
Discovering Quantum Circuit Components with Program
Synthesis
Leopoldo Sarra1,2, Kevin Ellis3, and Florian Marquardt1,2

1Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
2Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
3Cornell University, United States

Despite rapid progress in the field, it
is still challenging to discover new ways
to take advantage of quantum computa-
tion: all quantum algorithms need to be
designed by hand, and quantum mechan-
ics is notoriously counterintuitive. In this
paper, we study how artificial intelligence,
in the form of program synthesis, may help
to overcome some of these difficulties, by
showing how a computer can incrementally
learn concepts relevant for quantum cir-
cuit synthesis with experience, and reuse
them in unseen tasks. In particular, we
focus on the decomposition of unitary ma-
trices into quantum circuits, and we show
how, starting from a set of elementary
gates, we can automatically discover a li-
brary of new useful composite gates and
use them to decompose more and more
complicated unitaries.

It has been theorized for decades that quan-
tum computers can perform tasks more efficiently
than classical ones [1]. Consider for example
Shor’s algorithm for factorization [2] or Grover’s
algorithm for search [3], the variational quantum
eigensolver [4] or other quantum machine learn-
ing algorithms [5], which can all have a large im-
pact on important problems. Even though those
algorithms are already very promising, and they
justify the current effort in the development of
large-scale quantum computers [6], it is hard to
automatically exploit the advantages offered by
quantum computing. Indeed, each of those al-
gorithms has been invented specifically for the
task they solve, and often their principles do not
easily generalize to other tasks. Up to now, we
can barely count more than two hundred algo-
rithms in total [7]. While there is strong evi-
dence of a quantum advantage [8], i.e. quantum

Check solutions
check which tasks are solved

-h(I,0)
-h(I,1)
-h(I,2)
-t(I,0)
-t(I,1)
-t(I,2)
-h(t(I,2),1)
-f1(I,1)
…

2. Library Learning:
compress found solutions

1. Program Synthesis:
explore circuits within the time
limit

Add to library

CNOT

HADAMARD T GATE
T

T GATE†
T†

1-qubit

2-qubit new gate

f1

Library: available elementary
components:

Target Unitaries

1 1 0 0
0 0 −1 1
1 −1 0 0
0 0 −1 −1

iterative algorithm

Figure 1: Synthesis of quantum unitaries. Given a
dataset of target unitary matrices, we enumerate quan-
tum circuits for a given timeout interval, using as com-
ponents the elementary gates in the library. After some
matrix decompositions have been found, the solutions
are analyzed and the most useful components are added
to the library as new available gates. The procedure is
repeated for a given number of iterations.

computers can be more powerful than classical
ones, and this advantage on near-term devices
has been even shown experimentally on specific
purpose-designed tasks [9–11], we do not have a
way to automatically make use of quantum prin-
ciples like superposition or entanglement to speed
up classical algorithms: each algorithm must be
designed from scratch, and it is not clear a pri-
ori whether a corresponding faster quantum algo-
rithm exists. Compared to the classical regime,
quantum mechanics is generally counterintuitive
to human common sense, and thus scientists re-
quire a large effort and imagination to conceive
quantum algorithms. Hence, it would be useful
if there was a technique that helped to under-
stand the laws of the quantum world and aided

1

ar
X

iv
:2

30
5.

01
70

7v
1

 [
qu

an
t-

ph
]

 2
 M

ay
 2

02
3

https://orcid.org/0000-0001-7504-8656
https://orcid.org/0000-0001-6586-0632
https://orcid.org/0000-0003-4566-1753

in finding an efficient way to solve a given task
on a quantum computer. It would be an in-
valuable tool to assist researchers in the devel-
opment of new quantum algorithms, perhaps con-
tributing to understanding general principles that
can grant quantum speed up. This long-standing
goal, if attainable at all, is clearly out of reach
at the moment, but it is interesting to explore it
and develop ingredients that could be useful for
that purpose.

This paper takes a step in that direction by
considering a simpler yet core subproblem: in-
stead of working on entire quantum algorithms,
we focus on the purely quantum part, excluding
measurements and classical processing. We de-
velop a machine learning technique to automat-
ically produce a quantum circuit that performs
a requested unitary transformation of a quantum
state. The main innovation of our approach to
this general problem is the gradual discovery of
new composite gates, which can be subsequently
used to decompose more and more complicated
unitary matrices. In this way, we can build a self-
learning compiler, which can express a given uni-
tary matrix into a given set of gates and respect
a given qubit connectivity, without ever provid-
ing explicit transformation rules. Instead, we just
propose a training set of unitary matrices to de-
compose, with varying degrees of difficulty.

At a high level, our method works by itera-
tively (1) searching for correct decompositions,
assembling together gates from our current set of
components, and (2) extracting new components
by analyzing the solutions found in the previous
step. In doing so, our system gradually learns
increasingly useful quantum operations, which it
uses to decompose more and more complex ma-
trices (Fig. 1). At first, our method automati-
cally rediscovers suitable representations of com-
mon gates like SWAP and CZ, even when these
gates are not initially provided to the system. Im-
portantly, it also proposes new unexpected com-
binations of gates that prove to be valuable ingre-
dients in the construction of more sophisticated
unitaries. Circuits that would be too difficult to
synthesize by randomly assembling the initial el-
ementary components can be tractably found us-
ing new gates that the system itself proposed to
use when building easier circuits. In that way, the
system bootstraps a set of new gates from solv-
ing easier problems, which unlocks solving harder

problems, which leads to new gates, and so on.
The technique here presented introduces the

ideas of concept extraction and program synthe-
sis to the field of quantum computing and shows
proof-of-concept applications to the domain of
unitary matrix decomposition. We show the im-
portance of bootstrapping more advanced con-
cepts from simpler ones, and how these concepts
can then be used to solve increasingly complex
problems. The choice of expressing concepts as
small "programs" also allows for better inter-
pretability, in contrast to other possible black-box
approaches like neural networks [12]. Extensions
of these ideas will allow significant improvements
to existing machine learning methods in quantum
computing.

1 Related Works

The synthesis of quantum unitary matrices, to
which we will also just refer as "unitaries" in the
following, is the process of building a quantum
circuit by placing gates one after the other, act-
ing on selected qubits, to reproduce the effect of
the given unitary. The problem of building a cir-
cuit that reproduces the action of a given uni-
tary, or of another quantum circuit, using only a
given set of gates, or respecting some given con-
straints, is well-known in the literature, and is
called compilation [13]. On the other hand, if the
unitary is given by a circuit expressed in a set
of gates, and we want to find an equivalent cir-
cuit which uses another set of gates, the process
is called transpilation. Many algorithms already
exist to compile given unitaries into circuits [14]
that only use a given set of gates, e.g. the ones
that can be physically implemented, some even
using machine learning and reinforcement learn-
ing techniques [15]. Many other works explore
different directions for optimizing the total num-
ber of gates in a circuit [16] or reducing the num-
ber of a given kind of gate, which may be more
expensive or noisy in the considered implemen-
tation [17]. For example, the Solovay-Kitaev al-
gorithm [18, 19] can approximate with arbitrary
error any given unitary matrix with a given fi-
nite set of gates, as long as this set can approx-
imate any one-qubit gate. In our case, we build
a self-learning compiler, which changes its behav-
ior according to the experience, until converging
to the optimal solution for the given architecture.

