) and 2 amygdala
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regions with MNI coordinates taken from the work of Motomura
et al. (43) (see Supplementary Table 2 for MNI coordinates).
Additionally, the corpus callosum (CC) was parcellated into five
different segments according to the Hofer-Frahm scheme (44). The
selected CC ROIs had the following volumes from CC1 to CC5
(anterior to posterior): 2.365, 2.373, 0.838, 0.395, and 2.941 cm3.
The sum of all five ROIs (total CC) amounts to 8.912 cm3. The CC
ROIs were located midsagittally and had a left-right extension of
11 mm (from −5 to +5 mm).

Fiber tract reconstruction was carried out using a previously
described double-step probabilistic approach (45). As seed and
target regions, automatically segmented amygdala and prefrontal
cortex (PFC) regions based on T1-weighted volumes and generated
by the freesurfer recon-all pipeline [freesurfer version 6.0.0 (46)]
were used.1 The regions were co-registered with the diffusion
data using the FSL tools flirt and fnirt (47) and fiber tracking
was performed in the diffusion space. Seed and target regions
were individually different in size between 2.6 and 3.8 cm3 for
the amygdala and between 59 and 101 cm3 for the PFC regions.
Normalized fiber counts were used as an estimate of structural
connectivity (SC). Due to this approach, the amygdala region
used for fiber tracking slightly differed from the one used for
acquisition of the DTI anisotropy and diffusivity parameters.
This approach also led to individual, non-spherical amygdala
and PFC regions, for which MNI coordinate description is
not suggested. A total of 68 anisotropy/diffusivity features (17
features each for FA, MD, RD, AD) and 4 SC features (prefrontal
cortex-amygdala/amygdala-prefrontal cortex left/right) entered the
analysis (see also Supplementarymaterial—MRI data acquisition).

Machine learning pipeline

Using the machine learning software NeuroMiner, version
1.052 (48), we built a support vector machine (SVM) classifier with
a linear kernel to discriminate between PO and HC individuals. The
SVM algorithm is known to be robust when performing prediction
analyses at low sample sizes (49). We embedded the algorithm in
a repeated nested cross-validation (CV) framework using 10-folds
and 10 permutations each in the inner (CV1) and outer (CV2) cycle
to prevent overfitting and increase generalizability (Supplementary
material—Machine learning pipeline) (25). The CV1 cycle was
used for hyperparameter optimization. The best model from the
CV1 level was applied to the outer CV2 fold, which contained
individuals who had not been used to train the model. Furthermore,
we used a wrapper-based ensemble generation strategy (greedy
forward feature selection) at the CV1 level, which generated a
final parsimonious model that only contained the most relevant
subset of predictive features (50). The significance of the final model
was assessed by comparing the performance of the final model
against a null distribution of 5,000 models trained on random
permutations of the target labels (Supplementary material—
Permutation testing) (51). To assess out-of-sample specificity of the
PO model, we applied it to an external sample of 53 HC individuals.

1 http://surfer.nmr.mgh.harvard.edu/

2 http://proniapredictors.eu/neurominer/index.html

Model performance evaluation

The performance of the final model was evaluated with different
performance metrics. The main performance metric, which was
also the optimization criterion for model training, was the measure
of balanced accuracy (BAC), defined as the mean of sensitivity and
specificity. Furthermore, we used the sensitivity and specificity of
the model to calculate the number needed to diagnose (NND),
which is the inverse of Youden’s index given by [1/(sensitivity +
specificity – 1)]. The NND displays how many individuals have
to be examined in order to correctly detect one individual with
the phenotype of interest (52). However, this measure assumes
that the study population, in which the model was generated, is
representative of the distribution of the phenotype in real-world
populations. Since the prevalence of PO individuals in our study
sample differs considerably from the prevalence of PO individuals
in the general population as well as in other real-world cohorts (e.g.,
psychiatric and forensic inpatient settings, specialized outpatient
services) additional metrics such as the predictive summary index
(PSI) and its reciprocal, the number needed to predict (NNP),
were used. The PSI and the NNP allow to factor in the actual
prevalence of a certain phenotype and thus reflect the performance
of the model in possible real-world scenarios (52). The PSI is a
combination of PPV and NPV given by (PPV + NPV – 1). Through
PPV and NPV, the performance of the model can be estimated
using varying prevalence rates, which impact both the PPV and
the NPV (53). The PSI reflects the additional overall certainty of
performing a certain test based on knowledge of the prevalence
of the phenotype. The NNP, the inverse of the PSI, is the number
of people who need to be examined by the test or the model to
correctly predict one individual with the phenotype of interest in
a population with a given prevalence of the phenotype of interest
(52, 53).

Model visualization

In our case, a binary classification (−1 vs. 1) was carried out,
whereas PO individuals were defined as positive label (numerical:
1), i.e., the phenotype of interest, while HC individuals were defined
as negative label (numerical: −1). SVM models place weights on all
input features, ranging from −1 to 1. SVM models then predict the
labels by multiplying an individual’s feature values (i.e., anisotropy,
diffusivity, or connectivity values in the 72 input features) with the
model feature weights. In our case this leads to 72 multiplication
products which are then aggregated into a final decision score. If the
decision score is positive, then the positive label (in this case: PO) is
predicted, while a negative decision score leads to the prediction of
the negative label (in this case: HC). Before entering the analysis
pipeline, all input features are rescaled from 0 to 1, so that
beyond zero only positive features enter the analysis. Therefore,
multiplication of a positive feature weight with the corresponding
feature value of an individual always yields a positive multiplication
product, while a negative feature weight always yields a negative
multiplication product. Consequently, a positive feature weight
indicates that the corresponding feature increases the decision
score and therefore pushes the model toward prediction of the
positive label, while a negative feature weight decreases the decision
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score and pushes the model toward prediction of the negative
label. The absolute value of the feature weight further indicates
how strongly a certain feature contributes to either a positive or
a negative decision score. Finally, the distance between the decision
score and the decision boundary (i.e., the zero value) reflects the
prediction certainty of the model. Higher positive decision scores
or lower negative decision scores reflect that the model is more
certain of either the positive or negative label prediction. The closer
the decision score gets to zero, the more uncertain a model is
of its prediction. If a feature weight is zero, the corresponding
feature does not influence the decision score and therefore also
does not impact the prediction, regardless of the input feature value
of the individual.

To obtain a stable visualization of such an SVM model and
its feature weights, we used measures of pattern element stability
(cross-validation ratio) and pattern element significance (sign-
based consistency) (54). The CVR as a measure for pattern stability
was inspired by the bootstrap ratio commonly used in the Partial
Least Squares literature and described by Krishnan et al. (55).
The CVR of a feature weight aggregates the feature weights of a
certain feature across all models computed in the CV structure.
The CVR is therefore similar to a Z score of the feature weight
and provides a more stable estimate of how a certain feature was
weighted in all computed models. In our case, the 10-folds and 10
permutations on the CV1 and CV2 level leads to the computation
of 10,000 models, thereby making the CVR particularly stable. The
CVRs of the feature weights are interpreted in the same way as the
feature weights. Positive CVRs indicate that a certain feature was on
average positively weighted and contributed to the prediction of the
positive label, while negative CVRs indicate the opposite. Similar to
the feature weights, the absolute values of the CVRs indicate how
strongly a feature influenced the decision toward the positive or the
negative label. Higher positive CVRs or lower negative CVRs reflect
that the corresponding feature pushed the overall decision more
strongly toward the positive or the negative label. In the current
analysis, positive CVRs indicate that a certain feature was, on
average, predictive of PO individuals, while negative CVRs indicate
that the feature was, on average, predictive of HC individuals.

Complementary to the CVR measure, we implemented a
sign-based consistency method, which is based on an approach
proposed by Gómez-Verdejo et al. (56) toward wrapper-based
feature selection strategies. The sign-based consistency method
assesses how consistently a feature was weighted positively or
negatively across all computed models. Using that method, a
P-value can be computed for each feature, determining whether
the rate at which that feature received either a positive or negative
sign (i.e., PO vs. HC prediction) exceeded chance level. Therefore,
this method quantifies how consistently a feature contributed to the
prediction of a certain target and whether that rate is significant
beyond chance level.

Univariate analysis

Group-level differences were assessed using the non-parametric
Mann–Whitney-U-Test. Post-hoc investigation of the PO model
was performed using all available sociodemographic data (age,
verbal intelligence, years of education) and forensic information

TABLE 1 Clinical and sociodemographic characteristics of
the study sample.