2

This kind of compiler does not need explicit rules
about how to decompose the given unitary ma-
trix, but just a series of matrices to decompose
with increasing difficulty. We emphasize that the
main interest in our case is not in reproducing
the performance of a state-of-the-art compiler, or
transpiler, but to investigate how to imitate the
ability of scientists to learn new concepts and rea-
son with them, for example by building more and
more complicated circuits from elementary com-
ponents whose behavior is known. In our exam-
ples, we mainly optimize for conceptual efficiency,
i.e. number of used high-level operations to ex-
press a quantum operation, rather than for the
effective experimental implementation cost (e.g.
total gate number minimization). Different con-
straints can potentially be chosen nonetheless.

After expressing quantum circuits more conve-
niently, we can take advantage of machine learn-
ing techniques to assemble them until the re-
quested unitary is produced. We build on ma-
chine learning techniques for program synthe-
sis [20]. Program synthesis methods automat-
ically construct source code, and our work ex-
ploits the fact that a quantum circuit can be eas-
ily expressed as a simple program. Recent pro-
gram synthesis techniques use neural networks
to learn how to generate source code ([21], inter
alia). Our work uses a slightly different family
of learning methods which casts program synthe-
sis as Bayesian inference [22]. This probabilistic
Bayesian framing allows searching for the most
likely programs that solve a given unitary, and
also learning to generate good programs via hier-
archical Bayesian methods. These Bayesian pro-
gram learning methods were developed in a series
of works [23–25]. We directly build upon Dream-
Coder [26], a recent work in this family.

Coming back to the much higher conceptual
level, regarding the longer-term idea of an "arti-
ficial scientist", the first proof-of-principle of an
agent capable of conducting research on its own
has been shown in [27], to automate functional
genomics experiments. The idea of automatic
concept discovery from experience is a helpful in-
gredient for this long-term goal, as it is a first
step towards reasoning. Indeed, there has already
been a large interest also in other fields of physics
ranging from the design of new quantum optics
setups [28], the use of symbolic regression and
graph neural networks to find new laws of astro-

cnot(0, 1)
z(0)
swap(0,1)
h(0)

h 0𝕀swapzcnot 0 0 01 1

1 1 0 0
0 0 −1 1
1 −1 0 0
0 0 −1 −1

Unitary matrix Quantum Circuit

Program Program Tree

a b

c d qubit
matrix

Figure 2: Unitary matrix representations. A quantum
unitary matrix (a) can be represented as a quantum cir-
cuit (b), a sequence of instructions about the gates and
the qubits on which they act (c), or a tree representation
of a program (d). When enumerating new programs, the
input identity matrix (I) is replaced with another gate
applied to other qubits, creating a new branch.

physics [29], to the general development of algo-
rithms capable to formulate scientific laws [30].
In [31], the idea of extraction of building blocks
is used in a reinforcement learning setting to pro-
duce quantum entangled states. Also, projec-
tive simulation [32] allows employing reinforce-
ment learning agents to explore novel algorithms
for quantum communication [33]. While these
techniques share the idea of concept extraction
to solve a specific quantum task, in the usual re-
inforcement learning setting the discovery of new
components is an incidental effect, obtained while
achieving the task. In our case, the goal of circuit
decomposition itself is the discovery of new use-
ful gates, by minimizing the overall complexity of
the solutions, quantified in terms of description
length [34, 35].

2 Methods

In this section, we explain how our algorithm for
unitary synthesis and gate extraction works. As
shown in Fig. 2, quantum circuits can be seen as
programs that subsequently apply operations to
a given state: starting from the identity matrix,
representing a circuit without any gates, each op-
eration corresponds to a multiplication by the
unitary matrix associated to the applied gate.
The final unitary matrix is built up by sequen-
tially multiplying all the unitary matrices. By
working on programs that build up the sequence
of operations that make a circuit, we can explore

3

the space of possible unitary matrix decomposi-
tions with program synthesis.

To begin, we define a probability distribution
over quantum circuits c. Our learning algorithm
works by adjusting the distribution over c to make
useful circuits more likely. The distribution de-
pends on the set of allowed gates, G, together
with the probability of each gate g ∈ G, which
we write θg. We decompose it as a product of
the probability of choosing the specific gates and
applying those gates to the selected qubits. We
assume gates are generated independently at ran-
dom, and that they attach to wires (i.e. qubits)
drawn uniformly and independently at random:

P (c|G, θ) =
∏
g∈c

1 [g ∈ G] θgχ(c, g), (1)

where 1 is the indicator function, yielding one iff
the condition is fulfilled, and χ(c, g) the probabil-
ity of connecting the gate to the specific qubits.
For example, we use uniform probability of as-
sociating a gate to any of the possible qubits:
χ(c, g) = N

−ng
c , with ng is the number of in-

puts to gate g, Nc is the number of qubits in the
circuit c. If the resulting circuit is not valid, for
example if the inputs of a CNOT gate are re-
peated, it is automatically discarded, which leads
to a small modification of the probability χ whose
discussion we omit since it is not crucial for un-
derstanding the workings of the algorithm.

Notice that by optimizing the choice of the set
of gates G, it is possible to make more complex
circuits more likely.

Ultimately our aim is not to probabilistically
score specific circuits but to learn a collection of
gates that are valuable for solving a broad range
of unitary synthesis problems. To that end, we
assume that we have a training set of unitary ma-
trices to decompose, collectively written U . Our
algorithm tries to maximize the posterior prob-
ability of the gate set, given that it must solve
every unitary in U : it finds the optimal gate set
and optimal gate probabilities as

(G∗, θ∗) = arg max
G,θ

P (G, θ|U), (2)

where we employ Bayesian reasoning to write

P (G, θ|U) ∝ (3)
P (G)P (θ|G)

∏
u∈U

∑
c

1[U(c) = u]P (c|G, θ), (4)

where P (G) is the prior over gate sets, P (θ|G) is
the prior of gate weights of a given gate set, and
U(c) is the operator that gives the unitary matrix
associated to a given circuit. The above equation
is computationally intractable because it includes
summing over the infinite space of all circuits (in-
ner sum over c). We introduce a tractable lower
bound on Eq. 4 by only summing over a small set
of possible circuits for each unitary. Writing Bu
for the small set of circuits we consider for unitary
u, our objective function becomes lower-bounded
by

P (G)P (θ|G)
∏
u∈U

∑
c∈Bu

1[U(c) = u]P (c|G, θ). (5)

Eq. 5 serves as our core objective function for
learning a library of gates. A more detailed
derivation of this objective is given in the Ap-
pendix B, and in the original work [26]. Max-
imizing it with respect to (G, θ) corresponds to
updating our gate set to increase the probability
of a circuit solving each unitary. Maximizing it
with respect to Bu corresponds to program syn-
thesis: finding a handful of likely circuits that
evaluate to a given unitary.

More precisely, our system takes as inputs the
example unitary matrices to learn to decompose,
U , together with a set of initial elementary gates,
G0. The unitaries provided as examples in U de-
termine which assemblies of gates are the most
useful, thus the optimal set of learned gates G∗.
The algorithm iterates many times through two
phases: program synthesis, where circuits that
decompose target matrices are proposed, and li-
brary learning, where concepts are extracted from
the found circuits and the most useful sequences
of gates are added to the set of elementary gates
G as a composite gate. It can then use the new
gate as a single block in the subsequent iterations
of program synthesis. Mathematically, program
synthesis corresponds to maximizing Eq. 5 w.r.t.
Bu, while library learning corresponds to maxi-
mizing w.r.t. (θ,G). A sketch of the algorithm is
shown in Fig. 1.