PO HC χ 2/Ua P

Sample size 14 15

Age, years 40.07 (8.76) 44.13 (11.53) 81.00 0.31

Verbal intelligenceb 106.50 (10.72)

Years of education 12.50 (1.45) 12.71 (0.52) 92.50 0.59

Right-handedness 13 (92.9%) 14 (93.3%) 0.0026 0.96

Number of child victims 4.50 (2.81)

Sex of victims

Exclusively male/female 3/6

Male and female 5

SVR-20

Final assessment score 1.57 (0.65)

Psychological adjustment 6.86 (2.95)

Sexual offenses 4.93 (2.15)

Future plans 1.00 (1.07)

Total score 12.79 (5.20)

PCL-R

Interpersonal traits: Factor 1 5.00 (4.26)

Social deviance: Factor 2 3.79 (3.71)

Total score 9.07 (8.06)

MSI

Sexual abuse of children 21.93 (5.69)c

Rape 3.79 (6.17)

Exhibitionism 1.79 (1.26)

Paraphilias 3.50 (3.64)c

Sexual dysfunctions 4.93 (2.99)

Sexual knowledge and beliefs 15.93 (3.67)

Results are stated as mean value followed by its standard deviation in brackets: µ (SD).
PO, pedophilic offenders; HC, healthy control individuals; P, P-value; SVR-20, Sexual
Violence Risk-20; PCL-R, Psychopathy Checklist-Revised; MSI, Multiphasic Sex Inventory.
The P-values are stated after false discovery rate correction for multiple testing (the table
represents a family of tests).
aMann–Whitney U test (U test).
bMeasured via the German Vocabulary Test [“Wortschatz–Intelligenztest” (30)].
cAbove average results in comparison to a German norm sample of child abuser (n = 230)
(34).

(number of child victims, total and subscale scores of SVR-20,
PCL-R, and MSI as seen in Table 1) to predict SVM classifier
scores via stepwise linear regression analysis (stepwiselm function,
Matlab R2020b). All analyses were false discovery rate-corrected
(FDR) (57) for multiple tests at a significance threshold of
q = 0.05.

Results

Group-level characteristics

In the PO population, the number of previous child victims
ranged from 1 to 10 (Table 1). Six PO individuals had committed
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TABLE 2 Prediction performance in the main study and external HC sample.

TP TN FP FN Sens (%) Spec (%) BAC (%) PPV (%) NPV (%) NND PSI AUC P5000

Main study sample

PO vs. HC 9 13 2 5 64.3 86.7 75.0 82.0 72.0 1.96 0.540 0.69 0.018

External HC sample

HC 0 50 3 0 – 94.3% – 0.0 100.0 – – – –

TP, number of true positives; TN, number of true negatives; FP, number of false positives; FN, number of false negatives; Sens, sensitivity; Spec, specificity; BAC, balanced accuracy; PPV,
positive predictive value; NPV, negative predictive value; NND, number needed to diagnose; AUC, area-under-the curve. P5000 , P-value calculated by comparing the BAC of the final PO
model against a null distribution of 5,000 models trained on random permutations of the target labels.

CSA exclusively against girls, three exclusively against boys, and the
remaining five had committed CSA involving both girls and boys.
No significant differences were detected between the HC and PO
individuals with respect to age (U = 81.00; P = 0.31) and years of
education (U = 92.50; P = 0.59). Compared to a German norm
sample of 230 PO individuals (34), the study PO individuals showed
elevated scores in the MSI domain “course and behavior patterns of
sexual deviation” (Table 1). Specifically, they showed significantly
higher scores on the subscale “child sexual abuse” (µ = 21.93;
SD = 5.69) and its subdomains “fantasy” (µ = 6.07; SD = 2.28),
“searching/sneaking around and persuasion tactics” (µ = 5.43;
SD = 2.26) and “sexual assault/attack” (µ = 6.71; SD = 1.48).
Furthermore, elevated levels were found in the “paraphilia” domain
(µ = 3.50; SD = 3.64), which were driven by significantly higher
scores in the “voyeurism” sub-domain (µ = 1.57; SD = 1.64).
PCL-R scores of PO individuals (µ = 9.07; SD = 8.06) were
below the 95% confidence interval of non-standardized samples
of incarcerated violent offenders (58), forensic inpatients (59), and
PO individuals released from prison (60). SVR-20 total scores of
the PO individuals (µ = 12.79; SD = 5.20) were below the 95%
confidence interval of non-standardized samples of incarcerated
violent and sexual offenders (61, 62). Furthermore, group-level
testing of all 72 input features (68 anisotropy/diffusivity features
and 4 SC features) did not yield any significant differences between
HC and PO individuals (Supplementary Table 3).

Cross-validation and out-of-sample
specificity validation results

The classifier correctly identified 9 of 14 PO individuals
(sensitivity = 64.3%) and 13 of 15 HC individuals
(specificity = 86.7%), with a cross-validated BAC of 75.5%, a
positive predictive value (PPV) of 82.0% and a negative predictive
value (NPV) of 72.0% (Table 2). The PO model also yielded a
number needed to diagnose (NND) of 1.96 and an area under the
curve (AUC) of 0.69. The PO model was significant against 5,000
permutations of the target labels (P5000 = 0.018). When applied to
the external HC sample, the PO model correctly identified 50 of 53
as HC individuals (specificity = 94.3%).

When given assumed prevalence rates of PO individuals
between 1 and 75%, the model yielded robust PPV, NPV, PSI, and
NNP values (Table 3). Specifically, the model produced PSI values
greater than 40% and an NNP lower than 3 for assumed prevalence
rates ranging from 20 to 70%, peaking with a PSI of 55% and an
NNP of 1.83 at a prevalence rate of 40%.

TABLE 3 Advanced performance metrics of the PO model at varying
prevalence rates of PO individuals.

Prevalence (%) PPV (%) NPV (%) PSI (%) NNP

1 5 100 4 23.57

5 20 98 18 5.51

10 35 96 31 3.27

20 55 91 45 2.20

30 67 85 52 1.91

40 76 78 55 1.83

50 83 71 54 1.86

60 88 62 50 2.01

70 92 51 43 2.33

PPV, positive predictive value; NPV, negative predictive value; PSI, predictive summary
index; NNP, number needed to predict. Depicted are the performance metrics of
the PO model under the assumption of different prevalence rates of PO individuals
ranging from 1 to 70%.

Model investigation

Using a wrapper-based feature selection, 22 of 72 input
features were included in the final PO model (Figure 1). The CV
ratios (CVRs) of the feature weights, illustrating how predictive
a feature was for HC (CVR < 0) or PO (CVR > 0) across all
computed CV models, produced a distinct white matter (WM)
microstructure pattern (Figures 1A, C). Higher FA in the left
amygdala (CVR = 9.19), the right dACC (CVR = 21.45), bilaterally
in the pgACC (right: CVR = 36.76, left: CVR = 21.42) and in the
right rACC (CVR = 6.65) was strongly predictive of PO individuals.
Smaller, negative CVRs of FA feature weights, indicative of HC
individuals, were found in the right amygdala (CVR = −3.10), the
CC segment 1 (CVR = −1.24), and the right sgACC (CVR = −3.01).
The RD domain yielded 3 features, of which higher RD in the
left amygdala strongly predicted HC individuals (CVR = −26.03).
The MD domain was represented with two features, of which
higher MD in the left amygdala was highly predictive of HC
individuals (CVR = −13.16). The model also contained 3 weaker
AD features (pgACC left, sgACC left/right), which received CVRs
between −4.66 and 3.24. Furthermore, stronger SC values in the
left hemisphere were among the main predictors of PO individuals
(left amygdala to left PFC: CVR = 29.05, left PFC to left amygdala:
CVR = 21.41), while higher signaling in the right hemisphere (right
amygdala to right PFC: CVR = −21.35) was shown to be highly
predictive of HC individuals.
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FIGURE 1

Discriminative brain pattern of the PO model. (A) Depicted are the CV ratios (CVRs) of the feature weights of the PO model, sorted by DTI modality.
Positive CVRs, predictive of PO individuals, are displayed in red, and negative CVRs, predictive of HC, are displayed in blue. (B) Depicted are the
P-values, computed via sign-based consistency mapping. P-values surpassing the FDR-adjusted threshold indicate which features were consistently
weighted in the same direction (positively or negatively) exceeding chance level across all computed CV models. (C) The open-source
3-dimensional rendering software MRIcroGL (McCausland Center for Brain Imaging, University of South Carolina;
https://www.nitrc.org/projects/mricrogl/) was used to overlay the CVR maps on the Montreal Neurological Institute single-participant template and
produce 3-dimensional renderings. The cool color scale indicates lower (i.e., predictive of HC individuals) and the warm color scale higher (i.e.,
predictive of PO individuals) CVRs. SC, structural connectivity; FA, fractional anisotropy; RD, radial diffusivity; AD, axial diffusivity; MD, mean
diffusivity; HC, healthy control individuals; PO, pedophilic offender individuals; cACC, caudal anterior cingulate cortex; dACC, dorsal anterior
cingulate cortex; rACC, rostral anterior cingulate cortex; sgACC, subgenual anterior cingulate cortex; pgACC, pregenual anterior cingulate cortex;
CC, corpus callosum; PFC, prefrontal cortex; CVR, cross validation ratio.