2.1 Program Synthesis

During this phase of the algorithm, we seek the
top k most likely programs solving each unitary:

Bu ← arg k-max
c

P (c|G, θ)1[U(c) = u], (6)

4

where arg k-maxc is the function that returns the
arguments with the largest k values. To find those
top k circuits, we enumerate programs in order
of decreasing probability under P (·|G, θ) until k
solutions have been found or we reach a time-
out. We construct the syntax trees of candidate
programs bottom-up, with higher probability ex-
pressions being generated first, using recent algo-
rithms for probabilistic program enumeration [36,
37]. As an optimization, we discard any programs
containing subexpressions that are semantically
equivalent to higher-probability subexpressions,
meaning they evaluate to the same unitary (in the
literature called pruning by observational equiv-
alence [38]). Within our implementation, we
search for a maximum budget of 200 seconds and
collect the top k = 2 programs for each unitary.

In practice, to accelerate the convergence in the
algorithm, we do not update the programs for ev-
ery unitary at each iteration. Instead, we sample
a small batch of unitaries and only synthesize pro-
grams for those tasks. This is analogous to the
use of mini batching for training neural networks
using gradient descent [12]. Essentially, it allows
taking fast, small learning steps (updating the set
of available gates G) without examining and an-
alyzing the entire training set.

Although enumeration may seem like a very
basic program synthesis strategy, our goal is to
learn a sophisticated set of gates G such that
even a simple enumerative search can quickly un-
cover interesting unitaries. Thus, the ability of
the program synthesis to succeed hinges critically
on learning a good gate library G, which we de-
scribe next.

2.2 Library building

During the library building step, we augment the
library of gates by adding new compositions of
gates that the system itself proposes. We do this
by analyzing the circuits found during the pro-
gram synthesis phase and extracting commonly
occurring patterns of gates. Adding these new
patterns of gates to G increases the probability
of generating circuits that use them.

On the other hand, the goal of library building
is not to simply memorize every successful circuit,
even though memorizing would most increase the
probability of the programs found so far. Instead,
we want to find new gates that generalize the pat-
terns found in the synthesized programs. Striking

the right balance is accomplished by prioritizing
gate sets that are compressive, i.e. have small de-
scription length [34, 35]. Remembering that our
goal is to maximize Eq. 4, we see that we need
to not just make the circuits likely under G, but
also have a G with a high prior probability P (G).
Our system uses a prior that assigns less proba-
bility to larger sets of gates and to gates with
many subcomponents, which exerts pressure for
proposing new gates that are small, yet broadly
useful across many tasks.

Algorithmically, our system proposes new gates
by extracting fragments of program syntax trees
discovered during the previous program synthesis
phase. Given a set of candidate new gates, G′, it
then constructs a set of candidate new libraries
that extend the old library by exactly one gate:
{G ∪ {g′} : g′ ∈ G′}. For each such G ∪ {g′},
the system estimates a new θ using Expectation-
Maximization [35]. The system finally computes
the objective function in Eq. 5, and takes the gate
which most increases it. This entire process re-
peats until Eq. 5 fails to improve, and then an-
other round of program synthesis begins. See [26]
for details.

Despite the apparent simplicity of the synthesis
step, the overall algorithm is substantially more
efficient than simple brute-force enumeration, as
each component is used according to its assigned
probability, and branches of the tree are pruned
as they are discovered to be equivalent to al-
ready known branches. Also, the addition of the
extracted gates to the set of elementary gates
increases the breadth of the search tree (more
components to choose from at each step) but
reduces the required depth of the search (num-
ber of components to put together one after the
other). Without these tricks, there would be a
combinatorial explosion with the depth of the tree
(e.g. O((gn)d) with g elementary gates, n qubits
and depth of the tree d, considering only 1-qubit
gates in this rough estimate). It would be just
unfeasible to decompose very long circuits, and
this is why reducing the depth to explore is so
helpful. Using the probabilistic guidance of the
learned (G, θ), we can discover a circuit c in at
most O(1/P (c|G, θ)), which may be much bet-
ter than O((gn)d) if the target circuit c employs
similar computational motifs to the training data.
In some sense, this algorithm allows us to learn
a domain-specific language for quantum circuits,

5

a

f19

Iteration

Fraction of solved tasks

= new gate added

Task likelihood evolution

Iteration

b

Figure 3: Unitary synthesis with full connectivity among
qubits. (a) Fraction of solved tasks at each iteration.
(b) Likelihood to decompose some target unitaries dur-
ing the algorithm iterations (P (u|G, θ)). The star sym-
bol shows the first iteration in which the target matrix
has been successfully decomposed. As new gates are
discovered, some matrices become easier to decompose.
For three tasks, we show the circuit that generates the
target matrix in the insets. In both figures, the blue
symbols mark the iterations at which a new gate has
been extracted.

by discovering a good prior to guide the circuit
synthesis.

3 Results and discussion
In this section, we show the application of our
unitary matrix decomposition algorithm using
an elementary set of gates, which can theoreti-
cally approximate any circuit. We show results
when enforcing either full connectivity between
qubits, or only allowing gates between nearest-
neighboring qubits (e.g. between qubit 0 and 1
but not 0 and 2). To make the search faster and
focus on the proof of concept, we limit ourselves
to discrete gates, i.e. gates that do not depend
on a tunable real parameter: this would require
an optimization over the parameter of the gates,

in addition to the search among the possible pro-
grams. For simplicity, we also fix the number of
qubits to be the same in the entire set. In partic-
ular, to avoid the combinatorial explosion due to
input qubit combinations (a n-qubit gate should
be tested on all permutations of qubit inputs), we
limit our examples to circuits with only 3 qubits,
but generalizations to larger circuits are of course
possible.

We choose G0 ={H, T, T†, CNOT} as the ele-
mentary gate set. This essentially corresponds to
the Clifford gate set, plus T gates to make it a uni-
versal approximator [39, 40]. We also include the
T † gate, which itself corresponds to seven T gates,
to spifeed up the search. The choice of the target
unitary set U is important, as the extracted gates
will be selected to maximize the decomposition
efficiency over those tasks. In general, some uni-
taries are much harder to approximate because
they require many elementary gates. Sampling
from the space of unitary matrices would gener-
ally produce matrices that are too hard to de-
compose when starting from our elementary set
of gates and trying combinations of them. In our
experiments, to be sure that it can be decom-
posed in a finite amount of search time, we build
U by defining another set of gates, Gtasks, which
uses more high-level operations. We sample cir-
cuits from Gtasks by randomly putting gates on
the circuit. The unitaries associated with the
sampled circuits will be the target for our algo-
rithm. To keep the decomposition difficulty un-
der control, also the gates in Gtasks have no con-
tinuous parameters, in particular Gtasks = {H, T,
T†, S, X, Y, Z, SX, SX†, CNOT, CY, CZ, CS,
CH, SWAP, iSWAP}. We first generate a set of
matrices by enumerating all the possible circuits
given by this set within 50 seconds. From this set,
we select 1000 matrices to build U . To make sure
that the train set always contains a significant
fraction of both easy and difficult decomposition
tasks, we choose them with uniform probability
in the number of gates of the initial circuits, tak-
ing into account only circuits generated within
the timeout. All other generated unitaries are in-
cluded in our test set T , and they will be used
to assess the performance of the algorithm. The
target dataset thus contains tasks with different
levels of difficulty, allowing the algorithm to grad-
ually learn to solve more and more complicated
tasks. It is important to include unitaries with

6

iteration

Solution likelihood

Gate

us
ag

e

Gate usage
log-likelihood

ba

= new gate

= elementary gate

Probability evolution

c

f18

f4
f7
f10

=

=
=
=

d

f14

Figure 4: Analysis of extracted gates. (a) Evolution of
the probability of using a certain gate (θ). Some ex-
tracted gates (in blue) become more important during
the iterations, while some elementary gates (in black)
become rarer. (b) Likelihood of decomposing the target
unitaries with different elementary sets: the initial set of
gates, the final one (which also includes the extracted
gates), and the set of gates with which the target dataset
has been generated. (c) Final probability of using a cer-
tain gate in G100 ("weight") and in the found solutions
("frequency"). In blue are shown the extracted gates,
in black the initial ones (in decreasing order: CNOT,
T, Hadamard, and T†). (d) The first few most useful
extracted gates.

different decomposition lengths. Indeed, only af-
ter some tasks are solved it is possible to extract
gates that can be used to solve other tasks since
we need at least some elements in Bk in Eq. 5.
If all tasks are too complicated, the learning pro-
cedure will not start and each iteration will not
provide any benefit, since it will always propose
the same programs. In that case, the enumeration
timeout should be increased until some solutions
are found.

We perform 100 algorithm iterations, each time
considering batches of 25 tasks and enumerating
for 150 seconds (in parallel with 32 CPUs). We
see that after some iterations we can solve most
of the about 50000 of tasks in the test set. Every
time we learn a new gate, the algorithm starts
using it to explore new circuits thus solving more

tasks. To evaluate the performance of the algo-
rithm, we can consider the test set T (which the
algorithm has never seen during the previous it-
erations) and check how many unitaries can be
decomposed into a circuit. Results are shown in
Fig. 3. After about 50 iterations, the algorithm
can decompose almost all the proposed matri-
ces. The algorithm rediscovers suitable decom-
positions of gates into the available elementary
gates. For example, it finds useful elementary
decompositions of high-level gates like the SWAP
gate and the Pauli gates, adding them as building
blocks to its library. Importantly, it goes beyond
those simpler examples and discovers more com-
plicated composite gates, which also seem to be
useful to reuse. By discovering useful building
blocks, matrices that are initially impossible to
decompose in the given time budget because of
the high number of required components are eas-
ily decomposed into short sequences of the newly
extracted components. Indeed, as soon as a new
gate is extracted, many new unitary matrices can
immediately be decomposed. The "train" and
"test" curves are obtained by checking all the
found programs at a given iteration against each
unitary matrix in the target set U and test set
T . We recall that here we consider the whole tar-
get set for evaluation purposes, but the algorithm
only has access to a small random batch of ma-
trices at each iteration. As Fig. 3b shows, the
difficulty to decompose a given matrix changes
during the algorithm iterations: when new gates
are added, some unitaries suddenly become eas-
ier to be decomposed, while other matrices, which
mainly use the initial elementary components, be-
come less likely to occur because those compo-
nents become less frequent in the enumeration.
Overall, all matrices become easier to decompose.

It is also interesting to inspect the library of
extracted gates and try to interpret their behav-
ior. As seen in Fig. 4, after discovering compos-
ite gates, initial gates like T become less useful
and are used less often, while some new gates
like "f18", which corresponds to a controlled
Hadamard gate suitably decomposed into elemen-
tary gates, and "f4", which corresponds to a con-
trolled Z gate, are used more often than CNOT .
By looking at Fig. 4b, we see that, initially, it
is generally very hard to find decompositions for
the target matrices (in orange). After running the
algorithm, we have a new set of gates (in blue)

7

that allows decomposing most of the matrices.
We go from problems with probability ' e−60 to
be solved to ' e−20, about 17 orders of magni-
tude larger probability, which make it feasible to
find the decomposition in a finite amount of time.
It is interesting to observe how a different choice
of elementary components can make the decom-
position easier. In particular, the extracted set
of gates at the final iteration, G100, makes the
decomposition of the target matrices even easier
than when using exactly the same set we used
to generate the target dataset itself (in green).
In other words, our algorithm discovers a set of
quantum gates to describe the target dataset that
is even better than the set that we used to gen-
erate it, Gtasks. For example, it turns out that it
is much more useful to have two-qubit gates like
CH and CZ than CNOT.

We also performed another experiment with
the same parameters, but this time we con-
strained the 2-qubit gates to only act on neigh-
boring qubits. This configuration resembles a lin-
ear array of qubits, where interactions are con-
strained to nearest neighbors. Also in this case,
the algorithm learns to decompose more and more
matrices with experience. We notice that this
time a larger fraction cannot be decomposed yet
even after 100 iterations. This is due to the
larger difficulty of this problem, and with more
iterations and larger enumeration timeout results
would keep improving. Again, the algorithm
learns more complicated gates and finds similar
results as in the previous example. In addition, it
also learns gates that allow it to efficiently han-
dle the enforced connectivity constraint, like the
SWAP gate between the first and the third qubit
(by swapping with the middle one) and similar
two and three-qubit gates. The automatic ex-
traction of composite gates allows for expressing
concisely very long sequences of gates. Results
are shown in Fig. 5.

The final outcome of the algorithm depends of
course on the chosen definition of being a bet-
ter set of gates: in this case, we wanted to mini-
mize the number of components to put in a circuit
so that all target matrices could be decomposed
with some high-level gates. However, different
constraints can be considered, for example, to in-
clude the overall length of the circuit in terms of
elementary components or a different cost for the
use of each component.

c

f1

f20

f0

f4

f22

f19

f13 :

f2

a

b

a

Iteration

Fraction of solved tasks

= new gate added

b
f1

f36

f10 f17

c

=
=

Figure 5: Unitary synthesis with only nearest-neighbor
connectivity among qubits. (a) Percentage of solved
tasks at each iteration. (b) Some extracted gates. (c)
Example decomposition of a high-level circuit into the
requested gate set.

4 Outlook
In this paper, we have shown how concept extrac-
tion and program synthesis techniques can po-
tentially help quantum computing, by providing
tools to work and reason with the quantum world.
In particular, we have shown a procedure to dis-
cover useful quantum gates (in terms of reusabil-
ity) by just giving a set of unitary matrices to de-
compose. This can be seen as a first step toward
the longer-term goal of enabling the discovery of
new quantum algorithms.

The extension to larger qubit numbers will re-
quire careful optimization of the performance of
the different parts of the algorithm (search and
library building), but we anticipate there is a lot
of room for improvement here. Indeed, our ex-
periments take about 20 minutes per iteration
to run, and systems with more qubits would re-
quire much more time. It is also possible to test
the generalization capabilities by running first on
smaller systems and then trying to solve more
complicated tasks on larger systems. To improve
performance, it would be possible to restrict the

8

decomposition to the Clifford gate set, so that cal-
culation would be faster, e.g. by exploiting highly
optimized Clifford simulators that can deal with
large qubit numbers [41]. To tackle the combi-
natorial explosion due to the larger number of
possible qubits a gate can be applied to, more
advanced approximations for the circuit distribu-
tion P (c) in Eq. (1) may be employed. For exam-
ple, instead of factorizing the circuit distribution
as the product of the probability of its gates, we
could condition the probability of a gate to the
previous ones, improving the precision of the enu-
merator.

One of the most important future extensions
would concern the choice of the set of target uni-
taries. While in our case these were generated as
random circuits from a high-level gate set, the ap-
plication to more structured training sets would
greatly increase the power of the approach. We
are thinking, in particular, of circuits generated
from a library of quantum algorithms.