TABLE 4 Stepwise linear regression results.

Estimate 95% CI SE T P

Intercept −6.87 [−9.01, −4.73] 0.95 −7.27 4.74E-05

SVR-20 final
assessment score

3.28 [2.33, 4.24] 0.42 7.78 2.77E-05

Number of previous
victims

0.52 [−0.18, 1.21] 0.31 1.69 0.13

MSI: sexual
knowledge and
beliefs

0.16 [0.06, 0.25] 0.04 3.65 0.01

SVR-20: Number of
victims

−0.40 [−0.76, −0.05] 0.16 −2.58 0.03

SE, standard error; T, T statistic; P, P-value; SVR-20, Sexual Violence Risk-20; MSI,
Multiphasic Sex Inventory; CI, confidence interval.

Sign-based consistency analysis determined four features to be
the most reliable predictors: FA pgACC left/right and SC amygdala
to PFC left/right (Figure 1B).

Post-hoc assessment of possible
confounders and forensic utility

Given the complete set of sociodemographic and forensic
information on PO individuals, the stepwise linear regression
analysis successfully predicted the brain-based PO model decision
scores (Table 4, F = 26.1, P = 5.75E-05, df = 9). The prediction
was based only on three features: The final SVR-20 assessment
score (estimate = 3.28, 95%-CI: 2.33–4.24), the number of previous
child victims (estimate = 0.52, 95%-CI: −0.18–1.21) and the MSI
subscale “sexual knowledge and beliefs” (estimate = 0.16, 95%-CI:
0.06–0.25). Furthermore, this regression model explained 88.5% of
the variance in the decision scores (adjusted R2 = 0.885).

Discussion

In this pilot study, we used DTI data and supervised machine
learning to generate a brain-based predictive model for pedophilic
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offenders (PO). We combined the efficacy of linear SVM at low
sample sizes with a literature-based region of interest approach,
focusing on key brain areas in the prefronto-temporo-limbic
circuit that have previously been implicated in pedophilia, sexual
behavior, and pedophilic offending (10, 20, 21). The final PO
model discriminated PO from HC individuals with 75.5% BAC and
produced an out-of-sample specificity of 94.3% in HC individuals.
In the final PO model, higher FA bilaterally in the pgACC as
well as in the right dACC and rACC was highly predictive of PO
individuals. In contrast, higher MD and RD in the left amygdala
were among the strongest predictors of HC individuals. The AD
domain did not contribute decisively to the overall prediction. SC
measures showed hemispherical polarity, since higher SC in the
left hemisphere (amygdala to PFC and vice versa) was predictive of
PO individuals, while higher SC in the right hemisphere (amygdala
to PFC) contributed to the prediction of HC. Overall, bilateral FA
in the pgACC as well as bilateral amygdala to PFC connectivity
were the four most consistent predictors and the most reliable
discriminators between HC and PO.

The DTI parameters used in this study are sensitive to certain
aspects of white matter (WM) microarchitecture (63). Specifically,
increased myelination, fiber density, and axon coherence are
associated with higher anisotropy (FA) and lower diffusivity
measures (MD, RD, AD) (64).

The development of WM microstructure follows a distinct
trajectory throughout the life of an individual and is strongly linked
to cognitive abilities, social behavior, language skills, and motor
function (64–66). Initially, rapid increases in brain organization
occur during childhood and adolescence, followed by a slowing
of the development process in young adulthood, before reaching
a maturational peak, reversing trend, and declining in later
adulthood and old age (65). Thus, FA increases steadily until the
late 20 s and then decreases after the age of 30. Diffusivity measures
follow a reverse profile, with decreases in MD and RD until the
mid to late 30 s and a subsequent increase thereafter. AD follows
a slightly prolonged pattern, reaching its minimum in the 40 s
(65). This leads to a non-linear “U-shaped” trajectory for diffusivity
and an “inverted U-shaped” trajectory for anisotropy measures
(65). The main WM tracts show similar maturation patterns (65).
Specifically, the uncinate fasciculus (UF), which connects the PFC
and amygdala, reaches its maturational peak in the mid to late 30 s
and declines thereafter (67).