Different connectivity constraints may also be
enforced, or one could extend the programs that
generate the circuits to also include programming
constructs like conditions and loops. In the long
run, the presented library bootstrapping proce-
dure can be part of future algorithms to auto-
matically extract components and reuse them in a
curriculum-learning approach [42]. Also, it would
be possible to adopt this concept extraction al-
gorithm as an additional step of a reinforcement
learning agent [43] that tries to decompose a uni-
tary matrix. In that case, the goal would be to
train an agent (i.e. a probability distribution of
putting a certain gate given the current circuit)
to synthesize the unitary, where the state would
be the current circuit, and the possible actions
would be the allowed elementary gates. It would
be possible to extend the action space by adding
the extracted gates, thus facilitating the explo-
ration of the circuit space, as in hierarchical re-
inforcement learning [44].

Finally, on a more general level, the ability
to extract concepts and to use them in further
exploration is also interesting for the develop-
ment of future "artificial scientist" algorithms,
here applied to the quantum domain and specif-
ically quantum computation, aimed at reasoning
and developing scientific models similarly to hu-
mans: the possibility to define concepts and rea-
son about them is reasonably a necessary skill

for this purpose. Similar techniques can be a
useful addition to existing machine learning al-
gorithms for quantum circuit design, and, in the
long run, they may help to develop new quantum
algorithms.

The code of the algorithm and the instructions
to reproduce the presented examples are open-
sourced on GitHub 1.

Acknowledgments
This work was supported by the Munich Quan-
tum Valley, which is supported by the Bavarian
state government with funds from the Hightech
Agenda Bayern Plus, and by the Max Planck So-
ciety.

References
[1] Richard P. Feynman. “Simulating physics

with computers”. International Journal of
Theoretical Physics 21, 467–488 (1982).

[2] P.W. Shor. “Algorithms for quantum com-
putation: discrete logarithms and factoring”.
In Proceedings 35th Annual Symposium on
Foundations of Computer Science. Pages
124–134. Santa Fe, NM, USA (1994). IEEE
Comput. Soc. Press.

[3] Lov K. Grover. “A fast quantum mechanical
algorithm for database search”. In Proceed-
ings of the twenty-eighth annual ACM sym-
posium on Theory of computing - STOC ’96.
Pages 212–219. Philadelphia, Pennsylvania,
United States (1996). ACM Press.

[4] Alberto Peruzzo, Jarrod McClean, Peter
Shadbolt, et al. “A variational eigenvalue
solver on a photonic quantum processor”.
Nature Communications 5, 4213 (2014).

[5] Jacob Biamonte, Peter Wittek, Nicola Pan-
cotti, et al. “Quantum machine learning”.
Nature 549, 195–202 (2017).

[6] John Preskill. “Quantum computing 40 years
later” (2021).

[7] Ashley Montanaro. “Quantum algorithms:
an overview”. npj Quantum Information 2,
15023 (2016).

[8] John Preskill. “Quantum computing and the
entanglement frontier” (2012).

1https://github.com/ellisk42/ec/tree/quantum_
algorithms-simplified

9

https://dx.doi.org/10.1007/BF02650179
https://dx.doi.org/10.1007/BF02650179
https://dx.doi.org/10.1109/SFCS.1994.365700
https://dx.doi.org/10.1109/SFCS.1994.365700
https://dx.doi.org/10.1145/237814.237866
https://dx.doi.org/10.1038/ncomms5213
https://dx.doi.org/10.1038/nature23474
https://dx.doi.org/10.1038/npjqi.2015.23
https://dx.doi.org/10.1038/npjqi.2015.23
https://github.com/ellisk42/ec/tree/quantum_algorithms-simplified
https://github.com/ellisk42/ec/tree/quantum_algorithms-simplified

[9] Scott Aaronson and Alex Arkhipov. “The
computational complexity of linear optics”.
In Proceedings of the forty-third annual
ACM symposium on Theory of comput-
ing. Pages 333–342. San Jose California
USA (2011). ACM.

[10] Frank Arute, Kunal Arya, Ryan Babbush,
et al. “Quantum supremacy using a pro-
grammable superconducting processor”. Na-
ture 574, 505–510 (2019).

[11] Han-Sen Zhong, Hui Wang, Yu-Hao Deng,
et al. “Quantum computational advan-
tage using photons”. Science 370, 1460–
1463 (2020).

[12] Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. “Deep Learning”. MIT Press.
(2016). url: 10.5555/3086952.

[13] Giuliano Benenti, Giulio Casati, and Giu-
liano Strini. “Principles of quantum com-
putation and information”. World Scien-
tific. Hackensack, N.J (2004). url: https:
//doi.org/10.1142/5528.

[14] Mateusz Ostaszewski, Edward Grant, and
Marcello Benedetti. “Structure optimization
for parameterized quantum circuits”. Quan-
tum 5, 391 (2021).

[15] Lorenzo Moro, Matteo G. A. Paris, Marcello
Restelli, and Enrico Prati. “Quantum com-
piling by deep reinforcement learning”. Com-
munications Physics 4, 178 (2021).

[16] Thomas Fösel, Murphy Yuezhen Niu, Flo-
rian Marquardt, and Li Li. “Quantum circuit
optimization with deep reinforcement learn-
ing” (2021). arxiv:2103.07585.

[17] Pei-Yong Wang, Muhammad Usman, Udaya
Parampalli, et al. “Automated Quantum Cir-
cuit Design with Nested Monte Carlo Tree
Search” (2022). arxiv:2207.00132.

[18] A Yu Kitaev. “Quantum computations:
algorithms and error correction”. Rus-
sian Mathematical Surveys 52, 1191–
1249 (1997).

[19] C.M. Dawson and M.A. Nielsen. “The
Solovay-Kitaev algorithm”. Quantum Infor-
mation and Computation 6, 81–95 (2006).

[20] Sumit Gulwani, Oleksandr Polozov, and
Rishabh Singh. “Program synthesis”. Num-
ber 4.2017, 1-2 in Foundations and trends
in programming languages. Now Publishers.
Hanover, MA Delft (2017). url: http://dx.
doi.org/10.1561/2500000010.

[21] Yujia Li, David Choi, Junyoung Chung,
et al. “Competition-level code generation
with AlphaCode”. Science 378, 1092–
1097 (2022).

[22] Feras A. Saad, Marco F. Cusumano-Towner,
Ulrich Schaechtle, et al. “Bayesian synthesis
of probabilistic programs for automatic data
modeling”. Proceedings of the ACM on Pro-
gramming Languages 3, 1–32 (2019).

[23] Eyal Dechter, Jon Malmaud, Ryan P.
Adams, and Joshua B. Tenenbaum. “Boot-
strap Learning via Modular Concept Dis-
covery”. In Proceedings of the Twenty-Third
International Joint Conference on Artificial
Intelligence. Pages 1302–1309. IJCAI ’13.
AAAI Press (2013). url: https://www.
scopus.com/inward/record.uri?eid=
2-s2.0-84896061120&partnerID=40&md5=
0002fb391824bcd83d441b26339c5cef.

[24] Percy Liang, Michael I. Jordan, and
Dan Klein. “Learning Programs: A
Hierarchical Bayesian Approach”. In
Proceedings of the 27th International
Conference on International Conference
on Machine Learning. Pages 639–646.
ICML’10Madison, WI, USA (2010). Omni-
press. url: https://icml.cc/Conferences/
2010/papers/568.pdf.

[25] Kevin Ellis, Lucas Morales, Mathias Sablé-
Meyer, et al. “Library Learning for Neurally-
Guided Bayesian Program Induction”. In
Proceedings of the 32nd International Con-
ference on Neural Information Processing
Systems. Pages 7816–7826. NIPS’18Red
Hook, NY, USA (2018). Curran Associates
Inc. url: https://proceedings.neurips.
cc/paper_files/paper/2018/file/
7aa685b3b1dc1d6780bf36f7340078c9-Paper.
pdf.

[26] Kevin Ellis, Catherine Wong, Maxwell Nye,
et al. “DreamCoder: bootstrapping in-
ductive program synthesis with wake-sleep
library learning”. In Proceedings of the
42nd ACM SIGPLAN International Confer-
ence on Programming Language Design and
Implementation. Pages 835–850. Virtual
Canada (2021). ACM.

[27] Ross D. King, Jem Rowland, Stephen G.
Oliver, et al. “The Automation of Science”.
Science 324, 85–89 (2009).

[28] Sören Arlt, Carlos Ruiz-Gonzalez, and

10

https://dx.doi.org/10.1145/1993636.1993682
https://dx.doi.org/10.1038/s41586-019-1666-5
https://dx.doi.org/10.1038/s41586-019-1666-5
https://dx.doi.org/10.1126/science.abe8770
https://dx.doi.org/10.1126/science.abe8770
10.5555/3086952
https://doi.org/10.1142/5528
https://doi.org/10.1142/5528
https://dx.doi.org/10.22331/q-2021-01-28-391
https://dx.doi.org/10.22331/q-2021-01-28-391
https://dx.doi.org/10.1038/s42005-021-00684-3
https://dx.doi.org/10.1038/s42005-021-00684-3
https://dx.doi.org/10.1070/RM1997v052n06ABEH002155
https://dx.doi.org/10.1070/RM1997v052n06ABEH002155
https://dx.doi.org/10.1070/RM1997v052n06ABEH002155
https://dx.doi.org/10.26421/QIC6.1-6
https://dx.doi.org/10.26421/QIC6.1-6
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010
https://dx.doi.org/10.1126/science.abq1158
https://dx.doi.org/10.1126/science.abq1158
https://dx.doi.org/10.1145/3290350
https://dx.doi.org/10.1145/3290350
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896061120&partnerID=40&md5=0002fb391824bcd83d441b26339c5cef
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896061120&partnerID=40&md5=0002fb391824bcd83d441b26339c5cef
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896061120&partnerID=40&md5=0002fb391824bcd83d441b26339c5cef
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896061120&partnerID=40&md5=0002fb391824bcd83d441b26339c5cef
https://icml.cc/Conferences/2010/papers/568.pdf
https://icml.cc/Conferences/2010/papers/568.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7aa685b3b1dc1d6780bf36f7340078c9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7aa685b3b1dc1d6780bf36f7340078c9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7aa685b3b1dc1d6780bf36f7340078c9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7aa685b3b1dc1d6780bf36f7340078c9-Paper.pdf
https://dx.doi.org/10.1145/3453483.3454080
https://dx.doi.org/10.1126/science.1165620

Mario Krenn. “Digital Discovery of a Sci-
entific Concept at the Core of Experimental
Quantum Optics” (2022).

[29] Miles Cranmer, Alvaro Sanchez-Gonzalez,
Peter Battaglia, et al. “Discovering Symbolic
Models from Deep Learning with Inductive
Biases”. In Proceedings of the 34th Inter-
national Conference on Neural Information
Processing Systems. NIPS’20Red Hook, NY,
USA (2020). Curran Associates Inc.

[30] Tailin Wu and Max Tegmark. “Toward an
artificial intelligence physicist for unsuper-
vised learning”. Physical Review E 100,
033311 (2019).

[31] Lea M. Trenkwalder, Andrea López Incera,
Hendrik Poulsen Nautrup, et al. “Auto-
mated Gadget Discovery in Science” (2022).
arXiv:2212.12743 [quant-ph].

[32] Hans J. Briegel and Gemma De las Cuevas.
“Projective simulation for artificial intelli-
gence”. Scientific Reports 2, 400 (2012).

[33] Julius Wallnöfer, Alexey A. Melnikov, Wolf-
gang Dür, and Hans J. Briegel. “Ma-
chine Learning for Long-Distance Quan-
tum Communication”. PRX Quantum 1,
010301 (2020).

[34] J. Rissanen. “Modeling by shortest data de-
scription”. Automatica 14, 465–471 (1978).

[35] Christopher M. Bishop. “Pattern recognition
and machine learning”. Information science
and statistics. Springer. New York (2006).
url: 10.5555/1162264.

[36] Shraddha Barke, Hila Peleg, and Nadia Po-
likarpova. “Just-in-time learning for bottom-
up enumerative synthesis”. Proceedings of
the ACM on Programming Languages 4, 1–
29 (2020).

[37] Nathanaël Fijalkow, Guillaume Lagarde,
Théo Matricon, et al. “Scaling Neural
Program Synthesis with Distribution-Based
Search”. Proceedings of the AAAI Con-
ference on Artificial Intelligence 36, 6623–
6630 (2022).

[38] Abhishek Udupa, Arun Raghavan, Jyotir-
moy V. Deshmukh, et al. “TRANSIT: speci-
fying protocols with concolic snippets”. In
Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language De-
sign and Implementation. Pages 287–296.
Seattle Washington USA (2013). ACM.

[39] Vadym Kliuchnikov, Dmitri Maslov, and
Michele Mosca. “Fast and efficient ex-
act synthesis of single qubit unitaries gen-
erated by Clifford and T gates” (2012).
arxiv:1206.5236.

[40] Brett Giles and Peter Selinger. “Exact syn-
thesis of multiqubit Clifford+ T circuits”.
Physical Review A 87, 032332 (2013).

[41] Craig Gidney. “Stim: a fast stabilizer circuit
simulator”. Quantum 5, 497 (2021).

[42] Xin Wang, Yudong Chen, and Wenwu Zhu.
“A Survey on Curriculum Learning”. IEEE
Transactions on Pattern Analysis and Ma-
chine IntelligencePages 1–1 (2021).

[43] Richard S. Sutton and Andrew G. Barto.
“Reinforcement learning: an introduction”.
Adaptive computation and machine learn-
ing series. The MIT Press. Cambridge, Mas-
sachusetts (2018). Second edition. url: 10.
5555/3312046.

[44] Shubham Pateria, Budhitama Subagdja,
Ah-hwee Tan, and Chai Quek. “Hierarchi-
cal Reinforcement Learning: A Comprehen-
sive Survey”. ACM Computing Surveys 54,
1–35 (2022).

[45] Benjamin C. Pierce. “Types and program-
ming languages”. MIT Press. Cambridge,
Mass (2002). url: 10.5555/509043.

[46] Athanasios Papoulis and S. Unnikrishna Pil-
lai. “Probability, random variables, and
stochastic processes”. McGraw-Hill. Boston,
Mass. (2009). 4. ed., internat. ed., nachdr
edition. url: https://doi.org/10.1115/1.
3269815.

[47] At Av, Md Sajid Anis, Abby-Mitchell, et al.
“Qiskit: An Open-source Framework for
Quantum Computing” (2021).