This development of WM microstructure is a multifactorial
process (64). The general trajectory of WM microstructure
development is shaped and to some extent predetermined by
genetics (68, 69). However, the genetic influence on WM
microstructure decreases with age as environmental factors
become increasingly important (64, 68, 70). Among these factors,
positive influences such as breastfeeding and nutritional support
are related to faster and/or greater WM development, while
negative influences that include prenatal exposures (e.g., parental
alcohol consumption, anxiety, or depression) or adverse childhood
experiences (i.e., deprivation, neglect) appear to cause slower
or impaired WM development (64). Furthermore, an earlier
development of WM in girls and a more prolonged one in boys
during puberty suggest that the genotype of androgen receptors
also influences the longitudinal trajectory of WM development (71,
72). Therefore, the predictive WM microstructure pattern is likely
also influenced by these factors and highlights the complexity of

such a structural brain signature. Additionally, it emphasizes that a
complex interplay of genetic, hormonal, and environmental factors
is likely shaping this WM signature of high-risk PO individuals.

This is supported by a large body of evidence reporting
particularly higher loads of hormonal and environmental
risk factors in pedophilic men, but even more so in PO
individuals (10, 73–75). In particular, higher rates or prenatal
and perinatal influences, such as prenatal androgenization or
parent psychopathology, have been identified in PO individuals
(76–79). Furthermore, a strong association has been established
between childhood trauma and stronger pedophilic interest, higher
rates of sexual offending, and targeting of younger victims (80–84).
Therefore, it could be speculated that the WM signature of PO
individuals is the neurobiological correlate of multiple components
exceeding a threshold above which pedophilic offending behavior
becomes increasingly possible (76).

Detecting this signature, particularly in the microstructure
of WM, is of great forensic relevance due to the strong
involvement of WM maturation and development in the context
of higher-order cognitive abilities and behaviors, which could all
play a role in the enactment of pedophilic impulses and the
commission of pedosexual crimes (64–66). WM microstructure
in the frontoparietal circuit is closely related to reasoning, that
is, the capacity to solve problems in novel situations (85). FA in
the frontal and limbic lobe has been associated with inhibitory
behavior, i.e., the ability to withhold an automatic response, resist
tempting behavior, or adjust behavior to meet situational demands
(86). Another important complex cognitive function is delay
gratification, which defines the ability to weigh a preference for
a larger delayed reward compared to a smaller, more immediate
reward. This ability, which is highly dependent on impulse
regulation and reward processing, has been linked to FA, diffusivity,
and connectivity patterns in the frontostriatal tract and several
other fasciculi, including the uncinate fasciculus (UF) (87–89).
Finally, another complex cognitive behavior, which may be relevant
in the forensic context, is risky decision making. Studies have
repeatedly shown that, especially in adolescents and young adults,
the microstructure of WM in the corpus callosum was related to
levels of risk taking (90–93). Thus, WM microstructure integrity
and deviations in WM development have been linked to various
complex cognitive abilities, most of which relate to higher-order
cognitive control, reward processing, and impulse regulation, all of
which are highly relevant in the forensic setting (14, 40, 94–96).

However, the regions of interest chosen in this study are also
highly involved in the generation and control of sexual arousal (20).
While the ACC and the amygdala are responsible for the attribution
of salience and impulse generation with respect to sexual stimuli,
the PFC suppresses the output of the amygdala in a top-down
manner through the UF (38). WM disruptions in the UF have been
associated with deficits in empathic capacity and social cognition
(39). Low empathy has long been discussed as a dynamic risk
factor for child sexual offending, potentially separating offending
from non-offending pedophilic individuals (40, 41). However, in
a more recent meta-analysis, low victim empathy had little to no
relationship with recidivism in persistent sexual offenders (40).
Our findings, linking the UF to PO individuals, suggest that a
more in-depth neurobiological investigation of the relationship
between empathy and child sexual offending could lead to a better
understanding of how these two phenomena are intertwined.
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In summary, our findings, specifically the increase in
FA in the pgACC and the increased structural amygdala
to PFC connectivity, support a pathophysiological model of
disinhibited aberrant sexual impulses and deficient higher-
order cognitive control in PO individuals. In this model,
dysfunctional ACC and amygdala signaling could lead to
pedophilic arousal and the generation of pedosexual behavioral
impulses, which are not sufficiently controlled, as the amygdala
overrides prefrontal control in a bottom-up manner. However,
our current knowledge on WM suggests that this aberrant
pattern of WM microstructure could potentially be influenced by
learning and/or intense activity even in adulthood (97). Therefore,
dysfunctional behavior, such as pre-occupation with sexual
pedophilic themes, continuous consumption of child pornography,
or even pedophilic reoffending, could possibly further negatively
impact or strengthen this WM microstructure pattern. In contrast,
lifestyle changes and psychotherapeutic interventions such as the
BEDIT program (98), the Good Lives Model (95), or other
types of psychosocial support could potentially lead to behavioral
changes, which might eventually be reflected in changes in the WM
microstructure pattern.