11

https://dx.doi.org/10.5555/3495724.3497186
https://dx.doi.org/10.1103/PhysRevE.100.033311
https://dx.doi.org/10.1103/PhysRevE.100.033311
https://dx.doi.org/10.1038/srep00400
https://dx.doi.org/10.1103/PRXQuantum.1.010301
https://dx.doi.org/10.1103/PRXQuantum.1.010301
https://dx.doi.org/10.1016/0005-1098(78)90005-5
10.5555/1162264
https://dx.doi.org/10.1145/3428295
https://dx.doi.org/10.1145/3428295
https://dx.doi.org/10.1145/3428295
https://dx.doi.org/10.1609/aaai.v36i6.20616
https://dx.doi.org/10.1609/aaai.v36i6.20616
https://dx.doi.org/10.1609/aaai.v36i6.20616
https://dx.doi.org/10.1145/2491956.2462174
https://dx.doi.org/10.1103/PhysRevA.87.032332
https://dx.doi.org/10.22331/q-2021-07-06-497
https://dx.doi.org/10.1109/TPAMI.2021.3069908
https://dx.doi.org/10.1109/TPAMI.2021.3069908
https://dx.doi.org/10.1109/TPAMI.2021.3069908
10.5555/3312046
10.5555/3312046
https://dx.doi.org/10.1145/3453160
https://dx.doi.org/10.1145/3453160
10.5555/509043
https://doi.org/10.1115/1.3269815
https://doi.org/10.1115/1.3269815

q0

q1

X

Figure 6: Example circuit

A The program synthesis algorithm
To apply the program synthesis framework presented in [26], we need to express quantum circuits as pro-
grams. The specific formalism that we adopt is that of functional programming, typed-λ-calculus [45]
in particular. Each quantum gate becomes a function that takes as input a quantum circuit and the
sequence of qubits on which it should act, and returns a quantum circuit with the requested gate ap-
plied on the right. In this way, a program is simply the sequential application of many gates, starting
from the empty circuit I. For example, the circuit in Fig. 6 can be expressed as

f = cnot(x(I,0),0,1)

Lambda calculus allows representing and working with these kinds of expressions efficiently, so that
each function and its arguments are associated to the leaves of a tree and new programs can be obtained
by modifying existing trees. In this language, the previous function is expressed as

(lambda (lambda (lambda (cnot (x $0 $1) $1 $2))))

where $0 is the initial input circuit and $i the qubit index (increased by one). For the technical
description of the lambda calculus programs as trees and their advantages, we refer to the DreamCoder
paper [26].

B Probabilistic framing
In this section, we give some more details about the probabilistic framing that yields the optimization
objective of our algorithm, while still referring to [26] for the full treatment. We want to find the
optimal set of gates G∗ and the optimal single gate probabilities θ∗ = {θg,∀g ∈ G}. For this purpose,
we perform Bayesian inference using Bayes theorem [46]. The posterior reads

P (G, θ|U) = P (U |G, θ)P (G, θ)
P (U) , (7)

where P (G, θ) is the prior, P (U |G, θ) is the likelihood, and P (U) the marginal probability of the
evidence. We can consider U as constant because it does not depend on this set of gates, hence we
drop the denominator from the above equation (Eq. 2):

(G∗, θ∗) = arg max
G,θ

P (G, θ|U). (8)

By definition, we can factorize the joint distribution as P (G, θ) = P (G)P (θ|G), and write the likelihood
as

P (U |G, θ) =
∏
u

P (u|G, θ), (9)

where P (u|G, θ) is the probability of a specific unitary u given G and θ, because of the independence
between different unitary matrices in the dataset. The probability of a specific unitary can in turn be
written as a function of the probability of generating it from sequences of gates in G:

P (u|G, θ) =
∑
c

P (u|c)P (c|G, θ), (10)

12

where the sum over c is intended over all the circuits that can be generated by assembling sequences
of gates in G. In our case, each unitary is deterministically induced by a circuit, thus

P (u|c) = 1[U(c) = u]. (11)

The probability of a circuit given a gate set can be rewritten as a function of the gate probabilities θ.
Indeed, a circuit is a sequence of gates, each applied to a set of qubits. In general, the probability of
the ith gate could depend on all the previous gates, thus the probability of a sequence of gates would
read P (g0)P (g1|g0)P (g2|g1, g0) In our case, we made the roughest approximation to consider these
probabilities to be independent:

∏
g θg. The probability of a circuit is thus obtained by multiplying

the gate sequence probability and the multiplicity factor that takes into account the number of inputs
of the gate and the number of possible qubits to connect it to. Therefore, we obtain Eq. 1

P (c|G, θ) =
∏
g∈c

1 [g ∈ G] θgχ(c, g). (12)

If the resulting circuit is not valid, for example, if the inputs of a CNOT gate are repeated, it is
automatically discarded. In this case, the χ factor would include an extra characteristic function that
selects only the accepted circuits. In particular, to obtain gate sequences of variable length, when
sampling we add a terminating gate to G with some probability θend and stop the sequence as soon as
the gate gets extracted.

By putting it all together, we obtain the optimization objective in Eq. 4

P (G, θ|U) ∝ P (G)P (θ|G)
∏
u∈U

∑
c

1[U(c) = u]P (c|G, θ). (13)

Our program synthesis algorithm systematically enumerates expression trees sequentially in decreas-
ing probability order. Therefore, instead of finding all the possible circuits that can produce a given
unitary, we consider only the most likely k (given the current set of gates G and θ). We obtain the
lower bound in Eq. 5

P (G)P (θ|G)
∏
u∈U

∑
c∈Bu

1[U(c) = u]P (c|G, θ) (14)

just because we are neglecting smaller positive terms. The maximization of this lower bound also
implies the indirect maximization of the posterior.

The specific details of the enumeration algorithms are in the original DreamCoder paper [26] and
in the GitHub repository. After we enumerated programs within a certain timeout, we start checking
whether some of those programs can produce a circuit that is associated to one of the unitary matrices
we want to decompose. At each iteration, we consider a minibatch of 25 unitaries from the whole
training set and update the sets Bu for those unitaries.

C Implementation details
The algorithm workflow is described in pseudocode in Algorithm 1. It takes as input the set of target
unitary matrices to decompose, the initial set of elementary gates to use in the assembled circuits, the
batch size of each iteration, the enumeration timeout in seconds, and the number of iterations. The
output is the final list of extracted gates. To run the algorithm again and test the performance, it is
enough to enumerate programs again for a given timeout and check against the test set.

We ran the search in parallel on 32 Xeon Gold 6130 CPUs. Each of them explores disjoint subsets of
the program space. The enumeration runs for a fixed amount of time (150s). The library building step
can take a longer amount of time, according to the number of found solutions and the number of tasks
in the considered batch of tasks (in our case, 25). This phase can last up to about 15 minutes and is
not parallelized. The effect of checking only against a few tasks at each iteration allows speeding up the

13

Algorithm 1: Unitary matrix decomposition algorithm
Data: target_unitaries, gate_library, batch_size, timeout, N_iterations
Result: gate_library

1 for n <N_iterations do
2 target_unitaries_batch ← get_batch(target_unitaries, batch_size);
3 enumerated_programs ← enumerate(timeout, gate_library);
4 solutions ← check_solutions(enumerated_programs, target_unitary_batch);
5 gate_library ← update_library(elementary_set, solutions);
6 end

a

Iteration

Fraction of solved tasks

= new gate added

Task likelihood evolution

Iteration

b

Figure 7: Estimated performance on the target set of matrices during algorithm iterations, calculated on the effectively
seen matrices (in green), and on the complete set (in blue). Using batches of tasks adds some stochasticity to the
algorithm (which helps to make it more robust) and speeds up the library building routine, but increases the number
of required iterations.

library building phase since we limit the number of unitary matrices each enumerated circuit should
be tested against. Of course, an additional consequence is that more iterations are overall needed,
since it takes N/Nbatch iterations on average just to check against all the tasks. The algorithm learns
to decompose new matrices, but it accounts for that only when those are selected as target tasks. As
shown in Fig. 7, the performance that would be inferred at train time is, therefore, lower than the
effective one on the train set, just because we don’t check all the tasks at each iteration. The "seen
train" curve (calculated by considering only the decomposed matrices in the iteration batch) takes
more time to take advantage of the discovered gates since at each iteration it is only evaluated on a
subset of the total elements. The same set, but completely evaluated at each iteration of the algorithm,
is shown as "train" set (this is the same curve as in Fig. 3). We see that, even if the algorithm can
decompose all the matrices (for example after iteration 30), it can still invent new gates to make the
decomposition easier in terms of the number of used gates.