The post hoc investigation pointed to the possible clinical
and forensic utility of such a brain-based PO biomarker. Using
stepwise linear regression, the PO classifier scores were predicted
by the number of previous child victims, the MSI subscale “sexual
knowledge and beliefs,” as well as the final assessment score in
the SVR-20, with the latter reflecting the assessment by a mental
health professional of the risk of future sexual violent reoffences.
We therefore assume that the model indeed captured a WM
microstructure pattern which is potentially modifiable and appears
to be closely related to past child sexual offending, current stance
on sexuality, and risk of future sexual violent reoffending.

Since this model was developed in an evenly distributed sample
of PO and HC individuals, we assessed the added value of using
such predictive tools in possible real-world scenarios, where the
rate of PO individuals is highly dependent on the selection of
individuals, i.e., the context in which such a tool is used (7). While
the incidence of pedophilia is estimated to be 1% in the general
population, the incidence of PO individuals is much more difficult
to assess. In representative community studies, self-reported abuse
of a child ranged from 0.05 to 4% (7, 12, 99). However, in more
selective high-risk subpopulations containing individuals with self-
reported sexual interest in children, the prevalence of self-reported
actual sexual contact with children was reported to be between
39.4 (100) and 50% (98, 101). Moreover, the relapse rates for
previously convicted pedophilic offenders range from 50 to 80%
(102). Therefore, depending on the setting, the model could face
highly varying degrees of prevalence rates of PO individuals.
Thus, it is encouraging that the model performed robustly at
prevalence rates of PO individuals between 20 and 70% with
PSI values greater than 55% and an NNP less than 3. Therefore,
the model would increase diagnostic certainty in cohorts with
these prevalence rates by more than 55%, compared to the level
of simple chance (52, 103). Furthermore, no more than three
people in these cohorts would have to be tested with this model
to correctly identify one PO individual. Although the model still
produced a solid PSI of 18% and an NNP of 5.51 at a lower
prevalence rate of 5%, it became clear that this model is most well
suited to be applied to clinically preselected high-risk cohorts with

expected higher rates of PO individuals. Examples of this could be
individuals with self-reported interest in children, a diagnosis of
pedophilia, or individuals who have already committed pedophilic
offenses. Hence, a model like this could provide additional certainty
when applied to individuals that have already been preselected by
mental health professionals or other professionals in the field of
forensic psychiatry.

The most important limitation of this study is the small
sample size of 29 subjects in the main study sample and 53
subjects in the external HC sample (104). Machine learning
algorithms provide high predictive potential because they can
discover subtle distributed effects that would otherwise not be
detected by conventional univariate analysis (105). However, this
enhanced pattern recognition makes machine learning algorithms
also susceptible to certain issues. First, they can provide misleading
results when used on small samples since small samples carry
the risk of not being representative of the population of interest
and instead being more defined by specific batch effects (106,
107). These batch effects can stem from the catchment area, the
recruitment period, the recruiting personnel, and many more
factors that can heavily confound the information contained in a
sample. When working with small study samples, these algorithms
might discover patterns that at first glance seem to be related
to the desired phenotype but are heavily confounded by these
much more profane factors related to specific characteristics of
the study samples. Second, machine learning algorithms tend to
overfit in small samples. Depending on the setup of the learning
parameters, i.e., hyperparameters, machine learning algorithms
create a model which closely fits the characteristics of the study
sample. However, when the sample is small and not representative
of the phenotype of interest in the real-world populations, then
the resulting model is “overfitted” to even minor details, trivial
characteristics, or even random effects of the study sample (108).
This can eventually lead to the phenomenon that a model performs
well in the study sample, but then fails to detect a certain
phenotype in new and previously unseen individuals. This lack
of generalizability due to overfitting is one of the major concerns
in machine learning and appears frequently in models trained on
smaller samples. A third issue arises from possible discrepancies
between the frequency of a desired phenotype in the study sample
compared to the general population. Therefore, a model trained on
a carefully selected sample in which a certain phenotype is highly
enriched and therefore equally distributed compared to healthy
control individuals could perform rather poorly when applied to
more naturalistic general populations, in which the phenotype is
much scarcer (109). This problem can be further impeded when
the targeted phenotype exerts a massive, sometimes irreversible,
impact on the affected individual or its surroundings. When a
machine learning model, which was trained to predict response to
antidepressant treatment, predicts a wrong outcome, it can lead to
a delay in therapy response and, for example, to a potentially longer
hospitalization or sick leave. However, when a machine learning
model, which was trained to predict pedophilic offending, fails,
and incorrectly classifies an individual as “low risk”, which then
proceeds to commit such an offense, the damage is much greater.
Our study investigates a phenotype, pedophilic offending, which
is, on the one hand, very rare in the general population and, on
the other hand, devastating if misclassified. Therefore, the results
of our study must be cautiously interpreted as they were derived
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from a small single-center cohort and the final model predicts a
phenotype that is both rare and highly impactful in the general
population. Faced with these difficulties regarding interpretability
and generalizability, we took some steps to at least mitigate these
issues. First, we used a repeated nested cross-validation approach
with 10-folds and 10 permutations each on the CV2 and CV1
level. Therefore, despite our small sample, a total of 10,000 models
were computed, and the results presented here (CV ratio, sign-
based consistency, balanced accuracy) are the aggregated across
all these iterations. This approach has been shown to robustly
prevent overfitting and increase generalizability, even when faced
with small sample sizes (25, 110). Furthermore, we used a machine
learning algorithm, the support vector machine with a linear
kernel, which has been repeatedly shown to perform particularly
well at small sample sizes (49). In addition, we added advanced
performance metrics (PSI, NNP) to investigate how our PO model
would perform when faced with varying rates of PO individuals
in possible real-world scenarios. Finally, while a true replication
sample containing both HC and PO individuals was not available,
we used an external sample of HC individuals, in which our PO
model showed high specificity for correctly detecting HC and not
misdiagnosing them as PO individuals.

Beyond these more methodical elaborations, further limitations
of our study are related to the intricacies of the study populations.
Our HC populations from both samples were non-offending,
non-pedophilic individuals, whereas non-pedophilic child sexual
offenders or non-offending pedophilic individuals would have been
more specific control groups. Our PO population was an inpatient
cohort of hands-on pedophilic offenders without any comorbid
psychiatric disorders, which carries additional limitations. First,
the inpatient status could mean that certain effects of deprivation
or incarceration might have influenced the results. Second, our
study sample did not include hands-off pedophilic offenders,
namely consumers of media depicting child sexual abuse, which
is an important mode of child sexual offending leading to the
victimization of a great number of children (111, 112). Third,
excluding PO individuals with comorbid psychiatric diagnoses
might have decreased the representative quality of the study sample
since PO individuals in the general population often suffer from
multiple mental health issues (113). Due to these limitations, the
PO model generated in this study should be considered strictly
exploratory in nature and is not meant to be translated immediately
into clinical practice. Rather, our approach of using machine
learning and neurobiological features is supposed to serve as
a template for future endeavors regarding biomarker-enhanced
risk assessment in the field of CSA and forensic psychiatry.
Future studies should build on our pilot study using higher
resolution magnetic resonance imaging, larger samples, tailored
control groups, and a more in-depth sociodemographic, clinical,
and forensic assessment.

To our knowledge, this is the first study to successfully train
a supervised machine learning classifier on WM microstructure
patterns to distinguish between PO and HC individuals. The
brain-based PO model produced a BAC of 75.5%, an out-of-
sample specificity of 94.3% and was related to the individual’s
previous number of child victims, current stance on sexuality, and
future risk of sexual violent reoffending. We hypothesize that the
discriminatory pattern of WM in the amygdala, ACC, and PFC
could reflect a high-risk interaction between genetic predisposition,

hormonal influence, and environmental factors throughout an
individual’s life. We propose this WM microstructure pattern in
the prefronto-temporo-limbic circuitry as a template for further
research on brain-based biomarkers for pedophilic offenders and
we hope that such biomarkers will improve secondary and tertiary
prevention of child sexual abuse.
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