To produce plots of the circuits we use the qiskit library [47]. The complete code to run the algorithm
and reproduce the experiments is available on GitHub2.

D Experiments
In this Appendix, we show more details about the experiments we presented in the main text. In
Table 3, we show the list of all the gates that the algorithm extracted to solve the proposed tasks, in
the case where no connectivity constraints were enforced (i.e. Figure 3 in the main text).

2https://github.com/ellisk42/ec/tree/quantum_algorithms-simplified

14

https://github.com/ellisk42/ec/tree/quantum_algorithms-simplified

Table 1: List of extracted gates after 100 iterations, with no connectivity constraints between qubits.

0 q T T q T T (lambda (lambda (t (t
$0 $1) $1)))

1 q T T q T T (lambda (lambda (tdg
(tdg $0 $1) $1)))

2
q0

q1

f0 q0

q1

T T

(lambda (lambda
(lambda (f0 $0 (cnot
$1 $2 $0)))))

3 q H f0 q H T T (lambda (lambda (f0
$0 (h $1 $0))))

4
q0

q1 f1

0

1
f2

q0

q1 T T T T (lambda (lambda
(lambda (f2 $0 (f1
$1 $2) $1))))

5
q0

q1

q0

q1
(lambda (lambda
(lambda (cnot (cnot
$0 $1 $2) $2 $1))))

6
q0

q1

0

1
f2

0

1
f5

q0

q1 T T (lambda (lambda
(lambda (f5 $0 $1
(f2 $0 $2 $1)))))

7 q f0 f3 q T T H T T (lambda (lambda (f3
(f0 $0 $1) $0)))

8 q f0 f0 q T T T T (lambda (lambda (f0
$0 (f0 $0 $1))))

9 q f3 f0 H q H T T T T H (lambda (lambda (h
(f0 $0 (f3 $1 $0))
$0)))

10 q f3 H q H T T H (lambda (lambda (h
(f3 $0 $1) $1)))

Gate representation Expanded circuit Program

Continued on next page

15

Table 1: List of extracted gates after 100 iterations, with no connectivity constraints between qubits.
(Continued)

11
q0

q1 T

T q0

q1 T

T

(lambda (lambda
(lambda (cnot (t
(tdg (cnot $0 $1 $2)
$2) $1) $1 $2))))

12
q0

q1

0

1
f5

q0

q1
(lambda (lambda
(lambda (cnot (f5
$0 $1 $2) $1 $0))))

13
q0

q1

T 0

1
f11

q0

q1

T T

T (lambda (lambda
(lambda (f11 $0 $1
(t $2 $0)))))

14
q0

q1 f9

f8 q0

q1 H

T

T

T

T

T

T

T

T H (lambda (lambda (f8
(f9 $0 $1))))

15
q0

q1 0

1
f11

f10 q0

q1 T

T H T T H

(lambda (lambda
(lambda (f10 $0 (f11
$1 $0 $2)))))

16

iteration

Solution likelihood

Gate

us
ag

e

Gate usage
log-likelihood

ba

= new gate

= elementary gate

Probability evolution

c

f18

f4
f7
f10

=

=
=
=

d

f14 q H T T T T H T T T T (lambda (lambda (f14
$0 $1 $0)))

17
q0

q1

0

1
f15

q0

q1

T

T H T T H (lambda (lambda
(lambda (f15 (cnot
$0 $1 $2) $1 $2))))

18
q0

q1

f7 0

1
f17

q0

q1

T T H T T

T

T H T T H

(lambda (lambda
(lambda (f17 $0 $1
(f7 $2 $0)))))

19
q0

q1

0

1
f13

0

1
f13

q0

q1 T T

T

T T

T

(lambda (lambda
(lambda (f13 (f13
$0 $1 $2) $1 $2))))

20
q0

q1

q2

H
q0

q1

q2

H

(lambda (lambda
(lambda (h (cnot
$0 $1 $2)))))

Gate representation Expanded circuit Program

Continued on next page

16

Table 1: List of extracted gates after 100 iterations, with no connectivity constraints between qubits.
(Continued)

21
q0

q1

q2

f8
q0

q1

q2

T T T T

(lambda (lambda
(lambda (f8 (cnot
$0 $1 $2)))))

22
q0

q1

q2

f16

f10

0

1
f18

f7
q0

q1

q2

H

T

H

T

T

T

T

H

T

T

T

H

T

T

T

H

T

T

H

T

T

T

T

T T

T H T T H
(lambda (lambda
(lambda (lambda (f7
(f10 $0 (f18 (f16 $1
$2) $2 $3)) $0)))))

Gate representation Expanded circuit Program

Table 2 shows some examples of unitary matrices in our set (expressed in terms of the circuit that
we used to generate the matrix) and the decompositions proposed by our algorithm. We see that the
algorithm also finds unexpected ways to decompose the associated unitary matrix, which does not
necessarily involve the use of exactly the same blocks we used to build it.

Table 2: Examples of decomposed matrices.

q0

q1

q2

Y

q0

q1

q2

0

1
f4

q0

q1

q2

T T T T

q0

q1

q2 H

Y

q0

q1

q2

0

1
f4

0

1
f18

0

1

f18

iteration

Solution likelihood

Gate

us
ag

e

Gate usage
log-likelihood

ba

= new gate

= elementary gate

Probability evolution

c

f18

f4
f7
f10

=

=
=
=

d

f14

q0

q1

q2

H q0

q1

q2 0

1

f18

q0

q1

q2

T T H T T

T

T H T T H

q0

q1

q2

X

S

q0

q1

q2

f7 0

1
f13

q0

q1

q2

T T

T

H T T

T

T

q0

q1

q2

X S

q0

q1

q2

f7 0

1
f4

0

1
f13

q0

q1

q2

T T H T T T T T T T T

T

q0

q1

q2 H T H

q0

q1

q2

0

1
f18

T

0

1
f18

iteration

Solution likelihood

Gate

us
ag

e

Gate usage
log-likelihood

ba

= new gate

= elementary gate

Probability evolution

c

f18

f4
f7
f10

=

=
=
=

d

f14

q0

q1

q2 Y Y

H

q0

q1

q2 0

1

f4 0

1

2

f22

q0

q1

q2 T

T

T

T H

T

H

T

T

T

T

H

T

T

H

T

T

T

T

T

H

H

T

T

T

T T T T

T H T T H

q0

q1

q2 Y

H

q0

q1

q2

0

1
f12

0

1

2

f22

q0

q1

q2

H T T

H

T

H

T

T

T

T

H

T

T

T

H

T

T

T

H

T

T T T T T

T H T T H

Target Decomposition Expanded decomposition

Continued on next page

17

Table 2: Examples of decomposed matrices. (Continued)

q0

q1

q2 Y X

H q0

q1

q2 0

1

f4

f7 0

1

f18

q0

q1

q2 T T T

T

T

T

T

H

T

T

H

T

T T T

T H T T H

q0

q1

q2

Z Y H

q0

q1

q2

f8 0

1
f4

0

1
f18

q0

q1

q2

T T T T T T T T T T H T T

T

T H T T H

Target Decomposition Expanded decomposition

18

	1 Related Works
	2 Methods
	2.1 Program Synthesis
	2.2 Library building

	3 Results and discussion
	4 Outlook
	 Acknowledgments
	 References
	A The program synthesis algorithm
	B Probabilistic framing
	C Implementation details
	D Experiments

